1
|
Warden C, Zubieta D, Brantley MA. Citrulline Plus Arginine Induces an Angiogenic Response and Increases Permeability in Retinal Endothelial Cells via Nitric Oxide Production. Int J Mol Sci 2025; 26:2080. [PMID: 40076703 PMCID: PMC11900006 DOI: 10.3390/ijms26052080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
We previously observed elevated plasma levels of citrulline and arginine in diabetic retinopathy patients compared to diabetic controls. We tested our hypothesis that citrulline plus arginine induces angiogenesis and increases permeability in retinal endothelial cells. Human retinal microvascular endothelial cells (HRMECs) were treated with citrulline, arginine, or citrulline + arginine, and angiogenesis was measured with cell proliferation, migration, and tube formation assays. Permeability was measured in HRMEC monolayers via trans-endothelial electrical resistance (TEER) and FITC-labeled dextran. We also measured arginase activity, arginase-1 and arginase-2 expression, protein expression and phosphorylation of endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) production. Citrulline + arginine induced endothelial cell proliferation (p = 0.018), migration (p = 0.011), and tube formation (p = 0.0042). Citrulline + arginine also increased FITC-dextran flow-through (p = 1.5 × 10-5) and decreased TEER (p = 0.010). Citrulline + arginine had no effect on arginase activity, but it increased eNOS (p = 6.3 × 10-4) and phosphorylated eNOS (p = 0.029), as well as NO production (p = 0.025). Inhibiting eNOS prevented the increase in NO (p = 0.0092), inhibited citrulline + arginine-induced cell migration (p = 0.0080) and tube formation (p = 0.0092), and blocked citrulline + arginine-related alterations in FITC-dextran flow-through (p = 3.6 × 10-4) and TEER (p = 3.9 × 10-4). These data suggest that citrulline + arginine treatment induces angiogenesis and increases permeability in retinal endothelial cells by activating eNOS and increasing NO production.
Collapse
Affiliation(s)
| | | | - Milam A. Brantley
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.W.); (D.Z.)
| |
Collapse
|
2
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Ma J, Chen Y, Si Y, Qian J, Wang C, Jin J, He Q. The multifaceted nature of diabetic erectile dysfunction: uncovering the intricate mechanisms and treatment strategies. Front Endocrinol (Lausanne) 2024; 15:1460033. [PMID: 39583965 PMCID: PMC11581859 DOI: 10.3389/fendo.2024.1460033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Background One of the most common complications of diabetes mellitus is diabetic erectile dysfunction (DMED), a condition that has grown more common in recent years and has a significant impact on patients' daily lives. The complicated pathophysiological changes of DMED, involving vascular, neurological, muscular, and endocrine variables, have not been well addressed by any one treatment technique, and no widely approved treatment strategy has been developed. Aim The objective of this study was to thoroughly examine the complex nature of the pathogenic mechanism of DMED and discover new therapeutic approaches that could improve DMED symptoms. Methods Studies and review articles from the past 10 years were considered. Results The pathogenesis of DMED encompasses vascular dysfunction, endothelial cell damage, cavernous smooth muscle defects, neurological dysfunction, endocrine/metabolic factors, leukomalacia fibrosis, and psychosocial factors, elucidating complex interplay among the mechanisms underlying DMED. It underscores the need of integrating traditional herbal medicine, energy-based medicine treatments, and advanced techniques like stem cell and gene therapy to enhance therapeutic outcomes. Furthermore, it expresses optimism on the therapeutic potential of new nanobiomaterials in DMED. Conclusion Through integrating a complete description of DMED etiology and current therapy methods, this work offers a helpful resource for researchers, doctors, and patients dealing with this difficult condition.
Collapse
Affiliation(s)
- Jianxiong Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yihao Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuhe Si
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiahua Qian
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenxi Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Juan Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiang He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Shi X, Li P, Herb M, Liu H, Wang M, Wang X, Feng Y, van Beers T, Xia N, Li H, Prokosch V. Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway. J Neuroinflammation 2024; 21:105. [PMID: 38649885 PMCID: PMC11034147 DOI: 10.1186/s12974-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Goldenfelsstr. 19-21, 50935, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Maoren Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Xiaosha Wang
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Yuan Feng
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Tim van Beers
- Institut I für Anatomie, Universitätsklinikum Köln (AöR), Cologne, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131, Mainz, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
6
|
Zhang G, Samarawickrama PN, Gui L, Ma Y, Cao M, Zhu H, Li W, Yang H, Li K, Yang Y, Zhu E, Li W, He Y. Revolutionizing Diabetic Foot Ulcer Care: The Senotherapeutic Approach. Aging Dis 2024; 16:946-970. [PMID: 38739931 PMCID: PMC11964433 DOI: 10.14336/ad.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.
Collapse
Affiliation(s)
- Guiqin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Li Gui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Yuan Ma
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Mei Cao
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Hong Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Wei Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Honglin Yang
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Kecheng Li
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Yang Yang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Enfang Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Wen Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
7
|
Kanmogne GD. HIV Infection, Antiretroviral Drugs, and the Vascular Endothelium. Cells 2024; 13:672. [PMID: 38667287 PMCID: PMC11048826 DOI: 10.3390/cells13080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial cell activation, injury, and dysfunction underlies the pathophysiology of vascular diseases and infections associated with vascular dysfunction, including human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome. Despite viral suppression with combination antiretroviral therapy (ART), people living with HIV (PLWH) are prone to many comorbidities, including neurological and neuropsychiatric complications, cardiovascular and metabolic diseases, premature aging, and malignancies. HIV and viral proteins can directly contribute to the development of these comorbidities. However, with the continued high prevalence of these comorbidities despite viral suppression, it is likely that ART or some antiretroviral (ARVs) drugs contribute to the development and persistence of comorbid diseases in PLWH. These comorbid diseases often involve vascular activation, injury, and dysfunction. The purpose of this manuscript is to review the current literature on ARVs and the vascular endothelium in PLWH, animal models, and in vitro studies. I also summarize evidence of an association or lack thereof between ARV drugs or drug classes and the protection or injury/dysfunction of the vascular endothelium and vascular diseases.
Collapse
Affiliation(s)
- Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
8
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
9
|
Cai L, Xia M, Zhang F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants (Basel) 2024; 13:423. [PMID: 38671871 PMCID: PMC11047590 DOI: 10.3390/antiox13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among the working-age population. Microglia, resident immune cells in the retina, are recognized as crucial drivers in the DR process. Microglia activation is a tightly regulated immunometabolic process. In the early stages of DR, the M1 phenotype commonly shifts from oxidative phosphorylation to aerobic glycolysis for energy production. Emerging evidence suggests that microglia in DR not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system. This redox adaptation supports metabolic reprogramming and offers potential therapeutic strategies using antioxidants. Here, we provide an overview of recent insights into the involvement of reactive oxygen species and the distinct roles played by key cellular antioxidant pathways, including the NADPH oxidase 2 system, which promotes glycolysis via enhanced glucose transporter 4 translocation to the cell membrane through the AKT/mTOR pathway, as well as the involvement of the thioredoxin and nuclear factor E2-related factor 2 antioxidant systems, which maintain microglia in an anti-inflammatory state. Therefore, we highlight the potential for targeting the modulation of microglial redox metabolism to offer new concepts for DR treatment.
Collapse
Affiliation(s)
- Luwei Cai
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
10
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
11
|
Zhou J, Zhu L, Li Y. Association between the triglyceride glucose index and diabetic retinopathy in type 2 diabetes: a meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1302127. [PMID: 38130393 PMCID: PMC10733479 DOI: 10.3389/fendo.2023.1302127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
The triglyceride-glucose (TyG) index is an accessible and reliable surrogate indicator of insulin resistance and is strongly associated with diabetes. However, its relationship with diabetic retinopathy (DR) remains controversial. This meta-analysis aimed to assess the relationship between the TyG index and the prevalence of DR. Initial studies were searched from PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI) electronic databases. The retrieval time range was from the establishment of the database to June 2023. Pooled estimates were derived using a random-effects model and reported as odds ratio (OR) with 95% confidence intervals (CIs). Two researchers independently assessed the methodological quality of the included studies. The Newcastle-Ottawa Quality Scale (NOS) was utilized to assess cohort studies or case-control studies. The Agency for Healthcare Research and Quality (AHRQ) methodology checklist was applied to assess cross-sectional studies. Ten observational studies encompassing 13716 patients with type 2 diabetes were included in the meta-analysis. The results showed that a higher TyG index increased the risk of DR compared with a low TyG index (OR: 2.34, 95% CI: 1.31-4.19, P < 0.05). When the index was analyzed as a continuous variable, consistent results were observed (OR: 1.48, 95% CI: 1.12-1.97, P < 0.005). There was no significant effect on the results of the sensitivity analyses excluding one study at a time (P all < 0.05). A higher TyG index may be associated with an increased prevalence of DR in patients with type 2 diabetes. However, high-quality cohort or case-control studies are needed to further substantiate this evidence. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023432747.
Collapse
Affiliation(s)
- Jianlong Zhou
- Department of Traditional Chinese Medicine, People’s Hospital of Deyang City, Deyang, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yadi Li
- Department of Traditional Chinese Medicine, People’s Hospital of Deyang City, Deyang, China
| |
Collapse
|
12
|
Soleimani M, Cheraqpour K, Koganti R, Djalilian AR. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3067-3082. [PMID: 37079093 DOI: 10.1007/s00417-023-06070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases. METHODS The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English. RESULTS Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents. CONCLUSIONS Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Li H, Liu X, Zhong H, Fang J, Li X, Shi R, Yu Q. Research progress on the pathogenesis of diabetic retinopathy. BMC Ophthalmol 2023; 23:372. [PMID: 37697295 PMCID: PMC10494348 DOI: 10.1186/s12886-023-03118-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Diabetic retinopathy is one of the most common and serious microvascular complications of diabetes mellitus. There are many factors leading to diabetic retinopathy, and its pathogenesis is still unclear. At present, there are still no effective measures for the early treatment of diabetic retinopathy, and the treatment options available when diabetes progresses to advanced stages are very limited, and the treatment results are often unsatisfactory. Detailed studies on the molecular mechanisms of diabetic retinopathy pathogenesis and the development of new therapeutic agents are of great importance. This review describes the potential pathogenesis of diabetic retinopathy for experimental studies and clinical practice.
Collapse
Affiliation(s)
- Hongbo Li
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.
| | - Xinyu Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hua Zhong
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jiani Fang
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiaonan Li
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Rui Shi
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qi Yu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
14
|
Chiu CC, Cheng KC, Lin YH, He CX, Bow YD, Li CY, Wu CY, Wang HMD, Sheu SJ. Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:21. [PMID: 37638991 DOI: 10.1007/s00005-023-00686-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Zhang J, Li C, Zhang Y, Wu J, Huang Z. Therapeutic potential of nitric oxide in vascular aging due to the promotion of angiogenesis. Chem Biol Drug Des 2023; 102:395-407. [PMID: 37062588 DOI: 10.1111/cbdd.14248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The decrease in angiogenesis that occurs with aging significantly contributes to the higher incidence and mortality of cardiovascular diseases among the elderly. This decline in angiogenesis becomes more pronounced with increasing age and is closely linked to abnormal function and senescence of endothelial cells. Enhancing angiogenesis in aging and targeting senescent endothelial cells have gained considerable attention. Nitric oxide (NO) has been thoroughly investigated for its function in regulating angiogenesis and is an important factor that can counteract endothelial cell senescence. This review summarizes the mechanisms of reduced angiogenesis during aging and therapeutic strategies targeting senescent cells. We also discuss the potential of combining the current approaches with NO in promoting angiogenesis in aging vessels.
Collapse
Affiliation(s)
- Jiaming Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Cunrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xinjiang Medical University, China
| |
Collapse
|
16
|
Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A. Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12040853. [PMID: 37107227 PMCID: PMC10135068 DOI: 10.3390/antiox12040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia-reperfusion (I/R) events are involved in the development of various ocular pathologies, e.g., retinal artery or vein occlusion. We tested the hypothesis that resveratrol is protective against I/R injury in the murine retina. Intraocular pressure (IOP) was elevated in anaesthetized mice to 110 mm Hg for 45 min via a micropipette placed in the anterior chamber to induce ocular ischemia. In the fellow eye, which served as control, IOP was kept at a physiological level. One group received resveratrol (30 mg/kg/day p.o. once daily) starting one day before the I/R event, whereas the other group of mice received vehicle solution only. On day eight after the I/R event, mice were sacrificed and retinal wholemounts were prepared and immuno-stained using a Brn3a antibody to quantify retinal ganglion cells. Reactivity of retinal arterioles was measured in retinal vascular preparations using video microscopy. Reactive oxygen species (ROS) and nitrogen species (RNS) were quantified in ocular cryosections by dihydroethidium and anti-3-nitrotyrosine staining, respectively. Moreover, hypoxic, redox and nitric oxide synthase gene expression was quantified in retinal explants by PCR. I/R significantly diminished retinal ganglion cell number in vehicle-treated mice. Conversely, only a negligible reduction in retinal ganglion cell number was observed in resveratrol-treated mice following I/R. Endothelial function and autoregulation were markedly reduced, which was accompanied by increased ROS and RNS in retinal blood vessels of vehicle-exposed mice following I/R, whereas resveratrol preserved vascular endothelial function and autoregulation and blunted ROS and RNS formation. Moreover, resveratrol reduced I/R-induced mRNA expression for the prooxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Our data provide evidence that resveratrol protects from I/R-induced retinal ganglion cell loss and endothelial dysfunction in the murine retina by reducing nitro-oxidative stress possibly via suppression of NOX2 upregulation.
Collapse
Affiliation(s)
- Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co., KG, 65189 Wiesbaden, Germany
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Johanna Charlotte Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Marie Luise Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
17
|
Vaglienti MV, Subirada PV, Joray MB, Bonacci G, Sánchez MC. Protective Effect of NO 2-OA on Oxidative Stress, Gliosis, and Pro-Angiogenic Response in Müller Glial Cells. Cells 2023; 12:cells12030494. [PMID: 36766836 PMCID: PMC9914399 DOI: 10.3390/cells12030494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Inflammation and oxidative and nitrosative stress are involved in the pathogenesis of proliferative retinopathies (PR). In PR, a loss of balance between pro-angiogenic and anti-angiogenic factors favors the secretion of vascular endothelial growth factor (VEGF). This vascular change results in alterations in the blood-retinal barrier, with extravasation of plasma proteins such as α2-macroglobulin (α2M) and gliosis in Müller glial cells (MGCs, such as MIO-M1). It is well known that MGCs play important roles in healthy and sick retinas, including in PR. Nitro-fatty acids are electrophilic lipid mediators with anti-inflammatory and cytoprotective properties. Our aim was to investigate whether nitro-oleic acid (NO2-OA) is beneficial against oxidative stress, gliosis, and the pro-angiogenic response in MGCs. Pure synthetic NO2-OA increased HO-1 expression in a time- and concentration-dependent manner, which was abrogated by the Nrf2 inhibitor trigonelline. In response to phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), NO2-OA prevented the ROS increase and reduced the gliosis induced by α2M. Finally, when hypoxic MGCs were incubated with NO2-OA, the increase in VEGF mRNA expression was not affected, but under hypoxia and inflammation (IL-1β), NO2-OA significantly reduced VEGF mRNA levels. Furthermore, NO2-OA inhibited endothelial cell (BAEC) tubulogenesis. Our results highlight NO2-OA's protective effect on oxidative damage, gliosis; and the exacerbated pro-angiogenic response in MGCs.
Collapse
Affiliation(s)
- María V. Vaglienti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Paula V. Subirada
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Mariana B. Joray
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba 5000, Argentina
- Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sánchez Labrador J. S., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
- Correspondence: (G.B.); (M.C.S.)
| | - María C. Sánchez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
- Correspondence: (G.B.); (M.C.S.)
| |
Collapse
|
18
|
Chu YC, Fang HW, Wu YY, Tang YJ, Hsieh EH, She Y, Chang CY, Lin IC, Chen YJ, Liu GS, Tseng CL. Functional Peptide-Loaded Gelatin Nanoparticles as Eyedrops for Cornea Neovascularization Treatment. Int J Nanomedicine 2023; 18:1413-1431. [PMID: 36992821 PMCID: PMC10042260 DOI: 10.2147/ijn.s398769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Background Corneal neovascularization (NV) is a process of abnormal vessel growth into the transparent cornea from the limbus and can disturb the light passing through the cornea, resulting in vision loss or even blindness. The use of nanomedicine as an effective therapeutic formulation in ophthalmology has led to higher drug bioavailability and a slow drug release rate. In this research, we designed and explored the feasibility of a new nanomedicine, gp91 ds-tat (gp91) peptide-encapsulated gelatin nanoparticles (GNP-gp91), for inhibiting corneal angiogenesis. Methods GNP-gp91 were prepared by a two-step desolvation method. The characterization and cytocompatibility of GNP-gp91 were analyzed. The inhibition effect of GNP-gp91 on HUVEC cell migration and tube formation was observed by an inverted microscope. The drug retention test in mouse cornea was observed by in vivo imaging system, fluorescence microscope, and DAPI/TAMRA staining. Finally, the therapeutic efficacy and evaluation of neovascularization-related factors were conducted through the in vivo corneal NV mice model via topical delivery. Results The prepared GNP-gp91 had a nano-scale diameter (550.6 nm) with positive charge (21.7 mV) slow-release behavior (25%, 240hr). In vitro test revealed that GNP-gp91 enhanced the inhibition of cell migration and tube formation capacity via higher internalization of HUVEC. Topical administration (eyedrops) of the GNP-gp91 significantly prolongs the retention time (46%, 20 min) in the mouse cornea. In chemically burned corneal neovascularization models, corneal vessel area with a significant reduction in GNP-gp91 group (7.89%) was revealed when compared with PBS (33.99%) and gp91 (19.67%) treated groups via every two days dosing. Moreover, GNP-gp91 significantly reduced the concentration of Nox2, VEGF and MMP9 in NV's cornea. Conclusion The nanomedicine, GNP-gp91, was successfully synthesized for ophthalmological application. These data suggest that GNP-gp91 contained eyedrops that not only have a longer retention time on the cornea but also can treat mice corneal NV effectively delivered in a low dosing frequency, GNP-gp91 eyedrops provides an alternative strategy for clinical ocular disease treatment in the culture.
Collapse
Affiliation(s)
- Ya-Chun Chu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Yi Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Jun Tang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - YiZhou She
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - Che-Yi Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei City, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Center for Precision Medicine and Translational Cancer Research, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Guei-Sheung Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Center for Precision Medicine and Translational Cancer Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
- Correspondence: Ching-Li Tseng, Tel +886 2 2736 1661 (ext. 5214), Email
| |
Collapse
|
19
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Edgerton-Fulton M, Ergul A. Vascular contributions to cognitive impairment/dementia in diabetes: role of endothelial cells and pericytes. Am J Physiol Cell Physiol 2022; 323:C1177-C1189. [PMID: 36036445 PMCID: PMC9576164 DOI: 10.1152/ajpcell.00072.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Vascular contributions to cognitive impairment/dementia (VCID) are a leading cause of dementia, a known neurodegenerative disorder characterized by progressive cognitive decline. Although diabetes increases the risks of stroke and the development of cerebrovascular disease, the cellular and vascular mechanisms that lead to VCID in diabetes are yet to be determined. A growing body of research has identified that cerebrovascular cells within the neurovascular complex display an array of cellular responses that impact their survival and reparative properties, which plays a significant role in VCID development. Specifically, endothelial cells and pericytes are the primary cell types that have gained much attention in dementia-related studies due to their molecular and phenotypic heterogeneity. In this review, we will discuss the various morphological subclasses of endothelial cells and pericytes as well as their relative distribution throughout the cerebrovasculature. Furthermore, the use of diabetic and stroke animal models in preclinical studies has provided more insight into the impact of sex differences on cerebral vascularization in progressive VCID. Understanding how cellular responses and sex differences contribute to endothelial cell and pericyte survival and function will set the stage for the development of potential preventive therapies for dementia-related disorders in diabetes.
Collapse
Affiliation(s)
- Mia Edgerton-Fulton
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
Phoenix A, Chandran R, Ergul A. Cerebral Microvascular Senescence and Inflammation in Diabetes. Front Physiol 2022; 13:864758. [PMID: 35574460 PMCID: PMC9098835 DOI: 10.3389/fphys.2022.864758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023] Open
Abstract
Stress-induced premature senescence can contribute to the accelerated metabolic aging process in diabetes. Progressive accumulation of senescent cells in the brain, especially those displaying the harmful inflammatory senescence-associated secretory phenotype (SASP), may lead to cognitive impairment linked with metabolic disturbances. In this context, the senescence within the neurovascular unit (NVU) should be studied as much as in the neurons as emerging evidence shows that neurogliovascular communication is critical for brain health. It is also known that cerebrovascular dysfunction and decreased cerebral blood flow (CBF) precede the occurrence of neuronal pathologies and overt cognitive impairment. Various studies have shown that endothelial cells, the major component of the NVU, acquire a senescent phenotype via various molecular mediators and pathways upon exposure to high glucose and other conditions mimicking metabolic disturbances. In addition, senescence in the other cells that are part of the NVU, like pericytes and vascular smooth cells, was also triggered upon exposure to diabetic conditions. The senescence within the NVU may compromise functional and trophic coupling among glial, vascular, and neuronal cells and the resulting SASP may contribute to the chronic neurovascular inflammation observed in Alzheimer's Disease and Related Dementias (ADRD). The link between diabetes-mediated cerebral microvascular dysfunction, NVU senescence, inflammation, and cognitive impairment must be widely studied to design therapeutic strategies.
Collapse
Affiliation(s)
- Ashley Phoenix
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Raghavendar Chandran
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States,*Correspondence: Adviye Ergul,
| |
Collapse
|
22
|
Satellite cell content and muscle regeneration in a mouse model of NAFLD. Nutrition 2022; 96:111570. [DOI: 10.1016/j.nut.2021.111570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/01/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
|
23
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
24
|
Velatooru LR, Abe RJ, Imanishi M, Gi YJ, Ko KA, Heo KS, Fujiwara K, Le NT, Kotla S. Disturbed flow-induced FAK K152 SUMOylation initiates the formation of pro-inflammation positive feedback loop by inducing reactive oxygen species production in endothelial cells. Free Radic Biol Med 2021; 177:404-418. [PMID: 34619327 PMCID: PMC8664087 DOI: 10.1016/j.freeradbiomed.2021.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Focal adhesion kinase (FAK) activation plays a crucial role in vascular diseases. In endothelial cells, FAK activation is involved in the activation of pro-inflammatory signaling and the progression of atherosclerosis. Disturbed flow (D-flow) induces endothelial activation and senescence, but the exact role of FAK in D-flow-induced endothelial activation and senescence remains unclear. The objective of this study is to investigate the role of FAK SUMOylation in D-flow-induced endothelial activation and senescence. The results showed that D-flow induced reactive oxygen species (ROS) production via NADPH oxidase activation and activated a redox-sensitive kinase p90RSK, leading to FAK activation by upregulating FAK K152 SUMOylation and the subsequent Vav2 phosphorylation, which in turn formed a positive feedback loop by upregulating ROS production. This feedback loop played a crucial role in regulating endothelial activation and senescence. D-flow-induced endothelial activation and senescence were significantly inhibited by mutating a FAK SUMOylation site lysine152 to arginine. Collectively, we concluded that FAK K152 SUMOylation plays a key role in D-flow-induced endothelial activation and senescence by forming a positive feedback loop through ROS production.
Collapse
Affiliation(s)
- Loka Reddy Velatooru
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA
| | - Rei J Abe
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Kyung-Sun Heo
- Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA.
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA.
| |
Collapse
|
25
|
Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021; 162:6345039. [PMID: 34363464 PMCID: PMC8386762 DOI: 10.1210/endocr/bqab136] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell fate that occurs in response to numerous types of stress and can promote tissue repair or drive inflammation and disruption of tissue homeostasis depending on the context. Aging and obesity lead to an increase in the senescent cell burden in multiple organs. Senescent cells release a myriad of senescence-associated secretory phenotype factors that directly mediate pancreatic β-cell dysfunction, adipose tissue dysfunction, and insulin resistance in peripheral tissues, which promote the onset of type II diabetes mellitus. In addition, hyperglycemia and metabolic changes seen in diabetes promote cellular senescence. Diabetes-induced cellular senescence contributes to various diabetic complications. Thus, type II diabetes is both a cause and consequence of cellular senescence. This review summarizes recent studies on the link between aging, obesity, and diabetes, focusing on the role of cellular senescence in disease processes.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Rafael R Flores
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
- Correspondence: Laura J. Niedernhofer, MD, PhD, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
27
|
Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10060904. [PMID: 34205032 PMCID: PMC8229098 DOI: 10.3390/antiox10060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.
Collapse
|
28
|
Curcumin suppresses oxidative stress via regulation of ROS/NF-κB signaling pathway to protect retinal vascular endothelial cell in diabetic retinopathy. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Retinoprotective Effect of Wild Olive (Acebuche) Oil-Enriched Diet against Ocular Oxidative Stress Induced by Arterial Hypertension. Antioxidants (Basel) 2020; 9:antiox9090885. [PMID: 32961933 PMCID: PMC7555058 DOI: 10.3390/antiox9090885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of ocular diseases, including hypertensive eye diseases. The beneficial effects of olive oil on cardiovascular diseases might rely on minor constituents. Currently, very little is known about the chemical composition and/or therapeutic effects of the cultivated olive tree’s counterpart, wild olive (also known in Spain as acebuche—ACE). Here, we aimed to analyze the antioxidant and retinoprotective effects of ACE oil on the eye of hypertensive mice made hypertensive via administration of NG-nitro-L-arginine-methyl-ester (L-NAME), which were subjected to a dietary supplementation with either ACE oil or extra virgin olive oil (EVOO) for comparison purposes. Deep analyses of major and minor compounds present in both oils was accompanied by blood pressure monitoring, morphometric analyses, as well as different determinations of oxidative stress-related parameters in retinal layers. Aside from its antihypertensive effect, an ACE oil-enriched diet reduced NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity/gene/protein expression (with a major implication of NADPH oxidase (NOX)2 isoform) in the retinas of hypertensive mice. Supplementation with ACE oil in hypertensive animals also improved alterations in nitric oxide bioavailability and in antioxidant enzyme profile. Interestingly, our findings show that the use of ACE oil resulted in better outcomes, compared with reference EVOO, against hypertension-related oxidative retinal damage.
Collapse
|
30
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
31
|
Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020; 177:113951. [PMID: 32251672 DOI: 10.1016/j.bcp.2020.113951] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.
Collapse
|
32
|
The Emerging Role of Senescence in Ocular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2583601. [PMID: 32215170 PMCID: PMC7085400 DOI: 10.1155/2020/2583601] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest in response to an array of cellular stresses. An important role for senescence has been shown for a number of pathophysiological conditions that include cardiovascular disease, pulmonary fibrosis, and diseases of the skin. However, whether senescence contributes to the progression of age-related macular degeneration (AMD) has not been studied in detail so far and the present review describes the recent research on this topic. We present an overview of the types of senescence, pathways of senescence, senescence-associated secretory phenotype (SASP), the role of mitochondria, and their functional implications along with antisenescent therapies. As a central mechanism, senescent cells can impact the surrounding tissue microenvironment via the secretion of a pool of bioactive molecules, termed the SASP. An updated summary of a number of new members of the ever-growing SASP family is presented. Further, we introduce the significance of mechanisms by which mitochondria may participate in the development of cellular senescence. Emerging evidence shows that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Based on recent studies, there is reasonable evidence that senescence could be a modifiable factor, and hence, it may be possible to delay age-related diseases by modulating basic aging mechanisms using SASP inhibitors/senolytic drugs. Thus, antisenescent therapies in aging and age-related diseases appear to have a promising potential.
Collapse
|
33
|
Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? J Clin Med 2020; 9:jcm9020425. [PMID: 32033258 PMCID: PMC7073619 DOI: 10.3390/jcm9020425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working age Americans. Clinicians diagnose DR based on its characteristic vascular pathology, which is evident upon clinical exam. However, extensive research has shown that diabetes causes significant neurovascular dysfunction prior to the development of clinically apparent vascular damage. While laser photocoagulation and/or anti-vascular endothelial growth factor (VEGF) therapies are often effective for limiting the late-stage vascular pathology, we still do not have an effective treatment to limit the neurovascular dysfunction or promote repair during the early stages of DR. This review addresses the role of arginase as a mediator of retinal neurovascular injury and therapeutic target for early stage DR. Arginase is the ureohydrolase enzyme that catalyzes the production of L-ornithine and urea from L-arginine. Arginase upregulation has been associated with inflammation, oxidative stress, and peripheral vascular dysfunction in models of both types of diabetes. The arginase enzyme has been identified as a therapeutic target in cardiovascular disease and central nervous system disease including stroke and ischemic retinopathies. Here, we discuss and review the literature on arginase-induced retinal neurovascular dysfunction in models of DR. We also speculate on the therapeutic potential of arginase in DR and its related underlying mechanisms.
Collapse
|
34
|
Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9736047. [PMID: 31976030 PMCID: PMC6954472 DOI: 10.1155/2019/9736047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
Abstract
Objective Glaucoma is a leading cause of severe visual impairment and blindness. Although high intraocular pressure (IOP) is an established risk factor for the disease, the role of abnormal ocular vessel function in the pathophysiology of glaucoma gains more and more attention. We tested the hypothesis that elevated intraocular pressure (IOP) causes vascular dysfunction in the retina. Methods High IOP was induced in one group of mice by unilateral cauterization of three episcleral veins. The other group received sham surgery only. Two weeks later, retinal vascular preparations were studied by video microscopy in vitro. Reactive oxygen species (ROS) levels and expression of hypoxia markers and of prooxidant and antioxidant redox genes as well as of inflammatory cytokines were determined. Results Strikingly, responses of retinal arterioles to stepwise elevation of perfusion pressure were impaired in the high-IOP group. Moreover, vasodilation responses to the endothelium-dependent vasodilator, acetylcholine, were markedly reduced in mice with elevated IOP, while no differences were seen in response to the endothelium-independent nitric oxide donor, sodium nitroprusside. Remarkably, ROS levels were increased in the retinal ganglion cell layer including blood vessels. Expression of the NADPH oxidase isoform, NOX2, and of the inflammatory cytokine, TNF-α, was increased at the mRNA level in retinal explants. Expression of NOX2, but not of the hypoxic markers, HIF-1α and VEGF-A, was increased in the retinal ganglion cell layer and in retinal blood vessels at the protein level. Conclusion Our data provide first-time evidence that IOP elevation impairs autoregulation and induces endothelial dysfunction in mouse retinal arterioles. Oxidative stress and inflammation, but not hypoxia, appear to be involved in this process.
Collapse
|
35
|
Rana I, Suphapimol V, Jerome JR, Talia DM, Deliyanti D, Wilkinson-Berka JL. Angiotensin II and aldosterone activate retinal microglia. Exp Eye Res 2019; 191:107902. [PMID: 31884019 DOI: 10.1016/j.exer.2019.107902] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022]
Abstract
Microglial cells are important contributors to the neuroinflammation and blood vessel damage that occurs in ischemic retinopathies. We hypothesized that key effectors of the renin-angiotensin aldosterone system, angiotensin II (Ang II) and aldosterone, increase the density of microglia in the retina and stimulate their production of reactive oxygen species (ROS) as well as pro-angiogenic and pro-inflammatory factors. Two animal models were studied that featured up-regulation of Ang II or aldosterone and included transgenic Ren-2 rats which overexpress renin and Ang II in tissues including the retina, and Sprague Dawley rats with ischemic retinopathy and infused with aldosterone. Complementary studies were performed in primary cultures of retinal microglia from neonatal Sprague Dawley rats exposed to hypoxia (0.5% O2) and inhibitors of the angiotensin type 1 receptor (valsartan), the mineralocorticoid receptor (spironolactone) or aldosterone synthase (FAD286). In both in vivo models, the density of ionized calcium-binding adaptor protein-1 labelled microglia/macrophages was increased in retina compared to genetic or vehicle controls. In primary cultures of retinal microglia, hypoxia increased ROS (superoxide) levels as well as the expression of the NADPH oxidase (NOX) isoforms, NOX1, NOX2 and NOX4. The elevated levels of ROS as well as NOX2 and NOX4 were reduced by all of the treatments, and valsartan and FAD286 also reduced NOX1 mRNA levels. A protein cytokine array of retinal microglia revealed that valsartan, spironolactone and FAD286 reduced the hypoxia-induced increase in the potent pro-angiogenic and pro-inflammatory agent, vascular endothelial growth factor as well as the inflammatory factors, CCL5 and interferon γ. Valsartan also reduced the hypoxia-induced increase in IL-6 and TIMP-1 as well as the chemoattractants, CXCL2, CXCL3, CXCL5 and CXCL10. Spironolactone and FAD286 reduced the levels of CXCL2 and CXCL10, respectively. In conclusion, our findings that both Ang II and aldosterone influence the activation of retinal microglia implicates the renin-angiotensin aldosterone system in the pathogenesis of ischemic retinopathies.
Collapse
Affiliation(s)
- Indrajeetsinh Rana
- Department of Immunology and Pathology, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Victoria University, Ballarat Road, Footscray, Victoria, Australia
| | - Varaporn Suphapimol
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Jack R Jerome
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Dean M Talia
- Department of Immunology and Pathology, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
36
|
Korokina LV, Golubev IV, Pokopejko ON, Zagrebelnaya AV, Demchenko SA. Search for new pharmacological targets for increasing the efficiency of correction of cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.39521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide: no other reason causes as many deaths a year as CVD. An estimated 17.9 million people died of CVD in 2016, accounting for 31% of all deaths in the world. People with CVD or at high risk for these diseases (due to one or more risk factors, such as high blood pressure, diabetes, hyperlipidemia, or an already developed disease) need early detection and assistance through counseling and, if necessary, taking medication.
Ways to find new targets for the correction of endothelium-associated pathology: The basis of the modern therapy for arterial hypertension and other cardiovascular diseases is the postulate of the need to correct endothelial dysfunction as an indication of the adequacy of antihypertensive and other types of treatment. Lowering blood pressure (BP) without normalizing endothelial function cannot be considered a successfully resolved clinical task. Currently, there are no drugs for specific pharmacological correction of endothelial dysfunction in cardiovascular diseases, and the search for new targets for pharmacological correction of endothelial dysfunction is one of the main tasks of pharmacology.
Collapse
|
37
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
38
|
Huang J, Zhao Q, Li M, Duan Q, Zhao Y, Zhang H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model. FASEB J 2019; 33:11194-11209. [PMID: 31295013 DOI: 10.1096/fj.201900756r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Vascular factors play a substantial role in the pathogenesis of glaucoma. Expressed in the vascular endothelium, cytochrome P450 (CYP) 2J2 is one of the CYP epoxygenases that metabolize arachidonic acid to produce epoxyeicosatrienoic acids and exert pleiotropic protective effects on the vasculature. In the present study, we investigated whether endothelium-specific overexpression of CYP2J2 (tie2-CYP2J2-Tr) protects against retinal ganglion cell (RGC) loss induced by glaucoma and in what way retinal vessels are involved in this process. We used a glaucoma model of retinal ischemia-reperfusion (I/R) injury in rats and found that endothelium-specific overexpression of CYP2J2 attenuated RGC loss induced by retinal I/R. Moreover, retinal I/R triggered retinal vascular senescence, indicated by up-regulated senescence-related proteins p53, p16, and β-galactosidase activity. The senescent endothelial cells resulted in pericyte loss and increased endothelial secretion of matrix metallopeptidase 9, which further contributed to RGC loss. CYP2J2 overexpression alleviated vascular senescence, pericyte loss, and matrix metallopeptidase 9 secretion. CYP2J2 suppressed endothelial senescence by down-regulating senescence-associated proteins p53 and p16. These 2 proteins were positively regulated by microRNA-128-3p, which was inhibited by CYP2J2. These results suggest that CYP2J2 protects against endothelial senescence and RGC loss in glaucoma, a discovery that may lead to the development of a potential treatment strategy for glaucoma.-Huang, J., Zhao, Q., Li, M., Duan, Q., Zhao, Y., Zhang, H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinshuo Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Age-Dependent Oxidative Stress Elevates Arginase 1 and Uncoupled Nitric Oxide Synthesis in Skeletal Muscle of Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1704650. [PMID: 31205583 PMCID: PMC6530149 DOI: 10.1155/2019/1704650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022]
Abstract
Aging is associated with reduced muscle mass (sarcopenia) and poor bone quality (osteoporosis), which together increase the incidence of falls and bone fractures. It is widely appreciated that aging triggers systemic oxidative stress, which can impair myoblast cell survival and differentiation. We previously reported that arginase plays an important role in oxidative stress-dependent bone loss. We hypothesized that arginase activity is dysregulated with aging in muscles and may be involved in muscle pathophysiology. To investigate this, we analyzed arginase activity and its expression in skeletal muscles of young and aged mice. We found that arginase activity and arginase 1 expression were significantly elevated in aged muscles. We also demonstrated that SOD2, GPx1, and NOX2 increased with age in skeletal muscle. Most importantly, we also demonstrated elevated levels of peroxynitrite formation and uncoupling of eNOS in aged muscles. Our in vitro studies using C2C12 myoblasts showed that the oxidative stress treatment increased arginase activity, decreased cell survival, and increased apoptotic markers. These effects were reversed by treatment with an arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH). Our study provides strong evidence that L-arginine metabolism is altered in aged muscle and that arginase inhibition could be used as a novel therapeutic target for age-related muscle complications.
Collapse
|
40
|
Diabetic retinopathy: Focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol 2019; 853:381-387. [PMID: 31009636 DOI: 10.1016/j.ejphar.2019.04.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy is a common complication of diabetes that affects the retina due to a sustained high blood sugar level. Recent studies have demonstrated that high glucose-driven oxidative stress plays an important role in the microvascular complications of retina in diabetes. Oxidative stress occurs due to the excess of reactive oxygen species, which causes oxidative damage to retina, leading to the leak of tiny blood vessels, or acts as signaling molecules to trigger neovascularization, resulting in new fragile vessels. NADPH oxidase (NOX) is a key enzymatic source of reactive oxygen species in the retina, and it is involved in the early as well as the advanced stage of diabetic retinopathy. To date, at least 7 NOX isoforms, including NOX1 to NOX5, dual oxidase1 and dual oxidase 2, have been identified. It has been shown that NOX isoforms exert different roles in the pathogenesis of diabetic retinopathy. Intervention of NOX by its inhibitors or modulators shows beneficial effect on improving the retinal functions in the models of diabetic retinopathy in vivo or in vitro. Thereby, NOX might be a potential target for the therapy of diabetic retinopathy. The present review focuses on the role of NOX, particularly the NOX isoforms, in promoting the development of diabetic retinopathy. In addition, NOX isoforms as potential targets for therapy of diabetic retinopathy are also discussed.
Collapse
|
41
|
The M 1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep 2019; 9:5222. [PMID: 30914695 PMCID: PMC6435680 DOI: 10.1038/s41598-019-41425-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Muscarinic acetylcholine receptors have been implicated as potential neuroprotective targets for glaucoma. We tested the hypothesis that the lack of a single muscarinic receptor subtype leads to age-dependent neuron reduction in the retinal ganglion cell layer. Mice with targeted disruption of single muscarinic acetylcholine receptor subtype genes (M1 to M5) and wild-type controls were examined at two age categories, 5 and 15 months, respectively. We found no differences in intraocular pressure between individual mouse groups. Remarkably, in 15-month-old mice devoid of the M1 receptor, neuron number in the retinal ganglion cell layer and axon number in the optic nerve were markedly reduced. Moreover, mRNA expression for the prooxidative enzyme, NOX2, was increased, while mRNA expression for the antioxidative enzymes, SOD1, GPx1 and HO-1, was reduced in aged M1 receptor-deficient mice compared to age-matched wild-type mice. In line with these findings, the reactive oxygen species level was also elevated in the retinal ganglion cell layer of aged M1 receptor-deficient mice. In conclusion, M1 receptor deficiency results in retinal ganglion cell loss in aged mice via involvement of oxidative stress. Based on these findings, activation of M1 receptor signaling may become therapeutically useful to promote retinal ganglion cell survival.
Collapse
|
42
|
Abstract
Each day, the retina converts an immense number of photons into chemical signals that are then transported to higher order neural centers for interpretation. This process of photo transduction requires large quantities of cellular energy and anabolic precursors, making the retina one of the most metabolically active tissues in the body. With such a large metabolic demand, the retina is understandably sensitive to perturbations in perfusion and hypoxia. Indeed, retinal ischemia underlies many prevalent retinal disorders including diabetic retinopathy (DR), retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Retinal ischemia leads to the expression of growth factors, cytokines, and other cellular mediators which promote inflammation, vascular dysfunction, and ultimately, vision loss. This review aims to highlight the most recent and compelling findings that have advanced our understanding of the molecular mechanisms underlying retinal ischemias.
Collapse
Affiliation(s)
- Seth D Fortmann
- Department of Ophthalmology, University of Alabama, Birmingham, AL, United States
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
43
|
Chandra S, Fulton DJR, Caldwell RB, Caldwell RW, Toque HA. Hyperglycemia-impaired aortic vasorelaxation mediated through arginase elevation: Role of stress kinase pathways. Eur J Pharmacol 2018; 844:26-37. [PMID: 30502342 DOI: 10.1016/j.ejphar.2018.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 11/15/2022]
Abstract
Diabetes-induced vascular endothelial dysfunction has been reported to involve hyperglycemia-induced increases in arginase activity. However, upstream mediators of this effect are not clear. Here, we have tested involvement of Rho kinase, ERK1/2 and p38 MAPK pathways in this process. Studies were performed with aortas isolated from wild type or hemizygous arginase 1 knockout (Arg1+/-) mice and bovine aortic endothelial cells exposed to high glucose (HG, 25 mmol/l) or normal glucose (NG, 5.5 mmol/l) conditions for different times. Effects of inhibitors of arginase, p38 MAPK, ERK1/2 or ROCK and ex vivo adenoviral delivery of active Arg1 and inactive (D128-Arg1) cDNA were also determined. Exposure in wild type aorta or endothelial cells to HG significantly increased arginase activity and Arg1 expression and impaired aortic relaxation. Transduction of wild type aorta with active Arg1 cDNA impaired vascular relaxation, whereas inactive Arg1 had no effect. The HG-induced vascular endothelial dysfunction was associated with increased phosphorylation (activation) of ERK1/2 and p38 MAPK. Pretreatment with inhibitors of ERK1/2, p38 MAPK, ROCK or arginase blocked HG-induced elevation of arginase activity and Arg1 expression and prevented the vascular dysfunction. Inhibition of ROCK blunted the HG-induced activation of ERK1/2 and p38 MAPK. In summary, activated ROCK and subsequent activation of ERK1/2 or p38 MAPK elevates arginase activity and Arg1 expression in hyperglycemic states. Targeting this pathway may provide an effective means for preventing diabetes/hyperglycemia-induced vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Surabhi Chandra
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Biology, University of Nebraska-Kearney, Kearney, NE, USA.
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Cell Biology and Anatomy, Augusta University, Augusta, GA, USA; Veterans Administration Medical Center, Augusta, GA, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
44
|
Apelin/APJ system: A novel promising target for anti-aging intervention. Clin Chim Acta 2018; 487:233-240. [PMID: 30296443 DOI: 10.1016/j.cca.2018.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is widely expressed in various organs. Recent research has indicated that the Apelin/APJ system plays an important role in aging. Apelin and APJ receptor expression are down-regulated with increasing age. In murine models, Apelin and APJ knockouts exhibit accelerated senescence whereas Apelin-restoration results in enhanced vigor and rejuvenated behavioral and circadian phenotypes. Furthermore, aged Apelin knockout mice develop progressive impairment of cardiac contractility associated with systolic dysfunction. Apelin is crucial to maintain cardiac contractility in aging. Moreover, the Apelin/APJ system appears to be involved in regulation of renin-angiotensin-aldosterone system (RAAS), apoptosis, inflammation and oxidative stress which promotes aging. Likewise, the Apelin/APJ system regulates autophagy, stem cells and the sirtuin family thus contributing to anti-aging. In this review, we describe the relationship between Apelin/APJ system and aging. We elaborate on the role of the Apelin/APJ system in aging stimulators, aging inhibitors and age-related diseases such as obesity, diabetes and cardiovascular disease. We conclude that Apelin/APJ system might become a novel promising therapeutic target for anti-aging.
Collapse
|
45
|
Cohen J, D'Agostino L, Tuzer F, Torres C. HIV antiretroviral therapy drugs induce premature senescence and altered physiology in HUVECs. Mech Ageing Dev 2018; 175:74-82. [PMID: 30055190 PMCID: PMC6133242 DOI: 10.1016/j.mad.2018.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Developments in medicine have led to a significant increase in the average human lifespan. This increase in aging is most readily apparent in the case of HIV where antiretroviral therapy has shifted infection from a terminal to a chronic but manageable disease. Despite this advance, patients suffer from co-morbidities best described as an accelerated aging phenotype. A potential contributor is cellular senescence, an aging-associated growth arrest, which has already been linked to other HIV co-morbidities such as lipodystrophies and osteoporosis in response to antiretroviral drugs. We have previously demonstrated that astrocytes senescence in response to antiretroviral drugs. As endothelial cells play a critical role regulating the blood brain barrier (BBB) and senescence could severely impact barrier permeability, we investigate the role of a commonly used combination of HIV reverse transcriptase inhibitors on the senescence program of human umbilical vein endothelial cells (HUVECs). Our studies indicate that HUVECs underwent premature senescence associated with inflammation, oxidative stress and altered eNOS activation. Treated cells had detrimental paracrine effects on astrocytes including paracrine senescence, suggesting that senescent HUVECs could influence astrocytes, which line the other side of the BBB. These results may have implications for HIV-associated neurocognitive disorders (HAND), a set of neurological deficits.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luca D'Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
46
|
NADPH Oxidases and Mitochondria in Vascular Senescence. Int J Mol Sci 2018; 19:ijms19051327. [PMID: 29710840 PMCID: PMC5983750 DOI: 10.3390/ijms19051327] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is the major risk factor in the development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, and myocardial infarction. Oxidative stress caused by overproduction of reactive oxygen species (ROS) and/or by reduced expression of antioxidant enzymes is a major contributor to the progression of vascular senescence, pathologic remodeling of the vascular wall, and disease. Both oxidative stress and inflammation promote the development of senescence, a process by which cells stop proliferating and become dysfunctional. This review focuses on the role of the mitochondria and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases Nox1 and Nox4 in vascular senescence, and their contribution to the development of atherosclerosis. Recent findings are reviewed, supporting a critical role of the mitochondrial regulator peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α), the inflammatory gene nuclear factor κB (NF-κB), zinc, the zinc transporters (ZnTs) ZnT3 and ZnT10, and angiotensin II (Ang II) in mitochondrial function, and their role in telomere stability, which provides new mechanistic insights into a previously proposed unified theory of aging.
Collapse
|
47
|
Shosha E, Xu Z, Narayanan SP, Lemtalsi T, Fouda AY, Rojas M, Xing J, Fulton D, Caldwell RW, Caldwell RB. Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. Int J Mol Sci 2018; 19:ijms19041215. [PMID: 29673160 PMCID: PMC5979610 DOI: 10.3390/ijms19041215] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022] Open
Abstract
We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1). Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs) exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S)-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal) activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16INK4a, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16INK4a immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
- Department of Occupational Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Modesto Rojas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Ji Xing
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
48
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
49
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
50
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|