1
|
Rajan A, Laha SS, Sahu NK, Thorat ND, Shankar B. Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy. Mater Today Bio 2024; 29:101348. [PMID: 39669801 PMCID: PMC11636219 DOI: 10.1016/j.mtbio.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties. This review offers a comprehensive perception of IONPs-mediated MHT from fundamentals to clinical translation, by elucidating the underlying mechanism of heat generation and the related influential factors. Biological mechanisms underlying MHT-mediated cancer cell death such as reactive oxygen species generation and lysosomal membrane permeabilization have been discussed in this review. Recent advances in biological interactions (in vitro and in vivo) of IONPs and their translation to clinical MHT applications are briefed. New frontiers and prospects of promising combination cancer therapies such as MHT with photothermal therapy, cancer starvation therapy and sonodynamic therapy are presented in detail. Finally, this review concludes by addressing current crucial challenges and proposing possible solutions to achieve clinical success.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| | - Suvra S. Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Nanasaheb D. Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre, University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| |
Collapse
|
2
|
Heo J, Jo Y, Yoon M. Synergistic effects of combined hyperthermia and electric fields treatment in non-small cell lung-cancer (NSCLC) cell lines. Clin Transl Oncol 2024:10.1007/s12094-024-03760-6. [PMID: 39436621 DOI: 10.1007/s12094-024-03760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE Lung cancer remains a leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) being particularly challenging due to poor survival rates, emphasizing the need for new treatments. This study examined the therapeutic effects of combining hyperthermia (HT) with tumor-treating electric fields (TTF) in NSCLC. METHODS Cells were exposed to four different conditions: hyperthermia at 42 °C for 30 min, electric fields at 150 kHz and 0.8 V/cm for 24 h, a combination of both treatments, or no treatment (control). Cell proliferation was measured using WST and colony-formation assays, while apoptosis, DNA damage, and repair protein levels were analyzed via Western blotting. Metastatic potential was evaluated with a transwell assay, and cell migration was assessed using the wound-healing assay. RESULTS The combination therapy significantly inhibited colony formation and reduced cell migration and invasion more effectively than individual treatments. The combined treatment also enhanced apoptosis, as indicated by increased cleaved-PARP and Annexin V levels. In addition, the DNA-damage marker γ-H2AX was elevated, while BRCA1, a protein involved in DNA repair, was significantly downregulated compared to the individual treatments. CONCLUSIONS These results suggest that the enhanced anticancer effects of HT and TTF are due to increased DNA damage and suppression of DNA-repair mechanisms, highlighting the potential of this combination therapy for NSCLC treatment.
Collapse
Affiliation(s)
- Jinju Heo
- Department of Bio-Medical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Yunhui Jo
- Institute of Global Health Technology (IGHT), Korea University, Seoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-Medical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea.
- FieldCure Ltd., Seoul, 02852, Republic of Korea.
| |
Collapse
|
3
|
Ostrowski T, Litwiński J, Gęca K, Świetlicka I, Polkowski WP, Skórzewska M. A Clinician's perspective on the role of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer management. Surg Oncol 2024; 56:102117. [PMID: 39096575 DOI: 10.1016/j.suronc.2024.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The prevention of intraperitoneal spread is of utmost importance in the management of advanced ovarian cancer (OC), thus demanding the exploration of innovative treatment techniques. The propensity of OC to spread to the peritoneum has highlighted the potential of local therapy as a promising approach. Among the proposed treatments thus far are several local intraperitoneal therapies, with hyperthermic intraperitoneal chemotherapy (HIPEC) being one of them. The application of HIPEC may potentially enhance the survival rates of patients with OC, as indicated by a recent publication of high-quality prospective data. The incorporation of HIPEC in conjunction with primary cytoreductive surgery (CRS) does not have a significant impact on either overall survival (OS) or disease-free survival (DFS). However, the incorporation of HIPEC alongside interval CRS, followed by systemic chemotherapy (CTH), markedly enhances both OS and DFS. The most recent data also substantiates the effectiveness of HIPEC in recurrent ovarian cancer (ROC), resulting in an improvement of survival outcomes. Additional research will contribute to the improvement of the HIPEC regimen and technique, as well as the precise identification of patients who will gain the most advantage from this treatment approach. It is recommended to discuss and update (inter)national clinical guidelines for managing patients with advanced OC and peritoneal involvement.
Collapse
Affiliation(s)
- Tomasz Ostrowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080, Lublin, Poland
| | - Jakub Litwiński
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080, Lublin, Poland
| | - Katarzyna Gęca
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080, Lublin, Poland.
| | - Izabela Świetlicka
- Department of Biophysics of Biological Structures and Systems, University of Life Sciences in Lublin, Poland
| | - Wojciech P Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080, Lublin, Poland
| | - Magdalena Skórzewska
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080, Lublin, Poland
| |
Collapse
|
4
|
Naser SS, Gupta A, Choudhury A, Yadav A, Sinha A, Kirti A, Singh D, Kujawska M, Kaushik NK, Ghosh A, De S, Verma SK. Biophysical translational paradigm of polymeric nanoparticle: Embarked advancement to brain tumor therapy. Biomed Pharmacother 2024; 179:117372. [PMID: 39208668 DOI: 10.1016/j.biopha.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric nanoparticles have emerged as promising contenders for addressing the intricate challenges encountered in brain tumor therapy due to their distinctive attributes, including adjustable size, biocompatibility, and controlled drug release kinetics. This review comprehensively delves into the latest developments in synthesizing, characterizing, and applying polymeric nanoparticles explicitly tailored for brain tumor therapy. Various synthesis methodologies, such as emulsion polymerization, nanoprecipitation, and template-assisted fabrication, are scrutinized within the context of brain tumor targeting, elucidating their advantages and limitations concerning traversing the blood-brain barrier. Furthermore, strategies pertaining to surface modification and functionalization are expounded upon to augment the stability, biocompatibility, and targeting prowess of polymeric nanoparticles amidst the intricate milieu of the brain microenvironment. Characterization techniques encompassing dynamic light scattering, transmission electron microscopy, and spectroscopic methods are scrutinized to evaluate the physicochemical attributes of polymeric nanoparticles engineered for brain tumor therapy. Moreover, a comprehensive exploration of the manifold applications of polymeric nanoparticles encompassing drug delivery, gene therapy, imaging, and combination therapies for brain tumours is undertaken. Special emphasis is placed on the encapsulation of diverse therapeutics within polymeric nanoparticles, thereby shielding them from degradation and enabling precise targeting within the brain. Additionally, recent advancements in stimuli-responsive and multifunctional polymeric nanoparticles are probed for their potential in personalized medicine and theranostics tailored for brain tumours. In essence, this review furnishes an all-encompassing overview of the recent strides made in tailoring polymeric nanoparticles for brain tumor therapy, illuminating their synthesis, characterization, and multifaceted application.
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Deobrat Singh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata 700125, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
5
|
Omar H, Alkurdi YA, Fathima A, Alsharaeh EH. Investigation of the Application of Reduced Graphene Oxide-SPION Quantum Dots for Magnetic Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1547. [PMID: 39404274 PMCID: PMC11477580 DOI: 10.3390/nano14191547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Integrating hyperthermia with conventional cancer therapies shows promise in improving treatment efficacy while mitigating their side effects. Nanotechnology-based hyperthermia, particularly using superparamagnetic iron oxide nanoparticles (SPIONs), offers a simplified solution for cancer treatment. In this study, we developed composites of SPION quantum dots (Fe3O4) with reduced graphene oxide (Fe3O4/RGO) using the coprecipitation method and investigated their potential application in magnetic hyperthermia. The size of Fe3O4 nanoparticles was controlled within the quantum dot range (≤10 nm) by varying the synthesis parameters, including reaction time as well as the concentration of ammonia and graphene oxide, where their biocompatibility was further improved with the inclusion of polyethylene glycol (PEG). These nanocomposites exhibited low cytotoxic effects on healthy cells (CHO-K1) over an incubation period of 24 h, though the inclusion of PEG enhanced their biocompatibility for longer incubation periods over 48 h. The Fe3O4/RGO composites dispersed in acidic pH buffer (pH 4.66) exhibited considerable heating effects, with the solution temperature increasing by ~10 °C within 5 min of exposure to pulsed magnetic fields, as compared to their dispersions in phosphate buffer and aqueous dimethylsulfoxide solutions. These results demonstrated the feasibility of using quantum dot Fe3O4/RGO composites for magnetic hyperthermia-based therapy to treat cancer, with further studies required to systematically optimize their magnetic properties and evaluate their efficacy for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | | | - Edreese H. Alsharaeh
- College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (H.O.)
| |
Collapse
|
6
|
Kadian P, Kesari A, Singh IR, Choudhury S, Singh A, Panda JJ, Randhawa JK. Temporal Optimization in the Synthesis of Multifunctional Nano Agents for Enhanced MRI Contrast, Hyperthermia Therapy, and ROS Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17337-17347. [PMID: 39113429 DOI: 10.1021/acs.langmuir.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Advanced methodologies, such as hyperthermia and modulation of reactive oxygen species (ROS), exhibit considerable promise in the therapeutic landscape of cancer. These strategies offer a targeted paradigm for combating malignant cells while mitigating damage to healthy tissue. Noteworthy among these approaches is the utilization of superparamagnetic iron oxide nanoparticles, which are renowned for their ability to enhance both hyperthermia and ROS generation specifically within tumor microenvironments. The objective of this investigation is to scrutinize the relationship between the reaction duration and the characteristics of carbon-doped silica core-shell iron oxide nanoparticles (CSIONPs). Specifically, we focus on CSIONP-12, CSIONP-24, and CSIONP-36, synthesized by using varying reaction periods. Through a comprehensive analysis, we primarily evaluate the impact of these formulations on T1 and T2 magnetic resonance imaging (MRI), aiming to elucidate their mechanisms and therapeutic potential in promoting hyperthermia and ROS-mediated cancer therapy. CSIONP-24 emerges as a compelling candidate due to its dual influence on magnetic hyperthermia and ROS generation, suggesting its promise in enhancing cancer treatment outcomes. Furthermore, the findings underscore the exceptional T1-T2 MRI capabilities of this technology, underscoring its versatility and efficacy in the nuanced realm of cancer theranostic.
Collapse
Affiliation(s)
- Pallavi Kadian
- School of Chemical Sciences, Indian Institute of Technology, Mandi 175005, India
| | - Anshika Kesari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Jaspreet Kaur Randhawa
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi 175005, India
| |
Collapse
|
7
|
Rech J, Żelaszczyk D, Marona H, Gunia-Krzyżak A, Żmudzki P, Bednarek IA. Hyperthermia Intensifies α-Mangostin and Synthetic Xanthones' Antimalignancy Properties. Int J Mol Sci 2024; 25:8874. [PMID: 39201559 PMCID: PMC11354364 DOI: 10.3390/ijms25168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In order to improve naturally occurring xanthones' anticancer properties, chemical synthesis is proposed. In this study, from eight novel xanthone derivatives coupled to morpholine or aminoalkyl morpholine, only the two most active ones were chosen. For additional enhancement of the anticancer activity of our tested compounds, we combined chemotherapy with hyperthermia in the range of 39-41 °C, from which the mild conditions of 39 °C were the most influencing. This approach had a profound impact on the anticancer properties of the tested compounds. TOV-21G and SC-OV-3 ovarian cell line motility and metastasis behavior were tested in native and hyperthermia conditions, indicating decreased wound healing properties and clonogenic activity. Similarly, the expression of genes involved in metastasis was hampered. The expression of heat shock proteins involved in cancer progression (Hsc70, HSP90A, and HSP90B) was significantly influenced by xanthone derivatives. Chemotherapy in mild hyperthermia conditions had also an impact on decreasing mitochondria potential, visualized with JC-1. Synthetic xanthone ring modifications may increase the anticancer activity of the obtained substances. Additional improvement of their activity can be achieved by applying mild hyperthermia conditions. Further development of a combined anticancer therapy approach may result in increasing currently known chemotherapeutics, resulting in a greater recovery rate and diminishment of the cytotoxicity of drugs.
Collapse
Affiliation(s)
- Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Paweł Żmudzki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Ilona Anna Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Grancharova T, Zagorchev P, Pilicheva B. Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment. J Funct Biomater 2024; 15:207. [PMID: 39194645 DOI: 10.3390/jfb15080207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Photothermal therapy (PTT) can overcome cancer treatment resistance by enhancing the cell membrane permeability, facilitating drug accumulation, and promoting drug release within the tumor tissue. Iron oxide nanoparticles (IONPs) have emerged as effective agents for PTT due to their unique properties and biocompatibility. Approved for the treatment of anemia, as MRI contrast agents, and as magnetic hyperthermia mediators, IONPs also offer excellent light-to-heat conversion and can be manipulated using external magnetic fields for targeted accumulation in specific tissue. Optimizing parameters such as the laser wavelength, power density, shape, size, iron oxidation state, functionalization, and concentration is crucial for IONPs' effectiveness. In addition to PTT, IONPs enhance other cancer treatment modalities. They improve tumor oxygenation, enhancing the efficacy of radiotherapy and photodynamic therapy. IONPs can also trigger ferroptosis, a programmed cell death pathway mediated by iron-dependent lipid peroxidation. Their magneto-mechanical effect allows them to exert a mechanical force on cancer cells to destroy tumors, minimizing the damage to healthy tissue. This review outlines strategies for the management of the photothermal performance and PTT efficiency with iron oxide nanoparticles, as well as synergies with other cancer therapies.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Danuzzo F, Sibilia MC, Vaquer S, Cara A, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A, Petrella F. The Role of Hyperthermic Intrathoracic Chemotherapy (HITHOC) in Thoracic Tumors. Cancers (Basel) 2024; 16:2513. [PMID: 39061153 PMCID: PMC11274823 DOI: 10.3390/cancers16142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pleural mesothelioma (PM) is a rare but aggressive thoracic tumor with a poor prognosis. Multimodal treatment-including induction chemotherapy, aggressive surgical resection, radiotherapy and immunotherapy in selected cases-currently represents the best therapeutic option. Single-center studies advocate hyperthermic intrathoracic chemotherapy (HITHOC) during surgical resection as an additional therapeutic option, although its impact on post-operative morbidity and survival has not yet been evaluated on a larger scale. HITHOC can be applied not only in the case of mesothelioma, but also in the case of thymoma with pleural involvement or-in very selected cases-in patients with secondary pleural metastases. Despite favorable outcomes and reduced clinical risks, there is no uniform approach to HITHOC, and a wide variety of indications and technical applications are still reported. Based on available data, HITHOC seems to offer a clear benefit in regard to overall survival of all mesothelioma patients; however, multicenter randomized controlled trials are required to validate and standardize this approach. The aim of this review is to focus on the present role of HITHOC in thoracic tumors with pleural involvement as well as on future challenges, particularly in the light of possible combined therapy of thoracic tumors still presenting poor prognoses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.D.); (M.C.S.); (S.V.); (A.C.); (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| |
Collapse
|
11
|
Colli C, Masi I, Jacchetti E, Santoni S, Sponchioni M, Colosimo BM, Rosanò L, Raimondi MT, Mauri E, Moscatelli D. Zwitterionic nanoparticles for thermally activated drug delivery in hyperthermia cancer treatment. NANOSCALE 2024; 16:12635-12649. [PMID: 38884523 PMCID: PMC11223588 DOI: 10.1039/d4nr00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Hyperthermia is considered a promising strategy to boost the curative outcome of traditional chemotherapeutic treatments. However, this thermally mediated drug delivery is still affected by important limitations. First, the poor accumulation of the conventional anticancer formulations in the target site limits the bioavailability of the active ingredient and induces off-site effects. In addition, some tumoral scenarios, such as ovarian carcinoma, are characterized by cell thermotolerance, which induces tumoral cells to activate self-protecting mechanisms against high temperatures. To overcome these constraints, we developed thermoresponsive nanoparticles (NPs) with an upper critical solution temperature (UCST) to intracellularly deliver a therapeutic payload and release it on demand through hyperthermia stimulation. These NPs were synthesized via reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization and combine polyzwitterionic stabilizing segments and an oligoester-based biodegradable core. By leveraging the pseudo-living nature of RAFT polymerization, important physicochemical properties of the NPs were controlled and optimized, including their cloud point (Tcp) and size. We have tuned the Tcp of NPs to match the therapeutic needs of hyperthermia treatments at 43 °C and tested the nanocarriers in the controlled delivery of paclitaxel, a common anticancer drug. The NPs released almost entirely the encapsulated drug only following 1 h incubation at 43 °C, whereas they retained more than 95% of the payload in the physiological environment (37 °C), thus demonstrating their efficacy as on-demand drug delivery systems. The administration of drug-loaded NPs to ovarian cancer cells led to therapeutic effects outperforming the conventional administration of non-encapsulated paclitaxel, which highlights the potential of the zwitterionic UCST-type NPs as an innovative hyperthermia-responsive drug delivery system.
Collapse
Affiliation(s)
- Camillo Colli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Silvia Santoni
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156, Milan, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Bianca Maria Colosimo
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156, Milan, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
12
|
Zhang S, Xie H, Pan P, Wang Q, Yang B, Li Y, Wei Y, Sun Y, Wei Y, Jiang Q, Huang Y. EGCG alleviates heat-stress-induced fat deposition by targeting HSP70 through activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. Biochem Pharmacol 2024; 225:116250. [PMID: 38705537 DOI: 10.1016/j.bcp.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Obesity has emerged as a prominent global health concern, with heat stress posing a significant challenge to both human health and animal well-being. Despite a growing interest in environmental determinants of obesity, very few studies have examined the associations between heat stress-related environmental factors and adiposity. Consequently, there exists a clear need to understand the molecular mechanisms underlying the obesogenic effects of heat stress and to formulate preventive strategies. This study focused on culturing porcine subcutaneous preadipocytes at 41.5 ℃ to induce heat stress, revealing that this stressor triggered apoptosis and fat deposition. Analysis demonstrated an upregulation in the expression of HSP70, BAX, adipogenesis-related genes (PPARγ, AP2, CEBPα and FAS), the p-AMPK/AMPK ratio and SIRT1, PGC-1α in the heat stress group compared to the control group (P < 0.05). Conversely, the expression of lipid lysis-related genes (ATGL, HSL and LPL) and Bcl-2 decreased in the heat stress group compared to the control group (P < 0.05). Furthermore, subsequent activator and/or inhibitor experiments validated that heat stress modulated HSP70 and AMPK signalling pathways to enhance lipogenesis and inhibit lipolysis in porcine subcutaneous preadipocytes. Importantly, this study reveals, for the first time, that EGCG mitigates heat-stress-induced fat deposition by targeting HSP70 through the activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. These findings elucidate the molecular mechanisms contributing to heat stress-induced obesity and provide a foundation for the potential clinical utilisation of EGCG as a preventive measure against both heat stress and obesity.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Yangyang Wei
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Yirong Wei
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
13
|
Grammatikaki S, Bala VM, Katifelis H, Lampropoulou DI, Mukha I, Vityuk N, Lagopati N, Kouloulias V, Aravantinos G, Gazouli M. Fe 3O 4 and Fe 3O 4core Au shell-based Hyperthermia Reduces Expression of Proliferation Markers Ki-67, TOP2A and TPX2 in a Human Breast Cancer Cell Line. In Vivo 2024; 38:1665-1670. [PMID: 38936909 PMCID: PMC11215606 DOI: 10.21873/invivo.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Hyperthermia represents an adjuvant local anticancer strategy which relies on the increase of temperature beyond the physiological level. In this study, we investigated the anticancer potential of Fe3O4 and Fe3O4core Aushell nanoparticles as hyperthermic agents in terms of cytotoxicity and studied the expression of cellular markers of proliferation (changes in mRNA levels via real-time polymerase chain reaction). MATERIALS AND METHODS The human breast cancer cell line SK-BR-1 was incubated with either Fe3O4 or Fe3O4core Aushell nanoparticles stabilized with tryptophan, prior to hyperthermia treatment. The normal HEK293 cell line was used as a control. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay to estimate possible toxic effects of the tested nanoparticles. After RNA extraction and cDNA synthesis, mRNA expression of three indicators of proliferation, namely marker of proliferation Ki-67, DNA topoisomerase II alpha (TOP2A) and TPX2 microtubule nucleation factor (TPX2), was investigated. RESULTS At each concentration tested, Fe3O4core Aushell nanoparticles showed greater toxicity compared to Fe3O4, while SK-BR-3 cells were more susceptible to their cytotoxic effects compared to the HEK293 cell line. The expression of Ki-67, TOP2A and TPX2 was reduced in SK-BR-3 cells by both Fe3O4 or Fe3O4core Aushell nanoparticles compared to untreated cells, while the only observed change in HEK293 cells was the up-regulation of TOP2A. CONCLUSION Both Fe3O4core Aushell and Fe3O4 NPs exhibit increased cytotoxicity to the cancer cell line tested (SK-BR-3) compared to HEK293 cells. The down-regulation in SK-BR-3 cells of the three proliferative markers studied, Ki-67, TOP2A and TPX2, after incubation with NPs suggests that cells that survived thermal destruction were not actively proliferating.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
14
|
Wang C, Tian X, Li X. Synthesis of a catalytic nanomaterial from polypyrrole and a pro-apoptotic peptide to target mitochondria for multimodal cancer therapy. Org Biomol Chem 2024; 22:4958-4967. [PMID: 38819437 DOI: 10.1039/d4ob00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Development of biocompatible nanomaterials with mitochondria-targeting and multimodal therapeutic activities is important for cancer treatment. Herein, we designed and synthesized a multifunctional pyrrole-based nanomaterial with photothermal effects and mitochondria-targeting properties from polypyrrole and the pro-apoptotic peptide KLA. Different from traditional strategies for the preparation of PPy nanoparticles, we innovatively used the KLA peptide as the template and CuCl2 as the catalyst to trigger the oxidative polymerization of pyrrole for PPy-KLA-Cu nanoparticle formation. Besides, due to the presence of mixed-valence Cu(I)/Cu(II) states, PPy-KLA-Cu nanoparticles also exhibited multienzyme-like activities, such as peroxidase, ascorbate oxidase and glutathione peroxidase activities, which can be exploited to elevate the intracellular ROS level and simultaneously consume GSH in cancer cells. More importantly, the heat generated by PPy-KLA-Cu nanoparticles from NIR irradiation could enhance the nanozymatic activities for ROS elevation and increase the KLA-induced anticancer activity via mitochondrial dysfunction, realizing multimodal treatment of cancer cells with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Cong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk. Future Sci OA 2024; 10:FSO979. [PMID: 38827789 PMCID: PMC11140649 DOI: 10.2144/fsoa-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Abdel-Hamid Z Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mai O Kadry
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
16
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
17
|
Mao W, Li W, Hu X. Tumor hyperthermia research progress and application prospect in tumoroids (Review). Mol Clin Oncol 2024; 20:31. [PMID: 38476334 PMCID: PMC10928662 DOI: 10.3892/mco.2024.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor hyperthermia is the fifth tumor treatment method after surgery, chemotherapy, radiotherapy and biological therapy, and is also one of the important adjuvant treatment methods for tumors. Hyperthermia can not only directly eliminate tumor cells, but also stimulate the antitumor immune response of the body, and improve the sensitivity of tumor tissues to radiotherapy and chemotherapy. An organoid is a tissue-specific cell cluster formed by 3D culture of various types of cells derived from target organ stem cells, which can reproduce the functions of target organs in vivo. At present, the research models of hepatocellular carcinoma (HCC) in vitro are mainly 2D culture cell line models, and there is no clinical report on tumor hyperthermia using HCC tumoroids. It was hypothesized that this will be a promising research direction.
Collapse
Affiliation(s)
- Wei Mao
- Department of General Surgery, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Wen Li
- Central Laboratory, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Xuguang Hu
- Department of Hepatobiliary Surgery, Organ Transplantation Center, Jiangxi Provincial People's Hospital, Donghu, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
18
|
Laukkanen JA, Kunutsor SK. The multifaceted benefits of passive heat therapies for extending the healthspan: A comprehensive review with a focus on Finnish sauna. Temperature (Austin) 2024; 11:27-51. [PMID: 38577299 PMCID: PMC10989710 DOI: 10.1080/23328940.2023.2300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 04/06/2024] Open
Abstract
Passive heat therapy is characterized by exposure to a high environmental temperature for a brief period. There are several types of passive heat therapy which include hot tubs, Waon therapy, hydrotherapy, sanarium, steam baths, infrared saunas and Finnish saunas. The most commonly used and widely studied till date are the Finnish saunas, which are characterized by high temperatures (ranging from 80-100°C) and dry air with relative humidity varying from 10-20%. The goal of this review is to provide a summary of the current evidence on the impact of passive heat therapies particularly Finnish saunas on various health outcomes, while acknowledging the potential of these therapies to contribute to the extension of healthspan, based on their demonstrated health benefits and disease prevention capabilities. The Finnish saunas have the most consistent and robust evidence regarding health benefits and they have been shown to decrease the risk of health outcomes such as hypertension, cardiovascular disease, thromboembolism, dementia, and respiratory conditions; may improve the severity of musculoskeletal disorders, COVID-19, headache and flu, while also improving mental well-being, sleep, and longevity. Finnish saunas may also augment the beneficial effects of other protective lifestyle factors such as physical activity. The beneficial effects of passive heat therapies may be linked to their anti-inflammatory, cytoprotective and anti-oxidant properties and synergistic effects on neuroendocrine, circulatory, cardiovascular and immune function. Passive heat therapies, notably Finnish saunas, are emerging as potentially powerful and holistic strategies to promoting health and extending the healthspan in all populations.
Collapse
Affiliation(s)
- Jari A. Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | | |
Collapse
|
19
|
Orel VE, Diedkov AG, Ostafiichuk VV, Lykhova OO, Kolesnyk DL, Orel VB, Dasyukevich OY, Rykhalskyi OY, Diedkov SA, Prosvietova AB. Combination Treatment with Liposomal Doxorubicin and Inductive Moderate Hyperthermia for Sarcoma Saos-2 Cells. Pharmaceuticals (Basel) 2024; 17:133. [PMID: 38276006 PMCID: PMC10819935 DOI: 10.3390/ph17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Despite efforts in osteosarcoma (OS) research, the role of inductive moderate hyperthermia (IMH) in delivering and enhancing the antitumor effect of liposomal doxorubicin formulations (LDOX) remains unresolved. This study investigated the effect of a combination treatment with LDOX and IMH on Saos-2 human OS cells. We compared cell viability using a trypan blue assay, apoptosis and reactive oxygen species (ROS) measured by flow cytometry and pro-apoptotic Bax protein expression examined by immunocytochemistry in response to IMH (42 MHz frequency, 15 W power for 30 min), LDOX (0.4 μg/mL), and LDOX plus IMH. The lower IC50 value of LDOX at 72 h indicated increased accumulation of the drug in the OS cells. LDOX plus IMH resulted in a 61% lower cell viability compared to no treatment. Moreover, IMH potentiated the LDOX action on the Saos-2 cells by promoting ROS production at temperatures of <42 °C. There was a 12% increase in cell populations undergoing early apoptosis with a less heterogeneous distribution of Bax after combination treatment compared to those treated with LDOX (p < 0.05). Therefore, we determined that IMH could enhance LDOX delivery and its antitumor effect via altered membrane permeabilization, ROS generation, and a lower level of visualized Bax heterogeneity in the Saos-2 cells, suggesting the potential translation of these findings into in vivo studies.
Collapse
Affiliation(s)
- Valerii E. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Oleksandra O. Lykhova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Denys L. Kolesnyk
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Valerii B. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Serhii A. Diedkov
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
| | - Anna B. Prosvietova
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| |
Collapse
|
20
|
Ginovyan M, Javrushyan H, Karapetyan H, Koss-Mikołajczyk I, Kusznierewicz B, Grigoryan A, Maloyan A, Bartoszek A, Avtandilyan N. Hypericum alpestre extract exhibits in vitro and in vivo anticancer properties by regulating the cellular antioxidant system and metabolic pathway of L-arginine. Cell Biochem Funct 2024; 42:e3914. [PMID: 38269521 DOI: 10.1002/cbf.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Grigoryan
- Department of Human and Animal Physiology, YSU, Yerevan, Armenia
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
21
|
Hasan U, Rajakumara E, Giri J. Reversal of Multidrug Resistance by the Synergistic Effect of Reversan and Hyperthermia to Potentiate the Chemotherapeutic Response of Doxorubicin in Glioblastoma and Glioblastoma Stem Cells. ACS APPLIED BIO MATERIALS 2023; 6:5399-5413. [PMID: 37975516 DOI: 10.1021/acsabm.3c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The glioblastoma stem cell (GSC) population in glioblastoma multiforme (GBM) poses major complication in clinical oncology owing to increased resistance to chemotherapeutic drugs, thereby limiting treatment in patients with recurring glioblastoma. To completely eradicate glioblastoma, a single therapy module is not enough; therefore, there is a need to develop a multimodal approach to eliminate bulk tumors along with the CSC population. With an aim to target transporters associated with multidrug resistance (MDR), such as P-glycoprotein (P-gp), a small-molecule inhibitor, reversan (RV) was used along with multifunctional magnetic nanoparticles (MNPs) for hyperthermia (HT) therapy and targeted drug delivery. Higher efflux of free doxorubicin (Dox) from the cells was stabilized by encapsulation in PPS-MnFe nanoparticles, whose physicochemical properties were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Treatment with RV also enhanced the cellular uptake of PPS-MnFe-Dox, whereas RV and magnetic hyperthermia (MHT) together showed prolonged retention of fluorescence dye, Rhodamine123 (R123), in glioblastoma cells compared with individual treatment. Overall, in this work, we demonstrated the synergistic action of RV and HT to combat MDR in GBM and GSCs, and chemo-hyperthermia therapy enhanced the cytotoxic effect of the chemotherapeutic drug Dox (with lower effective concentration) and induced a higher degree of apoptosis compared to single-drug dosage.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| |
Collapse
|
22
|
Li Z, Guo T, Zhao S, Lin M. The Therapeutic Effects of MUC1-C shRNA@Fe 3O 4 Magnetic Nanoparticles in Alternating Magnetic Fields on Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5651-5670. [PMID: 37822991 PMCID: PMC10563812 DOI: 10.2147/ijn.s426849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose Improving the treatment of triple-negative breast cancer (TNBC) is a serious challenge today. The primary objective of this study was to construct MUC1-C shRNA@ Fe3O4 magnetic nanoparticles (MNPs) and investigate their potential therapeutic benefits in alternating magnetic fields (AMF) on TNBC. Methods Firstly, we verified the high expression of MUC1 in TNBC and synthesized specific MUC1-C shRNA plasmids (MUC1-C shRNA). Then, we prepared and characterized MUC1-C shRNA@Fe3O4 MNPs and confirmed their MUC1-C gene silencing effect and magneto-thermal conversion ability in AMF. Moreover, the inhibitory effects on TNBC in vitro and in vivo were observed as well as biosafety. Finally, the protein levels of BCL-2-associated X protein (Bax), cleaved-caspase3, glutathione peroxidase inhibitor 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), and ferritin heavy chain 1 (FTH1) in TNBC cells and tissues were examined, and it was speculated that apoptosis and ferroptosis were involved in the synergistic treatment. Results MUC1-C shRNA@ Fe3O4 MNPs have a size of ~75 nm, with an encapsulation rate of (29.78±0.63) %, showing excellent gene therapy and magnetic hyperthermia functions. Under a constant AMF (3Kw) and a set concentration (200µg mL-1), the nanoparticles could be rapidly warmed up within 20 minutes and stabilized at about 43 °C. It could be uptaken by TNBC cells through endocytosis and significantly inhibit their proliferation and migration, with a growth inhibition rate of 79.22% for TNBC tumors. After treatment, GPX4, NRF2, and FTH1 expression levels in TNBC cells and tumor tissues were suppressed, while Bax and cleaved-caspase3 were increased. As key therapeutic measures, gene therapy, and magnetic hyperthermia have shown a synergistic effect in this treatment strategy, with a combined index (q index) of 1.23. Conclusion In conclusion, we developed MUC1-C shRNA@Fe3O4 MNPs with magnetic hyperthermia and gene therapy functions, which have shown satisfactory therapeutic effects on TNBC without significant side effects. This study provides a potential option for the precision treatment of TNBC.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Ting Guo
- Research Center of Clinical Medicine, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Susu Zhao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Mei Lin
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
Ahn CR, Baek SH. Enhancing Gastric Cancer Therapeutic Efficacy through Synergistic Cotreatment of Linderae Radix and Hyperthermia in AGS Cells. Biomedicines 2023; 11:2710. [PMID: 37893084 PMCID: PMC10604735 DOI: 10.3390/biomedicines11102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer remains a global health threat, particularly in Asian countries. Current treatment methods include surgery, chemotherapy, and radiation therapy. However, they all have limitations, such as adverse side effects, tumor resistance, and patient tolerance. Hyperthermia therapy uses heat to selectively target and destroy cancer cells, but it has limited efficacy when used alone. Linderae Radix (LR), a natural compound with thermogenic effects, has the potential to enhance the therapeutic efficacy of hyperthermia treatment. In this study, we investigated the synergistic anticancer effects of cotreatment with LR and 43 °C hyperthermia in AGS gastric cancer cells. The cotreatment inhibited AGS cell proliferation, induced apoptosis, caused cell cycle arrest, suppressed heat-induced heat shock responses, increased reactive oxygen species (ROS) generation, and promoted mitogen-activated protein kinase phosphorylation. N-acetylcysteine pretreatment abolished the apoptotic effect of LR and hyperthermia cotreatment, indicating the crucial role of ROS in mediating the observed anticancer effects. These findings highlight the potential of LR as an adjuvant to hyperthermia therapy for gastric cancer. Further research is needed to validate these findings in vivo, explore the underlying molecular pathways, and optimize treatment protocols for the development of novel and effective therapeutic strategies for patients with gastric cancer.
Collapse
Affiliation(s)
- Chae-Ryeong Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Goyang-si 10326, Republic of Korea
| |
Collapse
|
24
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
25
|
Kwon S, Jung S, Baek SH. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants (Basel) 2023; 12:antiox12040924. [PMID: 37107299 PMCID: PMC10136118 DOI: 10.3390/antiox12040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Despite significant therapeutic advances, the toxicity of conventional therapies remains a major obstacle to their application. Radiation therapy (RT) is an important component of cancer treatment. Therapeutic hyperthermia (HT) can be defined as the local heating of a tumor to 40-44 °C. Both RT and HT have the advantage of being able to induce and regulate oxidative stress. Here, we discuss the effects and mechanisms of RT and HT based on experimental research investigations and summarize the results by separating them into three phases. Phase (1): RT + HT is effective and does not provide clear mechanisms; phase (2): RT + HT induces apoptosis via oxygenation, DNA damage, and cell cycle arrest; phase (3): RT + HT improves immunological responses and activates immune cells. Overall, RT + HT is an effective cancer modality complementary to conventional therapy and stimulates the immune response, which has the potential to improve cancer treatments, including immunotherapy, in the future.
Collapse
Affiliation(s)
- Seeun Kwon
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Sumin Jung
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
26
|
Huffman OG, Chau DB, Dinicu AI, DeBernardo R, Reizes O. Mechanistic Insights on Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15051402. [PMID: 36900195 PMCID: PMC10000881 DOI: 10.3390/cancers15051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer is an aggressive disease of the female reproductive system and a leading cause of cancer death in women. Standard of care includes surgery and platinum-based chemotherapy, yet patients continue to experience a high rate of recurrence and metastasis. Hyperthermic intraperitoneal chemotherapy (HIPEC) treatment in highly selective patients extends overall survival by nearly 12 months. The clinical studies are highly supportive of the use of HIPEC in the treatment of ovarian cancer, though the therapeutic approach is limited to academic medical centers. The mechanism underlying HIPEC benefit remains unknown. The efficacy of HIPEC therapy is impacted by several procedural and patient/tumor factors including the timing of surgery, platinum sensitivity, and molecular profiling such as homologous recombination deficiency. The present review aims to provide insight into the mechanistic benefit of HIPEC treatment with a focus on how hyperthermia activates the immune response, induces DNA damage, impairs DNA damage repair pathways, and has a synergistic effect with chemotherapy, with the ultimate outcome of increasing chemosensitivity. Identifying the points of fragility unmasked by HIPEC may provide the key pathways that could be the basis of new therapeutic strategies for ovarian cancer patients.
Collapse
Affiliation(s)
- Olivia G. Huffman
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Danielle B. Chau
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
| | - Andreea I. Dinicu
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
| | - Robert DeBernardo
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-445-0880
| |
Collapse
|
27
|
Chia BSH, Ho SZ, Tan HQ, Chua MLK, Tuan JKL. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers (Basel) 2023; 15:cancers15020346. [PMID: 36672300 PMCID: PMC9856725 DOI: 10.3390/cancers15020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Regional hyperthermia therapy (RHT) is a treatment that applies moderate heat to tumours in an attempt to potentiate the effects of oncological treatments and improve responses. Although it has been used for many years, the mechanisms of action are not fully understood. Heterogenous practices, poor quality assurance, conflicting clinical evidence and lack of familiarity have hindered its use. Despite this, several centres recognise its potential and have adopted it in their standard treatment protocols. In recent times, significant technical improvements have been made and there is an increasing pool of evidence that could revolutionise its use. Our narrative review aims to summarise the recently published prospective trial evidence and present the clinical effects of RHT when added to standard cancer treatments. In total, 31 studies with higher-quality evidence across various subsites are discussed herein. Although not all of these studies are level 1 evidence, benefits of moderate RHT in improving local tumour control, survival outcomes and quality of life scores were observed across the different cancer subsites with minimal increase in toxicities. This paper may serve as a reference when considering this technique for specific indications.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Correspondence:
| | - Shaun Zhirui Ho
- Department of Radiation Oncology, 585 North Bridge Rd, Level 10 Raffles Specialist Centre, Singapore 188770, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| |
Collapse
|
28
|
Kulkarni-Dwivedi N, Patel PR, Shravage BV, Umrani RD, Paknikar KM, Jadhav SH. Hyperthermia and doxorubicin release by Fol-LSMO nanoparticles induce apoptosis and autophagy in breast cancer cells. Nanomedicine (Lond) 2022; 17:1929-1949. [PMID: 36645007 DOI: 10.2217/nnm-2022-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Studies on the anticancer effects of lanthanum strontium manganese oxide (LSMO) nanoparticles (NPs)-mediated hyperthermia at cellular and molecular levels are scarce. Materials & methods: LSMO NPs conjugated with folic acid (Fol-LSMO NPs) were synthesized, followed by doxorubicin-loading (DoxFol-LSMO NPs), and their effects on breast cancer cells were investigated. Results: Hyperthermia (45°C) and combination treatments exhibited the highest (∼95%) anticancer activity with increased oxidative stress. The involvement of intrinsic mitochondria-mediated apoptotic pathway and induction of autophagy was noted. Cellular and molecular evidence confirmed the crosstalk between apoptosis and autophagy, involving Beclin1, Bcl2 and Caspase-3 genes with free reactive oxygen species presence. Conclusion: The study confirmed hyperthermia and doxorubicin release by Fol-LSMO NPs induces apoptosis and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Neha Kulkarni-Dwivedi
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Pratikshkumar R Patel
- Polymer Science & Engineering, CSIR - National Chemical Laboratory, Pune, 411008, Maharashtra, India.,Academy of Scientific & Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Bhupendra V Shravage
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.,Developmental Biology Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India
| | - Rinku D Umrani
- LJ Institute of Pharmacy, LJ University, LJ Campus, Ahmedabad, 382210, Gujarat, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Indian Institute of Technology, Powai, Mumbai, 400076, India
| | - Sachin H Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, Maharashtra, India.,Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| |
Collapse
|
29
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|