1
|
Brooker IA, Fisher JJ, Sutherland JM, Pringle KG. Understanding the impact of placental oxidative and nitrative stress in pregnancies complicated by fetal growth restriction. Placenta 2024; 158:318-328. [PMID: 39577026 DOI: 10.1016/j.placenta.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Fetal growth restriction (FGR) impacts approximately 10 % of all pregnancies worldwide and is associated with major adverse effects on fetal health in both the short- and long-term [1]. FGR most commonly arises as a result of impaired placentation, occurring in up to 60 % of cases in developed countries [2]. This narrative review outlines the impact of defective placentation on the placenta, focusing on redox imbalance, how this leads to placental oxidative and nitrative stress, and the implications of these stressors on placental nutrient transfer, premature replicative senescence, and trophoblast cell death. Furthermore, this review highlights the pivotal role of antioxidants in protecting against oxidative and nitrative damage by reducing the burden of reactive species. We explore how targeting antioxidants in pregnancy provides a promising strategy for preventing or treating FGR, to ultimately reduce the devastating burden of FGR on infant health.
Collapse
Affiliation(s)
- India A Brooker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joshua J Fisher
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
2
|
Bukowska P, Bralewska M, Pietrucha T, Sakowicz A. Nutraceuticals as Modulators of Molecular Placental Pathways: Their Potential to Prevent and Support the Treatment of Preeclampsia. Int J Mol Sci 2024; 25:12167. [PMID: 39596234 PMCID: PMC11594370 DOI: 10.3390/ijms252212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia (PE) is a serious condition characterized by new-onset hypertension and proteinuria or organ dysfunction after the 20th week of gestation, making it a leading cause of maternal and fetal mortality worldwide. Despite extensive research, significant gaps remain in understanding the mechanisms underlying PE, contributing to the ineffectiveness of current prevention and treatment strategies. Consequently, premature cesarean sections often become the primary intervention to safeguard maternal and fetal health. Emerging evidence indicates that placental insufficiency, driven by molecular disturbances, plays a central role in the development of PE. Additionally, the maternal microbiome may be implicated in the pathomechanism of preeclampsia by secreting metabolites that influence maternal inflammation and oxidative stress, thereby affecting placental health. Given the limitations of pharmaceuticals during pregnancy due to potential risks to fetal development and concerns about teratogenic effects, nutraceuticals may provide safer alternatives. Nutraceuticals are food products or dietary supplements that offer health benefits beyond basic nutrition, including plant extracts or probiotics. Their historical use in traditional medicine has provided valuable insights into their safety and efficacy, including for pregnant women. This review will examine how the adoption of nutraceuticals can enhance dysregulated placental pathways, potentially offering benefits in the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
3
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
4
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
5
|
Zhou M, Guo J, Li S, Li A, Fang Z, Zhao M, Zhang M, Wang X. Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J Assist Reprod Genet 2023:10.1007/s10815-023-02820-0. [PMID: 37227568 DOI: 10.1007/s10815-023-02820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE PE is a pregnancy-specific syndrome and one of the main causes of maternal, fetal, and neonatal mortality. PRDX1 is an antioxidant that regulates cell proliferation, differentiation, and apoptosis. The aim of this study is to investigate the effect of PRDX1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. METHODS Western blotting, RT-qPCR, and immunofluorescence were used to examine the expression of PRDX1 in placentas. PRDX1-siRNA was transfected to knockdown PRDX1 in HTR-8/SVneo cells. The biological function of HTR-8/SVneo cells was detected by wound healing, invasion, tube formation, CCK-8, EdU, flow cytometry, and TUNEL assays. Western blotting was used to detect the protein expression of cleaved-Caspase3, Bax, LC3II, Beclin1, PTEN, and p-AKT. DCFH-DA staining was used to detect ROS levels by flow cytometry. RESULTS PRDX1 was significantly decreased in placental trophoblasts in PE patients. Following the exposure of HTR-8/SVneo cells to H2O2, PRDX1 expression was significantly decreased, LC3II and Beclin1 expression was notably increased, and ROS level was also markedly increased. PRDX1 knockdown impaired migration, invasion, and tube-formation abilities and promoted apoptosis, which was accompanied by an increased expression of cleaved-Caspase3 and Bax. PRDX1 knockdown induced a significant decrease in LC3II and Beclin1 expression, along with an elevated p-AKT expression and a decreased PTEN expression. PRDX1 knockdown increased intracellular ROS levels, and NAC attenuated PRDX1 knockdown-induced apoptosis. CONCLUSION PRDX1 regulated trophoblast function through the PTEN/AKT signaling pathway to affect cell autophagy and ROS level, which provided a potential target for the treatment of PE.
Collapse
Affiliation(s)
- Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Melatonin Supplementation during the Late Gestational Stage Enhances Reproductive Performance of Sows by Regulating Fluid Shear Stress and Improving Placental Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12030688. [PMID: 36978937 PMCID: PMC10045541 DOI: 10.3390/antiox12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, the effects of daily melatonin supplementation (2 mg/kg) at the late gestational stage on the reproductive performance of the sows have been investigated. This treatment potentially increased the litter size and birth survival rate and significantly increased the birth weight as well as the weaning weight and survival rate of piglets compared to the controls. The mechanistic studies have found that these beneficial effects of melatonin are not mediated by the alterations of reproductive hormones of estrogen and progesterone, nor did the glucose and lipid metabolisms, but they were the results of the reduced oxidative stress in placenta associated with melatonin supplementation. Indeed, the melatonergic system, including mRNAs and proteins of AANAT, MTNR1A and MTNR1B, has been identified in the placenta of the sows. The RNA sequencing of placental tissue and KEGG analysis showed that melatonin activated the placental tissue fluid shear stress pathway to stimulate the Nrf2 signaling pathway, which upregulated its several downstream antioxidant genes, including MGST1, GSTM3 and GSTA4, therefore, suppressing the placental oxidative stress. All these actions may be mediated by the melatonin receptor of MTNR1B.
Collapse
|
7
|
PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Xie L, Ding N, Sheng S, Zhang H, Yin H, Gao L, Zhang H, Ma S, Yang A, Li G, Jiao Y, Shi Q, Jiang Y, Zhang H. Cooperation between NSPc1 and DNA methylation represses HOXA11 expression and promotes apoptosis of trophoblast cells during preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-13. [PMID: 36815373 PMCID: PMC10157525 DOI: 10.3724/abbs.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Honghong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - He Yin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Lina Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Infectious DiseasesGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Qing Shi
- Department of GynecologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Huiping Zhang
- Department of Medical GeneticsMaternal and Child Health of Hunan ProvinceChangsha410008China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| |
Collapse
|
9
|
Zhang X, Cui Y, Song X, Jin X, Sheng X, Xu X, Li T, Chen H, Gao L. Curcumin alleviates ketamine-induced oxidative stress and apoptosis via Nrf2 signaling pathway in rats' cerebral cortex and hippocampus. ENVIRONMENTAL TOXICOLOGY 2023; 38:300-311. [PMID: 36305173 DOI: 10.1002/tox.23697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
AIMS To investigate curcumin's protective effect on nerve damage caused by ketamine anesthesia via the Nrf2 signaling pathway. Rats and PC12 cells were used in this experiment to investigate the mechanism of nerve injury caused by ketamine anesthesia. Furthermore, our findings suggest that curcumin may affect oxidative stress and apoptosis by targeting the Nrf2 pathway, thereby alleviating the nerve injury caused by ketamine. METHODS The rat cerebral cortex and hippocampus were stained with Nissl and immunohistochemistry to determine the number of neurons and the expression of Caspase-3, Bcl-2, and Bax. CCK-8 assay was used to determine the optimal concentration of ketamine, curcumin, and H2 O2 in PC12 cells. Flow cytometry was used to detect changes in reactive oxygen species and the rate of apoptosis in each group. To determine whether Nrf2 entered the nucleus, immunofluorescence was used. Both tissues and cells were subjected to RT-PCR and Western blotting detection at the same time. The levels of oxidative stress were determined using a malondialdehyde (MDA) and superoxide dismutase (SOD) assay kit. RESULTS Ketamine reduced the number of neurons in the cortex and hippocampus of rats. The proteins Bax and Caspase-3 were upregulated, while Bcl-2 was down-regulated in the cortex and hippocampus. The viability of PC12 cells has decreased. MDA content increased while SOD activity decreased in cortex, hippocampus, and PC12 cells. Ketamine had an effect on the expression of some genes in the Nrf2 signaling pathway as well as apoptosis. Curcumin pretreatment may be able to prevent ketamine-induced damage. CONCLUSIONS The oxidative stress and apoptosis caused by ketamine during growth of the cerebral cortex, hippocampus, and PC12 cells may be decreased by curcumin's activation of the Nrf2 signaling pathway. Our research provides a potential strategy for the secure administration of anesthetics in medical settings.
Collapse
Affiliation(s)
- Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuanbo Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ting Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, China
| |
Collapse
|
10
|
Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, Battino M, Dekanski D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022; 14:nu14245246. [PMID: 36558404 PMCID: PMC9782043 DOI: 10.3390/nu14245246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a group of phytochemicals with extensive biological functions and health-promoting potential. These compounds are present in most foods of plant origin and their increased widespread availability through the intake of nutritional supplements, fortified foods, and beverages, has also led to increased exposure throughout gestation. In this narrative review, we focus on the role of polyphenols in both healthy and pathological pregnancy. General information related to their classification and function is followed by an overview of their known effects in early-pregnancy events, including the current insights into molecular mechanisms involved. Further, we provide an overview of their involvement in some of the most common pregnancy-associated pathological conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of dietary polyphenols during pregnancy needs particular attention considering the possible effects of polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy, as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
11
|
Wang X, Yu S, Jian Y, Pan H, Guo J, Wu J, Guo W. Hydrogen sulfide against preeclampsia exposure-induced oxidative mitochondrial damage in HTR-8/SVneo cells. Front Cardiovasc Med 2022; 9:1023982. [DOI: 10.3389/fcvm.2022.1023982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extravillous trophoblast invasion disorder caused by oxidative stress is involved in the pathogenesis of preeclampsia (PE). In order to identify whether hydrogen sulfide (H2S) can prevent oxidative stress injury in extravillous trophoblasts. HTR-8/SVneo cells were detected by H2S inhibiting H2O2 induced oxidative mitochondrial damage. Reactive oxygen species (ROS) were detected, as well as malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD). JC-1 detected the potential of the mitochondrial membrane in this experiment. Then to detect the expression level of the apoptosis-inducing protein B-cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase 3, p53, p-p53, the apoptosis-inhibiting protein Bcl-2, PRAP, and the mitochondria fission protein Drp1, p-Drp1. CCK-8 assay, it was demonstrated that cell proliferation in the NaHS group was significantly higher than that in the Mod group, indicating that H2S may induce cell proliferation. Transwell assay elucidated that cell invasion in the NaHS group was recovered compared to the Mod group. ROS concentration no matter in cells or mitochondria was decreased by NaHS, which we could get from the comparison between the Mod group, PAG group, and NaHS group. The concentration of MDA was significantly lower in the NaHS group, and the concentration of SOD was extremely high in the NaHS group. Utilized JC-1 to detect mitochondrial membrane potential and found that cells from the NaHS group had a stable potential while cells from the Mod group and PAG group partly lost their potential, which could demonstrate that NaHS could maintain mitochondrial membrane potential. The western blot results revealed that p-Drp1 had a significant decline in the NaHS group, which means mitochondria fission was decreased in the NaHS group. The expression level of Bax and caspase 3 was significantly lower than in the Mod group and PAG group, and the expression level of Bcl-and PRAP was significantly higher in the NaHS group. That could prove that NaHS protect HTR-8/SVneo cell by inhibiting cell apoptosis. These promising results show that H2S elicits its effects on cell apoptosis by decreasing ROS concentration, maintaining mitochondrial membrane stability, and promoting apoptosis-inhibiting protein expression in cells.
Collapse
|
12
|
Dos Anjos Cordeiro JM, Santos LC, de Oliveira LS, Santos BR, Santos EO, Barbosa EM, de Macêdo IO, de Freitas GJC, Santos DDA, de Lavor MSL, Silva JF. Maternal hypothyroidism causes oxidative stress and endoplasmic reticulum stress in the maternal-fetal interface of rats. Free Radic Biol Med 2022; 191:24-39. [PMID: 36038036 DOI: 10.1016/j.freeradbiomed.2022.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Maternal hypothyroidism is associated with pre-eclampsia and intrauterine growth restriction, gestational diseases involving oxidative stress (OS) and endoplasmic reticulum stress (ERS) in the placenta. However, it is not known whether hypothyroidism also causes OS and ERS at the maternal-fetal interface. The aim was to evaluate the fetal-placental development and the expression of mediators of OS and of the unfolded protein response (UPR) in the maternal-fetal interface of hypothyroid rats. Hypothyroidism was induced in Wistar rats with propylthiouracil and the fetal-placental development and placental and decidual expression of antioxidant, hypoxia, and UPR mediators were analyzed at 14 and 18 days of gestation (DG), as well the expression of 8-OHdG and MDA, and reactive oxygen species (ROS) and peroxynitrite levels. Hypothyroidism reduced fetal weight at 14 and 18 DG, in addition to increasing the percentage of fetal death and reducing the weight of the uteroplacental unit at 18 DG. At 14 DG, there was greater decidual and/or placental immunostaining of Hif1α, 8-OHdG, MDA, SOD1, GPx1/2, Grp78 and CHOP in hypothyroid rats, while there was a reduction in placental and/or decidual gene expression of Sod1, Gpx1, Atf6, Perk, Ho1, Xbp1, Grp78 and Chop in the same gestational period. At 18 DG, hypothyroidism increased the placental ROS levels and the decidual and/or placental immunostaining of HIF1α, 8-OHdG, MDA, ATF4, GRP78 and CHOP, while it reduced the immunostaining and enzymatic activity of SOD1, CAT, GST. Hypothyroidism increased the placental mRNA expression of Hifα, Nrf2, Sod2, Gpx1, Cat, Perk, Atf6 and Chop at 18 DG, while decreasing the decidual expression of Sod2, Cat and Atf6. These findings demonstrated that fetal-placental restriction in female rats with hypothyroidism is associated with hypoxia and dysregulation in placental and decidual expression of UPR mediators and antioxidant enzymes, and activation of oxidative stress and endoplasmic reticulum stress at the maternal-fetal interface.
Collapse
Affiliation(s)
- Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel de Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Sérgio Lima de Lavor
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil.
| |
Collapse
|
13
|
Ferroptosis-Related Genes Are Potential Therapeutic Targets and the Model of These Genes Influences Overall Survival of NSCLC Patients. Cells 2022; 11:cells11142207. [PMID: 35883650 PMCID: PMC9319237 DOI: 10.3390/cells11142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSCC) are two of the most common subtypes of non-small cell lung cancer (NSCLC), with high mortality rates and rising incidence worldwide. Ferroptosis is a mode of programmed cell death caused by lipid peroxidation, the accumulation of reactive oxygen species, and is dependent on iron. The recent discovery of ferroptosis has provided new insights into tumor development, and the clinical relevance of ferroptosis for tumor therapy is being increasingly appreciated. However, its role in NSCLC remains to be explored. Methods: The clinical and molecular data for 1727 LUAD and LUSCC patients and 73 control individuals were obtained from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Gene expression profiles, copy number variations and somatic mutations of 57 ferroptosis-related genes in 1727 tumor samples from the four datasets were used in a univariate Cox analysis and consensus clustering analysis. The biological signatures of each pattern were identified. A ferroptosis score was generated by combining the univariate Cox regression analysis and random forest algorithm followed by principal component analysis (PCA) and further investigated for its predictive and therapeutic value in LUAD and LUSCC. Results: The expression of 57 ferroptosis-related genes in NSCLC patients differed significantly from that of normal subjects. Based on unsupervised clustering of ferroptosis-related genes, we divided all patients into three ferroptosis expression pattern groups, which showed differences in ferroptosis-associated gene expression patterns, immune cell infiltration levels, prognostic characteristics and enriched pathways. Using the differentially expressed genes in the three ferroptosis expression patterns, a set of 17 ferroptosis-related gene prognostic models was established, which clustered all patients in the cohort into a low score group and a high score group, with marked differences in prognosis (p < 0.001). The high ferroptosis score was significantly associated with positive response to radiotherapy (p < 0.001), high T stage (p < 0.001), high N stage (p < 0.001) and high-grade tumor (p < 0.001) characteristics. Conclusions: The 17 ferroptosis-associated genes show great potential for stratifying LUAD and LUSCC patients into high and low risk groups. Interestingly, a high ferroptosis score in LUAD patients was associated with a good prognosis, whereas a similar high ferroptosis score in LUSCC patients was associated with a poor prognosis. Familiarity with the mechanisms underlying ferroptosis and its implications for the treatment of NSCLC, as well as its effect on OS and PFS, may provide guidance and insights in developing new therapeutic targets for NSCLC.
Collapse
|
14
|
Padron JG, Norman Ing ND, Ng PK, Kendal-Wright CE. Stretch Causes Cell Stress and the Downregulation of Nrf2 in Primary Amnion Cells. Biomolecules 2022; 12:766. [PMID: 35740891 PMCID: PMC9220942 DOI: 10.3390/biom12060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-factor-E2-related factor 2 (Nrf2) is a key transcription factor for the regulation of cellular responses to cellular stress and inflammation, and its expression is significantly lower after spontaneous term labor in human fetal membranes. Pathological induction of inflammation can lead to adverse pregnancy outcomes such as pre-eclampsia, preterm labor, and fetal death. As stretch forces are known to act upon the fetal membranes in utero, we aimed to ascertain the effect of stretch on Nrf2 to increase our understanding of the role of this stimulus on cells of the amnion at term. Our results indicated a significant reduction in Nrf2 expression in stretched isolated human amnion epithelial cells (hAECs) that could be rescued with sulforaphane treatment. Downregulation of Nrf2 as a result of stretch was accompanied with activation of proinflammatory nuclear factor-kB (NF-kB) and increases in LDH activity, ROS, and HMGB1. This work supports stretch as a key modulator of cellular stress and inflammation in the fetal membranes. Our results showed that the modulation of the antioxidant response pathway in the fetal membranes through Nrf2 activation may be a viable approach to improve outcomes in pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|
15
|
Melatonin Alleviates Oxidative Stress Induced by H2O2 in Porcine Trophectodern Cells. Antioxidants (Basel) 2022; 11:antiox11061047. [PMID: 35739944 PMCID: PMC9219737 DOI: 10.3390/antiox11061047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023] Open
Abstract
Placental oxidative stress has been implicated as a main risk factor for placental dysfunction. Alleviation of oxidative stress and enhancement of antioxidant capacity of porcine trophectoderm (PTr2) cells are effective means to maintaining normal placental function. The present study was conducted to evaluate the protective effect of melatonin (MT) on H2O2-induced oxidative damage in PTr2 cells. Our data revealed that pretreatment with MT could significantly improve the decrease in cell viability induced by H2O2, and reduce intracellular reactive oxygen species (ROS) levels and the ratio of apoptotic cells. Here, we compared the transcriptomes of untreated versus melatonin-treated PTr2 cells by RNA-seq analysis and found that differentially expressed genes (DEGs) were highly enriched in the Wnt signaling, TGF-beta signaling and mTOR signaling pathways. Moreover, pretreatment with MT upregulated the antioxidant-related genes such as early growth response3 (EGR3), WAP four-disulfide core domain1 (WFDC1), heme oxygenase1 (HMOX1) and vimentin (VIM). These findings reveal that melatonin protects PTr2 cells from H2O2-induced oxidative stress damage.
Collapse
|
16
|
Oliveira S, Monteiro-Alfredo T, Henriques R, Ribeiro CF, Seiça R, Cruz T, Cabral C, Fernandes R, Piedade F, Robalo MP, Matafome P, Silva S. Improvement of Glycaemia and Endothelial Function by a New Low-Dose Curcuminoid in an Animal Model of Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105652. [PMID: 35628465 PMCID: PMC9144453 DOI: 10.3390/ijms23105652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin has been suggested as a promising treatment for metabolic diseases, but the high doses required limit its therapeutic use. In this study, a new curcuminoid is synthesised to increase curcumin anti-inflammatory and antioxidant potential and to achieve hypoglycaemic and protective vascular effects in type 2 diabetic rats in a lower dose. In vitro, the anti-inflammatory effect was determined through the Griess reaction, and the antioxidant activity through ABTS and TBARS assays. In vivo, Goto-Kakizaki rats were treated for 2 weeks with the equimolar dose of curcumin (40 mg/kg/day) or curcuminoid (52.4 mg/kg/day). Fasting glycaemia, insulin tolerance, plasma insulin, insulin signalling, serum FFA, endothelial function and several markers of oxidative stress were evaluated. Both compounds presented a significant anti-inflammatory effect. Moreover, the curcuminoid had a marked hypoglycaemic effect, accompanied by higher GLUT4 levels in adipose tissue. Both compounds increased NO-dependent vasorelaxation, but only the curcuminoid exacerbated the response to ascorbic acid, consistent with a higher decrease in vascular oxidative and nitrosative stress. SOD1 and GLO1 levels were increased in EAT and heart, respectively. Altogether, these data suggest that the curcuminoid developed here has more pronounced effects than curcumin in low doses, improving the oxidative stress, endothelial function and glycaemic profile in type 2 diabetes.
Collapse
Affiliation(s)
- Sara Oliveira
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil
| | - Rita Henriques
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| | - Carlos Fontes Ribeiro
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rosa Fernandes
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Fátima Piedade
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria Paula Robalo
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854 Coimbra, Portugal
- Correspondence:
| | - Sónia Silva
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| |
Collapse
|
17
|
Tang X, Xiong K, Wassie T, Wu X. Curcumin and Intestinal Oxidative Stress of Pigs With Intrauterine Growth Retardation: A Review. Front Nutr 2022; 9:847673. [PMID: 35571913 PMCID: PMC9101057 DOI: 10.3389/fnut.2022.847673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) refers to the slow growth and development of a mammalian embryo/fetus or fetal organs during pregnancy, which is popular in swine production and causes considerable economic losses. Nutritional strategies have been reported to improve the health status and growth performance of IUGR piglets, among which dietary curcumin supplementation is an efficient alternative. Curcumin is a natural lipophilic polyphenol derived from the rhizome of Curcuma longa with many biological activities. It has been demonstrated that curcumin promotes intestinal development and alleviates intestinal oxidative damage. However, due to its low bioavailability caused by poor solubility, chemical instability, and rapid degradation, the application of curcumin in animal production is rare. In this manuscript, the structural-activity relationship to enhance the bioavailability, and the nutritional effects of curcumin on intestinal health from the aspect of protecting piglets from IUGR associated intestinal oxidative damage were summarized to provide new insight into the application of curcumin in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
18
|
Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, Serra-Delgado M, Paltrinieri AL, García-Algar Ó, Andreu-Fernández V. Effects of Antioxidant Intake on Fetal Development and Maternal/Neonatal Health during Pregnancy. Antioxidants (Basel) 2022; 11:648. [PMID: 35453333 PMCID: PMC9028185 DOI: 10.3390/antiox11040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
During pregnancy, cycles of hypoxia and oxidative stress play a key role in the proper development of the fetus. Hypoxia during the first weeks is crucial for placental development, while the increase in oxygen due to the influx of maternal blood stimulates endothelial growth and angiogenesis. However, an imbalance in the number of oxidative molecules due to endogenous or exogenous factors can overwhelm defense systems and lead to excessive production of reactive oxygen species (ROS). Many pregnancy complications, generated by systemic inflammation and placental vasoconstriction, such as preeclampsia (PE), fetal growth restriction (FGR) and preterm birth (PTB), are related to this increase of ROS. Antioxidants may be a promising tool in this population. However, clinical evidence on their use, especially those of natural origin, is scarce and controversial. Following PRISMA methodology, the current review addresses the use of natural antioxidants, such as epigallocatechin gallate (EGCG), melatonin and resveratrol (RESV), as well as other classical antioxidants (vitamin C and E) during the prenatal period as treatment of the above-mentioned complications. We review the effect of antioxidant supplementation on breast milk in lactating mothers.
Collapse
Affiliation(s)
- Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (M.S.-D.)
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (M.S.-D.)
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Anna Lucia Paltrinieri
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
| | - Óscar García-Algar
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
| |
Collapse
|
19
|
Alinaghipour A, Salami M, Riahi E, Ashabi G, Soheili M, Nabavizadeh F. Protective effects of nanocurcumin against stress-induced deterioration in the intestine. Stress 2022; 25:337-346. [PMID: 36369802 DOI: 10.1080/10253890.2022.2132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmail Riahi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Shahcheraghi SH, Salemi F, Peirovi N, Ayatollahi J, Alam W, Khan H, Saso L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021; 27:167. [PMID: 35011412 PMCID: PMC8746993 DOI: 10.3390/molecules27010167] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc-curcumin Zn (II)-curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc-curcumin Zn (II)-curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd 19395/1495, Iran;
| | - Niloufar Peirovi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
21
|
Tantengco OAG, de Castro Silva M, Shahin H, Bento GFC, Cursino GC, Cayenne S, da Silva MG, Menon R. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in normal and pathological pregnancy: A systematic review. Am J Reprod Immunol 2021; 86:e13496. [PMID: 34467607 DOI: 10.1111/aji.13496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE A homeostatic balance between reactive oxygen species production and the antioxidant redox system is an important component of normal pregnancy. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) preserves cellular homeostasis by enhancing the cell's innate antioxidant status to reduce oxidative stress and inflammatory damage to the cell during pregnancy. Active Nrf2, in the nucleus of the cell, transactivates various antioxidant genes. The objective of this systematic review was to synthesize evidence on the role of Nrf2 in various adverse pregnancy outcomes (APOs). METHODS We conducted a systematic review of the role of Nrf2 in pregnancy. Articles written in English, Portuguese, and Spanish were obtained from three different databases from inception until January 2021. The titles, abstracts and full text were reviewed independently by six reviewers. The quality of the included studies was assessed using a quality assessment tool developed to assess basic science and clinical studies. Nrf2 expression (gene and protein), functional contributions, and association with APOs were assessed. RESULTS A total of 747 citations were identified; 80 were retained for full review. Most studies on Nrf2 have been carried out using placental tissues and placenta-derived cells. Limited studies have been conducted using fetal membranes, uterus, and cervix. Nuclear translocation of Nrf2 results in transactivation of antioxidant enzymes, including glutathione peroxidase, hemeoxygenase-1, and superoxide dismutase in gestational cells during pregnancy. This antioxidant response maintains cellular homeostasis during pregnancy. This promotes trophoblast cell survival and prevents cell death and abnormal angiogenesis in the placenta. Excessive and insufficient Nrf2 response may promote oxidative and reductive stress, respectively. This Nrf2 dysregulation has been associated with APOs including gestational diabetes mellitus, intrauterine growth restriction, reproductive toxicity, preeclampsia, and preterm birth. CONCLUSION Several studies have localized and reported an association between Nrf2's differential expression in reproductive tissues and the pathogenesis of APOs. However, a comprehensive functional understanding of Nrf2 in reproductive tissues is still lacking. Nrf2's activation and functions are complex, and therefore, current in vitro and in vivo studies are limited in their experimental approaches. We have identified key areas for future Nrf2 research that is needed to fill knowledge gaps.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mariana de Castro Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Geovanna Cristofani Cursino
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Samir Cayenne
- The University of Texas at Austin, Austin, Texas, USA
| | - Marcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Ramkumar Menon
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
22
|
Wang K, Xu Z, Liao X. Bioactive compounds, health benefits and functional food products of sea buckthorn: a review. Crit Rev Food Sci Nutr 2021; 62:6761-6782. [PMID: 33783272 DOI: 10.1080/10408398.2021.1905605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.), which has been categorized as a "medicine food homology" fruit by China's National Health Commission for both nutritional and medicinal purposes, has nearly 200 kinds of nutritive and bioactive compounds such as polyunsaturated fatty acids, carotenoids, sugar alcohols, superoxide dismutase and phytosterols. Significant bioactivity, including cardiovascular improvement, antidiabetic and anti-obesity activity, have highlighted the application of sea buckthorn. This review compiled a database of the phytochemical compounds in sea buckthorn, which contains the contents of 106 nutrients and 74 bioactive compounds. The health benefits of sea buckthorn and its extracts were summarized and the mechanism of anti-oxidation and anti-inflammation were introduced in detail. Seventeen common marketed products of sea buckthorn from 8 countries were collected. A future scope is really needed to explore the mechanism of sea buckthorn bioactive compounds along with the incorporation cost-effective functional food products.
Collapse
Affiliation(s)
- Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Li F, Song X, Xu J, Shi Y, Hu R, Ren Z, Qi Q, Lü H, Cheng X, Hu J. Morroniside protects OLN-93 cells against H 2O 2-induced injury through the PI3K/Akt pathway-mediated antioxidative stress and antiapoptotic activities. Cell Cycle 2021; 20:661-675. [PMID: 33734020 DOI: 10.1080/15384101.2021.1889186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative disorders, including spinal cord injury (SCI), result in oxidative stress-induced cell damage. Morroniside (MR), a major active ingredient of the Chinese herb Shan Zhu Yu, has been shown to ameliorate oxidative stress and inflammatory response. Our previous study also confirmed that morroniside protects SK-N-SH cell line (human neuroblastoma cells) against oxidative impairment. However, it remains unclear whether MR also plays a protective role for oligodendrocytes that are damaged following SCI. The present study investigated the protective effects of MR against hydrogen peroxide (H2O2)-induced cell death in OLN-93 cells. MR protected OLN-93 cells from H2O2-induced injury, attenuated H2O2-induced increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and blocked the reduction of mitochondrial membrane potential (MMP) induced by H2O2. MR enhanced the activity of the antioxidant enzyme superoxide dismutase (SOD) and suppressed H2O2-induced downregulation of the antiapoptotic protein Bcl-2 and activation of the proapoptotic protein caspase-3. Finally, we found that LY294002, a specific inhibitor of the PI3K/Akt pathway, inhibited the protective effect of MR against H2O2-induced OLN-93 cell injury in the MTT and TUNEL assays. LY294002 also inhibited the expression of SOD and Bcl-2, and increased the expression of iNOS and c-caspase-3 induced by MR treatment. MR exerts protective effects against H2O2-induced OLN-93 cell injury through the PI3K/Akt signaling pathway-mediated antioxidative stress and antiapoptotic activities. MR may provide a potential strategy for SCI treatment or other related neurodegeneration.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Xue Song
- Department of Central Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jiaxin Xu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Yujiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Ruina Hu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Zhen Ren
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xiaoxin Cheng
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Jianguo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
24
|
Tossetta G, Fantone S, Giannubilo SR, Marzioni D. The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants (Basel) 2021; 10:antiox10010126. [PMID: 33477354 PMCID: PMC7830020 DOI: 10.3390/antiox10010126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, also known as diferuloylmethane, is the main polyphenolic substance present in the rhizomes of Curcuma longa L. This plant showed many beneficial effects and has been used since ancient times for both food and pharmaceutical purposes. Due to its pleiotropic functions, curcumin consumption in the human diet has become very common thanks also to the fact that this natural compound is considered quite safe as it does not have serious side effects. Its functions as an anti-inflammatory, anti-oxidant, neuroprotective, immunomodulatory, anti-toxicant, anti-apoptotic, and anti-diabetic compound are already known and widely demonstrated. There are numerous studies concerning its effects on various human pathologies including cancer, diabetes and arthritis while the studies on curcumin during pregnancy have been performed only in animal models. Data concerning the role of curcumin as anti-inflammatory compound suggest a possible use of curcumin in managing pregnancy complications such as Preeclampsia (PE), Gestational Diabetes Mellitus (GDM), Fetal Growth Restriction (FGR), PreTerm Birth (PTB), and exposure to toxic agents and pathogens. The aim of this review is to present data to support the possible use of curcumin in clinical trials on human gestation complications.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Correspondence: ; Tel.:+39-071.2206268
| |
Collapse
|
25
|
Inhibitory Effect of Delphinidin on Oxidative Stress Induced by H 2O 2 in HepG2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4694760. [PMID: 33274001 PMCID: PMC7700032 DOI: 10.1155/2020/4694760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Chronic liver diseases (CLDs) are correlated with oxidative stress induced by the accumulation of intracellular reactive oxygen species (ROS). In this study, we employed HepG2, a human liver carcinoma cell line containing many antioxidant enzymes, to explore the function of delphinidin against oxidative stress induced by H2O2 and to provide scientific data of the molecular mechanism. Cells were pretreated with different concentrations of delphinidin (10 μmol/L, 20 μmol/L, and 40 μmol/L) for 2 h before treatment with 750 μM H2O2 for 1 h. The results showed that H2O2 decreased the survival rate of HepG2 cells and increased the level of ROS, but delphinidin pretreatment could possess the opposite result. At the same time, the expression of Nrf2 was enhanced by the delphinidin pretreatment. This was because delphinidin promoted Nrf2 nuclear translocation and inhibited its degradation, which led to the increase expression of antioxidant protein HO-1 (Nrf2-related phase II enzyme heme oxygenase-1). Besides, we found that delphinidin could significantly alleviate the reduction of Nrf2 protein levels and the accumulation of intracellular ROS levels in Nrf2 knockdown HepG2 cells. In conclusion, our study suggested that delphinidin, as an effective antioxidant, protected HepG2 cells from oxidative stress by regulating the expression of Nrf2/HO-1.
Collapse
|
26
|
Ghaneifar Z, Yousefi Z, Tajik F, Nikfar B, Ghalibafan F, Abdollahi E, Momtazi-Borojeni AA. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72:2572-2583. [PMID: 33107698 DOI: 10.1002/iub.2399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Pregnancy complications including preeclampsia, preterm birth, intrauterine growth restriction, and gestational diabetes are the main adverse reproductive outcomes. Excessive inflammation and oxidative stress play crucial roles in the pathogenesis of pregnancy disorders. Curcumin, the main polyphenolic compound derived from Curcuma longa, is mainly known by its anti-inflammatory and antioxidant properties. There are in vitro and in vivo reports revealing the preventive and ameliorating effects of curcumin against pregnancy complications. Here, we aimed to seek mechanisms underlying the modulatory effects of curcumin on dysregulated inflammatory and oxidative responses in various pregnancy complications.
Collapse
Affiliation(s)
- Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Tajik
- Faculty of medicine, Azad University of Tehran, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghalibafan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Curcumin: Could This Compound Be Useful in Pregnancy and Pregnancy-Related Complications? Nutrients 2020; 12:nu12103179. [PMID: 33080891 PMCID: PMC7603145 DOI: 10.3390/nu12103179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a significant role in medicine for centuries. The growing interest in plant-derived substances has led to increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial effects observed in various chronic diseases in humans, limited and fragmentary information is currently available about curcumin’s effects on pregnancy and pregnancy-related complications. It is known that immune-metabolic alterations occurring during pregnancy have consequences on both maternal and fetal tissues, leading to short- and long-term complications. The reported anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic, antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging, not only for the management of pregnancy-related disorders, including gestational diabetes mellitus (GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast damage induced by natural and chemical toxic agents. The current review summarizes the latest data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the possible beneficial and/or adverse effects of curcumin on pregnancy outcomes.
Collapse
|
28
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
29
|
Tunali S, Cimen ES, Yanardag R. The effects of chard on brain damage in valproic acid-induced toxicity. J Food Biochem 2020; 44:e13382. [PMID: 32754946 DOI: 10.1111/jfbc.13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA; 2-propyl valeric acid) is a potent drug widely used in treating anxiety disorders, migraine as well as epileptic diseases. In the ongoing study chard protective effect was investigated, on the damaged VPA rat brain. Sprague Dawley rats (females) were grouped as follows: control, VPA (500 mg kg-1 day-1 VPA intraperitoneal), chard (100 mg/kg day chard extract by gavage), VPA + chard (500 mg kg-1 day-1 VPA + 100 mg kg-1 day-1 chard extract). Aqueous chard leaves extract was given 1 hr before apply VPA for a period of 7 days. Lipid peroxidation, advanced oxidation protein products and protein carbonyl content, and superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase activities increased in the VPA group. Reduced glutathione levels, paraoxanase, and acetylcholinesterase activities were significantly diminished in the VPA animals. Chard extract application curatively reverted the studied biochemical parameters. The results obtained, it has been found the chard has a protective and antioxidant effect on brain damage induced by VPA. PRACTICAL APPLICATIONS: Valproic acid is a comparably safe pharmaceutical agent, but it can cause severe adverse effects on biological metabolism when it is used in high amount. There are not many studies declared that VPA stimulate the generation of ROS, which is liable for the life-threatening adverse effects of VPA therapy including hepatotoxicity neurotoxicity and teratogenicity. Chard is a plant which has antimicrobial, antibacterial, antiinflammatory, antioxidant, antitumor, antiacetylcholinesterase activities, and hepatoprotective effects. In the current study we examined the protection of the VPA damaged rat brain by chard.
Collapse
Affiliation(s)
- Sevim Tunali
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Sule Cimen
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
30
|
Ji M, Gong X, Li X, Wang C, Li M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species-A Review. Molecules 2020; 25:E917. [PMID: 32092874 PMCID: PMC7071004 DOI: 10.3390/molecules25040917] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/23/2023] Open
Abstract
Oxidation is a normal consequence of metabolism in biological organisms. The result is the formation of detrimental reactive oxygen species (ROS) and reactive nitrogen species (RNS). A large number of studies have shown that polyphenolic compounds have good antioxidant properties. Hippophae species plants have high polyphenolic content and are widely used in food, medicinal, or the cosmetic field. The main polyphenols in Hippophae species are flavonoids, phenolic acids and tannins, which have multiple effects. However, there is a limited number of studies on polyphenols in Hippophae species plants. This review systematically summarizes the polyphenols compounds and antioxidant activity of Hippophae species plants, and it is noteworthy that the main mechanisms of the polyphenols of Hippophae with antioxidant activity have been summarized as follows: regulating enzyme activity, affect the antioxidant reaction of cells, and others. This review provides useful information for the further study and application of Hippophae species polyphenols and their antioxidant activity.
Collapse
Affiliation(s)
- Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Xue Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Congcong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Autonomous Region Academy of Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
| |
Collapse
|