1
|
Boby K, Veerasingam S. Depression diagnosis: EEG-based cognitive biomarkers and machine learning. Behav Brain Res 2025; 478:115325. [PMID: 39515528 DOI: 10.1016/j.bbr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Depression is a complex mental illness that has significant effects on people as well as society. The traditional techniques for the diagnosis of depression, along with the potential of nascent biomarkers especially EEG-based biomarkers, are studied. This review explores the significance of cognitive biomarkers, offering a comprehensive understanding of their role in the overall assessment of depression. It also investigates the effects of depression on various brain regions, outlines promising areas for future research, and emphasizes the importance of understanding the neurophysiological roots of depression. Furthermore, it elucidates how machine learning and deep learning models are integrated into EEG-based depression diagnosis, emphasizing their importance in optimizing personalized therapeutic protocols and improving diagnostic accuracy with EEG data analysis.
Collapse
Affiliation(s)
- Kiran Boby
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sridevi Veerasingam
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Yao M, Han X, Yin Y, Wang S, Han Y, Zhao H, Di H, Wu J, Zhang Y, Zeng X. Associations between serum uric acid and risk of depressive symptoms in East Asian populations. BMC Psychiatry 2024; 24:930. [PMID: 39695476 DOI: 10.1186/s12888-024-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Despite the fact that observational studies have reported associations between serum uric acid (SUA) and depressive symptoms risk in East Asian populations, there is a lack of evidence demonstrating a causal relationship between them. This study aimed to perform a comprehensive assessment of the relationship between SUA and depressive symptoms. METHODS This study included two cohort studies and a two-sample Mendelian randomization study. The cross-sectional cohort was derived from the China Health and Retirement Longitudinal Study (CHARLS) wave 3 (in 2015), and the baseline data of participants were extracted from the CHARLS wave 1(in 2011), excluding those with depressive symptoms in 2011 and forming a longitudinal cohort from 2011 to 2015. Logistic multiple regression was performed to investigate the cross-sectional and longitudinal associations of SUA with depressive symptoms in the two cohorts. Furthermore, we performed two-sample Mendelian randomization analyses to explore the potential causal relationships between them. RESULTS We included two cohorts of 9056 and 3177 individuals respectively. Logistic regression showed that individual with higher SUA levels had a lower risk of depressive symptoms (OR = 0.921; 95%CI: 0.886-0.957) in the cross-sectional cohort. However, neither the baseline SUA level (OR = 1.055, 95%CI: 0.961-1.157) nor the change in SUA level (OR = 0.945, 95%CI: 0.656-1.363) affected the depressive symptoms 4 years later in the longitudinal cohort. The two-sample MR showed that there was no genetic causal relationship between SUA and depression (ORIVW_MRE= 1.071, 95% CI: 0.926-1.238). CONCLUSIONS SUA and depressive symptoms are associated, with lower SUA levels observed in middle-aged and older participants with depressive symptoms; however, no causal evidence supports their relationship.
Collapse
Affiliation(s)
- Menghui Yao
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xinxin Han
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yue Yin
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuolin Wang
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yingdong Han
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - He Zhao
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Hong Di
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Juan Wu
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yun Zhang
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Xuejun Zeng
- Department of Family Medicine, Division of General Internal Medicine, Department of Medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
3
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This study compares the changes in lithium concentrations in the brain and blood following the administration of intranasal or oral lithium chloride (LiCl) dissolved in either Ryanodex Formulation Vehicle (RFV) or water, as well as the therapeutic effectiveness and side effects of intranasal versus oral lithium chloride (LiCl) in RFV, and their mechanisms for inhibiting inflammation and pyroptosis in 5xFAD Alzheimers Disease (AD) mice brains. In comparison to oral LiCl in RFV, intranasal LiCl in RFV decreased lithium blood concentrations but increased brain concentrations and duration, resulting in a significantly higher brain/blood lithium concentration ratio than intranasal LiCl in water or oral LiCl in RFV in young adult mice. Intranasal LiCl in RFV robustly protects both memory loss and depressive behavior in both young and old 5xFAD mice, with no side effects or thyroid/kidney toxicity. In fact, intranasal LiCl in RFV protects against age-dependent kidney function impairment in 5xFAD mice. This lithium mediated neuroprotection was associated with its potent effects on the inhibition of InsP3R-1 Ca2+ channel receptor increase, ameliorating pathological inflammation and activation of the pyroptosis pathway, and the associated loss of synapse proteins. Intranasal LiCl in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and treat both dementia and depression with no or minimal side effects/organ toxicity, particular in AD.
Collapse
|
4
|
Li HJ, Gao B, Yan LM, Xue YD, Wang T. Relationship between oxidative balance score and post-stroke depression: insights from the NHANES 2005-2018 cross-sectional study. Front Neurol 2024; 15:1440761. [PMID: 39655159 PMCID: PMC11626472 DOI: 10.3389/fneur.2024.1440761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The Oxidative Balance Score (OBS) represents an integrated measure of oxidative-reductive homeostasis. Despite the established role of oxidative stress in the development of post-stroke depression (PSD), the association between OBS and PSD in the general population remains unclear. This study aims to explore this relationship using data from the National Health and Nutrition Examination Survey (NHANES) spanning 2005-2018. Methods The OBS was calculated using validated methods that incorporate dietary and lifestyle factors, whereas PSD status was determined using self-reported data and the Patient Health Questionnaire-9 (PHQ-9) scores. Multivariable logistic regression was employed to evaluate the associations of total OBS, dietary OBS, and lifestyle OBS with PSD prevalence, adjusting for potential confounders. Dose-response relationships were further assessed using restricted cubic splines (RCS). Results Among the 26,668 participants included in the analysis, 201 were diagnosed with PSD. After adjusting for confounding variables, higher total OBS, dietary OBS, and lifestyle OBS were each significantly associated with reduced odds of PSD. The adjusted odds ratios (OR) and 95% confidence intervals (CI) for the highest versus lowest quartiles were 0.31 (95% CI: 0.15-0.67) for total OBS, 0.45 (0.27-0.73) for dietary OBS, and 0.28 (0.13-0.60) for lifestyle OBS. RCS analyses indicated a linear dose-response relationship for all three OBS categories with PSD risk. In sex-stratified analyses, significant inverse associations were observed between all OBS categories and PSD in females, whereas only lifestyle OBS was significantly associated with PSD in males. Conclusion Higher OBS was associated with reduced odds of PSD, with a particularly pronounced effect in females. These findings suggest that adherence to an antioxidant-rich diet and lifestyle may mitigate PSD risk.
Collapse
Affiliation(s)
- Hai-Jun Li
- Department of Neurology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Bo Gao
- Department of Neurology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Li-Ming Yan
- Department of Gynecology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Yi-Dong Xue
- Department of Neurology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Tao Wang
- Department of Neurology, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
5
|
Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced depression and anxiety behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611461. [PMID: 39314481 PMCID: PMC11418943 DOI: 10.1101/2024.09.06.611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles pretreatment to inhibit lipopolysaccharide (LPS)-induced pathological inflammation and synapse destruction and depressive and anxiety behavior in mice. Both wild-type (WT) B6SJLF1/J and 5XFAD adult mice (5-10 months old) were pretreated with intranasal dantrolene nanoparticles (dantrolene: 5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression, anxiety and side effects were performed 24 hours after a one-time LPS injection. Biomarkers for pyroptosis-related inflammation cytokines (IL-1β and IL-18) in blood and brains were measured using enzyme-linked immunosorbent assay (ELISA) and immunoblotting, respectively. The changes of primary proteins activation inflammatory pyroptosis (NLRP3: NLR family pyrin domain containing 3, Caspase-1, N-GSDMD: N terminal protein gasdermin D) and synapse proteins (PSD-95 and synpatin-1) in brains were measured using immunoblotting. Intranasal dantrolene nanoparticles robustly inhibited LPS-induced depression and anxiety behavior in both WT and 5XFAD mice, without obvious side effects. Intranasal dantrolene nanoparticles significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood and synapse loss in the brain. Intranasal dantrolene nanoparticles trended to inhibit LPS-induced elevation of IL1β and IL-18 and the pyroptosis activation proteins in the brain in both type of mice. In conclusion, intranasal dantrolene nanoparticles demonstrated neuroprotection against inflammation mediated depression and anxiety behaviors and should be studied furthermore as a future effective drug treatment of major depression disorder or anxiety psychiatric disorder, especially in AD patients.
Collapse
|
6
|
Li Y(J, Kuplicki R, Ford BN, Kresock E, Figueroa-Hall L, Savitz J, McKinney BA. Gene Age Gap Estimate (GAGE) for major depressive disorder: a penalized biological age model using gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610913. [PMID: 39282409 PMCID: PMC11398365 DOI: 10.1101/2024.09.03.610913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Recent associations between Major Depressive Disorder (MDD) and measures of premature aging suggest accelerated biological aging as a potential biomarker for MDD susceptibility or MDD as a risk factor for age-related diseases. Residuals or "gaps" between the predicted biological age and chronological age have been used for statistical inference, such as testing whether an increased age gap is associated with a given disease state. Recently, a gene expression-based model of biological age showed a higher age gap for individuals with MDD compared to healthy controls (HC). In the current study, we propose an approach that simplifies gene selection using a least absolute shrinkage and selection operator (LASSO) penalty to construct an expression-based Gene Age Gap Estimate (GAGE) model. We train a LASSO gene age model on an RNA-Seq study of 78 unmedicated individuals with MDD and 79 HC, resulting in a model with 21 genes. The L-GAGE shows higher biological aging in MDD participants than HC, but the elevation is not statistically significant. However, when we dichotomize chronological age, the interaction between MDD status and age has a significant association with L-GAGE. This effect remains statistically significant even after adjusting for chronological age and sex. Using the 21 age genes, we find a statistically significant elevated biological age in MDD in an independent microarray gene expression dataset. We find functional enrichment of infectious disease and SARS-COV pathways using a broader feature selection of age related genes.
Collapse
Affiliation(s)
- Yijie (Jamie) Li
- Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, USA
| | | | - Bart N. Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Elizabeth Kresock
- Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, USA
| | | | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa OK, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA
| | - Brett A. McKinney
- Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, USA
- Department of Mathematics, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
7
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Laurent N, Bellamy EL, Hristova D, Houston A. Ketogenic diets in clinical psychology: examining the evidence and implications for practice. Front Psychol 2024; 15:1468894. [PMID: 39391844 PMCID: PMC11464436 DOI: 10.3389/fpsyg.2024.1468894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The application of ketogenic dietary interventions to mental health treatments is increasingly acknowledged within medical and psychiatric fields, yet its exploration in clinical psychology remains limited. This article discusses the potential implications of ketogenic diets, traditionally utilized for neurological disorders, within broader mental health practices. Methods This article presents a perspective based on existing ketogenic diet research on historical use, biological mechanisms, and therapeutic benefits. It examines the potential application of these diets in mental health treatment and their relevance to clinical psychology research and practice. Results The review informs psychologists of the therapeutic benefits of ketogenic diets and introduces to the psychology literature the underlying biological mechanisms involved, such as modulation of neurotransmitters, reduction of inflammation, and stabilization of brain energy metabolism, demonstrating their potential relevance to biopsychosocial practice in clinical psychology. Conclusion By considering metabolic therapies, clinical psychologists can broaden their scope of biopsychosocial clinical psychology practice. This integration provides a care model that incorporates knowledge of the ketogenic diet as a treatment option in psychiatric care. The article emphasizes the need for further research and training for clinical psychologists to support the effective implementation of this metabolic psychiatry intervention.
Collapse
|
9
|
Lievanos-Ruiz FJ, Fenton-Navarro B. Enzymatic biomarkers of oxidative stress in patients with depressive disorders. A systematic review. Clin Biochem 2024; 130:110788. [PMID: 38969053 DOI: 10.1016/j.clinbiochem.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Oxidative stress (OS) results from the imbalance between the production of reactive oxygen species and the body's antioxidant mechanisms and is associated with various diseases, including depression. Antioxidants protect cells by neutralizing free radicals and include enzymatic components such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione S-transferase (GST). The concentration of these biomarkers can quantify OS. This research aimed to gather available information published in the last ten years about the concentration of enzymatic OS biomarkers in samples from patients with depressive disorders. METHOD A systematic review was conducted following the PRISMA guidelines, including original scientific articles that evaluated enzymatic OS biomarkers in participants with depressive disorders, using the keywords and boolean operators "superoxide dismutase" OR "catalase" OR "glutathione" AND "depress*" in the databases PubMed, SAGE Journals, DOAJ, Scielo, Dialnet, and Redalyc. RESULTS The initial search showed 614 results, with only 28 articles meeting the selection criteria. It was observed that all evaluated oxidative stress enzymatic markers showed a significant increase or decrease in patients with depressive disorders, due to a wide variability in the depressive disorders studied, the type of biological sample analyzed, and the techniques used. CONCLUSION There is evidence of the relationship between enzymatic OS biomarkers and depressive disorders, but additional studies are needed to clarify the nature of this relationship, particularly considering the different types of depressive disorders.
Collapse
Affiliation(s)
- F J Lievanos-Ruiz
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| | - B Fenton-Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| |
Collapse
|
10
|
Zhang T, Geng M, Li X, Gu Y, Zhao W, Ning Q, Zhao Z, Wang L, Zhang H, Zhang F. Identification of Oxidative Stress-Related Biomarkers for Pain-Depression Comorbidity Based on Bioinformatics. Int J Mol Sci 2024; 25:8353. [PMID: 39125922 PMCID: PMC11313298 DOI: 10.3390/ijms25158353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress has been identified as a major factor in the development and progression of pain and psychiatric disorders, but the underlying biomarkers and molecular signaling pathways remain unclear. This study aims to identify oxidative stress-related biomarkers and signaling pathways in pain-depression comorbidity. Integrated bioinformatics analyses were applied to identify key genes by comparing pain-depression comorbidity-related genes and oxidative stress-related genes. A total of 580 differentially expressed genes and 35 differentially expressed oxidative stress-related genes (DEOSGs) were identified. By using a weighted gene co-expression network analysis and a protein-protein interaction network, 43 key genes and 5 hub genes were screened out, respectively. DEOSGs were enriched in biological processes and signaling pathways related to oxidative stress and inflammation. The five hub genes, RNF24, MGAM, FOS, and TKT, were deemed potential diagnostic and prognostic markers for patients with pain-depression comorbidity. These genes may serve as valuable targets for further research and may aid in the development of early diagnosis, prevention strategies, and pharmacotherapy tools for this particular patient population.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Menglu Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoke Li
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yulin Gu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenjing Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi Ning
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Zijie Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medica University, Shijiazhuang 050017, China
| |
Collapse
|
11
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
12
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
13
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Pańczyszyn-Trzewik P, Stachowicz K, Misztak P, Nowak G, Sowa-Kućma M. Repeated Sulforaphane Treatment Reverses Depressive-like Behavior and Exerts Antioxidant Effects in the Olfactory Bulbectomy Model in Mice. Pharmaceuticals (Basel) 2024; 17:762. [PMID: 38931429 PMCID: PMC11206991 DOI: 10.3390/ph17060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Growing evidence suggests that activators of nuclear factor erythroid-derived 2-like 2 (Nrf2), such as sulforaphane, may represent promising novel pharmacological targets for conditions related to oxidative stress, including depressive disorder. Therefore, we conducted a study to explore the behavioral and biochemical effects of repeated (14 days) sulforaphane (SFN) treatment in the olfactory bulbectomy (OB) animal model of depression. An open field test (OFT), splash test (ST), and spontaneous locomotor activity test (LA) were used to assess changes in depressive-like behavior and the potential antidepressant-like activity of SFN. The OB model induced hyperactivity in mice during the OFT and LA as well as a temporary loss of self-care and motivation in the ST. The repeated administration of SFN (10 mg/kg) effectively reversed these behavioral changes in OB mice across all tests. Additionally, a biochemical analysis revealed that SFN (10 mg/kg) increased the total antioxidant capacity in the frontal cortex and serum of the OB model. Furthermore, SFN (10 mg/kg) significantly enhanced superoxide dismutase activity in the serum of OB mice. Overall, the present study is the first to demonstrate the antidepressant-like effects of repeated SFN (10 mg/kg) treatment in the OB model and indicates that these benefits may be linked to improved oxidative status.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Department of Medicine and Surgery, University of Milano-Bicocca, 20-900 Monza, Italy
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1A, 35-310 Rzeszow, Poland
| |
Collapse
|
15
|
Wang Y, Liu L, Yang D. Genetic Causal Associations between Various Serum Minerals and Risk of Depression: A Mendelian Randomization Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:211-220. [PMID: 38863045 PMCID: PMC11188766 DOI: 10.62641/aep.v52i3.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND Previous observational studies have discovered a connection between depression and mineral status. Confirming this potential connection is challenging due to confounding factors and potential reverse causality which is inherent in observational studies. MATERIALS AND METHODS We performed a Mendelian randomization (MR) analysis to estimate the causal association of serum minerals with depression. Leveraging summary-level data on depression, a genome-wide association study (GWAS) was applied. The data on serum minerals were collected from the FinnGen Biobank database. MR assessments representing causality were produced by inverse-variance weighted approaches with multiplicative random and fixed effects. RESULT Sensitivity analyses were performed to validate the reliability of the results. A noteworthy correlation emerged between serum zinc levels and reduced risk of depression. An odds ratio (OR) of 0.917 for depression associated with a one standard deviation increase in serum zinc levels (OR = 0.968; 95% CI = 0.953-0.984, p = 1.19 × 10-4, random effects model inverse variance weighted (IVW)); (OR = 0.928; 95% CI = 0.634-1.358, p = 0.766, MR Egger). Sensitivity assessments supported this causation. However, the risk of depression did not exhibit an association with other minerals. CONCLUSIONS In summary, a higher zinc concentration is causally associated with a reduced depression risk. This MR outcome may assist clinicians in the regulation of specific mineral intake, particularly for high-risk patients with serum zinc deficiencies.
Collapse
Affiliation(s)
- Yuan Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| | - Lini Liu
- Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| | - Dong Yang
- College of Clinical Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| |
Collapse
|
16
|
Shao Y, Chen Y, Wang S, Li C, Sun H, Sun X. Suspected duloxetine-induced restless legs syndrome phenotypic variant: a case report. BMC Psychiatry 2024; 24:349. [PMID: 38730422 PMCID: PMC11088019 DOI: 10.1186/s12888-024-05763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Restless arms syndrome (RAS) is the most common variant of restless legs syndrome (RLS), which is easy to be ignored in clinical practice due to the lack of specific diagnostic criteria. When effective therapeutic agents induced RAS and symptoms persisted after briefly observation, clinicians will face the challenge of weighing efficacy against side effects. CASE PRESENTATION A 67-year-old woman was admitted to a geriatric psychiatric ward with depression. Upon admission, the escitalopram dose was reduced from 15 mg to 10 mg per day, and the duloxetine dose was increased from 60 mg to 80 mg per day. The next night before bedtime, she developed itching and creeping sensations deep inside bilateral shoulders and arms, with the urge to move, worsening at rest, and alleviation after hammering. The symptoms persisted when escitalopram was discontinued. A history of RLS was confirmed. Treatment with 40 mg of duloxetine and 0.125 mg of pramipexole significantly improved depression, and the paresthesia disappeared, with no recurrence occurring 6 months after discharge. DISCUSSION AND CONCLUSIONS This case suggests that psychiatrists should pay attention to RLS variants when increasing doses of duloxetine. Long-term improvement can be achieved through dosage reduction combined with dopaminergic drugs instead of immediate discontinuation.
Collapse
Affiliation(s)
- Yan Shao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 Huayuan Bei Road, Haidian District, 100191, Beijing, China
| | - Yi Chen
- Ordos Fourth People's Hospital, Ordos, China
| | - Shichang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 Huayuan Bei Road, Haidian District, 100191, Beijing, China
| | - Chaowei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 Huayuan Bei Road, Haidian District, 100191, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 Huayuan Bei Road, Haidian District, 100191, Beijing, China
| | - Xinyu Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 Huayuan Bei Road, Haidian District, 100191, Beijing, China.
| |
Collapse
|
17
|
Zhang Y, Li XJ, Wang XR, Wang X, Li GH, Xue QY, Zhang MJ, Ao HQ. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals (Basel) 2023; 16:1607. [PMID: 38004472 PMCID: PMC10675308 DOI: 10.3390/ph16111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Depression can trigger an inflammatory response that affects the immune system, leading to the development of other diseases related to inflammation. Xiao-Yao-San (XYS) is a commonly used formula in clinical practice for treating depression. However, it remains unclear whether XYS has a modulating effect on the inflammatory response associated with depression. The objective of this study was to examine the role and mechanism of XYS in regulating the anti-inflammatory response in depression. A chronic unpredictable mild stress (CUMS) mouse model was established to evaluate the antidepressant inflammatory effects of XYS. Metabolomic assays and network pharmacology were utilized to analyze the pathways and targets associated with XYS in its antidepressant inflammatory effects. In addition, molecular docking, immunohistochemistry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), and Western Blot were performed to verify the expression of relevant core targets. The results showed that XYS significantly improved depressive behavior and attenuated the inflammatory response in CUMS mice. Metabolomic analysis revealed the reversible modulation of 21 differential metabolites by XYS in treating depression-related inflammation. Through the combination of liquid chromatography and network pharmacology, we identified seven active ingredients and seven key genes. Furthermore, integrating the predictions from network pharmacology and the findings from metabolomic analysis, Vascular Endothelial Growth Factor A (VEGFA) and Peroxisome Proliferator-Activated Receptor-γ (PPARG) were identified as the core targets. Molecular docking and related molecular experiments confirmed these results. The present study employed metabolomics and network pharmacology analyses to provide evidence that XYS has the ability to alleviate the inflammatory response in depression through the modulation of multiple metabolic pathways and targets.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao-Jun Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Xin-Rong Wang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao Wang
- Department of Basic Theory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Guo-Hui Li
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Qian-Yin Xue
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Ming-Jia Zhang
- Department of Basic Theory of TCM, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hai-Qing Ao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| |
Collapse
|
18
|
Modzelewski S, Oracz A, Iłendo K, Sokół A, Waszkiewicz N. Biomarkers of Postpartum Depression: A Narrative Review. J Clin Med 2023; 12:6519. [PMID: 37892657 PMCID: PMC10607683 DOI: 10.3390/jcm12206519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Postpartum depression (PPD) is a disorder that impairs the formation of the relationship between mother and child, and reduces the quality of life for affected women to a functionally significant degree. Studying markers associated with PPD can help in early detection, prevention, or monitoring treatment. The purpose of this paper is to review biomarkers linked to PPD and to present selected theories on the pathogenesis of the disease based on data from biomarker studies. The complex etiology of the disorder reduces the specificity and sensitivity of markers, but they remain a valuable source of information to help clinicians. The biggest challenge of the future will be to translate high-tech methods for detecting markers associated with postpartum depression into more readily available and less costly ones. Population-based studies are needed to test the utility of potential PPD markers.
Collapse
|
19
|
Poladian N, Navasardyan I, Narinyan W, Orujyan D, Venketaraman V. Potential Role of Glutathione Antioxidant Pathways in the Pathophysiology and Adjunct Treatment of Psychiatric Disorders. Clin Pract 2023; 13:768-779. [PMID: 37489419 PMCID: PMC10366746 DOI: 10.3390/clinpract13040070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Oxidative stress is defined as the imbalance between the production of free radicals and their removal by antioxidants, leading to accumulation and subsequent organ and tissue damage. Antioxidant status and its role in the accumulation of free radicals has been observed in a number of psychological disorders. Glutathione is commonly referred to as the principal antioxidant of the brain and, therefore, plays a critical role in maintaining redox homeostasis. Reduced levels of glutathione in the brain increase its vulnerability to oxidative stress, and may be associated with the development and progression of several psychiatric disorders. Within this review, we focus on analyzing potential associations between the glutathione antioxidant pathway and psychiatric disorders: major depressive disorder, schizophrenia, bipolar disorder, and generalized anxiety disorder. Our research suggests that studies regarding these four disorders have shown decreased levels of GSH in association with diseased states; however, conflicting results note no significant variance in glutathione pathway enzymes and/or metabolites based on diseased state. In studying the potential of NAC administration as an adjunct therapy, various studies have shown NAC to augment therapy and/or aid in symptomatic management for psychiatric disorders, while contrasting results exist within the literature. Based on the conflicting findings throughout this review, there is room for study regarding the potential role of glutathione in the development and progression of psychiatric disorders. Our findings further suggest a need to study such pathways with consideration of the interactions with first-line pharmacotherapy, and the potential use of antioxidants as supplemental therapy.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
20
|
Ľupták M, Fišar Z, Hroudová J. Different Effects of SSRIs, Bupropion, and Trazodone on Mitochondrial Functions and Monoamine Oxidase Isoform Activity. Antioxidants (Basel) 2023; 12:1208. [PMID: 37371937 DOI: 10.3390/antiox12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|