1
|
Muñoz-Quintana M, Padrón-Sanz C, Dolbeth M, Arenas F, Vasconcelos V, Lopes G. Revealing the Potential of Fucus vesiculosus Linnaeus for Cosmetic Purposes: Chemical Profile and Biological Activities of Commercial and Wild Samples. Mar Drugs 2024; 22:548. [PMID: 39728123 DOI: 10.3390/md22120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Fucus vesiculosus Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of F. vesiculosus, focusing on their application in cosmetics, was explored. The extracts were chemically characterized, their carotenoid profiles being established by HPLC, and the total phenolic content and phlorotannins by spectrophotometry. The extracts were evaluated for their antioxidant potential against the physiologic free radicals superoxide anion radical (O2•-) and nitric oxide (•NO), for their ability to inhibit the enzymes hyaluronidase and tyrosinase, and for their anti-inflammatory potential in the macrophage cell model RAW 264.7. The acetone 70% extract of wild F. vesiculosus was the richest in fucoxanthin, which accounted for more than 67% of the total pigments identified, followed by the acetone 90% extract of the same sample, where both fucoxanthin and pheophytin-a represented 40% of the total pigments. The same behavior was observed for phenolic compounds, with the ethanol 60% presenting the lowest values. A chemical correlation could be established between the chemical composition and the biological activities, with acetone extracts from the wild F. vesiculosus, richer in fucoxanthin and phlorotannins, standing out as natural ingredients with anti-aging potential. Acetone 90% can be highlighted as the most effective extraction solvent, their extracts presenting the highest radicals scavenging capacity, ability to inhibit tyrosinase to a greater extent than the commercial ingredient kojic acid, and potential to slow down the inflammatory process.
Collapse
Affiliation(s)
- Marina Muñoz-Quintana
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia "San Vicente Mártir", Guillem de Castro 94, 46001 Valencia, Spain
| | - Carolina Padrón-Sanz
- Translational Research Center San Alberto Magno (CITSAM), Catholic University of Valencia "San Vicente Mártir", C/Quevedo, 2, 46001 Valencia, Spain
| | - Marina Dolbeth
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Francisco Arenas
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Graciliana Lopes
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Grünherz L, Kollarik S, Sanchez-Macedo N, McLuckie M, Lindenblatt N. Lipidomic Analysis of Microfat and Nanofat Reveals Different Lipid Mediator Compositions. Plast Reconstr Surg 2024; 154:895e-905e. [PMID: 39480647 PMCID: PMC11512614 DOI: 10.1097/prs.0000000000011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/30/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Microfat and nanofat are commonly used in various surgical procedures, from skin rejuvenation to scar correction, to contribute to tissue regeneration. Microfat contains mainly adipocytes and is well suited for tissue augmentation, and nanofat is rich in lipids, adipose-derived stem cells, microvascular fragments, and growth factors, making it attractive for aesthetic use. The authors have previously demonstrated that the mechanical processing of microfat into nanofat significantly changes its proteomic profile. Considering that mechanical fractionation leads to adipocyte disruption and lipid release, they aimed to analyze their lipidomic profiles for their regenerative properties. METHODS Microfat and nanofat samples were isolated from 14 healthy patients. Lipidomic profiling was performed by liquid chromatography tandem mass spectrometry. The resulting data were compared against the Human Metabolome and LIPID MAPS Structure Database. MetaboAnalyst was used to analyze metabolic pathways and lipids of interest. RESULTS From 2388 mass-to-charge ratio features, metabolic pathway enrichment analysis of microfat and nanofat samples revealed 109 pathways that were significantly enriched. Microfat samples revealed higher-intensity levels of sphingosines, different eicosanoids, and fat-soluble vitamins. Increased levels of coumaric acids and prostacyclin were found in nanofat. CONCLUSIONS This is the first study to analyze the lipidomic profiles of microfat and nanofat, providing evidence that mechanical emulsification of microfat into nanofat leads to changes in their lipid profiles. From 109 biological pathways, antiinflammatory, antifibrotic, and antimelanogenic lipid mediators were particularly enriched in nanofat samples when compared with microfat. Although further studies are necessary for a deeper understanding of the composition of these specific lipid mediators in nanofat samples, the authors propose that they might contribute to its regenerative effects on tissue. CLINICAL RELEVANCE STATEMENT Profiling the unique lipid mediators in nanofat and microfat enhances our understanding of their different therapeutic effects and allows us to link these specific mediators to antiinflammatory, pro-regenerative, or healing properties. Ultimately, this insight can advance personalized therapeutic strategies, where a specific type of fat is selected based on its optimal therapeutic effect.
Collapse
Affiliation(s)
- Lisanne Grünherz
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Sedef Kollarik
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nadia Sanchez-Macedo
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Michelle McLuckie
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nicole Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| |
Collapse
|
3
|
Chriscensia E, Nathanael J, Perwitasari U, Putra ABN, Adiyanto SA, Hartrianti P. Potential Utilisation of Theobroma cacao Pod Husk Extract: Protective Capability Evaluation Against Pollution Models and Formulation into Niosomes. Trop Life Sci Res 2024; 35:107-140. [PMID: 39234471 PMCID: PMC11371407 DOI: 10.21315/tlsr2024.35.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/13/2023] [Indexed: 09/06/2024] Open
Abstract
Theobroma cacao L. beans have long been used for food and medicinal purposes. However, up to 52%-76% of Theobroma cacao L. fruit comprises its husk, which are regarded as waste and oftentimes thrown away. In fact, cocoa pod husks actually possess a high antioxidant capacity. Antioxidants can be used to fight free radicals that are produced by environmental pollution. In order to simulate the effects of pollution, H2O2 and cigarette smoke extract models were used respectively. However, the antioxidant properties are limited on the skin due to poor penetration. Hence, in order to increase the topical penetration, cocoa pod husk extract (CPHE) was also formulated into niosomes thereafter. CPHE was characterised using total phenolic content, total flavonoid content and three antioxidant assays. After that, cytotoxicity and cytoprotective assay were conducted on HaCaT cells, which represent the skin epidermis. CPHE was then formulated into niosomes subjected to stability and penetration studies for three months. CPHE was shown to contain 164.26 ± 1.067 mg GAE/g extract in total phenolic content and 10.72 ± 0.32 mg QCE/g extract in total flavonoid content. In addition, our results showed that CPHE possesses similar antioxidant capacity through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, around eight-fold less through ABTS assay and approximately twelve-fold less through Ferric reducing power (FRAP) assay. The extract also showed comparable cytoprotective properties to that of standard (ascorbic acid). The niosome formulation was also able to increase the penetration compared to unencapsulated extract, as well as possess a good stability profile. This showed that CPHE, in fact, could be repurposed for other uses other than being thrown away as waste.
Collapse
Affiliation(s)
- Erika Chriscensia
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jl. Pulomas Barat No. Kav. 88, RT.4/RW.9, Kayu Putih, Kec. Pulo Gadung, 13210 Jakarta, Indonesia
| | - Joshua Nathanael
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jl. Pulomas Barat No. Kav. 88, RT.4/RW.9, Kayu Putih, Kec. Pulo Gadung, 13210 Jakarta, Indonesia
| | - Urip Perwitasari
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), 16911 Cibinong, Indonesia
| | - Agus Budiawan Naro Putra
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), 16911 Cibinong, Indonesia
| | - Shakila Angjaya Adiyanto
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jl. Pulomas Barat No. Kav. 88, RT.4/RW.9, Kayu Putih, Kec. Pulo Gadung, 13210 Jakarta, Indonesia
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jl. Pulomas Barat No. Kav. 88, RT.4/RW.9, Kayu Putih, Kec. Pulo Gadung, 13210 Jakarta, Indonesia
| |
Collapse
|
4
|
Consoli GML, Maugeri L, Musso N, Gulino A, D'Urso L, Bonacci P, Buscarino G, Forte G, Petralia S. One-Pot Synthesis of Luminescent and Photothermal Carbon Boron-Nitride Quantum Dots Exhibiting Cell Damage Protective Effects. Adv Healthc Mater 2024; 13:e2303692. [PMID: 38508224 DOI: 10.1002/adhm.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Zero-dimensional boron nitride quantum dots (BNQDs) are arousing interest for their versatile optical, chemical, and biochemical properties. Introducing carbon contents in BNQDs nanostructures is a great challenge to modulate their physicochemical properties. Among the carbon moieties, phenolic groups have attracted attention for their biochemical properties and phenol-containing nanomaterials are showing great promise for biomedical applications. Herein, the first example of direct synthesis of water dispersible BNQDs exposing phenolic and carboxylic groups is presented. The carbon-BNQDs are prepared in a single-step by solvent-assisted reaction of urea with boronic reagents and are characterized by optical absorption, luminescence, Raman, Fourier transform infrared and NMR spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and atomic force microscopy. The carbon-BNQDs exhibit nanodimension, stability, high photothermal conversion efficiency, pH-responsive luminescence and Z-potential. The potential of the carbon-BNQDs to provide photothermal materials in solid by embedding in agarose substrate is successfully investigated. The carbon-BNQDs exhibit biocompatibility on colorectal adenocarcinoma cells (Caco-2) and protective effects from chemical and oxidative stress on Caco-2, osteosarcoma (MG-63), and microglial (HMC-3) cells. Amplicon mRNA-seq analyses for the expression of 56 genes involve in oxidative-stress and inflammation are performed to evaluate the molecular events responsible for the cell protective effects of the carbon-BNQDs.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Luisa D'Urso
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Gianpiero Buscarino
- Department of Physic and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, Catania, 95124, Italy
| |
Collapse
|
5
|
Choi JY, Boo MY, Boo YC. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024; 29:2288. [PMID: 38792149 PMCID: PMC11124163 DOI: 10.3390/molecules29102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-β or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Min Young Boo
- Ppeum Clinic Daegu, 39 Dongseong-ro, Jung-gu, Daegu 41937, Republic of Korea;
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Lapivu Co., Ltd., 115 Dongdeok-ro, Jung-gu, Daegu 41940, Republic of Korea
| |
Collapse
|
6
|
Lee EJ, Ryu JH, Baek JH, Boo YC. Skin Color Analysis of Various Body Parts (Forearm, Upper Arm, Elbow, Knee, and Shin) and Changes with Age in 53 Korean Women, Considering Intrinsic and Extrinsic Factors. J Clin Med 2024; 13:2500. [PMID: 38731031 PMCID: PMC11084701 DOI: 10.3390/jcm13092500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Skin color is innately determined by race and other genetic factors, and it also undergoes acquired changes due to various intrinsic and extrinsic factors. Previous studies on skin color have mainly focused on the face, and research has recently expanded to other body parts. However, there is limited information about the age-dependent changes in the skin color of these body parts. The purpose of this study is to analyze the differences in skin color between various body parts and the changes in skin color of each body part with age. Methods: This study examined the skin color of 53 Korean women subjects evenly distributed in age from the 20s to 60s on several body parts: forearm, upper arm, elbow (extended or folded), knee (extended or folded), thigh, and shin. The lightness (L*), redness (a*), and yellowness (b*) were measured using a spectrophotometer, and the individual typology angle (ITA°) was calculated from the L* and b* values. The melanin index and erythema index were measured using the mexameter. Results: The results showed that the elbow skin had the lowest L* and ITA° values and the highest a* and b* values among the examined body parts, followed by the knee. The melanin index and erythema index were also high in the skin of these body parts. In the analysis of age-dependent changes in the skin color of various body parts, the forearm skin exhibited the most notable decrease in the L* and ITA° values and increases in the a* and b* values, followed by upper-arm skin. The melanin and erythema indices in the forearm also increased as the subjects aged, whereas those in the elbow and knee rather decreased with age. Conclusions: This study suggests that differences in intrinsic and extrinsic skin aging in various body parts may be expressed as different changes in skin color and raises the need for cosmetic and dermatological research to identify the physiological significance of these changes.
Collapse
Affiliation(s)
- Eun Ju Lee
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ja Hyun Ryu
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ji Hwoon Baek
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
Tran PT, Schleusener J, Kleuser B, Jung K, Meinke MC, Lohan SB. Evidence of the protective effect of anti-pollution products against oxidative stress in skin ex vivo using EPR spectroscopy and autofluorescence measurements. Eur J Pharm Biopharm 2024; 197:114211. [PMID: 38340877 DOI: 10.1016/j.ejpb.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The concentration of air pollution is gradually increasing every year so that daily skin exposure is unavoidable. Dietary supplements and topical formulations currently represent the protective strategies to guard against the effects of air pollution on the body and the skin. Unfortunately, there are not yet enough methods available to measure the effectiveness of anti-pollution products on skin. Here, we present two ex vivo methods for measuring the protective effect against air pollution of different cream formulations on the skin: Electron paramagnetic resonance (EPR) spectroscopy and autofluorescence excited by 785 nm using a confocal Raman microspectrometer (CRM). Smoke from one cigarette was used as a model pollutant. EPR spectroscopy enables the direct measurement of free radicals in excised porcine skin after smoke exposure. The autofluorescence in the skin was measured ex vivo, which is an indicator of oxidative stress. Two antioxidants and a chelating agent in a base formulation and a commercial product containing an antioxidant mixture were investigated. The ex vivo studies show that the antioxidant epigallocatechin-3-gallate (EGCG) in the base cream formulation provided the best protection against oxidative stress from smoke exposure for both methods.
Collapse
Affiliation(s)
- Phuong Thao Tran
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany; Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Katinka Jung
- Gematria TestLab GmbH, Parkstraße 23, 13187 Berlin, Germany
| | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Silke B Lohan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Silva GC, Rodrigues RAF, Bottoli CBG. In vitro diffusion of plant phenolics through the skin: A review update. Int J Cosmet Sci 2024; 46:239-261. [PMID: 38083814 DOI: 10.1111/ics.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Excessive skin exposure to deleterious environmental variables results in inflammation as well as molecular and cellular impairments that compromise its functionality, aesthetic qualities, and overall well-being. The implementation of topical administration of antioxidants and other compounds as a method for preventing or reversing damage is a rational approach. Numerous phenolic compounds derived from plants have demonstrated capabilities such as scavenging free radicals and promoting tissue healing. However, the primary obstacle lies in effectively delivering these compounds to the specific place on the skin, and accurately forecasting their diffusion through the skin can assist in determining the most effective tactics. Hence, this article provides a comprehensive analysis of recent literature pertaining to the in vitro skin diffusion characteristics of plant phenolics. The aim is to gain a deeper understanding of their behaviour when present in various forms such as solutions, suspensions, and formulations. METHOD The data on plant extracts and isolated plant phenolic compounds in vitro skin diffusion assays published over the last six years were compiled and discussed. RESULTS Even though the gold standard Franz diffusion cell is the most commonly used in the assessment of in vitro plant phenolic skin diffusion profiles, a plethora of skin models and assay conditions are reported for a variety of compounds and extracts in different vehicles. CONCLUSION The presence of numerous models and vehicles poses a challenge in creating correlations among the existing data on plant phenolic compounds. However, it is possible to draw some general conclusions regarding molecular, vehicle, and skin characteristics based on the gathered information.
Collapse
Affiliation(s)
- Gisláine C Silva
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| | - Rodney A F Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, Brazil
| | - Carla B G Bottoli
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| |
Collapse
|
9
|
Roy A, Mandal M, Das S, Popek R, Rakwal R, Agrawal GK, Awasthi A, Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169763. [PMID: 38181950 DOI: 10.1016/j.scitotenv.2023.169763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.
Collapse
Affiliation(s)
- Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| |
Collapse
|
10
|
Peno-Mazzarino L, Radionov N, Merino M, González S, Mullor JL, Jones J, Caturla N. Protective Potential of a Botanical-Based Supplement Ingredient against the Impact of Environmental Pollution on Cutaneous and Cardiopulmonary Systems: Preclinical Study. Curr Issues Mol Biol 2024; 46:1530-1555. [PMID: 38392217 PMCID: PMC10887869 DOI: 10.3390/cimb46020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Air pollution is a growing threat to human health. Airborne pollution effects on respiratory, cardiovascular and skin health are well-established. The main mechanisms of air-pollution-induced health effects involve oxidative stress and inflammation. The present study evaluates the potential of a polyphenol-enriched food supplement ingredient comprising Lippia citriodora, Olea europaea, Rosmarinus officinalis, and Sophora japonica extracts in mitigating the adverse effects of environmental pollution on skin and cardiopulmonary systems. Both in vitro and ex vivo studies were used to assess the blend's effects against pollution-induced damage. In these studies, the botanical blend was found to reduce lipid peroxidation, inflammation (by reducing IL-1α), and metabolic alterations (by regulating MT-1H, AhR, and Nrf2 expression) in human skin explants exposed to a mixture of pollutants. Similar results were also observed in keratinocytes exposed to urban dust. Moreover, the ingredient significantly reduced pollutant-induced ROS production in human endothelial cells and lung fibroblasts, while downregulating the expression of apoptotic genes (bcl-2 and bax) in lung fibroblasts. Additionally, the blend counteracted the effect of urban dust on the heart rate in zebrafish embryos. These results support the potential use of this supplement as an adjuvant method to reduce the impact of environmental pollution on the skin, lungs, and cardiovascular tissues.
Collapse
Affiliation(s)
| | - Nikita Radionov
- Laboratoire BIO-EC, Chemin de Saulxier 1, 91160 Longjumeau, France
| | - Marián Merino
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Sonia González
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - José L Mullor
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | | | - Nuria Caturla
- Monteloeder SA, Miguel Servet 16, 03203 Elche, Spain
| |
Collapse
|
11
|
Mokrzyński K, Krzysztyńska-Kuleta O, Wojtala M, Wnuk D, Sarna M, Sarna T. Can l-ascorbic acid and trans-resveratrol protect HaCaT cells from fine particulate matter toxicity? Photochem Photobiol 2024; 100:172-189. [PMID: 37365883 DOI: 10.1111/php.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Continuous exposure of human skin to air pollution can result in a range of undesirable skin conditions. In our recent study, UV and visible light were found to increase cytotoxicity of fine particulate matter (PM2.5 ) against human keratinocytes. Since it is impossible to avoid exposure of human skin to PM2.5 , effective strategies are needed to reduce their damaging effects. l-ascorbic acid and resveratrol were tested as potential topical agents against pollution-related skin impairment. Although these agents were previously found to ameliorate PM-dependent damage, the effect of light and seasonal variation of particles were not previously studied. EPR spin-trapping, DPPH assay, and singlet oxygen phosphorescence were used to determine the scavenging activities of the antioxidants. MTT, JC-10 and iodometric assays were used to analyze the effect on PM2.5 -induced cytotoxicity, mitochondrial damage and oxidation of lipids. Live-cell imaging was employed to examine wound-healing properties of cells. Light-induced, PM2.5 -mediated oxidative damage was examined by immunofluorescent staining. Both antioxidants effectively scavenged free radicals and singlet oxygen produced by PM2.5 , reduced cell death and prevented oxidative damage to HaCaT cells. l-ascorbic acid and resveratrol, especially when applied in combination, can protect HaCaT cells against the dark and light induced toxicity of PM2.5 .
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Olga Krzysztyńska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wojtala
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
13
|
García-Villegas A, Fernández-Ochoa Á, Rojas-García A, Alañón ME, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. The Potential of Mangifera indica L. Peel Extract to Be Revalued in Cosmetic Applications. Antioxidants (Basel) 2023; 12:1892. [PMID: 37891971 PMCID: PMC10603900 DOI: 10.3390/antiox12101892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The constant growth of the cosmetic industry, together with the scientific evidence of the beneficial properties of phytochemicals, has generated great interest in the incorporation of bioactive extracts in cosmetic formulations. This study aims to evaluate the bioactive potential of a mango peel extract for its incorporation into cosmetic formulations. For this purpose, several assays were conducted: phytochemical characterization; total phenolic content (TPC) and antioxidant potential; free-radical scavenging capacity; and skin aging-related enzyme inhibition. In addition, the extract was incorporated into a gel formulation, and a preliminary stability study was conducted where the accelerated (temperature ramp, centrifugation, and heating/cooling cycles) and long-term (storage in light and dark for three months) stability of the mango peel formulations were evaluated. The characterization results showed the annotation of 71 compounds, gallotannins being the most representative group. In addition, the mango peel extract was shown to be effective against the •NO radical with an IC50 of 7.5 mg/L and against the hyaluronidase and xanthine oxidase enzymes with IC50 of 27 mg/L and 2 mg/L, respectively. The formulations incorporating the extract were stable during the stability study. The results demonstrate that mango peel extract can be a by-product to be revalorized as a promising cosmetic ingredient.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
14
|
Khan T, Shah SM, Khan SA, Hassan A, Khan AR, Akhtar G, Imtiaz H, Sajjad Y. Evaluating the antioxidative defense response of selected indoor plants against benzene and formaldehyde. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99273-99283. [PMID: 37322395 DOI: 10.1007/s11356-023-28166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) such as formaldehyde and benzene are among the key contributors to indoor air pollution. The current situation of environmental pollution is alarming, especially indoor air pollution is becoming a challenge as affecting plants and humans. VOCs are known to adversely affect indoor plants by causing necrosis and chlorosis. In order to withstand these organic pollutants, plants are naturally equipped with an antioxidative defense system. The current research study aimed to evaluate the combined effect of formaldehyde and benzene on the antioxidative response of selected indoor C3 plants including Chlorophytum comosum, Dracaena mysore, and Ficus longifolia. After the combined application of different levels (0, 0; 2, 2; 2, 4; 4, 2; and 4, 4 ppm) of benzene and formaldehyde respectively, in an airtight glass chamber, the enzymatic and non-enzymatic antioxidants were analyzed. Analysis of total phenolics showed a significant increase (10.72 mg GAE/g) in F. longifolia; C. comosum (9.20 mg GAE/g); and D. mysore (8.74 mg GAE/g) compared to their respective controls as 3.76, 5.39, and 6.07 mg GAE/g. Total flavonoids (724 µg/g) were reported in control plants of F. longifolia which were increased to 1545.72 µg/g from 724 µg/g (in control) followed by 322.66 µg/g in D. mysore (control having 167.11 µg/g). Total carotenoid content also increased in D. mysore (0.67 mg/g) followed by C. comosum (0.63 mg/g) in response to increasing the combined dose compared to their control plants having 0.62 and 0.24 mg/g content. The highest proline content was exhibited by D. mysore (3.66 μg/g) as compared to its respective control plant (1.54 μg/g) under a 4 ppm dose of benzene and formaldehyde. A significant increase in enzymatic antioxidants including total antioxidants (87.89%), catalase (59.21 U/mg of protein), and guaiacol peroxidase (52.16 U/mg of protein) was observed in the D. mysore plant under a combined dose of benzene (2 ppm) and formaldehyde (4 ppm) with respect to their controls. Although experimental indoor plants have been reported to metabolize indoor pollutants, the current findings indicate that the combined application of benzene and formaldehyde is also affecting the physiology of indoor plants as well.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Shahid Masood Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Gulzar Akhtar
- Department of Horticulture, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Hifza Imtiaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan.
| |
Collapse
|
15
|
Jeong M, Ju Y, Kwon H, Kim Y, Hyun KY, Choi GE. Protocatechuic Acid and Syringin from Saussurea neoserrata Nakai Attenuate Prostaglandin Production in Human Keratinocytes Exposed to Airborne Particulate Matter. Curr Issues Mol Biol 2023; 45:5950-5966. [PMID: 37504292 PMCID: PMC10378452 DOI: 10.3390/cimb45070376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Saussurea neoserrata Nakai offers a reliable and efficient source of antioxidants that can help alleviate adverse skin reactions triggered by air pollutants. Air pollutants, such as particulate matter (PM), have the ability to infiltrate the skin and contribute to the higher occurrence of cardiovascular, cerebrovascular, and respiratory ailments. Individuals with compromised skin barriers are particularly susceptible to the impact of PM since it can be absorbed more readily through the skin. This study investigated the impact of protocatechuic acid and syringin, obtained from the n-BuOH extract of S. neoserrata Nakai, on the release of PGE2 and PGD2 induced by PM10. Additionally, it examined the gene expression of the synthesis of PGE2 and PGD2 in human keratinocytes. The findings of this research highlight the potential of utilizing safe and efficient plant-derived antioxidants in dermatological and cosmetic applications to mitigate the negative skin reactions caused by exposure to air pollution.
Collapse
Affiliation(s)
- Myeongguk Jeong
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeongdon Ju
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
- Medical Science Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyeokjin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Republic of Korea
| | - Go-Eun Choi
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
16
|
Mihai RA, Espinoza Caiza IA, Melo Heras EJ, Florescu LI, Catana RD. Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador. Pharmaceutics 2023; 15:1676. [PMID: 37376124 DOI: 10.3390/pharmaceutics15061676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aims to provide information about the antioxidant capacity and secondary metabolites from different plant parts of two species that are grown in Ecuador: Chionanthus pubescens (the Ecuadorian national tree), and Chionanthus virginicus (the fringe tree-endemic to the United States of America and adapted to Ecuador's physiographical and ecological conditions). These two species have still not been investigated for these characteristics. A comparative estimation of the antioxidant activities between the leaf, fruit, and inflorescence extracts was performed. In the quest for new medicines, the extracts were analyzed for phenolic, anthocyanin, and flavonoid content. A slight difference was observed between C. pubescens and C. virginicus flowers, the highest antioxidant activity being found in the C. pubescens leaf (DPPH IC50 = 62.8866 mg/mL, ABTS IC50 = 55.852 mg/mL, and FRAP IC50 = 2.8466 g/mL). Our results showed correlations between antioxidant activity, total phenolic content, and flavonoids. This study confirmed that the C. pubescens leaves and fruits from the Andean region of Ecuador represent a good source of antioxidants, especially due to the presence of a high content of phenolic compounds (homovanillic acid, 3,4 dimethoxyphenylacetic acid, vanillic acid, gallic acid, etc.) as determined by the HPLC-DAD method.
Collapse
Affiliation(s)
- Raluca A Mihai
- CICTE, Department of Life Science and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y, Sangolquí 171103, Ecuador
| | - Iván A Espinoza Caiza
- Department of Life Science and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y, Sangolquí 171103, Ecuador
| | - Erly J Melo Heras
- Department of Life Science and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y, Sangolquí 171103, Ecuador
| | - Larisa I Florescu
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Rodica D Catana
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
17
|
Bae IA, Ha JW, Boo YC. Chlorogenic Acid, a Component of Oenanthe javanica (Blume) DC., Attenuates Oxidative Damage and Prostaglandin E2 Production Due to Particulate Matter 10 in HaCaT Keratinocytes. COSMETICS 2023. [DOI: 10.3390/cosmetics10020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Oenanthe javanica (OJ) is a perennial herb that grows wildly or is cultivated in Asia, and it is used as food or in traditional medicine. The antioxidant and anti-inflammatory effects of OJ-derived materials have been extensively explored previously, but their effects on the cytotoxicity of air pollution are currently unknown. Therefore, the present study aimed to evaluate the effect of the hot water extract of OJ on atmospheric particulate matter 10 (PM10)-induced cytotoxicity and oxidative damage in human HaCaT keratinocytes, and to identify its active ingredient and mechanism of action. When the hot water extract of OJ was divided into methylene chloride, ethyl acetate (EA), n-butanol (BA), and water fractions, caffeic acid was enriched in the EA fraction and chlorogenic acid was enriched in the BA fraction. PM10 increased reactive oxygen species (ROS) production, lipid peroxidation, protein carbonylation, and inflammatory prostaglandin (PG) E2 production in cells. The BA fraction reduced the PM10-induced ROS production in cells more effectively than the total extract and other solvent fractions. Chlorogenic acid was more effective in reducing ROS levels than caffeic acid and N-acetyl cysteine (NAC). Chlorogenic acid attenuated the increase in lipid peroxidation and the PG E2 production of cells due to PM10 exposure. Of the genes involved in PG E2 production, phospholipase A2 group IVA (PLA2G4A), Prostaglandin-endoperoxide synthase 1 (PTGS1), and 2 (PTGS2) were transcriptionally up-regulated by PM10, whereas phospholipase A2 group IIA (PLA2G2A) was down-regulated and prostaglandin E synthetase 1 (PTGES1) and 2 (PTGES2) were a little altered. The PM10-induced increase in PLA2G4A mRNA was alleviated by chlorogenic acid and NAC. Accordingly, PM10 increased the expression levels of cytosolic phospholipase A2 (cPLA2) protein and its phosphorylated form, which were attenuated by chlorogenic acid and NAC. Thus, chlorogenic acid may attenuate the PM10-induced PG E2 production through the suppression of PLA2G4A mRNA and cPLA2 protein expressions. This study suggests that chlorogenic acid contained in OJ extract may help alleviate the oxidative damage to and inflammatory responses of the skin cells due to exposure to air pollutants.
Collapse
Affiliation(s)
- In Ah Bae
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
18
|
Morone J, Lopes G, Morais J, Neves J, Vasconcelos V, Martins R. Cosmetic Application of Cyanobacteria Extracts with a Sustainable Vision to Skincare: Role in the Antioxidant and Antiaging Process. Mar Drugs 2022; 20:md20120761. [PMID: 36547908 PMCID: PMC9785593 DOI: 10.3390/md20120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Nature-based and sustainably sourced cosmetics have been dominating the area of skincare products worldwide. Due to their antioxidant and antiaging properties, compounds from cyanobacteria, such as carotenoids and phycobiliproteins, may replace synthetic ingredients in cosmetic formulations and may be used in products such as sunscreens, skincare creams, and makeup. In this study, we evaluated the potential of acetonic and aqueous extracts from cyanobacteria strains of the genera Cyanobium and Leptothoe and from strains within Synechococcales and Oscillatoriales orders, for use in cosmetics. Extractions were sequentially performed with acetone and water. Extracts were firstly analyzed for their toxicity to keratinocytes, fibroblasts, and endothelial cells (HaCAT, 3T3L1 and hCMEC/D3, respectively). The non-cytotoxic extracts were characterized in terms of total proteins, carotenoids, chlorophyll, phenols, phycobiliproteins, and analyzed for their antioxidant potential against the superoxide anion radical (O2•−), and for their ability to inhibit key enzymes associated with the skin aging process. Aqueous extracts were richer in total proteins and phycobiliproteins. The aqueous extracts of Synechococcales cyanobacterium LEGE 181157 and Synechococcales cyanobacterium LEGE 181150 showed the highest value for total proteins (760.81 and 695.25 μg BSA mL−1dry extract, respectively) and the best values regarding O2•− scavenging (IC50 = 63.24 and 112.18 μg mL−1dry extract, respectively) with a significant negative correlation observed (p < 0.01). Moreover, aqueous extracts of Synechococcales cyanobacterium LEGE 181150 and Synechococcales cyanobacterium LEGE 181157 inhibited hyaluronidase, (IC50 of 483.86 and 645.06 μg mL−1dry extract, respectively), with a significant negative correlation with total proteins (p < 0.05), pointing out the contribution of these compounds to the biological activities observed. Acetonic extracts were richer in carotenoids and phenols. Zeaxanthin and β-carotene were predominant among all strains, being present in higher amount in Cyanobium sp. LEGE 07175 (53.08 μg mg−1) and Leptothoe sp. LEGE 181156 (47.89 μg mg−1), respectively. The same strains also showed the highest values for collagenase inhibition at 750 μg mL−1dry extract (32.88 and 36.61%, respectively). Furthermore, Leptothoe sp. LEGE 181156 exhibited the lowest IC50 value for tyrosinase inhibition (465.92 μg mL−1dry extract) and Synechococcales cyanobacterium LEGE 181157 presented the best values for elastase inhibition (IC50 of 380.50 and IC25 of 51.43 μg mL−1dry extract). In general, cyanobacteria extracts demonstrated potential for being used for antiaging purposes, with aqueous extracts being more efficient at free radicals scavenging and acetonic ones at avoiding degradation of dermal matrix components.
Collapse
Affiliation(s)
- Janaína Morone
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Graciliana Lopes
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - João Morais
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Jorge Neves
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Correspondence:
| |
Collapse
|
19
|
Tallei TE, Fatimawali, Yelnetty A, Kusumawaty D, Effendi Y, Park MN, Alhumaydhi FA, Emran TB, Kim B. Predictive Microbial Community and Functional Gene Expression Profiles in Pineapple Peel Fermentation Using 16S rRNA Gene Sequences. FERMENTATION-BASEL 2022; 8:194. [DOI: 10.3390/fermentation8050194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pineapple peel (PP) is a by-product with the potential to be used as a raw material for functional beverages. Traditional PP fermentation has so far paid little attention to the microbial community and its role in the fermentation process. As a result, the current research looked into the microbial communities and their roles during PP fermentation. A metagenomic approach based on the 16S rRNA sequencing data was used to assess the microbial communities. Subsequent analysis was performed using PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) to analyze the microbial functions in the fermentation system. The microecology of the fermentation process in three samples was predominated by Firmicutes. Furthermore, the well-known probiotic genera Weissella, Lactobacillus, and Lactococcus were found to be predominating in the gumer, promic, and control samples, respectively. It was obvious that microenvironmental differences have an effect on the microbial composition of PP fermentation. Moreover, functional prediction revealed that carbohydrate metabolism was the most prevalent metabolic pathway during the fermentation process. Additionally, it was discovered that all of the bacteria found in the samples played significant roles in carbohydrate, amino acid, vitamin, and co-factor metabolism, which can be inferred to result in the production of beneficial metabolites.
Collapse
|
20
|
Photoprotective Potential, Cytotoxicity, and UPLC-QTOF/MS Analysis on Bioactive Solvent Fractions of Moringa concanensis Nimmo Bark. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3781189. [PMID: 35502171 PMCID: PMC9056231 DOI: 10.1155/2022/3781189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Moringa concanensis Nimmo (Moringaceae) belongs to the same family of M. oleifera (miracle tree) and is a medicinal plant traditionally used by Indians to treat various ailments related to diabetes, tumours, inflammation, and blood pressure. Despite its versatility, the photoprotective properties of the plant remain unclear. This study revealed the UV-protective properties of its methanol bark extract and respective subfractions, chloroform, hexane, and ethyl acetate through total phenolic and flavonoid content (TPC & TFC), antioxidant (DPPH), sun protecting factor (SPF) value, and UV absorption spectra analysis. This study also investigated on the inhibitory effect of the tested samples on collagenases and elastase, which are well-known for their role in the skin. The cytotoxic and H2O2 scavenging properties of M. concanensis in 3T3-L1 cells were explored. Finally, the phytochemical profiling of the active fraction was conducted through UPLC-QTOF/MS analysis. Among the tested fractions, the chloroform fraction of M. concanensis showed the highest TPC (30.92 ± 0.71 mg GAE/DW), TFC (29.05 ± 0.09 mg QE/DW), and antioxidant properties (IC50-6.616 ± 1.90 μgml−1). Additionally, chloroform fraction demonstrated the highest SPF value, 10.46 at 200 μgml−1, compared to the other tested fractions. All the fractions showed a broad absorption spectrum covering both UVA and UVB ranges. The chloroform fraction of M. concanensis also showed collagenase (50%) and elastase (IC50-2.95 ± 1.23 μgml−1) inhibition properties similar to the positive control. Cytotoxic results revealed that the chloroform fraction of M. concanensis prevented the H2O2-induced oxidative damage in 3T3-L1 cells even at lower concentrations (1.56 μgml−1). UPLC-QTOF/MS analysis tentatively identified the presence of bioactive flavonoids and phenolics such as astragalin, quercetin, isoquercetin, and caffeic acid in the active fraction of M. concanensis bark. Overall, it is suggested that the chloroform fraction of M. concanensis bark has the potency to be used as an active ingredient in sunscreen products.
Collapse
|
21
|
Shirazi-Tehrani E, Chamasemani A, Firouzabadi N, Mousaei M. ncRNAs and polyphenols: new therapeutic strategies for hypertension. RNA Biol 2022; 19:575-587. [PMID: 35438046 PMCID: PMC9037439 DOI: 10.1080/15476286.2022.2066335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyphenols have gained significant attention in protecting several chronic diseases, such as cardiovascular diseases (CVDs). Accumulating evidence indicates that polyphenols have potential protective roles for various CVDs. Hypertension (HTN) is among the hazardous CVDs accounting for nearly 8.5 million deaths worldwide. HTN is a complex and multifactorial disease and a combination of genetic susceptibility and environmental factors play major roles in its development. However, the underlying regulatory mechanisms are still elusive. Polyphenols have shown to cause favourable and beneficial effects in the management of HTN. Noncoding RNAs (ncRNAs) as influential mediators in modulating the biological properties of polyphenols, have shown significant footprints in CVDs. ncRNAs control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct link with blood pressure (BP) regulation is highly probable. Recent evidence suggests that a number of ncRNAs, including main small ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), play crucial roles with respect to the antihypertensive effects of polyphenols. Indeed, targeting lncRNAs by polyphenols will be a novel and promising strategy in the management of HTN. Herein, we reviewed the effects of polyphenols in HTN. Additionally, we emphasized on the potential effects of polyphenols on regulations of main ncRNAs, which imply the role of polyphenols in regulating ncRNAs in order to exert protective effects and thus proposing them as new targets for HTN treatment.Abbreviations : CVD: cardiovascular disease; BP: blood pressure; HTN: hypertension, lncRNAs: long noncoding RNAs; p38-MAPK: p38-mitogenactivated protein kinase; OPCs: oligomeric procyanidins; GTP: guanosine triphosphate; ROS: reactive oxygen species; cGMP: cyclic guanosine monophosphate; SGC: soluble guanylate cyclase; PI3K: phosphatidylinositol 3-kinase; cGMP: Cyclic GMP; eNOS: endothelial NO synthase; ERK ½: extracellular signal-regulated kinase ½; L-Arg: L-Arginine; MAPK: mitogen-activated protein kinases; NO: Nitric oxide; P: Phosphorus; PDK1: Phosphoinositide-dependent kinase 1; PI3-K: Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol diphosphate; ncRNAs: non-protein-coding RNA; miRNAs: microRNAs; OPCs: oligomeric procyanidins; RES: resveratrol; GE: grape extract; T2DM: type 2 diabetes mellitus; IL: interleukin; TNF-α: tumour necrosis factor-alpha; NF-κB: nuclear factor NF-kappa-B; ALP: alkaline phosphatase; PARP1: poly [ADP-ribose] polymerase 1; HIF1a: Hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; PAD: peripheral artery disease; SHR: spontaneously hypertensive rat; RAAS: renin-angiotensin-aldosterone system; AT1R: angiotensin type-1 receptor; Nox: NADPH oxidase; HO-1: haem oxygenase-1; JAK/STAT: Janus kinase/signal transducers/activators of the transcription; PNS: panax notoginseng saponin; snoRNA: small nucleolar RNA; hnRNA: heterogeneous nuclear RNA; VSMCs: vascular smooth muscle cells; irf7: interferon regulatory factor 7; limo2: LIM only domain 2; GWAS: genome-wide association study; GAS5: Growth arrest-specific 5; Asb3, Ankyrin repeat and SPCS box containing 3; Chac2: cation transport regulator homolog 2; Pex11b: peroxisomal membrane 11B; Sp5: Sp5 transcription factor; EGCG: epigallocatechin gallate; ApoE: Apo lipoprotein E; ERK-MAP kinase: extracellular signal-regulated kinases-mitogen-activated protein kinase; PAH: pulmonary artery hypertension; PAP: pulmonary arterial pressure; HIF1a: hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; HMEC-1: Human microvascular endothelial cells; stat2: signal transducers and activators of transcription 2; JNK: c-Jun N-terminal kinase; iNOS: inducible NO synthase. SNP: single nucleotide polymorphism; CAD: coronary artery disease.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Chamasemani
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
22
|
Bae IA, Ha JW, Choi JY, Boo YC. Antioxidant Effects of Korean Propolis in HaCaT Keratinocytes Exposed to Particulate Matter 10. Antioxidants (Basel) 2022; 11:antiox11040781. [PMID: 35453466 PMCID: PMC9032284 DOI: 10.3390/antiox11040781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Air pollution causes oxidative stress that leads to inflammatory diseases and premature aging of the skin. The purpose of this study was to examine the antioxidant effect of Korean propolis on oxidative stress in human epidermal HaCaT keratinocytes exposed to particulate matter with a diameter of less than 10 μm (PM10). The total ethanol extract of propolis was solvent-fractionated with water and methylene chloride to divide into a hydrophilic fraction and a lipophilic fraction. The lipophilic fraction of propolis was slightly more cytotoxic, and the hydrophilic fraction was much less cytotoxic than the total extract. The hydrophilic fraction did not affect the viability of cells exposed to PM10, but the total propolis extract and the lipophilic fraction aggravated the toxicity of PM10. The total extract and hydrophilic fraction inhibited PM10-induced ROS production and lipid peroxidation in a concentration-dependent manner, whereas the lipophilic fraction did not show such effects. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis showed that the hydrophilic fraction contained phenylpropanoids, such as caffeic acid, p-coumaric acid, and ferulic acid, whereas the lipophilic faction contained caffeic acid phenethyl ester (CAPE). The former three compounds inhibited PM10-induced ROS production, lipid peroxidation, and/or glutathione oxidation, and ferulic acid was the most effective among them, but CAPE exhibited cytotoxicity and aggravated the toxicity of PM10. This study suggests that Korean propolis, when properly purified, has the potential to be used as a cosmetic material that helps to alleviate the skin toxicity of air pollutants.
Collapse
Affiliation(s)
- In Ah Bae
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
23
|
Wu P, Iwahashi H, Xie HH, Wang Y, Zhou YY, Kiso A, Kawashima Y, Wei XY. Star fruit extract and C-glycosylated flavonoid components have potential to prevent air pollutant-induced skin inflammation and premature aging. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:13. [PMID: 35359233 PMCID: PMC8971273 DOI: 10.1007/s13659-022-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Air pollution adversely affects skin, leading to skin inflammation and premature skin aging. Plant derived antioxidant compounds have been considered to be promising in discovery of effective agents for the protection of skin from the damage by air pollutants. Our previous studies demonstrated that Averrhoa carambola fruit (known as star fruit) is rich in flavonoid C-glycosides with unique structures and potent antioxidant activity. Thus, the star fruit extract (SFE) and main flavonoid C-glycoside components, carambolasides I, J, and P (1-3), carambolaflavone B (4), and isovitexin 2″-O-α-L-rhamnoside (5), were investigated for the activity against air pollutant stress in human epidermis. As a result, SFE and compounds 1-5 exhibited significant inhibitory activity against protein carbonylation in oxidative-stressed stratum corneum with the best activity being shown by compound 3. SFE and compounds 2-5 were also active against engine exhaust-induced protein carbonylation in stratum corneum. When further evaluated, SFE and compound 3 significantly inhibited gene expression of the key inflammation mediators IL-1α and COX-2 in PM-stressed keratinocytes. The results indicated that SFE and the flavonoid C-glycosides are potentially effective against air pollutant-induced skin inflammation and premature aging.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Hiroyasu Iwahashi
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan.
| | - Hai-Hui Xie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Ying Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Yan-Yang Zhou
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Yoshihito Kawashima
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Xiao-Yi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
24
|
Recovery of polyphenols from distillery stillage by microwave-assisted, ultrasound-assisted and conventional solid-liquid extraction. Sci Rep 2022; 12:3232. [PMID: 35217709 PMCID: PMC8881464 DOI: 10.1038/s41598-022-07322-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Recovery of bioactive compounds from distillery waste could be an option for valorizing this waste. This study investigated how the extraction of polyphenols (which have antioxidant activity) from distillery stillage was affected by solvent type and concentration, extraction time, and method of extraction (conventional solid–liquid extraction, CSLE; ultrasound-assisted extraction, UAE; microwave-assisted extraction, MAE). Although recovery was similar with UAE and MAE, 3 min MAE with 80% ethanol and 80% methanol produced the highest yields of total phenolic content (TPC), total flavonoid content (TFC) and phenolic acids. With CSLE, TPC was 2.1–1.8-times lower than with MAE and 1.7–1.4-times lower than with UAE. Increasing the solvent concentration to 100% significantly decreased recovery. Six phenolic acids were recovered (ferulic and p-coumaric acid predominated), which were present mainly in the free form. There was a significant positive correlation between antioxidant activity, as measured with three methods (one based on the hydrogen atom transfer and two based on single electron transfer mechanisms), and phenolic acid content. With MAE and UAE, polyphenols were recovered more efficiently, with 2.1 times and 1.5 times higher antioxidant activity, and with 15 times and 9 times shorter extraction times, respectively, than with CSLE; thus, they can be considered "green" alternatives to CSLE.
Collapse
|
25
|
Kirindage KGIS, Fernando IPS, Jayasinghe AMK, Han EJ, Dias MKHM, Kang KP, Moon SI, Shin TS, Ma A, Ahn G. Moringa oleifera Hot Water Extract Protects Vero Cells from Hydrogen Peroxide-Induced Oxidative Stress by Regulating Mitochondria-Mediated Apoptotic Pathway and Nrf2/HO-1 Signaling. Foods 2022; 11:foods11030420. [PMID: 35159570 PMCID: PMC8834631 DOI: 10.3390/foods11030420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
The present study discloses the identification of phenolic compounds in Moringa oleifera hot water extract (MOH) and the evaluation of its antioxidant activity on H2O2-induced oxidative stress in Vero cells. Upon analysis, MOH was found to contain phenolic compounds and indicated 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radical scavenging with IC50 values of 102.52 and 122.55 µg/mL, respectively. The ferric reducing antioxidant power (FRAP) of MOH indicated a dose-dependent increase with a maximum absorbance at 125 μg/mL and the oxygen radical absorbance capacity (ORAC) of MOH was 1004.95 µmol TE/mg. Results showed that MOH dose-dependently reduced intracellular ROS generation in H2O2-stimulated Vero cells while increasing the cell viability. Fluorescence microscopy and flowcytometric analyses have supported the above findings. MOH markedly suppressed the H2O2-induced mitochondrial depolarization and apoptosis through suppression of the mitochondrial-mediated apoptosis pathway and activated the Nrf2/HO-1 signaling pathway by possibly involving H2O2 generation in cell media. Findings of western blot were supported by immunocytochemistry of Nrf2 nuclear translocation. Thus, MOH bioactivity would potentiate its applications in manufacturing functional food.
Collapse
Affiliation(s)
| | | | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.); (M.K.H.M.D.)
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | | | - Kyung-Pil Kang
- Jeju Changhae Fisheries Co., Ltd., Jeju 63072, Korea; (K.-P.K.); (S.-I.M.)
| | - Sung-Ig Moon
- Jeju Changhae Fisheries Co., Ltd., Jeju 63072, Korea; (K.-P.K.); (S.-I.M.)
| | - Tai-Sun Shin
- Department of Food Science and Nutrition, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (T.-S.S.); (A.M.)
| | - Ayeong Ma
- Department of Food Science and Nutrition, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (T.-S.S.); (A.M.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.); (M.K.H.M.D.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Correspondence: ; Tel.: +82-61-659-7213
| |
Collapse
|
26
|
Zhang Y, Cai P, Cheng G, Zhang Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211069721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds are the most abundant secondary metabolites in plants, showing a wide range of distinct biological activities, have received more and more attention in recent years. This review aims to gather and systematize available information on the phenolic compounds from plants by discussing different types of phenolic compounds, extraction, and analysis methods, with an emphasis on their potential biological activities. The research direction and problems that should be paid attention to in the future are also put forward to provide some references for the further study of phenolic compounds.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Ping Cai
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Guanghui Cheng
- Chongqing Agricultural Products Quality & Safety Center, Chongqing, China
| | - Yongqiang Zhang
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021; 27:233. [PMID: 35011465 PMCID: PMC8746501 DOI: 10.3390/molecules27010233] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah 41477, Saudi Arabia;
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Albaha 65527, Saudi Arabia;
| | - Abdullah S Alruwaili
- Department of Clinical Laboratory, College of Applied Medical Science, Northern Border University, P.O. Box 1321, Arar 9280, Saudi Arabia;
| | - Md. Sohel Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| |
Collapse
|
28
|
In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010189. [PMID: 35011420 PMCID: PMC8746784 DOI: 10.3390/molecules27010189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.
Collapse
|
29
|
Fahmy HA, Farag MA. Ongoing and potential novel trends of pomegranate fruit peel; a comprehensive review of its health benefits and future perspectives as nutraceutical. J Food Biochem 2021; 46:e14024. [PMID: 34923641 DOI: 10.1111/jfbc.14024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Pomegranate is an ancient shrub, globally distributed nowadays. It has been used in the middle east as a medicinal food and traditional medicine for thousands of years. Pomegranate peel (PP) constitutes about 50% of the total fruit, however, it has been previously regarded as a waste. Recent research points to PP as a rich source of phenolics (e.g., ellagitannins, flavonoids, and anthocyanins), polysaccharides, in addition to its biotransformed metabolites viz. urolithins making it a valuable waste with promising pharmacological actions. Compared to the pulp and the juice, PP exhibited stronger antioxidant and antimicrobial activities. Besides, it inhibited inflammation in several conditions, including colitis, arthritis, hepatitis, contact dermatitis, and lung inflammation. Moreover, it displayed anti-osteoporosis, anti-hyperglycemic, antidiabetic, antihypertensive, vasculoprotective, hepatoprotective, neuroprotective, and immunomodulatory effects. Additionally, it was effective as a prebiotic and in obesity control, besides it promoted wound healing. Furthermore, PP demonstrated anticancer effects against different cancer types, for example, colon, liver, thyroid, uterine, breast, bladder, prostate, leukemia, and osteosarcoma. Despite PP safety, it may interfere with the metabolism of other drugs because it inhibits cytochromes (CYP) changing their bioavailability, effectiveness, and toxicity. PP biowaste valorization not only avoids against its environmental and economic burden but can also provide a promising platform to produce novel or improved nutraceuticals. This study provides a comprehensive overview of PP biological activities with the reported action mechanisms related to its phytochemicals and further biotransformed metabolites inside the body. Future research prospects to unravel the merits of such waste and optimize its use are discussed. PRACTICAL APPLICATION: Pomegranate is widely distributed throughout the world. Although its peel was previously considered a waste, recent research regards it as a rich source of bioactive compounds with promising biological activities. Its recycling not only overcomes the bio-waste problems, but also provides a source of valuable compounds with several health benefits. In recent years, PP has been demonstrated to exhibit excellent pharmacological bioactivities, for example, antioxidant, anti-inflammatory, antimicrobial, antiosteoporosis, antihyperlipidemic, and anticancer activities. Its health-promoting power is mostly attributed to the phenolic and polysaccharide content, in addition to its amazing biotransformed metabolites. The underlying action mechanisms of such pharmacological activities are discussed and related to its chemical content. This review presents the latest research progress on the role of PP in the prevention and treatment of various chronic diseases, and its protective health effects for future research to be used in nutraceuticals.
Collapse
Affiliation(s)
- Heba A Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
30
|
Ha JW, Boo YC. Siegesbeckiae Herba Extract and Chlorogenic Acid Ameliorate the Death of HaCaT Keratinocytes Exposed to Airborne Particulate Matter by Mitigating Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111762. [PMID: 34829633 PMCID: PMC8615115 DOI: 10.3390/antiox10111762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Airborne particulate matter with a size of 10 μm or less (PM10) can cause oxidative damages and inflammatory reactions in the skin. This study was conducted to discover natural products that are potentially useful in protecting the skin from PM10. Among the hot water extracts of a total of 23 medicinal plants, Siegesbeckiae Herba extract (SHE), which showed the strongest protective effect against PM10 cytotoxicity, was selected, and its mechanism of action and active constituents were explored. SHE ameliorated PM10-induced cell death, lactate dehydrogenase (LDH) release, lipid peroxidation, and reactive oxygen species (ROS) production in HaCaT cells. SHE decreased the expression of KEAP1, a negative regulator of NRF2, and increased the expression of NRF2 target genes, such as HMOX1 and NQO1. SHE selectively induced the enzymes involved in the synthesis of GSH (GCL-c and GCL-m), the regeneration of GSH (GSR and G6PDH), and GSH conjugation of xenobiotics (GSTκ1), rather than the enzymes that directly scavenge ROS (SOD1, CAT, and GPX1). SHE increased the cellular content of GSH and mitigated the oxidation of GSH to GSSG caused by PM10 exposure. Of the solvent fractions of SHE, the n-butyl alcohol (BA) fraction ameliorated cell death in both the absence and presence of PM10. The BA fraction contained a high amount of chlorogenic acid. Chlorogenic acid reduced PM10-induced cell death, LDH release, and ROS production. This study suggests that SHE protects cells from PM10 toxicity by increasing the cellular antioxidant capacity and that chlorogenic acid may be an active phytochemical of SHE.
Collapse
|
31
|
Lephart ED. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int J Mol Sci 2021; 22:11218. [PMID: 34681876 PMCID: PMC8538984 DOI: 10.3390/ijms222011218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The overarching theme for this review is perspective. Superfoods (a marketing term for fruits and vegetables, etc.) have a positive connotation, while many superfoods contain phytoestrogens, a term that is alarming to the public and has a negative connotation because phytoestrogens are endocrine-disruptors, even though they are strong antioxidants that have many health benefits. To understand phytoestrogens, this paper provides a brief summary of the characteristics of: (a) estrogens, (b) estrogen receptors (ER), (c) estrogen-deficient skin, (d) how perspective(s) get off track, (e) phytoestrogen food sources, and (f) misconceptions of phytoestrogens and food safety, in general, that influence person(s) away from what is true. Finally, a brief history of cosmetics to nutraceuticals is covered plus the characteristics of phytoestrogens, resveratrol and equol on: (g) estrogen receptor binding, (h) topical and oral dosing, and (i) in vitro, molecular mechanisms and select clinical evidence, where both phytoestrogens (resveratrol and equol) demonstrate promising applications to improve skin health is presented along with future directions of nutraceuticals. Perspective is paramount in understanding the controversies associated with superfoods, phytoestrogens, and endocrine-disruptors because they have both positive and negative connotations. Everyone is exposed to and consumes these molecules everyday regardless of age, gender, or geographic location around the world, and how we understand this is a matter of perspective.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
32
|
Fisetin Protects HaCaT Human Keratinocytes from Fine Particulate Matter (PM 2.5)-Induced Oxidative Stress and Apoptosis by Inhibiting the Endoplasmic Reticulum Stress Response. Antioxidants (Basel) 2021; 10:antiox10091492. [PMID: 34573124 PMCID: PMC8467638 DOI: 10.3390/antiox10091492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022] Open
Abstract
Fine particulate matter (PM2.5) originates from the combustion of coal and is found in the exhaust of fumes of diesel vehicles. PM2.5 readily penetrates the skin via the aryl hydrocarbon receptor, causing skin senescence, inflammatory skin diseases, DNA damage, and carcinogenesis. In this study, we investigated whether fisetin, a bioactive flavonoid, prevents PM2.5-induced apoptosis in HaCaT human keratinocytes. The results demonstrated that fisetin significantly downregulated PM2.5-induced apoptosis at concentrations below 10 μM. Fisetin strongly inhibited the production of reactive oxygen species (ROS) and the expression of pro-apoptotic proteins. The PM2.5-induced apoptosis was associated with the induction of the endoplasmic reticulum (ER) stress response, mediated via the protein kinase R-like ER kinase (PERK)–eukaryotic initiation factor 2α (eIF2α)–activating transcription factor 4 (ATF4)–CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP) axis. Additionally, the cytosolic Ca2+ levels were markedly increased following exposure to PM2.5. However, fisetin inhibited the expression of ER stress-related proteins, including 78 kDa glucose-regulated protein (GRP78), phospho-eIF2α, ATF4, and CHOP, and reduced the cytosolic Ca2+ levels. These data suggest that fisetin inhibits PM2.5-induced apoptosis by inhibiting the ER stress response and production of ROS.
Collapse
|
33
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
34
|
Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Κb and Akt Signaling Pathways. Biomolecules 2021; 11:1090. [PMID: 34439757 PMCID: PMC8392772 DOI: 10.3390/biom11081090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Particulate matter from forest fires (PMFF) is an environmental pollutant causing oxidative stress, inflammation, and cancer cell metastasis due to the presence of polycyclic aromatic hydrocarbons (PAHs). Perilla seed meal contains high levels of polyphenols, including rosmarinic acid (RA). The aim of this study is to determine the anti-oxidative stress, anti-inflammation, and anti-metastasis actions of rosmarinic acid rich fraction (RA-RF) from perilla seed meal and its underlying molecular mechanisms in A549 cells exposed to PMFF. PMFF samples were collected via the air sampler at the University of Phayao, Thailand, and their PAH content were analyzed using GC-MS. Fifteen PAH compounds were detected in PMFF. The PMFF significantly induced intracellular reactive oxygen species (ROS) production, the mRNA expression of pro-inflammatory cytokines, MMP-9 activity, invasion, migration, the overexpression of c-Jun and p-65-NF-κB, and Akt phosphorylation. Additionally, the RA-RF significantly reduced ROS production, IL-6, IL-8, TNF-α, and COX-2. RA-RF could also suppress MMP-9 activity, migration, invasion, and the phosphorylation activity of c-Jun, p-65-NF-κB, and Akt. Our findings revealed that RA-RF has antioxidant, anti-inflammatory, and anti-metastasis properties via c-Jun, p-65-NF-κB, and Akt signaling pathways. RA-RF may be further developed as an inhalation agent for the prevention of lung inflammation and cancer metastasis induced by PM exposure.
Collapse
Affiliation(s)
- Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| |
Collapse
|
35
|
Hoskin R, Pambianchi E, Pecorelli A, Grace M, Therrien JP, Valacchi G, Lila MA. Novel Spray Dried Algae-Rosemary Particles Attenuate Pollution-Induced Skin Damage. Molecules 2021; 26:3781. [PMID: 34206295 PMCID: PMC8270324 DOI: 10.3390/molecules26133781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The present study investigated the effect of spray-dried algae-rosemary particles against pollution-induced damage using ex-vivo human biopsies exposed to diesel engine exhaust (DEE). For this, the complexation of hydroalcoholic rosemary extract with Chlorella (RCH) and Spirulina (RSP) protein powders was conducted. The process efficiency and concentration of rosmarinic acid (RA), carnosic acid (CA), and carnosol (CR) phenolic compounds of both products were compared. The RSP spray-dried production was more efficient, and RSP particles presented higher CR and CA and similar RA concentrations. Therefore, spray-dried RSP particles were prioritized for the preparation of a gel formulation that was investigated for its ability to mitigate pollution-induced skin oxinflammatory responses. Taken altogether, our ex-vivo data clearly demonstrated the ability of RSP gel to prevent an oxinflammatory phenomenon in cutaneous tissue by decreasing the levels of 4-hydroxynonenal protein adducts (4HNE-PA) and active matrix metalloproteinase-9 (MMP-9) as well as by limiting the loss of filaggrin induced by DEE exposure. Our results suggest that the topical application of spirulina-rosemary gel is a good approach to prevent pollution-induced skin aging/damage.
Collapse
Affiliation(s)
- Roberta Hoskin
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Alessandra Pecorelli
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Mary Grace
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | | | - Giuseppe Valacchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Mary Ann Lila
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| |
Collapse
|
36
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
37
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
38
|
Tart Cherry Extract Containing Chlorogenic Acid, Quercetin, and Kaempferol Inhibits the Mitochondrial Apoptotic Cell Death Elicited by Airborne PM 10 in Human Epidermal Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10030443. [PMID: 33805724 PMCID: PMC8001120 DOI: 10.3390/antiox10030443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Tart cherry (Prunus cerasus L.), a medicinal food containing high concentrations of phytochemicals, has a variety of antioxidant activities and health benefits. Here, we investigate the functional effect of tart cherry during apoptotic cell death elicited by airborne particulate matter with a diameter of <10 μm (PM10) in human epidermal keratinocyte HaCaT cells. The PM10 particles significantly induced cytotoxicity in the HaCaT cells. The decrease in cell viability was restored upon treatment with tart cherry extract (200 μg/mL) containing chlorogenic acid, quercetin, and kaempferol. Tart cherry inhibited the intracellular reactive oxygen species (ROS) responsible for the distinctive activations of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in PM10-treated HaCaT cells. Interestingly, tart cherry significantly inhibited the expression of apoptosis-related genes (B-Cell Lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), and caspase-3) as regulated by the activation of transcription factor nuclear factor-kappa B (NF-κB). These results demonstrate that tart cherry is a medicinal food that blocks the mitochondrial pathway of apoptosis induced by PM10 in human epidermal keratinocytes.
Collapse
|
39
|
Del Mondo A, Smerilli A, Ambrosino L, Albini A, Noonan DM, Sansone C, Brunet C. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Crit Rev Biotechnol 2021; 41:155-171. [PMID: 33530761 DOI: 10.1080/07388551.2021.1874284] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds (PCs) are a family of secondary metabolites with recognized biological activities making them attractive for the biomedical "red" biotechnology. The development of the eco-sustainable production of natural bioactive metabolites requires using easy cultivable organisms, such as microalgae, which represents one of the most promising sources for biotechnological applications. Microalgae are photosynthetic organisms inhabiting aquatic systems, displaying high levels of biological and functional diversities, and are well-known producers of fatty acids and carotenoids. They are also rich in other families of bioactive molecules e.g. phenolic compounds. Microalgal PCs however are less investigated than other molecular components. This study aims to provide a state-of-art picture of the actual knowledge on microalgal phenolic compounds, reviewing information on the PC content variety and chemodiversity in microalgae, their environmental modulation, and we aim to report discuss data on PC biosynthetic pathways. We report the challenges of promoting microalgae as a relevant source of natural PCs, further enhancing the interests of microalgal "biofactories" for biotechnological applications (i.e. nutraceutical, pharmacological, or cosmeceutical products).
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| |
Collapse
|
40
|
Medical Plaster Enhancement by Coating with Cistus L. Extracts within a Chitosan Matrix: From Natural Complexity to Health Care Simplicity. MATERIALS 2021; 14:ma14030582. [PMID: 33513724 PMCID: PMC7866121 DOI: 10.3390/ma14030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/05/2022]
Abstract
Our investigation was focused on the preparation and characterization of novel plasters based on Carboxymethyl Chitosan derivative (CMC), to be used for the treatment of radiation dermatitis with Biologic Active Compounds (BACs) in a moist wound-healing environment. After performing the extraction and characterization of BACs from Cistus L., we optimized the BACs/CMC solution for subsequent plaster preparation. Then, plasters were prepared by dip-coating with a different number of layers, and we characterized them by Environmental Scanning Electron Microscopy (ESEM), Contact Angle (CA) and release tests in water for 24 h. Taking into account the flexibility of the plasters and the amount of released BACs after 24 h, the sample obtained after two dip-coating steps (2La) appeared promising in regard to comfortable mechanical properties and active principles administration. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test performed on keratinocytes cultured in standard medium shows that cells treated with released extract from 2La start to proliferate, extend cellular viability and form colonies typical for epidermal cells.
Collapse
|
41
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
42
|
Wang L, Lee W, Jayawardena TU, Cha SH, Jeon YJ. Dieckol, an algae-derived phenolic compound, suppresses airborne particulate matter-induced skin aging by inhibiting the expressions of pro-inflammatory cytokines and matrix metalloproteinases through regulating NF-κB, AP-1, and MAPKs signaling pathways. Food Chem Toxicol 2020; 146:111823. [PMID: 33164846 DOI: 10.1016/j.fct.2020.111823] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Exposure to particulate matter causes skin aging. In the present study, we investigated the effect of an algae-derived phenolic compound, dieckol (DK), against Chinese particulate matter (CPM)-stimulated aging in vitro in human dermal fibroblasts (HDF cells) and in vivo in zebrafish. DK effectively protected HDF cells against CPM-induced oxidative stress by scavenging intracellular reactive oxygen species. Moreover, DK significantly improved collagen synthesis and inhibited intracellular collagenase activity in CPM-stimulated HDF cells. In addition, DK remarkably reduced the expression of pro-inflammatory cytokines and matrix metalloproteinases via regulating the nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in CPM-stimulated HDF cells. Furthermore, the in vivo test results demonstrated that DK effectively improved the survival rate of CPM-stimulated zebrafish via suppressing oxidative stress and inflammatory response. In conclusion, this study suggests that DK is a potential anti-aging compound that can be used as a therapeutic agent to improve CPM-induced skin aging, or as an ingredient to develop a cosmetic or medicine in the cosmeceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Science, Hanseo University, Chungcheognam-do, 32158, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
43
|
Natural Nrf2 Modulators for Skin Protection. Antioxidants (Basel) 2020; 9:antiox9090812. [PMID: 32882952 PMCID: PMC7556038 DOI: 10.3390/antiox9090812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of antioxidant responsive elements (ARE), which are commonly found in the promoter of the Phase II metabolism/antioxidant enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that binds to ARE, the study conducted in this field has expanded remarkably over the decades, and the Nrf2-mediated pathway is now recognized to occupy a central position in cell defense mechanisms. Induction of the Phase II metabolism/antioxidant enzymes through direct activation of Nrf2 can be a promising strategy for preventing degenerative diseases in general, but a dark side of this strategy should be considered, as Nrf2 activation can enhance the survival of cancer cells. In this review, we discuss the historical discovery of Nrf2 and the regulatory mechanism of the Nrf2-mediated pathway, focusing on the interacting proteins and post-translational modifications. In addition, we discuss the latest studies that examined various natural Nrf2 modulators for the protective roles in the skin, in consideration of their dermatological and cosmetic applications. Studies are reviewed in the order of time of research as much as possible, to help understand how and why such studies were conducted under the circumstances of that time. We hope that this review can serve as a steppingstone in conducting more advanced research by providing a scientific basis for researchers newly entering this field.
Collapse
|
44
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
45
|
Kitakaze T, Yoshioka Y, Furuyashiki T, Ashida H. Enzymatically synthesized glycogen protects inflammation induced by urban particulate matter in normal human epidermal keratinocytes. J Clin Biochem Nutr 2020; 67:29-35. [PMID: 32801466 PMCID: PMC7417792 DOI: 10.3164/jcbn.20-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022] Open
Abstract
Urban particulate matters (PM) exposure is significantly correlated with extrinsic skin aging signs and skin cancer incidence. PM contains polycyclic aromatic hydrocarbons, and they act as the agonists of aryl hydrocarbon receptor (AhR). Activation of AhR promotes generation of intracellular reactive oxygen species (ROS) and inflammation. Enzymatically synthesized glycogen (ESG), which is synthesized from starch, possesses various functions, such as anti-tumor, anti-obesity and antioxidant. However, the effects of ESG on PM-induced skin inflammation remain unclear. In this study, we investigated whether ESG has a protective effect on PM-induced oxidative stress and inflammation in human epidermal keratinocytes. ESG inhibited PM-induced expression of inflammatory cytokines IL6, TNFA and PTGS2. ESG also inhibited PM-induced phosphorylation of MAPKs and ROS accumulation. However, ESG had no effect on PM-induced expression of CYP1A1, one of the target proteins of AhR. On the other hand, ESG increased nuclear translocation of Nrf2 and expression of antioxidant proteins, HO-1 and NQO1. These results suggest that ESG suppressed PM-induced inflammation by decreasing ROS accumulation through the Nrf2 pathway.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
46
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
47
|
Nozza E, Melzi G, Marabini L, Marinovich M, Piazza S, Khalilpour S, Dell’Agli M, Sangiovanni E. Rhus coriaria L. Fruit Extract Prevents UV-A-Induced Genotoxicity and Oxidative Injury in Human Microvascular Endothelial Cells. Antioxidants (Basel) 2020; 9:E292. [PMID: 32244567 PMCID: PMC7222194 DOI: 10.3390/antiox9040292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022] Open
Abstract
Rhus coriaria L. (sumac) is a small plant widely diffused in the Mediterranean region. Its fruit are often consumed as a spice but are also present in traditional medicine of several countries. Recently, interest in this plant has increased and many scientific works reported its beneficial effects including antioxidant and anti-inflammatory properties. Plant extracts can be successfully used against ultraviolet rays, which are able to reach and damage the human skin; however, sumac extracts were never applied to this usage. Thus, in this study, we used a macerated ethanol extract of Rhus coriaria L. dried fruit (mERC) to demonstrate its preventive role against the damage induced by ultraviolet-A rays (UV-A) on microvascular endothelial cells (HMEC-1). In vitro effects of the extract pre-treatment and UV-A exposure were evaluated in detail. The antioxidant capacity was assessed by reactive oxygen species (ROS) formation and cellular antioxidant activity measurement. Genoprotective effects of mERC were investigated as well. Our findings indicate that the extract acts as a cell cycle inhibitor or apoptosis inducer, according to the level of damage. The present work provides new insights into the usage of Rhus coriaria extracts against skin injuries.
Collapse
Affiliation(s)
- Emma Nozza
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| | - Laura Marabini
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| | - Saba Khalilpour
- Boston University School of Medicine, Arthritis Center/Rheumatology, Boston, MA 02118, USA;
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20133 Milan, Italy; (E.N.); (G.M.); (M.M.); (S.P.); (E.S.)
| |
Collapse
|
48
|
Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants (Basel) 2019; 9:antiox9010019. [PMID: 31878236 PMCID: PMC7022939 DOI: 10.3390/antiox9010019] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
|