1
|
E Deeb S, Ashour EA, Abd El-Hack ME, El-Maaty MA, Youssef IM, Adil S, Elolimy AA, Swelum AA. Impacts of dietary different levels of thyme leave powder as a natural growth promoter on growth performance, carcass characteristics, and blood indices of broilers. Poult Sci 2024; 103:104396. [PMID: 39489033 PMCID: PMC11567014 DOI: 10.1016/j.psj.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
The objective of the present study was to ascertain the influence of thyme leaf powder (TLP) on growth rate, carcass features, and blood indicators in broiler diets as a natural antioxidant and antibiotic substitute. A fully randomized design experiment divided 264-day-old broiler chicks (Ross 308) into 4 experimental groups. Six replicates of each group, each containing 11 unsexed chicks, were created. The following were the therapies: control group without additive (basal diet); TLP1, TLP2 and TLP3: basal diet + 1, 2 and 3 g thyme leaves powder/kg diet, respectively. Results showed that TLP added at 2 or 3 g/kg of feed significantly enhanced body weight gain (except for the period from 16 to 30 d of life), feed intake (except for the period from 1 to 15 d of life), and feed conversion ratio throughout study period. Furthermore, there was a significant decrease in creatinine and alanine aminotransferase (ALT) with different TLP levels, particularly at a 3 g TLP/kg diet. Compared with the control group, the birds' 2 g TLP/kg diet included the highest levels of albumin and total protein and A/G (albumin/globulin) ratio. Furthermore, the birds fed 1 g TLP/kg feed had the lowest concentrations of low-density lipoprotein (LDL) and total cholesterol (TC). Moreover, chicks fed all treatment diets containing TLP had higher IgY concentrations than the control group. Nevertheless, the group that was fed a diet including 2 g TLP/kg had the highest IgM levels. Additionally, the superoxide dismutase activity (SOD) levels were highest in the birds fed a 1g TLP/kg diet and minimum in the birds fed the control diet. Notably, malondialdehyde (MDA) levels were maximum in birds fed a control meal and lowest in birds with a diet containing 1 g of TLP/kg. We may conclude that using TLP in broiler diets increases the birds' immunity, productivity, and overall health, especially at level 2 g of TLP/kg diet.
Collapse
Affiliation(s)
- Salma E Deeb
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, 12618, Egypt
| | - Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Jeon YA, Natraj P, Kim SC, Moon JK, Lee YJ. Comparative Analysis of Phytochemical and Functional Profiles of Arabica Coffee Leaves and Green Beans Across Different Cultivars. Foods 2024; 13:3744. [PMID: 39682816 DOI: 10.3390/foods13233744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study analyzed the phytochemical composition and functional properties of leaves and green beans from seven Arabica coffee cultivars. The total phenolic and flavonoid contents were measured using spectrophotometric methods, while caffeine, chlorogenic acid (CGA), and mangiferin levels were quantified via High-Performance Liquid Chromatography (HPLC). Volatile compounds were identified using Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, and anti-inflammatory effects were evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO) levels, and nuclear factor kappa B (NF-κB) activation in lipopolysaccharide (LPS)-stimulated macrophages. The results revealed that coffee leaves had significantly higher levels of total phenols, flavonoids, and CGAs, and exhibited stronger antioxidant activities compared to green beans. Notably, Geisha leaves exhibited the highest concentrations of phenolics and flavonoids, along with potent anti-inflammatory properties. Among green beans, the Marsellesa cultivar exhibited a significant flavonoid content and strong ABTS scavenging and anti-inflammatory effects. GC-MS analysis highlighted distinct volatile compound profiles between leaves and green beans, underscoring the phytochemical diversity among cultivars. Multivariate 3D principal component analysis (PCA) demonstrated clear chemical differentiation between coffee leaves and beans across cultivars, driven by key compounds such as caffeine, CGAs, and pentadecanoic acid. Hierarchical clustering further supported these findings, with dendrograms revealing distinct grouping patterns for leaves and beans, indicating cultivar-specific chemical profiles. These results underscore the significant chemical and functional diversity across Arabica cultivars, positioning coffee leaves as a promising functional alternative to green beans due to their rich phytochemical content and bioactive properties.
Collapse
Affiliation(s)
- Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seong Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63240, Republic of Korea
| | - Joon-Kwan Moon
- Department of Plant Life and Environmental Sciences, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Sławińska N, Olas B. The current state of knowledge about thermal processing of edible seeds; a special emphasis on their bioactive constituents and antioxidant activity. Food Chem 2024; 458:140526. [PMID: 39053392 DOI: 10.1016/j.foodchem.2024.140526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Thermal processing can alter the biological activity of seed phytochemicals in various ways, thus improving shelf life, bioavailability, oxidative stability, and oil yield; it can also decrease the content of antinutritional compounds, reduce cytotoxic activity and increase the total phenolic content of the seeds. However, this treatment can also inactivate beneficial compounds, including phenolics. This review describes the effect of different thermal processing methods on the content, activity, and bioavailability of chemical compounds from different edible seeds. The outcome is dependent on the method, temperature, time of processing, and type of seeds. Although thermal processing has many benefits, its precise effect on different species requires further clarification to determine how it influences their phytochemical content and biological activity, and identify the optimal conditions for processing.
Collapse
Affiliation(s)
- Natalia Sławińska
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/3, 90-236 Lodz, Poland.
| | - Beata Olas
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/3, 90-236 Lodz, Poland.
| |
Collapse
|
4
|
Mostafa HS. Valorization of faba bean peels for fungal tannase production and its application in coffee tannin removal. Food Chem X 2024; 23:101678. [PMID: 39211766 PMCID: PMC11357878 DOI: 10.1016/j.fochx.2024.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the optimization of the production conditions of Penicillium commune tannase on unutilized food waste, green bean peels, using the central composite of the response surface methodology. It also focuses on applying purified tannase to reduce tannins in coffee. The proposed design recommended a temperature of 29.07 °C, pH of 6.74, a tannin level of 6.76%, and 3.31% bean peels for maximum tannase production (313.40 U/g/min) by solid-state fermentation. This waste can be used as a sustainable and low-cost substrate for tannase enhancement by ≈5 folds. Applying purified tannase in instant coffee beverage resulted in a ≈ 23% reduction in tannins and a ≈ 16% increase in reducing sugars, with no significant changes in caffeine and phenolic compound contents. Tannase had a detrimental effect on the volume and stability of the coffee foam. This study will pave the way for tannase industrial production and its promising use in low-bitter coffee production.
Collapse
Affiliation(s)
- Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
5
|
Tavares DG, de Souza MAM, dos Santos TL, Silva ADAD, de Abreu DJM, Duarte WF. Co-Encapsulation of Coffee and Coffee By-Product Extracts with Probiotic Kluyveromyces lactis. Foods 2024; 13:3056. [PMID: 39410092 PMCID: PMC11475144 DOI: 10.3390/foods13193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 10/20/2024] Open
Abstract
Coffee and coffee by-products contain several chemical compounds of great relevance, such as chlorogenic acid (CGA), trigonelline, and caffeine. Furthermore, yeasts have been the target of studies for their use as probiotics because of their interesting biochemical characteristics. The combined administration of probiotic microorganisms with components that provide health benefits mediated by alginate encapsulation is an alternative that ensures the stability of cells and chemical compounds. In this context, the aim of this work was to co-encapsulate the probiotic yeast Kluyveromyces lactis B10 and extracts of green coffee beans, coffee silverskin, and PVA (black, green or immature, and sour coffee beans). The bioactive composition, antioxidant and antimicrobial activities of the extracts, microcapsule morphological characteristics and encapsulation efficiency, ability of the encapsulation to protect the yeast cells subjected to gastrointestinal conditions, and antioxidant activity of the microcapsules were evaluated. All the evaluated extracts showed antioxidant activity, of which PVA showed 75.7% and 77.0%, green coffee bean showed 66.4% and 45.7%, and coffee silverskin showed 67.7% and 37.4% inhibition of DPPH and ABTS•+ radicals, respectively, and antimicrobial activity against the pathogenic bacteria E. coli, Salmonella, and S. aureus, with high activity for the PVA extract. The microcapsules presented diameters of between 1451.46 and 1581.12 μm. The encapsulation efficiencies referring to the yeast retention in the microcapsules were 98.05%, 96.51%, and 96.32% for green coffee bean, coffee silverskin, and PVA, respectively. Scanning electron microscopy (SEM) showed that the microcapsules of the three extracts presented small deformations and irregularities on the surface. The K. lactis cells encapsulated in all treatments with the extracts showed viability higher than 8.59 log CFU/mL, as recommended for probiotic food products. The addition of green coffee bean, coffee silverskin, and PVA extracts did not reduce the encapsulation efficiency of the alginate microcapsules, enabling a safe interaction between the extracts and the K. lactis cells.
Collapse
Affiliation(s)
| | - Mayara Andrade Martins de Souza
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (M.A.M.d.S.); (T.L.d.S.); (A.d.A.D.S.); (D.J.M.d.A.)
| | - Tamara Leite dos Santos
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (M.A.M.d.S.); (T.L.d.S.); (A.d.A.D.S.); (D.J.M.d.A.)
| | - Adriele do Amor Divino Silva
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (M.A.M.d.S.); (T.L.d.S.); (A.d.A.D.S.); (D.J.M.d.A.)
| | - Danilo José Machado de Abreu
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (M.A.M.d.S.); (T.L.d.S.); (A.d.A.D.S.); (D.J.M.d.A.)
| | - Whasley Ferreira Duarte
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (M.A.M.d.S.); (T.L.d.S.); (A.d.A.D.S.); (D.J.M.d.A.)
| |
Collapse
|
6
|
Sławińska N, Żuchowski J, Stochmal A, Olas B. Comparative phytochemical, antioxidant, and hemostatic studies of fractions from raw and roasted sea buckthorn seeds in vitro. Sci Rep 2024; 14:21175. [PMID: 39256523 PMCID: PMC11387660 DOI: 10.1038/s41598-024-72012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Various seeds, including sea buckthorn (Hippophae rhamnoides L.) seeds, are sources of different bioactive compounds. They can show anti-inflammatory, hypoglycemic, anti-hyperlipidemic, antibacterial, antioxidant, or other biological properties in in vitro and in vivo models. Our preliminary in vitro results have demonstrated that the extracts from raw (no thermal processing) and roasted (thermally processed) sea buckthorn seeds have antioxidant potential and anticoagulant activity. However, it was unclear which compounds were responsible for these properties. Therefore, in continuation of our previous study, the extracts were fractionated by C18 chromatography. Phytochemical analysis of three fractions (a, b, and c) from raw sea buckthorn seeds and four fractions (d, e, f, and g) from roasted sea buckthorn seeds were performed. Several in vitro assays were also conducted to determine the antioxidant and procoagulant/anticoagulant potential of the fractions and two of their major constituents-isorhamnetin 3-O-β-glucoside7-O-α-rhamnoside and serotonin. LC-MS analyses showed that serotonin is the dominant constituent of fractions c and f, which was tentatively identified on the basis of its HRMS and UV spectra. Moreover, fractions c and f, as well as b and e, contained different B-type proanthocyanidins. Fractions b and e consisted mainly of numerous glycosides of kaempferol, quercetin, and isorhamnetin. The results of oxidative stress assays (measurements of protein carbonylation, lipid peroxidation, and thiol groups oxidation) showed that out of all the tested fractions, fraction g (isolated from roasted seeds and containing mainly dihexoses, and serotonin) demonstrated the strongest antioxidant properties.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
7
|
Sun Y, Xie W, Huang Y, Chen X. Coffee leaf extract inhibits advanced glycation end products and their precursors: A mechanistic study. J Food Sci 2024; 89:3455-3468. [PMID: 38700315 DOI: 10.1111/1750-3841.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wenwen Xie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
8
|
Marcolino E, Salavarria D, da Silva LGM, Almeida A, Oliveira da Silva FM, Ribeiro C, Dias J. Valorization of baobab seeds ( Adansonia digitata) as a coffee-like beverage: evaluation of roasting time on bioactive compounds. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:727-733. [PMID: 38410276 PMCID: PMC10894176 DOI: 10.1007/s13197-023-05873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 02/28/2024]
Abstract
The baobab tree (Adansonia digitata) can be found in sub-Saharan Africa, and its fruit presents high nutritional value. However, baobab seeds are often discarded and their potential remains underutilized. This study aimed to investigate the effect of roasting time (30/55/80/105 min at 200 °C) on the physical-chemical properties of baobab seeds and the bioactive compounds in a coffee-like beverage. The results showed a decrease in moisture, Aw (water activity), and hardness of baobab seeds with increasing roasting time. These changes resulted from moisture loss, caramelization, and Maillard reactions, which also affected appearance when compared with unroasted baobab seeds. The pH of the beverage decreased to a value of around 6.01 after 105 min of roasting. The total phenolic content and antioxidant activity of the beverage increased with roasting time, reaching 851.2 mg GAE/100 g (after 80 min) and 18.9 mmol Fe2+/100 g (after 55 min), respectively. The caffeine content remained stable around 16 mg/100 g from 55 to 105 min, lower than that of unroasted coffee beans and decaffeinated coffee. These findings suggest the potential for valorizing baobab seeds in the development of a new coffee-like beverage with lower caffeine content.
Collapse
Affiliation(s)
- Etivaldo Marcolino
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - Diogo Salavarria
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - Luíz Guilherme Malaquias da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Rod. Machado - Paraguaçu, S/N - Santo Antonio, Machado, MG 37750-000 Brazil
| | - Adelaide Almeida
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- FibEnTech - Materiais de Fibra e Tecnologias Ambientais, R. Marques de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | | | - Carlos Ribeiro
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
| | - João Dias
- Instituto Politécnico de Beja, Escola Superior Agrária de Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- GeoBioTec - Geobiosciências, Geoengenharia e Geotecnologias, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Monte da Caparica, Portugal
| |
Collapse
|
9
|
Sales AL, Cunha SC, Ferreira IM, Morgado J, Melo L, DePaula J, Miguel MAL, Farah A. Volatilome, Microbial, and Sensory Profiles of Coffee Leaf and Coffee Leaf-Toasted Maté Kombuchas. Foods 2024; 13:484. [PMID: 38338619 PMCID: PMC10855110 DOI: 10.3390/foods13030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, β-damascenone, α-ionone, β-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Lauro Melo
- Laboratório de Análise Sensorial e Estudos do Consumidor (LASEC), Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, CT, Bl. E, Rio de Janeiro 21941-909, Brazil;
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| |
Collapse
|
10
|
Jang H, Choi M, Jang KS. Comprehensive phytochemical profiles and antioxidant activity of Korean local cultivars of red chili pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1333035. [PMID: 38318498 PMCID: PMC10840139 DOI: 10.3389/fpls.2024.1333035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Red chili pepper (Capsicum annuum L.), which belongs to the Solanaceae family, contains a variety of phytochemicals with health-promoting properties including capsaicinoids, phenolics and fatty acids. Red chili pepper is one of the most consumed vegetables in Korea and occupies the largest cultivated area among spices. In this study, the ethanolic extracts from two Korean local cultivars, namely Subicho and Eumseong, were analyzed using a hybrid trapped ion mobility Q-TOF mass spectrometer equipped with a UPLC system, and their phytochemical profiles were then compared with those of a common phytophthora disease-resistant cultivar called Dokbulwang, which is extensively used for red chili pepper powder in public spaces across Korea. Utilizing high-resolution ion-mobility Q-TOF MS analysis, 458 and 192 compounds were identified from the three different red chili peppers in positive and negative ion modes, respectively, by matching with a reference spectral library. Principal component analysis revealed clear distinctions among the three cultivars, allowing us to identify key phytochemical components responsible for discriminating the local cultivars from the public cultivar. Furthermore, the assessment of total flavonoid, phenolic, and antioxidant activity in the red pepper extracts, highlighted their diverse molecular and chemical profiles. Despite the higher total flavonoid and phenolic content values observed in the public cultivar, the radical scavenging rate was higher in the local cultivars, particularly in Subicho. This suggest the presence of stronger antioxidant compounds in the local cultivar, indicating their potential health benefits due to their rich content of bioactive compounds. Notably, the local cultivars exhibited significantly higher proportions of organic compounds (more than four times) and terpenoids (more than two times) compared to the public cultivar. Specifically, higher levels of five major capsaicinoid compounds were found in the local cultivars when compared to the public cultivar. The observed disparities in phytochemical composition and antioxidant activities indicate the molecular diversity present among these cultivars. Further exploration of the bioactive compounds in these local cultivars could prove invaluable for the development of native crops, potentially leading to the discovery of novel sources of bioactive molecules for various applications in health and agriculture.
Collapse
Affiliation(s)
- Hyemi Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Mira Choi
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Supanivatin P, Thipayarat A, Siriwattanayotin S, Ekkaphan P, Deepatana A, Wongwiwat J. A Comparative Analysis of Phenolic Content, Antioxidant Activity, Antimicrobial Activity, and Chemical Profile of Coffea robusta Extracts Using Subcritical Fluid Extraction and Supercritical Carbon Dioxide Extraction. Foods 2023; 12:3443. [PMID: 37761151 PMCID: PMC10528456 DOI: 10.3390/foods12183443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, extracts of Robusta-roasted coffee were obtained using various extraction techniques, including subcritical fluid extractions using HFC-134a and HCFC-22 under room-temperature batch extraction, frozen-temperature batch extraction, and continuous extraction conditions. Additionally, supercritical carbon dioxide (SCCO2) extraction was performed using ethanol and tetrahydrofuran as co-solvents. These extractions were performed due to the presence of potent antioxidants and antibacterial substances in the extracts. Extraction machines were built to process the extraction. The antioxidant potential of the extracts was evaluated using total phenolic content and DPPH and FRAP assays, while antibacterial potential was identified using the disk diffusion method. The results showed that HCFC-22 extraction produced the highest yield compared to other extraction methods, but HFC-134a extraction had the highest antioxidant potential values. The yield and antioxidant potential of the extracts obtained using room-temperature batch extraction were slightly higher than those obtained using frozen-temperature batch extraction and continuous extraction. The yield and antioxidant potential of the extracts obtained using SCCO2 extraction were similar to those obtained using HFC-134a and HCFC-22 extractions, and co-solvents slightly improved the extraction performance. The extracts were found to be more effective as inhibitors of Gram-positive bacteria than Gram-negative bacteria. Caffeine was the most prominent tentative chemical compound in all coffee extracts. This research study provides a better understanding of various extraction techniques using HFC-134a, HCFC-22, and SCCO2 when applied to roasted Robusta coffee beans, with a focus on yield, antioxidant potential, antimicrobial potential, and tentative chemical profiles.
Collapse
Affiliation(s)
- Pattarin Supanivatin
- Department of Food Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.S.); (A.T.); (S.S.)
| | - Aluck Thipayarat
- Department of Food Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.S.); (A.T.); (S.S.)
| | - Suwit Siriwattanayotin
- Department of Food Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (P.S.); (A.T.); (S.S.)
| | - Paweena Ekkaphan
- Scientific and Technological Research Equipment Centre, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Anat Deepatana
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand;
| | - Jakrapop Wongwiwat
- Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
12
|
de Andrade FHA, Ferreira AMO, Azevedo LM, de Oliveira Santos M, Carvalho GR, de Resende MLV, Bicalho EM, Silva VA. IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica L. cuttings. Sci Rep 2023; 13:15151. [PMID: 37704663 PMCID: PMC10499982 DOI: 10.1038/s41598-023-41288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Caffeine and trigonelline are found in Coffea arabica, and show antioxidant roles and growth and development functions. However, there are no reports on trigonelline and caffeine in relation to coffee rooting. The aim was to evaluate the impact of application of indole-3-butyric acid (IBA) and melatonin on caffeine and trigonelline at different stages of adventitious rooting in cuttings. In addition, to study the correlation between these metabolites and H2O2, phenols, and antioxidant enzymes. Four treatments (Control, melatonin 21 µM (M21), melatonin 43 µM (M43), and IBA 7380 µM (IBA)) were used, with four replications. The growth and biochemical parameters of the antioxidant system were performed in induction, initiation, and extension rooting stages. Higher concentrations of trigonelline and caffeine quantified in the induction and initiation stages were positively correlated with higher percentage of rooted cuttings. Trigonelline and caffeine were positively correlated with H2O2 in all stages of development of adventitious roots. The correlations of trigoneline and caffeine with phenols and antioxidant enzymes reveal different profiles, depending on the phases. The results indicate that IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica cuttings, which is correlated with a higher percentage of rooted cuttings.
Collapse
Affiliation(s)
| | | | | | - Meline de Oliveira Santos
- Agricultural Research Company of Minas Gerais, Lavras, Minas Gerais, Brazil
- Scholarship BDCTI-I, FAPEMIG/INCT Café, Lavras, Brazil
| | | | | | | | - Vânia Aparecida Silva
- Agricultural Research Company of Minas Gerais, Lavras, Minas Gerais, Brazil
- Scholarship DT, CNPq, Lavras, Brazil
| |
Collapse
|
13
|
Gallardo-Ignacio J, Santibáñez A, Oropeza-Mariano O, Salazar R, Montiel-Ruiz RM, Cabrera-Hilerio S, Gonzáles-Cortazar M, Cruz-Sosa F, Nicasio-Torres P. Chemical and Biological Characterization of Green and Processed Coffee Beans from Coffea arabica Varieties. Molecules 2023; 28:4685. [PMID: 37375240 PMCID: PMC10305520 DOI: 10.3390/molecules28124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Coffee is one of the most consumed beverages in the world; its production is based mainly on varieties of the Coffea arabica species. Mexico stands out for its specialty and organic coffee. In Guerrero, the production is done by small indigenous community cooperatives that market their product as raw material. Official Mexico Standards stipulate the requirements for its commercialization within the national territory. In this work, the physical, chemical, and biological characterizations of green, medium, and dark roasted beans from C. arabica varieties were carried out. Analysis by HPLC showed higher chlorogenic acid (55 mg/g) and caffeine (1.8 mg/g) contents in the green beans of the Bourbon and Oro Azteca varieties. The caffeine (3.88 mg/g) and melanoidin (97 and 29 mg/g) contents increased according to the level of roasting; a dissimilar effect was found in the chlorogenic acid content (14.5 mg/g). The adequate nutritional content and the sensory evaluation allowed the classification of dark-roasted coffee as premium coffee (84.25 points) and medium-roasted coffee as specialty coffee (86.25 points). The roasted coffees presented antioxidant activity without cytotoxic effects; the presence of CGA and caffeine supports the beneficial effects of drinking coffee. The results obtained will serve as a basis for making decisions on improvements to the coffees analyzed.
Collapse
Affiliation(s)
- Javier Gallardo-Ignacio
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª Sección, Iztapalapa, Mexico City 09310, Mexico;
| | - Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | | | - Ricardo Salazar
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCyT), CONACYT, Laboratorio de Bromatología y Tecnología de Alimentos Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo de los Bravo 39086, Mexico;
| | - Rosa Mariana Montiel-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | - Sandra Cabrera-Hilerio
- Laboratorio de Bromatología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio S/N Ciudad Universitaria, Puebla 72000, Mexico;
| | - Manasés Gonzáles-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª Sección, Iztapalapa, Mexico City 09310, Mexico;
| | - Pilar Nicasio-Torres
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| |
Collapse
|
14
|
Harsha Haridas ES, Bhattacharya S, Varma MKR, Chandra GK. Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection. Sci Rep 2023; 13:8651. [PMID: 37244906 DOI: 10.1038/s41598-023-34944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Selection of plant extracts as bioactive phytochemical source to synthesize nanoparticles is highly demanding due to the biocompatibility, nontoxicity, and cost-effectiveness over other available physical and chemical methods. Here, for the first time, Coffee arabica leaf extracts (CAE) were used to produce highly stable silver nanoparticles (AgNPs) and the corresponding bio reduction, capping and stabilization mechanism mediated by dominant isomer 5-caffeoylquinic acid (5-CQA) is discussed. UV-Vis, FTIR, μRaman spectroscopy, TEM, DLS and Zeta potential analyzer measurements were employed to characterize these green synthesized NPs. The affinity of 5-CQA capped CAE-AgNPs to thiol moiety of amino acid is utilized for the selective as well as sensitive detection of L-cysteine (L-Cys) to a low detection limit of 0.1 nM, as obtained from its μRaman spectra. Hence, the proposed novel, simple, eco-friendly, and economically sustainable method can provide a promising nanoplatform in the field of biosensors compliant with large-scale industrial production of AgNPs without aid of further instrumentation.
Collapse
Affiliation(s)
- E S Harsha Haridas
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | | | - M K Ravi Varma
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - Goutam Kumar Chandra
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India.
| |
Collapse
|
15
|
Mannino G, Kunz R, Maffei ME. Discrimination of Green Coffee ( Coffea arabica and Coffea canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting. Antioxidants (Basel) 2023; 12:antiox12051135. [PMID: 37238001 DOI: 10.3390/antiox12051135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The genus Coffea is known for the two species C. arabica (CA) and C. canephora (CC), which are used to prepare the beverage coffee. Proper identification of green beans of coffee varieties is based on phenotypic and phytochemical/molecular characteristics. In this work, a combination of chemical (UV/Vis, HPLC-DAD-MS/MS, GC-MS, and GC-FID) and molecular (PCR-RFLP) fingerprinting was used to discriminate commercial green coffee accessions from different geographical origin. The highest content of polyphenols and flavonoids was always found in CC accessions, whereas CA showed lower values. ABTS and FRAP assays showed a significant correlation between phenolic content and antioxidant activity in most CC accessions. We identified 32 different compounds, including 28 flavonoids and four N-containing compounds. The highest contents of caffeine and melatonin were detected in CC accessions, whereas the highest levels of quercetin and kaempferol derivatives were found in CA accessions. Fatty acids of CC accessions were characterized by low levels of linoleic and cis octadecenoic acid and high amounts of elaidic acid and myristic acid. Discrimination of species according to their geographical origin was achieved using high-throughput data analysis, combining all measured parameters. Lastly, PCR-RFLP analysis was instrumental for the identification of recognition markers for the majority of accessions. Using the restriction enzyme AluI on the trnL-trnF region, we clearly discriminated C. canephora from C. arabica, whereas the cleavage performed by the restriction enzymes MseI and XholI on the 5S-rRNA-NTS region produced specific discrimination patterns useful for the correct identification of the different coffee accessions. This work extends our previous studies and provides new information on the complete flavonoid profile, combining high-throughput data with DNA fingerprinting to assess the geographical discrimination of green coffee.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Ronja Kunz
- Department of Chemistry, University of Cologne, Zülpicher Straße 47, D-50939 Köln, Germany
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| |
Collapse
|
16
|
Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023; 28:molecules28083460. [PMID: 37110693 PMCID: PMC10146819 DOI: 10.3390/molecules28083460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Trigonelline is a bioactive pyridine alkaloid that occurs naturally in high concentrations in coffee (up to 7.2 g/kg) and coffee by-products (up to 62.6 g/kg) such as coffee leaves, flowers, cherry husks or pulp, parchment, silver skin, and spent grounds. In the past, coffee by-products were mostly considered waste and discarded. In recent years, however, the use of coffee by-products as food has attracted interest because of their economic and nutritional value and the environmental benefits of sustainable resource use. Their authorization as so-called novel foods in the European Union may lead to increased oral exposure of the general population to trigonelline. Therefore, the aim of this review was to assess the risk to human health of acute and chronic exposure to trigonelline from coffee and coffee by-products. An electronic literature search was performed. Current toxicological knowledge is limited, with few human data available and a lack of epidemiological and clinical studies. There was no evidence of adverse effects after acute exposure. No conclusion can be drawn on chronic exposure to isolated trigonelline due to the lack of data. However, trigonelline ingested as a component of coffee and coffee by-products appears to be safe for human health, based on the safe traditional use of these products.
Collapse
Affiliation(s)
- Nick Konstantinidis
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
17
|
Silva CW, Zanardi KR, Grancieri M, Costa NMB, Trivillin LO, Viana ML, Silva PI, Costa AGV. Green coffee extract (Coffea canephora) improved the intestinal barrier and slowed colorectal cancer progression and its associated inflammation in rats. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Chen C, Kuo Y, Fang M. Study on coffee flavour of various pour‐over brews. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chien‐Li Chen
- Department of Food Science, College of Live Science National Taiwan Ocean University Keelung City Taiwan
| | - Yu‐Hsuan Kuo
- Department of Food Science, College of Live Science National Taiwan Ocean University Keelung City Taiwan
| | - Mingchih Fang
- Department of Food Science, College of Live Science National Taiwan Ocean University Keelung City Taiwan
- National Taiwan Ocean University Center of Excellence for the Oceans
| |
Collapse
|
19
|
Mesquita Júnior GAD, da Costa YFG, Mello VD, Costa FF, Rodarte MP, Costa JDCD, Alves MS, Vilela FMP. Chemical characterisation by UPLC-Q-ToF-MS/MS and antibacterial potential of Coffea arabica L. leaves: A coffee by-product. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1036-1044. [PMID: 35777933 DOI: 10.1002/pca.3157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Coffea arabica L. leaves are considered a by-product of the coffee industry however they are sources of several bioactive compounds. OBJECTIVES This study aimed to evaluate the chemical composition and the in vitro antibacterial activity of the lyophilised ethanol extract of arabica coffee leaves (EE-CaL). MATERIAL AND METHODS The chemical characterisation of EE-CaL was performed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-ToF-MS/MS). The in vitro antibacterial effect of EE-CaL was evaluated using the broth microdilution method and the adapted drop plate agar method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), respectively. RESULTS The chemical analysis of EE-CaL revealed the presence of compounds from the alkaloid class, such as trigonelline and caffeine, in addition to the phenolic compounds such as quinic acid, 5-caffeoylquinic acid, caffeic acid-O-hexoside, mangiferin, (epi)catechin, (epi)catechin monoglucoside and procyanidin trimer. Regarding the antibacterial potential, EE-CaL was active against Gram-positive and Gram-negative bacteria, being more effective against Escherichia coli (ATCC 25922) (MIC = 2500 μg/mL and bactericidal effect). CONCLUSION The results of this research suggest that coffee leaves, a by-product, possess compounds with antibacterial properties. Thus, further studies with coffee leaf extracts must be carried out to relate the compounds present in the extract with the antibacterial activity and find the mechanisms of action of this extract against bacteria.
Collapse
Affiliation(s)
- Gilmar Alves de Mesquita Júnior
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ygor Ferreira Garcia da Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Valéria de Mello
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Fabiano Freire Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mirian Pereira Rodarte
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliana de Carvalho da Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Fernanda Maria Pinto Vilela
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
20
|
Phenolic Profile, Antioxidant and Enzyme Inhibitory Activities of Leaves from Two Cassia and Two Senna Species. Molecules 2022; 27:molecules27175590. [PMID: 36080355 PMCID: PMC9457634 DOI: 10.3390/molecules27175590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23–49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p ˂ 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47–59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p ˂ 0.05) accumulated the highest amount. HPLC–MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p ˂ 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species’ methanolic extracts, and C. fistula displayed significantly (p ˂ 0.05) the highest values. C. grandis significantly (p ˂ 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p ˂ 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p ˂ 0.05) the highest values. C. grandise revealed significantly (p ˂ 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health.
Collapse
|
21
|
Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kaffir lime is leaf-oriented minor citrus that required extra attention to study. This study aimed to (i) comparatively analyze the young and mature leaf morpho-ecophysiological characters; and (ii) perform a correlation analysis for revealing the relationship among the physiological characters. Plants were ten one-year-old kaffir lime trees cultured under full sun condition. Leaf size was measured by using a specific allometric model. The Li-6400XT portable photosynthesis system was used to observe the leaf ecophysiological characters. The statistical analysis revealed significant differences in leaf size and physiology as the effect of leaf age. A significant size enlargement in mature leaves was noticed, especially in terms of leaf length, area, and weight, of about 77%, 177%, and 196%, respectively. Young leaves experienced a significant improvement in photosynthetic rate and actual water use efficiency for about 39% and 53%, respectively. Additionally, a strong, significant, and positive correlation between leaf chlorophyll, carotenoid content, and photosynthetic rate was found in the present study. Further studies using a multi-omics approach may enrich the science between kaffir lime leaf maturation as the basis of agricultural modification practice.
Collapse
|
22
|
Punyamoonwongsa P. Lipid nanodiscs of poly(styrene- alt-maleic acid) to enhance plant antioxidant extraction. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Plant antioxidants can be applied in the management of various human diseases. Despite these, extraction of these compounds still suffers from residual solvent impurities, low recovery yields, and the risks of undesirable chemical changes. Inspired by the protein–lipid interactions in the cell membranes, we proposed using poly(styrene-alt-maleic acid) (PSMA) to destabilize and associate with the bilayer lipids into the membrane-like nanodiscs. Such nanostructures could serve as protective reservoirs for the active compounds to reside with preserved bioactivities. This concept was demonstrated in the antioxidant extraction from robusta coffee leaves. Results indicated that aqueous PSMA extraction (no buffer agent) yielded products with the highest contents of phenolic acids (11.6 mg GAE·g−1) and flavonoids (9.6 mg CE·g−1). They also showed the highest antioxidant activity (IC50 = 3.7 µg·mL−1) compared to those obtained by typical sodium dodecyl sulfate and water extraction. This biomimetic approach could be considered for developing environmentally friendly extraction protocols in the future.
Collapse
|
23
|
Wang F, Baden MY, Guasch-Ferré M, Wittenbecher C, Li J, Li Y, Wan Y, Bhupathiraju SN, Tobias DK, Clish CB, Mucci LA, Eliassen AH, Costenbader KH, Karlson EW, Ascherio A, Rimm EB, Manson JE, Liang L, Hu FB. Plasma metabolite profiles related to plant-based diets and the risk of type 2 diabetes. Diabetologia 2022; 65:1119-1132. [PMID: 35391539 PMCID: PMC9810389 DOI: 10.1007/s00125-022-05692-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Plant-based diets, especially when rich in healthy plant foods, have been associated with a lower risk of type 2 diabetes. However, whether plasma metabolite profiles related to plant-based diets reflect this association was unknown. The aim of this study was to identify the plasma metabolite profiles related to plant-based diets, and to evaluate the associations between the identified metabolite profiles and the risk of type 2 diabetes. METHODS Within three prospective cohorts (Nurses' Health Study, Nurses' Health Study II and Health Professionals Follow-up Study), we measured plasma metabolites from 10,684 participants using high-throughput LC MS. Adherence to plant-based diets was assessed by three indices derived from the food frequency questionnaire: an overall Plant-based Diet Index (PDI), a Healthy Plant-based Diet Index (hPDI), and an Unhealthy Plant-based Diet Index (uPDI). Multi-metabolite profiles related to plant-based diet were identified using elastic net regression with a training/testing approach. The prospective associations between metabolite profiles and incident type 2 diabetes were evaluated using multivariable Cox proportional hazards regression. Metabolites potentially mediating the association between plant-based diets and type 2 diabetes risk were further identified. RESULTS We identified multi-metabolite profiles comprising 55 metabolites for PDI, 93 metabolites for hPDI and 75 metabolites for uPDI. Metabolite profile scores based on the identified metabolite profiles were correlated with the corresponding diet index (Pearson r = 0.33-0.35 for PDI, 0.41-0.45 for hPDI, and 0.37-0.38 for uPDI, all p<0.001). Metabolite profile scores of PDI (HR per 1 SD higher = 0.81 [95% CI 0.75, 0.88]) and hPDI (HR per 1 SD higher = 0.77 [95% CI 0.71, 0.84]) showed an inverse association with incident type 2 diabetes, whereas the metabolite profile score for uPDI was not associated with the risk. Mutual adjustment for metabolites selected in the metabolite profiles, including trigonelline, hippurate, isoleucine and a subset of triacylglycerols, attenuated the associations of diet indices PDI and hPDI with lower type 2 diabetes risk. The explainable proportion of PDI/hPDI-related diabetes risk by these metabolites ranged between 8.5% and 37.2% (all p<0.05). CONCLUSIONS/INTERPRETATION Plasma metabolite profiles related to plant-based diets, especially a healthy plant-based diet, were associated with a lower risk of type 2 diabetes among a generally healthy population. Our findings support the beneficial role of healthy plant-based diets in diabetes prevention and provide new insights for future investigation.
Collapse
Affiliation(s)
- Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megu Y Baden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Wan
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Hanifah D, Andarwulan N, Herawati D. Karakteristik Fisikokimia dan Kapasitas Antioksidan Kopi Liberika dari Kabupaten Tanjung Jabung Barat, Jambi. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Liberica coffee is one of the coffee species in commercial trade in Indonesia. The coffee is produced in Tanjung Jabung Barat Regency, Jambi, Indonesia which distributed into 5 sub-districts (Betara, Bram Itam, Kuala Betara, Pengabuan, Senyerang). Information about liberica coffee from Jambi is still limited, thus more exploration is needed. The objectives of this study were to characterize the morphology of the leaf and fruit, the physicochemical characteristics which include the dimension (length, width, thickness), mass, bulk density, colour (L*, a*, b*), moisture contents, TSS (total soluble solids), pH, and antioxidant capacity (DPPH IC50, FRAP) of green and roasted (commercial level) liberica coffee from the above 5 sub-districts. The studies showed that liberica coffee from 5 sub-districts in Tanjung Jabung Barat Rgency, Jambi had various leaf and fruit appearances which were characterized by various size and colour of coffee cherries. Green coffee from different sub-districts owned various physicochemical (width, volume, mass, bulk density, moisture content, TSS) and antioxidant capacity of green coffee. Green coffee from Betara and Pengabuan were associated with high TSS, L* and b* value, while green coffee from Bram Itam and Senyerang were associated with high mass, moisture content and a* value. The highest anti-oxidant capacity was produced by green coffee from Betara and Kuala Betara (DPPH IC50). Meanwhile, roasted coffee produced from green coffee from the 5 sub-districts with similar roasting level (similar L*) produced similar a*, b* value, mass and TSS. However, physicochemical characteristics (length, width, volume, bulk density, moisture content) and antioxidant capacity of these roasted beans varied.
Collapse
|
25
|
Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coffee leaves contain a wide range of leaf compounds, which vary by growth stage. Recently, the importance of coffee leaf metabolites with beneficial phytochemicals has been widely identified. This research investigated Canephora coffee’s morphological and physiological development and analyzed the phytochemical composition of the main leaf stage. Canephora coffee leaves were harvested and classified into the following five growth stages: S1 (leaf age of 1–4 days), S2 (leaf age of 5–8 days), S3 (leaf age of 9–14 days), S4 (leaf age of 15–20 days), and S5 (leaf age of 21–27 days). The antioxidant activity, total phenol content, flavonoids, and tannin content of coffee leaves at different stages were observed. The results indicated that the highest values for the leaf area, dry weight, greenness, chlorophyll content, and carotenoid content were found at the last stage (S5). The specific leaf area (SLA) differences had higher values in the S3 and S1 growth stages. The youngest leaf phase (S1) was less green, more yellow, and brighter in color than the mature phase. By comparing the assays, it was found that a significant increase in the antioxidant activity and the contents of phenolic compounds, flavonoids, and tannins were observed in the S1 and S2 growth stages.
Collapse
|
26
|
Rawangkan A, Siriphap A, Yosboonruang A, Kiddee A, Pook-In G, Saokaew S, Sutheinkul O, Duangjai A. Potential Antimicrobial Properties of Coffee Beans and Coffee By-Products Against Drug-Resistant Vibrio cholerae. Front Nutr 2022; 9:865684. [PMID: 35548583 PMCID: PMC9083461 DOI: 10.3389/fnut.2022.865684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 μg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | | | | | - Anong Kiddee
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Grissana Pook-In
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
27
|
Ahmed Ali AM, Yagi S, Qahtan AA, Alatar AA, Angeloni S, Maggi F, Caprioli G, Abdel-Salam EM, Sinan KI, Zengin G. Evaluation of the chemical constituents, antioxidant and enzyme inhibitory activities of six Yemeni green coffee beans varieties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Patil S, M V, Murthy PS. Phytochemical profile and antioxidant potential of coffee leaves influenced by green extraction techniques and in vitro bio-accessibility of its functional compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Patil S, Vedashree M, Murthy PS. Valorization of coffee leaves as a potential agri-food resource: bio-active compounds, applications and future prospective. PLANTA 2022; 255:67. [PMID: 35165765 DOI: 10.1007/s00425-022-03846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
This article intends to summarize all the up-to-date information on coffee leaves, rendering it to be used as a potential agri-food resource in the growing functional foods and pharma industries. Coffee leaves have been processed for herbal tea and ethno-medicine since centuries in the parts of the world where coffee is grown traditionally. Currently, interest in the valorisation of coffee leaves for its application in the food industry is proliferating and the research related to it is scanty and, therefore, worthwhile to congregate. The current review compromises the botanical description, chemical composition, bio-actives and ethnomedicinal properties of coffee leaves. It encompasses the existing pharmacological studies on coffee leaves including the anti-oxidant, anti-inflammatory and anti-obesity activities to pave path for future research. Furthermore, applications and patents associated with coffee leaves in different fields such as therapeutic agents, beverages, packaging material, tobacco substitute etc. have been summarized. The investigation reveals that, despite of many patents on coffee leaves only few products could reach the worldwide market; also in spite of coffee leaves having a rich ethno-medicinal use the study on its pharmacological activities are scarce which creates a huge scope to carry out in-vitro and in-vivo research on its various bio-activities. Future insights reflecting the supplementary research regarding the sensory attributes, changes in phytochemical composition, flavour development and product formulations which is vital are also discussed. In conclusion, this review addresses the breach and specifies the requirements to convert the existing knowledge into commercialized food products with functional properties. Thus, coffee leaves being a copious resource of bio-actives serve as a potential agri-food resource and a promising future in the emerging functional food and nutraceutical industry.
Collapse
Affiliation(s)
- Siddhi Patil
- Department of Spice and Flavour Science, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - M Vedashree
- Department of Spice and Flavour Science, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Pushpa S Murthy
- Department of Spice and Flavour Science, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
30
|
Tritsch N, Steger MC, Segatz V, Blumenthal P, Rigling M, Schwarz S, Zhang Y, Franke H, Lachenmeier DW. Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 2022; 11:263. [PMID: 35159415 PMCID: PMC8834188 DOI: 10.3390/foods11030263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Coffee leaf tea is prepared as an infusion of dried leaves of Coffea spp. in hot water. It is a traditional beverage in some coffee-producing countries and has been authorized in 2020 within the European Union (EU) according to its novel food regulation. This article reviews current knowledge on the safety of coffee leaf tea. From the various ingredients contained in coffee leaves, only two were highlighted as possibly hazardous to human health, namely, caffeine and epigallocatechin gallate (EGCG), with maximum limits implemented in EU legislation, which is why this article focuses on these two substances. While the caffeine content is comparable to that of roasted coffee beans and subject to strong fluctuations in relation to the age of the leaves, climate, coffee species, and variety, a maximum of 1-3 cups per day may be recommended. The EGCG content is typically absent or below the intake of 800 mg/day classified as hepatotoxic by the European Food Safety Authority (EFSA), so this compound is suggested as toxicologically uncritical. Depending on selection and processing (age of the leaves, drying, fermentation, roasting, etc.), coffee leaf tea may exhibit a wide variety of flavors, and its full potential is currently almost unexplored. As a coffee by-product, it is certainly interesting to increase the income of coffee farmers. Our review has shown that coffee leaf tea is not assumed to exhibit risks for the consumer, apart from the well-known risk of caffeine inherent to all coffee-related beverages. This conclusion is corroborated by the history of its safe use in several countries around the world.
Collapse
Affiliation(s)
- Nadine Tritsch
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| | - Marc C. Steger
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Valerie Segatz
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
- Hochschule für Angewandte Wissenschaften Coburg, Friedrich-Streib-Strasse 2, 96450 Coburg, Germany
| | - Patrik Blumenthal
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Marina Rigling
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| |
Collapse
|
31
|
Pereira JPC, Pereira FAC, Pimenta CJ. Benefits of coffee consumption for human health: an overview. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220111151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Coffee is one of the most consumed beverages worldwide and is popular for its characteristic flavor and rich organoleptic properties.
Aim:
Based on published articles, the aims of this review are i) study the association between
coffee consumption and benefits to human health; ii) the effects of coffee consumption on
some pathologies; and iii) provide a description of coffee’s bioactive compounds.
Discussion:
Coffee presents bioactive compounds, which include phenolic compounds, especially chlorogenic acid (caffeoylquinic acid), trigonelline, and diterpenes, such as cafestol and
kahweol. These compounds are related to the beneficial effects for human health, including
high antioxidant activity, antimutagenic activity, hepatoprotective action, reduced incidence of
type 2 diabetes mellitus, reduced risk of cardiovascular diseases, decreased incidence of inflammatory diseases, reduced menopausal symptoms, and others. Coffee’s bioactive compounds are caffeine, chlorogenic acid, trigonelline, cafestol and kahweol, which are closely related to coffee’s beneficial effects.
Conclusion:
The present review clarified that the benefits of moderate coffee consumption
outweigh the associated risks.
Collapse
Affiliation(s)
| | | | - Carlos José Pimenta
- Department of Food Science, Federal University of Lavras, 37200-000 Lavras, MG, Brazil
| |
Collapse
|
32
|
Hutachok N, Koonyosying P, Pankasemsuk T, Angkasith P, Chumpun C, Fucharoen S, Srichairatanakool S. Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee ( Coffea arabica) Extracts. Molecules 2021; 26:molecules26144169. [PMID: 34299444 PMCID: PMC8304909 DOI: 10.3390/molecules26144169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
We aimed to analyze the chemical compositions in Arabica coffee bean extracts, assess the relevant antioxidant and iron-chelating activities in coffee extracts and instant coffee, and evaluate the toxicity in roasted coffee. Coffee beans were extracted using boiling, drip-filtered and espresso brewing methods. Certain phenolics were investigated including trigonelline, caffeic acid and their derivatives, gallic acid, epicatechin, chlorogenic acid (CGA) and their derivatives, p-coumaroylquinic acid, p-coumaroyl glucoside, the rutin and syringic acid that exist in green and roasted coffee extracts, along with dimethoxycinnamic acid, caffeoylarbutin and cymaroside that may be present in green coffee bean extracts. Different phytochemicals were also detected in all of the coffee extracts. Roasted coffee extracts and instant coffees exhibited free-radical scavenging properties in a dose-dependent manner, for which drip coffee was observed to be the most effective (p < 0.05). All coffee extracts, instant coffee varieties and CGA could effectively bind ferric ion in a concentration-dependent manner resulting in an iron-bound complex. Roasted coffee extracts were neither toxic to normal mononuclear cells nor breast cancer cells. The findings indicate that phenolics, particularly CGA, could effectively contribute to the iron-chelating and free-radical scavenging properties observed in coffee brews. Thus, coffee may possess high pharmacological value and could be utilized as a health beverage.
Collapse
Affiliation(s)
- Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
| | - Tanachai Pankasemsuk
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pongsak Angkasith
- Royal Project Foundation, Chiang Mai 50200, Thailand; (P.A.); (C.C.)
| | - Chaiwat Chumpun
- Royal Project Foundation, Chiang Mai 50200, Thailand; (P.A.); (C.C.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 70130, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
- Correspondence: ; Tel.: +66-5393-5322
| |
Collapse
|
33
|
Rashidinejad A, Tarhan O, Rezaei A, Capanoglu E, Boostani S, Khoshnoudi-Nia S, Samborska K, Garavand F, Shaddel R, Akbari-Alavijeh S, Jafari SM. Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Crit Rev Food Sci Nutr 2021; 62:6132-6152. [PMID: 33703975 DOI: 10.1080/10408398.2021.1897516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, there exists a debate on the effect of milk added to coffee infusions/beverages concerning the nutritional quality of coffee and the functional properties of its phenolic compounds. Yet, the full nutritional quality and functional properties of a coffee beverage without a significant negative impact on its sensorial profile are highly desired by the consumers. Negative/masking, positive, and neutral effects of milk on the antioxidant activity and bioavailability of coffee phenolics (particularly, chlorogenic acids) have been reported. Some potential factors including the type and amount of milk added, type of coffee beverage, the composition of both milk (protein and fat) and coffee (phenolic compounds), preparation method, assays used to measure antioxidant properties, and sampling size may account for the various reported findings. Interactions between phenolic compounds in coffee and milk proteins could account as the main responsible aspect for the reported masking/negative impact of milk on the antioxidant activity and bioaccessibility/bioavailability of coffee bioactives. However, considering the interactions between milk components and coffee phenolics, which result in the loss of their functionality, the role of milk fat globules and the milk fat globule membrane can also be crucial, but this has not been addressed in the literature so far.HighlightsIn most cases, milk is added to the coffee beverages in several various ways.Effect of milk on the nutritional/functional properties of coffee is controversial.Enough evidence suggests negative effects of milk addition on properties of coffee.Interactions of coffee phenolics and milk proteins could account as the main aspect.The role of milk fat globules and milk fat globule membrane may also be crucial.
Collapse
Affiliation(s)
- A Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - O Tarhan
- Department of Food Engineering, Faculty of Engineering, Uşak University, Uşak, Turkey
| | - A Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - E Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - S Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - K Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - F Garavand
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - R Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S M Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
34
|
Variation of Total Antioxidant Activity in Young People with Non-Lesional Cardiac Arrhythmias. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:558-565. [PMID: 35444827 PMCID: PMC8987465 DOI: 10.12865/chsj.47.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/21/2021] [Indexed: 11/06/2022]
Abstract
Total antioxidant activity status (TAS) represents the body's response to oxidative stress, important in the pathogenic assessment of oxidations. AIM To determine TAS variations in young subjects, with non-lesional cardiac arrhythmias, with/without dyslipidemia and to assess the risk of lipid oxidation. PATIENTS AND METHODS The research was performed on 120 young subjects (mean age 33 years), with various types of cardiac arrhythmias, on normal heart, without co-existing lesions. Subjects were divided into 3 groups (40 persons). The first 2 groups included subjects with cardiac arrhythmias. Group I also associated dyslipidemia; group II, without dyslipidemia and group III: control. Determination of TAS values was performed using ABTS (2-azino-di-3-ethylbenzthiazoline sulfonate) colorimetic method. Results were statistically processed. RESULTS TAS values were decreased in all patients with cardiac arrhythmias, representing 52-54% of the values of healthy controls, the data being highly statistically significant. The variation of TAS decrease by types of arrhythmias was thus found in patients with arrhythmias and associated dyslipidemia and, respectively, without dyslipidemia, compared to controls. The deficit of antioxidant activity, between 48%-46% triggers electrochemical processes with implications in arrhythmogenesis and lipid oxidation. Coffee and vegetables-rich diet have antioxidant effect, reducing TAS deficiency. CONCLUSIONS 1. TAS was decreased in all subjects with non-lesional arrhythmias. The study showed decreasing TAS level at 52-54% in patients with arrhythmias, with/without dyslipidemia, compared to controls. 2. TAS deficiency was associated with various types of dysrhythmias, ranging from 62% to 33%. 3. Decreased TAS also triggers lipid oxidation, as risk factor for early atherosclerotic lesions.
Collapse
|
35
|
Anti-Platelet Aggregation and Anti-Cyclooxygenase Activities for a Range of Coffee Extracts ( Coffea arabica). Molecules 2020; 26:molecules26010010. [PMID: 33375091 PMCID: PMC7792775 DOI: 10.3390/molecules26010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/24/2023] Open
Abstract
Coffee is rich in caffeine (CF), chlorogenic acid (CGA) and phenolics. Differing types of coffee beverages and brewing procedures may result in differences in total phenolic contents (TPC) and biological activities. Inflammation and increases of platelet activation and aggregation can lead to thrombosis. We focused on determining the chemical composition, antioxidant activity and inhibitory effects on agonist-induced platelet aggregation and cyclooxygenase (COX) of coffee beverages in relation to their preparation method. We prepared instant coffee and brewed coffee beverages using drip, espresso, and boiling techniques. Coffee extracts were assayed for their CF and CGA contents using HPLC, TPC using colorimetry, platelet aggregation with an aggregometer, and COX activity using ELISA. The findings have shown all coffee extracts, except the decaffeinated types, contained nearly equal amounts of CF, CGA, and TPC. Inhibitory effects of coffee extracts on platelet aggregation differed depending on the activation pathways induced by different agonists. All espresso, drip and boiled coffee extracts caused dose dependent inhibition of platelet aggregation induced by ADP, collagen, epinephrine, and arachidonic acid (ARA). The most marked inhibition was seen at low doses of collagen or ARA. Espresso and drip extracts inhibited collagen-induced platelet aggregation more than purified caffeine or CGA. Espresso, boiled and drip coffee extracts were also a more potent inhibitors of COX-1 and COX-2 than purified caffeine or CGA. We conclude that inhibition of platelet aggregation and COX-1 and COX-2 may contribute to anti-platelet and anti-inflammatory effects of espresso and drip coffee extracts.
Collapse
|
36
|
Montenegro J, Dos Santos LS, de Souza RGG, Lima LGB, Mattos DS, Viana BPPB, da Fonseca Bastos ACS, Muzzi L, Conte-Júnior CA, Gimba ERP, Freitas-Silva O, Teodoro AJ. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res Int 2020; 140:110014. [PMID: 33648246 DOI: 10.1016/j.foodres.2020.110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Coffee consumption has been investigated as a protective factor against prostate cancer. Coffee may be related to prostate cancer risk reduction due to its phytochemical compounds, such as caffeine, chlorogenic acids, and trigonelline. The roasting process affects the content of the phytochemicals and undesired compounds can be formed. Microwave-assisted extraction is an alternative to conventional extraction techniques since it preserves more bioactive compounds. Therefore, this study aimed to evaluate the phytochemical composition and the putative preventive effects in prostate cancer development of coffee beans submitted to four different coffee-roasting degrees extracted using microwave-assisted extraction. Coffea arabica green beans (1) were roasted into light (2), medium (3) and dark (4) and these four coffee samples were submitted to microwave-assisted extraction. The antioxidant capacity of these samples was evaluated by five different methods. Caffeine, chlorogenic acid and caffeic acid were measured through HPLC. Samples were tested against PC-3 and DU-145 metastatic prostate cancer cell lines regarding their effects on cell viability, cell cycle progression and apoptotic cell death. We found that green and light roasted coffee extracts had the highest antioxidant activity. Caffeine content was not affected by roasting, chlorogenic acid was degraded due to the temperature, and caffeic acid increased in light roasted and decreased in medium and dark roasted. Green and light roasted coffee extracts promoted higher inhibition of cell viability, caused greater cell cycle arrest in S and G2/M and induced apoptosis more compared to medium and dark roasted coffee extracts and the control samples. Coffee extracts were more effective against DU-145 than in PC-3 cells. Our data provide initial evidence that among the four tested samples, the consumption of green and light coffee extracts contributes to inhibit prostate cancer tumor progression features, potentially preventing aspects related to advanced prostate cancer subtypes.
Collapse
Affiliation(s)
- Júlia Montenegro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Lauriza Silva Dos Santos
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Gonçalves Gusmão de Souza
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Larissa Gabrielly Barbosa Lima
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Daniella Santos Mattos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil
| | | | | | - Leda Muzzi
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Carlos Adam Conte-Júnior
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil; Universidade Federal Fluminense, Departamento de Ciências da Natureza, Rio das Ostras, RJ, Brazil
| | - Otniel Freitas-Silva
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil; Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
37
|
Coffee Extends Yeast Chronological Lifespan through Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21249510. [PMID: 33327536 PMCID: PMC7765085 DOI: 10.3390/ijms21249510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is a multifactorial process accompanied by loss of cell function. Science has been looking for factors responsible for aging for many years. However, despite identifying a number of possible causes, the definite reason for aging has been elusive so far. One of the factors contributing to aging is oxygen free radicals. In this context, beneficial effects of coffee on various organisms, including humans, were investigated, although the results are far from unequivocal. In our research, we used the budding yeast-something of a workhorse in many studies, including the studies of aging. So far, the impact of coffee on the aging of cells in the budding yeast experimental setup has little known about it. Here, we provide strong evidence that coffee compounds, particularly flavonoids, are responsible for scavenging free radicals and longevity in yeast lacking Sod1, Sod2 and Rad52 proteins. In this paper, we compared Arabica and Robusta coffee types. We present an analysis of the concentration of caffeine and flavonoids measured by the High-Performance Liquid Chromatography method. We show that Robusta has a much greater antioxidant capacity than Arabica. We also conclude that coffee infusions significantly extend the chronological lifespan of the Saccharomyces cerevisiae yeast cells by protecting cells against reactive oxygen species, double DNA-strand break and decrease in metabolic activity.
Collapse
|
38
|
Quantitative comparison of three main metabolites in leaves of Coffea accessions by UPLC-MS/MS. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Ashour EA, Abd El-Hack ME, Swelum AA, Osman AO, Taha AE, Alhimaidi AR, Ismail IE. Does the dietary graded levels of herbal mixture powder impact growth, carcass traits, blood indices and meat quality of the broilers? ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1825998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elwy A. Ashour
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Ali O. Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ismail E. Ismail
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
40
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020; 8:822. [PMID: 33015038 PMCID: PMC7493682 DOI: 10.3389/fcell.2020.00822] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeine is chemically stable and not readily oxidized under normal physiological conditions but also has antioxidant effects, although the underlying molecular mechanism is not well understood. Superoxide dismutase (SOD) 2 is a manganese-containing enzyme located in mitochondria that protects cells against oxidative stress by scavenging reactive oxygen species (ROS). SOD2 activity is inhibited through acetylation under conditions of stress such as exposure to ultraviolet (UV) radiation. Sirtuin 3 (SIRT3) is the major mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which deacetylates two critical lysine residues (lysine 68 and lysine 122) on SOD2 and promotes its antioxidative activity. In this study, we investigated whether the antioxidant effect of caffeine involves modulation of SOD2 by SIRT3 using in vitro and in vivo models. The results show that caffeine interacts with SIRT3 and promotes direct binding of SIRT3 with its substrate, thereby enhancing its enzymatic activity. Mechanistically, caffeine bound to SIRT3 with high affinity (KD = 6.858 × 10–7 M); the binding affinity between SIRT3 and its substrate acetylated p53 was also 9.03 (without NAD+) or 6.87 (with NAD+) times higher in the presence of caffeine. Caffeine effectively protected skin cells from UV irradiation-induced oxidative stress. More importantly, caffeine enhanced SIRT3 activity and reduced SOD2 acetylation, thereby leading to increased SOD2 activity, which could be reversed by treatment with the SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) in vitro and in vivo. Taken together, our results show that caffeine targets SIRT3 to enhance SOD2 activity and protect skin cells from UV irradiation-induced oxidative stress. Thus, caffeine, as a small-molecule SIRT3 activator, could be a potential agent to protect human skin against UV radiation.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziqi Gao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Simin Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dongying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
42
|
Alafeef AK, Ariffin F, Zulkurnain M. Organic Selenium as Antioxidant Additive in Mitigating Acrylamide in Coffee Beans Roasted via Conventional and Superheated Steam. Foods 2020; 9:E1197. [PMID: 32872507 PMCID: PMC7555674 DOI: 10.3390/foods9091197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential micronutrient with significant antioxidant activity promising in mitigating the formation of acrylamide during high-temperature roasting. In this study, green coffee beans pretreated with selenium (Se-coffee) were investigated on their selenium uptake, selenium retention in green and roasted beans, antioxidant activities, and formation of acrylamide during conventional and superheated steam roasting. Comparisons were made with positive (pretreated without selenium) and negative (untreated) controls. The acrylamide formation was significantly inhibited in Se-coffee (108.9-165.3 μg/kg) compared to the positive and negative controls by 73.9% and 52.8%, respectively. The reduction of acrylamide by superheated steam roasting only observed in the untreated coffee beans (negative control) by 32.4% parallel to the increase in its antioxidant activity. Selenium pretreatment significantly increased antioxidant activity of the roasted Se-coffee beans after roasting although soaking pretreatment significantly reduced antioxidant activity in the green beans. Acrylamide reduction in the roasted coffee beans strongly correlated with the change in antioxidant capacities after roasting (∆FRAP, 0.858; ∆DPPH, 0.836). The results indicate that the antioxidant properties of the organic selenium suppressed acrylamide formation during coffee roasting.
Collapse
Affiliation(s)
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; (A.K.A.); (M.Z.)
| | | |
Collapse
|
43
|
Comparison of Batch and Continuous Wet-Processing of Coffee: Changes in the Main Compounds in Beans, By-Products and Wastewater. Foods 2020; 9:foods9081135. [PMID: 32824690 PMCID: PMC7466179 DOI: 10.3390/foods9081135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Many technical challenges still need to be overcome to improve the quality of the green coffee beans. In this work, the wet Arabica coffee processing in batch and continuous modus were investigated. Coffee beans samples as well as by-products and wastewaters collected at different production steps were analyzed in terms of their content in total phenols, antioxidant capacity, caffeine content, organic acids, reducing sugars, free amino group and protein content. The results showed that 40% of caffeine was removed with pulp. Green coffee beans showed highest concentration of organic acids and sucrose (4.96 ± 0.25 and 5.07 ± 0.39 g/100 g DW for the batch and continuous processing). Batch green coffee beans contained higher amount of phenols. 5-caffeoylquinic Acid (5-CQA) was the main constituent (67.1 and 66.0% for the batch and continuous processing, respectively). Protein content was 15 and 13% in the green coffee bean in batch and continuous processing, respectively. A decrease of 50 to 64% for free amino groups during processing was observed resulting in final amounts of 0.8 to 1.4% in the processed beans. Finally, the batch processing still revealed by-products and wastewater with high nutrient content encouraging a better concept for valorization.
Collapse
|
44
|
Witkowska A, Mirończuk-Chodakowska I, Terlikowska K, Kulesza K, Zujko M. Coffee and its Biologically Active Components: Is There a Connection to Breast, Endometrial, and Ovarian Cancer? - a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/120017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Acidri R, Sawai Y, Sugimoto Y, Handa T, Sasagawa D, Masunaga T, Yamamoto S, Nishihara E. Exogenous Kinetin Promotes the Nonenzymatic Antioxidant System and Photosynthetic Activity of Coffee ( Coffea arabica L.) Plants Under Cold Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E281. [PMID: 32098166 PMCID: PMC7076472 DOI: 10.3390/plants9020281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
Coffee plants are seasonally exposed to low chilling temperatures in many coffee-producing regions. In this study, we investigated the ameliorative effects of kinetin-a cytokinin elicitor compound on the nonenzymatic antioxidants and the photosynthetic physiology of young coffee plants subjected to cold stress conditions. Although net CO2 assimilation rates were not significantly affected amongst the treatments, the subjection of coffee plants to cold stress conditions caused low gas exchanges and photosynthetic efficiency, which was accompanied by membrane disintegration and the breakdown of chlorophyll pigments. Kinetin treatment, on the other hand, maintained a higher intercellular-to-ambient CO2 concentration ratio with concomitant improvement in stomatal conductance and mesophyll efficiency. Moreover, the leaves of kinetin-treated plants maintained slightly higher photochemical quenching (qP) and open photosystem II centers (qL), which was accompanied by higher electron transfer rates (ETRs) compared to their non-treated counterparts under cold stress conditions. The exogenous foliar application of kinetin also stimulated the metabolism of caffeine, trigonelline, 5-caffeoylquinic acid, mangiferin, anthocyanins and total phenolic content. The contents of these nonenzymatic antioxidants were highest under cold stress conditions in kinetin-treated plants than during optimal conditions. Our results further indicated that the exogenous application of kinetin increased the total radical scavenging capacity of coffee plants. Therefore, the exogenous application of kinetin has the potential to reinforce antioxidant capacity, as well as modulate the decline in photosynthetic productivity resulting in improved tolerance under cold stress conditions.
Collapse
Affiliation(s)
- Robert Acidri
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Yumiko Sawai
- Sawai Coffee Limited, 278-6, Takenouchi danchi, Sakaiminato City, Tottori 648-0046, Japan;
| | - Yuko Sugimoto
- Tottori Institute of Industrial Technology, 2032-3, Nakano-cho, Sakaiminato-shi, Tottori 684-0041, Japan
| | - Takuo Handa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Daisuke Sasagawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Tsugiyaki Masunaga
- Faculty of Soil Eco-engineering and Plant Nutrition, Shimane University, 1060, Nishikawatsucho, Matsue 690-8504, Japan;
| | - Sadahiro Yamamoto
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| | - Eiji Nishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| |
Collapse
|