1
|
Ahamba IS, Mary-Cynthia Ikele C, Kimpe L, Goswami N, Wang H, Li Z, Ren Z, Dong X. Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100222. [PMID: 39290671 PMCID: PMC11406001 DOI: 10.1016/j.fochms.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.
Collapse
Affiliation(s)
- Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | | | - Lionel Kimpe
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhen Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| |
Collapse
|
2
|
Kakebaraei S, Gholami M, Nasta TZ, Arkan E, Bahrehmand F, Fakhri S, Jalili C. Oral administration of crocin-loaded solid lipid nanoparticles inhibits neuroinflammation in a rat model of epileptic seizures by activating SIRT1 expression. Res Pharm Sci 2024; 19:397-414. [PMID: 39399725 PMCID: PMC11468164 DOI: 10.4103/rps.rps_68_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Epilepsy is a group of chronic neurological diseases caused by a complex set of neuronal hyper electrical activities and oxidative stress of neurons. Crocin is a natural bioactive agent of saffron with different pharmacological properties and low bioavailability. This study aimed to evaluate crocin-loaded solid lipid nanoparticles (SLNC) for neuroprotection activity and efficacy against pentylenetetrazol (PTZ)- induced epilepsy. Experimental approach The rats were pretreated with SLNC and pure-crocin (PC; 25 and 50 mg/kg/day; P.O.) for 28 days before PTZ induction. Behavioral functions were evaluated by passive avoidance learning (PAL) tasks. Then, total antioxidant capacity (TAC), malondialdehyde (MDA), and pro-inflammatory factors were measured in the brain tissue using ELISA kits. Gene expression levels were analyzed with real-time polymerase chain reaction and immunohistochemical assay was used to assess the protein expression of sirtuin1 SIRT 1). Findings/Results SLNC was prepared with an average particle size of 98.25 nm and 98.33% encapsulation efficiency. Memory deficit improved in rats treated with SLNC. Administering SLNC at 25 and 50 mg/kg significantly reduced MDA and proinflammatory cytokines while increasing TAC. Additionally, administering SLNC before treatment increased the levels of SIRT1, peroxisome proliferator-activated receptor coactivator 1α, cAMP-regulated enhancer binding protein, and brain-derived neurotrophic factor. Furthermore, SLNC administration resulted in the downregulation of caspase-3 and inflammation factor expression. Conclusion and implications Overall, the obtained results showed that SLNC has better protective effects on oxidative stress in neurons, neurocognitive function, and anti-apoptotic and neuromodulatory activity than PC, suggesting that it is a promising therapeutic strategy for inhibiting seizures.
Collapse
Affiliation(s)
- Seyran Kakebaraei
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Magliocca V, Lanciotti A, Ambrosini E, Travaglini L, D’Ezio V, D’Oria V, Petrini S, Catteruccia M, Massey K, Tartaglia M, Bertini E, Persichini T, Compagnucci C. Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes. Front Cell Neurosci 2024; 18:1440555. [PMID: 39113759 PMCID: PMC11303166 DOI: 10.3389/fncel.2024.1440555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
Collapse
Affiliation(s)
- Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Lorena Travaglini
- Unit of Translational Cytogenetic Research, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Valentina D’Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | |
Collapse
|
4
|
Khoshnazar SM, Kazemi M, Amirheidari B. Neuroprotective Effects of [Formula: see text]-Terpinene in Rats with Acute Cerebral Ischemia: Modulation of Inflammation, Apoptosis, and Oxidation. Neurochem Res 2024; 49:1863-1878. [PMID: 38753259 DOI: 10.1007/s11064-024-04143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
The study aimed to assess 𝛾-Terpinene's (𝛾-TER) neuroprotective potential in acute cerebral ischemia, characterized by reduced cerebral blood flow in rats. Middle cerebral artery occlusion (MCAO), a standard method for inducing cerebral ischemia, was employed in male Wistar rats. 𝛾-TER at varying doses (5, 10, and 15 mg/kg) were intraperitoneally administered during reperfusion onset. Neurological outcomes, cerebral infarct size, edema, and enzymatic activities (SOD, GPx, and catalase) in the brain were evaluated using diverse techniques. The study examined gene expression and pathways associated with neuroinflammation and apoptosis using Cytoscape software, identifying the top 10 genes involved. Pro-inflammatory and pro-apoptotic factors were assessed through real-time PCR and ELISA, while apoptotic cell rates were measured using the TUNEL and Flow cytometry assay. Immunohistochemistry assessed apoptosis-related proteins like Bax and bcl-2 in the ischemic area. 𝛾-TER, particularly at doses of 10 and 15 mg/kg, significantly reduced neurological deficits and cerebral infarction size. The 15 mg/kg dose mitigated TNF-α, IL-1β, Bax, and caspase-3 gene and protein levels in the cortex, hippocampus, and striatum compared to controls. Furthermore, Bcl-2 levels increased in these regions. 𝛾-TER show cased neuroprotective effects by suppressing inflammation, apoptosis, and oxidation. In conclusion, 𝛾-TER, possessing natural anti-inflammatory and anti-apoptotic properties, shields the brain against ischemic damage by reducing infarction, edema, oxidative stress, and inflammation. It modulates the expression of crucial genes and proteins associated with apoptosis in diverse brain regions. These findings position 𝛾-TER as a potential therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Kazemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Artiukhov AV, Solovjeva ON, Balashova NV, Sidorova OP, Graf AV, Bunik VI. Pharmacological Doses of Thiamine Benefit Patients with the Charcot-Marie-Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1161-1182. [PMID: 39218016 DOI: 10.1134/s0006297924070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Charcot-Marie-Tooth (CMT) neuropathy is a polygenic disorder of peripheral nerves with no effective cure. Thiamine (vitamin B1) is a neurotropic compound that improves neuropathies. Our pilot study characterizes therapeutic potential of daily oral administration of thiamine (100 mg) in CMT neuropathy and its molecular mechanisms. The patient hand grip strength was determined before and after thiamine administration along with the blood levels of the thiamine coenzyme form (thiamine diphosphate, ThDP), activities of endogenous holo-transketolase (without ThDP in the assay medium) and total transketolase (with ThDP in the assay medium), and transketolase activation by ThDP [1 - (holo-transketolase/total transketolase),%], corresponding to the fraction of ThDP-free apo-transketolase. Single cases of administration of sulbutiamine (200 mg) or benfotiamine (150 mg) reveal their effects on the assayed parameters within those of thiamine. Administration of thiamine or its pharmacological forms increased the hand grip strength in the CMT patients. Comparison of the thiamin status in patients with different forms of CMT disease to that of control subjects without diagnosed pathologies revealed no significant differences in the average levels of ThDP, holo-transketolase, or relative content of holo and apo forms of transketolase. However, the regulation of transketolase by thiamine/ThDP differed in the control and CMT groups: in the assay, ThDP activated transketolase from the control individuals, but not from CMT patients. Thiamine administration paradoxically decreased endogenous holo-transketolase in CMT patients; this effect was not observed in the control group. Correlation analysis revealed sex-specific differences in the relationship between the parameters of thiamine status in both the control subjects and patients with the CMT disease. Thus, our findings link physiological benefits of thiamine administration in CMT patients to changes in their thiamine status, in particular, the blood levels of ThDP and transketolase regulation.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
| | - Olga N Solovjeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia V Balashova
- Faculty of Advanced Medicine, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
- Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, 117198, Russia
| | - Olga P Sidorova
- Department of Neurology, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria I Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Grüning NM, Ralser M. Monogenic Disorders of ROS Production and the Primary Anti-Oxidative Defense. Biomolecules 2024; 14:206. [PMID: 38397443 PMCID: PMC10887155 DOI: 10.3390/biom14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the cellular anti-oxidant defense mechanisms, plays a critical role in the pathogenesis of various human diseases. Redox metabolism, comprising a network of enzymes and genes, serves as a crucial regulator of ROS levels and maintains cellular homeostasis. This review provides an overview of the most important human genes encoding for proteins involved in ROS generation, ROS detoxification, and production of reduced nicotinamide adenine dinucleotide phosphate (NADPH), and the genetic disorders that lead to dysregulation of these vital processes. Insights gained from studies on inherited monogenic metabolic diseases provide valuable basic understanding of redox metabolism and signaling, and they also help to unravel the underlying pathomechanisms that contribute to prevalent chronic disorders like cardiovascular disease, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
7
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
8
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
9
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
10
|
Sahasrabudhe SA, Terluk MR, Kartha RV. N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. Antioxidants (Basel) 2023; 12:1316. [PMID: 37507857 PMCID: PMC10376274 DOI: 10.3390/antiox12071316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
Collapse
Affiliation(s)
- Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Talaverón-Rey M, Álvarez-Córdoba M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Gómez-Fernández D, Romero-González A, Suárez-Carrillo A, Munuera-Cabeza M, Cilleros-Holgado P, Reche-López D, Piñero-Pérez R, Sánchez-Alcázar JA. Alpha-lipoic acid supplementation corrects pathological alterations in cellular models of pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2023; 18:80. [PMID: 37046296 PMCID: PMC10091671 DOI: 10.1186/s13023-023-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.
Collapse
Affiliation(s)
- Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
12
|
Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP-2 and MMP-9 Pathways. Pharmaceuticals (Basel) 2023; 16:ph16030442. [PMID: 36986541 PMCID: PMC10057436 DOI: 10.3390/ph16030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Anethole (AN) is one of the major constituents of several plant oils, demonstrating plentiful pharmacological actions. Ischemic stroke is the main cause of morbidity and death worldwide, particularly since ischemic stroke therapeutic choices are inadequate and limited; thus, the development of new therapeutic options is indispensable. This study was planned to explore the preventive actions of AN in ameliorating cerebral ischemia/reperfusion-induced brain damage and BBB permeability leakage, as well as to explore anethole’s potential mechanisms of action. The proposed mechanisms included modulating JNK and p38 as well as MMP-2 and MMP-9 pathways. Sprague–Dawley male rats were randomly assigned into four groups: sham, middle cerebral artery occlusion (MCAO), AN125 + MCAO, and AN250 + MCAO. Animals in the third and fourth groups were pretreated with AN 125 or 250 mg/kg orally, respectively, for two weeks before performing middle cerebral artery occlusion (MCAO)-induced cerebral ischemic/reperfusion surgery. Animals that experienced cerebral ischemia/reperfusion exhibited amplified infarct volume, Evans blue intensity, brain water content, Fluoro-Jade B-positive cells, severe neurological deficits, and numerous histopathological alterations. MCAO animals exhibited elevated MMP-9 and MMP-2 gene expressions, enzyme activities, augmented JNK, and p38 phosphorylation. On the other hand, pretreatment with AN diminished the infarct volume, Evans blue dye intensity, brain water content, and Fluoro-Jade B-positive cells, improved the neurological score and enhanced histopathological examination. AN effectively lowered MMP-9 and MMP-2 gene expression and enzyme activities and diminished phosphorylated JNK, p38. AN decreased MDA content, amplified GSH/GSSG ratio, SOD, and CAT, decreased the serum and brain tissue homogenate inflammatory cytokines (TNF-α, IL-6, IL-1β), NF-κB, and deterred the apoptotic status. This study revealed the neuroprotective ability of AN against cerebral ischemia/reperfusion in rats. AN boosted blood–brain barrier integrity via modulating MMPs and diminished oxidative stress, inflammation, and apoptosis through the JNK/p38 pathway.
Collapse
Affiliation(s)
- Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
14
|
Petrillo S, D’Amico J, Nicita F, Torda C, Vasco G, Bertini ES, Cappa M, Piemonte F. Antioxidant Response in Human X-Linked Adrenoleukodystrophy Fibroblasts. Antioxidants (Basel) 2022; 11:2125. [PMID: 36358497 PMCID: PMC9686530 DOI: 10.3390/antiox11112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Redox imbalance, mitochondrial dysfunction, and inflammation play a major role in the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inherited neurodegenerative disease caused by mutations in the ABCD1 gene, encoding the protein responsible for peroxisomal import and degradation of very long chain fatty acids (VLCFAs). Therefore, VLCFAs accumulate in tissues and plasma, constituting a pathognomonic biomarker for diagnosis. However, the precise role of VLCFA accumulation on the diverse clinical phenotypes of X-ALD and the pathogenic link between VLCFAs and oxidative stress remain currently unclear. This study proposes ferroptosis as a crucial contributor to the disease development and progression. The expression profiles of "GPX4-glutathione" and "NQO1-CoQ10" ferroptosis pathways have been analyzed in fibroblasts of one patient with AMN, the late onset and slowly progressive form of X-ALD, and in two patients with cALD, the cerebral inflammatory demyelinating form of early childhood. Furthermore, as no effective treatments are currently available, especially for the rapidly progressing form of X-ALD (cALD), the efficacy of NAC treatment has also been evaluated to open the way toward novel combined therapies. Our findings demonstrate that lipid peroxides accumulate in X-ALD fibroblasts and ferroptosis-counteracting enzymes are dysregulated, highlighting a different antioxidant response in patients with AMN and cALD.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Jessica D’Amico
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Nicita
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Caterina Torda
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Department of Neurorehabilitation and Robotics, Bambino Gesù Children’s Hospital, IRCCS, 00050 Rome, Italy
| | - Enrico S. Bertini
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
15
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Niu J, Wan X, Yu GY, Jiang S, Yi RN, Wu YP, Ouyang SH, Liang L, Kurihara H, Sun WY, Zhu XF, Zhang RH, Cao YF, He JB, Duan WJ, Li YF, He RR. Phospholipid peroxidation-driven modification of chondrogenic transcription factor mediates alkoxyl radicals-induced impairment of embryonic bone development. Redox Biol 2022; 56:102437. [PMID: 36037588 PMCID: PMC9440361 DOI: 10.1016/j.redox.2022.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 10/25/2022] Open
Abstract
Maternal stress has been associated with poor birth outcomes, including preterm birth, infant mortality, and low birth weight. Bone development disorders in the embryo as a result of maternal stress are believed to be mediated through oxidative stress damage. Various species of free radicals, such as alkoxyl radicals, can be formed through endogenous redox response or exogenous stimuli in the womb and transmitted to embryos. Yet, whether these free radicals lead to abnormal fetal bone development is unclear. Here, we demonstrate prenatal bone growth retardation and ferroptosis-related signals of chondrocytes were induced by classic alkoxyl radical generators. We also show that alkoxyl radicals lead to significant accumulation of oxidized phospholipids in chondrocytes, through the iron-mediated Fenton reaction in embryos. We further demonstrate a role for the lipid peroxidation end product, 4-HNE, which forms adducts with the pivotal chondrogenesis transcription factor SOX9, leading to its degradation, therefore dampening chondrogenesis. Our data define a critical role for phospholipid peroxidation in alkoxyl radicals-evoked abnormal chondrogenesis, and pinpoint it being a precise target for treating oxidative stress-related bone development disorders.
Collapse
Affiliation(s)
- Jie Niu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Xin Wan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Huizhou Health Sciences Polytechnic, Huizhou, 516025, China
| | - Gui-Yuan Yu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Ruo-Nan Yi
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China
| | - Xiao-Feng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, 510632, China
| | - Rong-Hua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China; Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, ShangHai 200032, China
| | - Jian-Bo He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Department, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, China.
| |
Collapse
|
17
|
Álvarez-Córdoba M, Reche-López D, Cilleros-Holgado P, Talaverón-Rey M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Piñero-Pérez R, Sánchez-Alcázar JA. Therapeutic approach with commercial supplements for pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2022; 17:311. [PMID: 35945593 PMCID: PMC9364590 DOI: 10.1186/s13023-022-02465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA subtypes. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) that result in dysfunction in PANK2 enzyme activity, with consequent deficiency of coenzyme A (CoA) biosynthesis, as well as low levels of essential metabolic intermediates such as 4′-phosphopantetheine, a necessary cofactor for essential cytosolic and mitochondrial proteins. Methods In this manuscript, we examined the therapeutic effectiveness of pantothenate, panthetine, antioxidants (vitamin E and omega 3) and mitochondrial function boosting supplements (L-carnitine and thiamine) in mutant PANK2 cells with residual expression levels. Results Commercial supplements, pantothenate, pantethine, vitamin E, omega 3, carnitine and thiamine were able to eliminate iron accumulation, increase PANK2, mtACP, and NFS1 expression levels and improve pathological alterations in mutant cells with residual PANK2 expression levels. Conclusion Our results suggest that several commercial compounds are indeed able to significantly correct the mutant phenotype in cellular models of PKAN. These compounds alone or in combinations are of common use in clinical practice and may be useful for the treatment of PKAN patients with residual enzyme expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02465-9.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain.
| |
Collapse
|
18
|
Etherington GJ, Ciezarek A, Shaw R, Michaux J, Croose E, Haerty W, Di Palma F. Extensive genome introgression between domestic ferret and European polecat during population recovery in Great Britain. J Hered 2022; 113:500-515. [PMID: 35932226 PMCID: PMC9584812 DOI: 10.1093/jhered/esac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
The European polecat (Mustela putorius) is a mammalian predator which occurs across much of Europe east to the Ural Mountains. In Great Britain, following years of persecution the range of the European polecat contracted and by the early 1900s was restricted to unmanaged forests of central Wales. The European polecat has recently undergone a population increase due to legal protection and its range now overlaps that of feral domestic ferrets (Mustela putorius furo). During this range expansion, European polecats hybridized with feral domestic ferrets producing viable offspring. Here, we carry out population-level whole-genome sequencing on 8 domestic ferrets, 19 British European polecats, and 15 European polecats from the European mainland. We used a range of population genomics methods to examine the data, including phylogenetics, phylogenetic graphs, model-based clustering, phylogenetic invariants, ABBA-BABA tests, topology weighting, and Fst. We found high degrees of genome introgression in British polecats outside their previous stronghold, even in those individuals phenotyped as “pure” polecats. These polecats ranged from presumed F1 hybrids (gamma = 0.53) to individuals that were much less introgressed (gamma = 0.2). We quantify this introgression and find introgressed genes containing Fst outliers associated with cognitive function and sight.
Collapse
Affiliation(s)
| | - Adam Ciezarek
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Rebecca Shaw
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Johan Michaux
- Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | | | | | - Federica Di Palma
- The Earlham Institute, Norwich Research Park, Norwich, UK.,Department of Biological Sciences, University of East Anglia, Norwich, UK.,Genome British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
20
|
Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases? Antioxidants (Basel) 2022; 11:antiox11010165. [PMID: 35052668 PMCID: PMC8773297 DOI: 10.3390/antiox11010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum-mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich's ataxia, and Charcot-Marie-Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Juan Antonio Navarro
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| |
Collapse
|
21
|
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy. Antioxidants (Basel) 2022; 11:antiox11010157. [PMID: 35052661 PMCID: PMC8772850 DOI: 10.3390/antiox11010157] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability—the hallmark of epilepsy—is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.
Collapse
|
22
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr 2021; 8:782657. [PMID: 34888340 PMCID: PMC8650112 DOI: 10.3389/fnut.2021.782657] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat low-carbohydrate diet that has been used for decades as a non-pharmacologic approach to treat metabolic disorders and refractory pediatric epilepsy. In recent years, enthusiasm for the KD has increased in the scientific community due to evidence that the diet reduces pathology and improves various outcome measures in animal models of neurodegenerative disorders, including multiple sclerosis, stroke, glaucoma, spinal cord injury, retinal degenerations, Parkinson's disease and Alzheimer's disease. Clinical trials also suggest that the KD improved quality of life in patients with multiple sclerosis and Alzheimer's disease. Furthermore, the major ketone bodies BHB and ACA have potential neuroprotective properties and are now known to have direct effects on specific inflammatory proteins, transcription factors, reactive oxygen species, mitochondria, epigenetic modifications and the composition of the gut microbiome. Neuroprotective benefits of the KD are likely due to a combination of these cellular processes and other potential mechanisms that are yet to be confirmed experimentally. This review provides a comprehensive summary of current evidence for the effectiveness of the KD in humans and preclinical models of various neurological disorders, describes molecular mechanisms that may contribute to its beneficial effects, and highlights key controversies and current gaps in knowledge.
Collapse
Affiliation(s)
- Sarah M Gough
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alicia Casella
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kristen Jasmin Ortega
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
25
|
Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants (Basel) 2021; 10:antiox10081263. [PMID: 34439511 PMCID: PMC8389232 DOI: 10.3390/antiox10081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after renal transplantation is a complex biochemical process. The first component is an ischemic phase during kidney storage. The second is reperfusion, the main source of oxidative stress. This study aimed to analyze the activity of enzymes and concentrations of non-enzymatic compounds involved in the antioxidant defense mechanisms: glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST), thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), measured in preservation fluid before transplantation of human kidneys (KTx) grafted from brain dead donors. The study group (N = 66) was divided according to the method of kidney storage: Group 1—hypothermic machine perfusion (HMP) in LifePort perfusion pump, n1 = 26, and Group 2—static cold storage (SCS), n2 = 40. The measurements of kidney function parameters, blood count, and adverse events were performed at constant time points during 7-day hospitalization and 3-month follow-up. Kidney perfusate in Group 2 was characterized by significantly more acidic pH (p < 0.0001), higher activity of GPX [U/mgHb] (p < 0.05) and higher concentration of MDA [μmol/L] (p < 0.05). There was a statistically significant improvement of kidney function and specific blood count alterations concerning storage method in repeated measures. There were aggregations of significant correlations (p < 0.05) between kidney function parameters after KTx and oxidative stress markers: diuresis & CAT, Na+ & CAT, K+ & GPX, urea & GR. There were aggregations of significant correlations (p < 0.05) between recipient blood count and oxidative stress markers: CAT & MON, SOD & WBC, SOD & MON. Study groups demonstrated differences concerning the method of kidney storage. A significant role of recipient’s gender, gender matching, preservation solution, and perfusate pH was not confirmed, however, basing on analyzed data, the well-established long-term beneficial impact of HMP on the outcome of transplanted kidneys might partially depend on the intensity of IRI ischemic phase and oxidative stress, reflected by the examined biomarkers.
Collapse
|
26
|
Xu QL, Wu J. Effects of Txk‑mediated activation of NF‑κB signaling pathway on neurological deficit and oxidative stress after ischemia‑reperfusion in rats. Mol Med Rep 2021; 24:524. [PMID: 34036382 PMCID: PMC8160475 DOI: 10.3892/mmr.2021.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is an extremely mortal cerebrovascular disease, and neuroinflammation and oxidative stress emerge as important traits of ischemic stroke. However, as an inflammation‑associated factor, Txk tyrosine kinases (Txk) has been poorly studied in neuroscience research. The aim of the present study was to investigate the role of Txk after ischemia‑reperfusion (I/R) in vivo and in vitro, observe the association between Txk knockdown and neurological deficit and oxidative stress, and to explore whether the process was mediated by the activation of nuclear factor (NF)‑κB signaling pathway. Middle cerebral artery occlusion (MCAO), oxygen and glucose deprivation/reperfusion (OGD/R) model and western blotting have been used to simulate the I/R injury to analyze the expression, and to approximate the localization of Txk, respectively. Brain infarct volume, neurological score, brain water content, apoptosis and oxidative stress assays in vivo and apoptosis, cellular viability, the LDH release and oxidative stress assays in vitro were observed using a Txk‑knockdown lentivirus. Finally, NF‑κB overexpression lentivirus was applied to discuss whether the role of Txk following I/R was regulated by the NF‑κB signaling pathway. The results show that the Txk expression peaked at 24 h after MCAO and 6 h after OGD/R, respectively. Txk molecules gradually entered the nucleus after MCAO and OGD/R. The Txk‑knockdown lentivirus resulted in decreased brain infarct volume, neurological score, brain water content, apoptosis and oxidative stress after MCAO in vivo. Besides, Txk knockdown decreased apoptosis, LDH release, oxidative stress, and increased cellular viability, after ODG in vitro. Finally, NF‑κB overexpression reversed the process of neurological deficit and oxidative stress after Txk regulation in vivo and vitro. Overall, the present study suggests that Txk potentially regulates apoptosis, neurological deficit, and oxidative stress after I/R, by entering the nucleus. NF‑κB maybe the downstream target factor of Txk.
Collapse
Affiliation(s)
- Qian-Lan Xu
- Department of Rehabilitation, Dongyang People's Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jie Wu
- Department of Child Rehabilitation, Yiwu Maternal and Child Health Care Hospital, Yiwu, Zhejiang 322000, P.R. China
| |
Collapse
|
27
|
Deng A, Ma L, Zhou X, Wang X, Wang S, Chen X. FoxO3 transcription factor promotes autophagy after oxidative stress injury in HT22 cells. Can J Physiol Pharmacol 2021; 99:627-634. [PMID: 33237807 DOI: 10.1139/cjpp-2020-0448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy has been implicated in neurodegenerative diseases. Forkhead box O3 (FoxO3) transcription factors promote autophagy in heart and inhibit oxidative damage. Here we investigate the role of FoxO3 transcription factors in regulating autophagy after oxidative stress injury in immortalized mouse hippocampal cell line (HT22). The present study confirms that hydrogen peroxide (H2O2) injury could induce autophagy and FoxO3 activation in HT22 cells. In addition, overexpression of FoxO3 enhanced H2O2-induced autophagy activation and suppressed neuronal cell damage, while knockdown of FoxO3 reduced H2O2-induced autophagy activation and exacerbated neuronal cell injury. Inhibition of autophagy by 3-methyladenine (3-MA) resulted in reduced cell viability, increased production of reactive oxygen species (ROS), promoted nuclear condensation, and decreased expression of antiapoptotic and autophagy-related proteins, indicating that autophagy may have protective effects on H2O2-induced injury in HT22 cells. Moreover, overexpression of FoxO3 prevented exacerbation of brain damage induced by 3-MA. Taken together, these results show that activation of FoxO3 could induce autophagy and inhibit H2O2-induced damage in HT22 cells. Our study demonstrates the critical role of FoxO3 in regulating autophagy in brain.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Nantong University, 20th Xisi Road, 226001 Nantong, People's Republic of China
| | - Limin Ma
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xueli Zhou
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xin Wang
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| |
Collapse
|
28
|
Pan W, Song X, Hu Q, Zhang Y. miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging (Albany NY) 2021; 13:14416-14432. [PMID: 34021541 PMCID: PMC8202868 DOI: 10.18632/aging.203058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
We investigated the role of microRNA (miR)-485 and its downstream signaling molecules on mediating epilepsy in cellular and rat models. We established a cellular epilepsy model by exposing hippocampal neurons to magnesium and a rat model by treating ICR mice with lithium chloride (127 mg/kg) and pilocarpine (30 mg/kg). We confirmed that miR-485 could bind and inhibit histone deacetylase 5 (HDAC5) and then measured expression of miR-485 and in mice and cells. Cells were transfected with overexpression or knockdown of miR-485, HDAC5, hypoxia-inducible factor-1alpha (HIF1α), or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 enzyme (PFKFB3) to verify their roles in apoptosis, oxidative stress, and inflammation in epileptic hippocampal neurons. Binding relationship between miR-485, HDAC5, HIF1α, and PFKFB3 was verified. Oxidative stress and inflammation marker levels in epilepsy model mice were assessed. miR-485 was downregulated and HDAC5 was upregulated in cell and animal model of epilepsy. Seizure, neuronal apoptosis, oxidative stress (increased SOD and GSH-Px expression and decreased MDA and 8-OHdG expression) and inflammation (reduced IL-1β, TNF-α, and IL-6 expression) were reduced by miR-485 in epileptic cells. HIF1α and PFKFB3 expression was reduced by HDAC5 knockdown in cells, which was recapitulated in vivo. Thus, miR-485 alleviates neuronal damage and epilepsy by inhibiting HDAC5, HIF1α, and PFKFB3.
Collapse
Affiliation(s)
- Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Xingyu Song
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qibo Hu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yunfeng Zhang
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
29
|
Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021; 22:ijms22105351. [PMID: 34069559 PMCID: PMC8160983 DOI: 10.3390/ijms22105351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.
Collapse
|
30
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
31
|
Role of Citicoline in the Management of Traumatic Brain Injury. Pharmaceuticals (Basel) 2021; 14:ph14050410. [PMID: 33926011 PMCID: PMC8146347 DOI: 10.3390/ph14050410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 01/07/2023] Open
Abstract
Head injury is among the most devastating types of injury, specifically called Traumatic Brain Injury (TBI). There is a need to diminish the morbidity related with TBI and to improve the outcome of patients suffering TBI. Among the improvements in the treatment of TBI, neuroprotection is one of the upcoming improvements. Citicoline has been used in the management of brain ischemia related disorders, such as TBI. Citicoline has biochemical, pharmacological, and pharmacokinetic characteristics that make it a potentially useful neuroprotective drug for the management of TBI. A short review of these characteristics is included in this paper. Moreover, a narrative review of almost all the published or communicated studies performed with this drug in the management of patients with head injury is included. Based on the results obtained in these clinical studies, it is possible to conclude that citicoline is able to accelerate the recovery of consciousness and to improve the outcome of this kind of patient, with an excellent safety profile. Thus, citicoline could have a potential role in the management of TBI.
Collapse
|
32
|
Liu Y, Zhang Y, Muema FW, Kimutai F, Chen G, Guo M. Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants (Basel) 2021; 10:antiox10050652. [PMID: 33922451 PMCID: PMC8145564 DOI: 10.3390/antiox10050652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Carissa spinarum has been traditionally used for the treatment of various diseases due to its different pharmacological activities. However, the active compounds responsible for its potentially specific activities have rarely been explored. To this end, the ethyl acetate (EA) fraction was screened out and selected for further phytochemical isolation because of its promising activities in preliminary 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and COX-2 inhibition assays. As a result, 10 compounds (1−10), including a new one (5), were isolated, with eight of these being identified as phenolic compounds, as expected. Compound 9 possessed an IC50 value of 16.5 ± 1.2 µM, which was lower than that of positive control (vitamin C, 25.5 ± 0.3 µM) in the DPPH assay, and compounds 2, 6, 7 and 9 showed better total antioxidant capacity than vitamin C in the FRAP assay. Meanwhile, compounds 1−6 and 9 also had IC50 values of less than 1.0 µM, which was even better than the positive control indomethacin in the COX-2 inhibition assay. In this context, compounds 2 and 9 were further evaluated to exhibit clear hepatoprotective activities by improving the L02 cell viability and reducing ROS production using a H2O2-induced L02 cell injury model. This study provides initial evidence revealing the most potent phenolic compounds from the root bark of C. spinarum responsible for its antioxidant, anti-inflammatory and hepatoprotective activities.
Collapse
Affiliation(s)
- Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Festus Kimutai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
33
|
Oxidative Stress and Rare Diseases: From Molecular Crossroads to Therapeutic Avenues. Antioxidants (Basel) 2021; 10:antiox10040617. [PMID: 33923815 PMCID: PMC8073994 DOI: 10.3390/antiox10040617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
|
34
|
Retinal Neurodegeneration: Correlation between Nutraceutical Treatment and Animal Model. Nutrients 2021; 13:nu13030770. [PMID: 33673449 PMCID: PMC7997156 DOI: 10.3390/nu13030770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal diseases can be induced by a variety of factors, including gene mutations, environmental stresses and dysmetabolic processes. The result is a progressive deterioration of visual function, which sometimes leads to blindness. Many treatments are under investigation, though results are still mostly unsatisfactory and restricted to specific pathologies, particularly in the case of gene therapy. The majority of treatments have been tested in animal models, but very few have progressed to human clinical trials. A relevant approach is to study the relation between the type of treatments and the degenerative characteristics of the animal model to better understand the effectiveness of each therapy. Here we compare the results obtained from different animal models treated with natural compounds (saffron and naringenin) to anticipate the potentiality of a single treatment in different pathologies.
Collapse
|
35
|
Mannucci C, Casciaro M, Sorbara EE, Calapai F, Di Salvo E, Pioggia G, Navarra M, Calapai G, Gangemi S. Nutraceuticals against Oxidative Stress in Autoimmune Disorders. Antioxidants (Basel) 2021; 10:antiox10020261. [PMID: 33567628 PMCID: PMC7914737 DOI: 10.3390/antiox10020261] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Antioxidant mechanisms are constituted of enzymes, endogenous, and non-enzymatic, exogenous, which have the role of counterbalancing oxidative stress. Intake of these compounds occurs in the diet. Vegetables, plants, and fruits contain a wide range of alkaloids, polyphenols, and terpenoids which are called “phytochemicals”. Most of these substances are responsible for the positive properties of fruits and vegetables, which are an essential part of a healthy life with roles in ameliorating chronic illnesses and favoring longevity. Nutraceuticals are substances contained in a food or fragment of it influencing health with positive effects on health helping in precenting or treating disorders. We conducted a review illustrating the principal applications of nutraceuticals in autoimmune disorders. Literature reported several studies about exogenous dietary antioxidant supplementation in diverse autoimmune diseases such as rheumatoid arthritis, lupus, diabetes, and multiple sclerosis. In these pathologies, promising results were obtained in some cases. Positive outcomes were generally associated with a reduction of oxidative stress parameters and a boost to antioxidant systems, and sometimes with anti-inflammatory effects. The administration of exogenous substances through food derivates or dietary supplements following scientific standardization was demonstrated to be effective. Further bias-free and extended studies should be conducted that include ever-increasing oxidative stress biomarkers.
Collapse
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Emanuela Elisa Sorbara
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.C.); (M.N.)
| | - Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.C.); (M.N.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
36
|
Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav 2021; 115:107701. [PMID: 33412369 DOI: 10.1016/j.yebeh.2020.107701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a devastating neurological disorder characterized by the repeated occurrence of epileptic seizures. Epilepsy stands as a global health concern affecting around 70 million people worldwide. The mainstream antiepileptic drugs (AEDs) only exert symptomatic relief and drug-resistant epilepsy occurs in up to 33 percent of patients. Hence, the investigation of novel therapeutic strategies against epileptic seizures that could exert disease modifying effects is of paramount importance. In this context, compounds of natural origin with potential antiepileptic properties have recently gained increasing attention. Quercetin is a plant-derived flavonoid with several pharmacological activities. Emerging evidence has demonstrated the antiepileptic potential of quercetin as well. Herein, based on the available evidence, we discuss the neuroprotective effects of quercetin against epileptic seizures and further analyze the plausible underlying molecular mechanisms. Our review suggests that quercetin might be a potential therapeutic candidate against epilepsy that deserves further investigation, and paves the way for the development of plant-derived antiepileptic treatment approaches.
Collapse
|
37
|
Kwon HH, Lee JS, Park H, Shin J, Yin Y, Shin N, Shin HJ, Hwang JA, Kim DW, Kang JW. Vitamin E reduces spasms caused by prenatal stress by lowering calpain expression. Epilepsy Behav 2021; 114:107609. [PMID: 33257295 DOI: 10.1016/j.yebeh.2020.107609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prenatal stress increases the susceptibility of infants to seizures and is known to be associated with oxidative stress. Recent studies suggest that vitamin E has beneficial effects in various neurological diseases due to its antioxidant properties. In this study, we investigated the relationship between prenatal stress and vitamin E treatment on N-methyl-D-aspartate (NMDA)-induced spasms. METHODS We used pregnant female Sprague Dawley rats and induced prenatal stress with an injection of betamethasone on G15. They were then treated orally with 200 mg/kg vitamin E or saline twice a day from G15-G21. On postnatal day 15, NMDA was administered to trigger spasms in offspring. The total number of spasms and latency to the first spasm were recorded. We also measured oxidative stress in the medial cortex using western blot, and calpain activity, thiobarbituric acid reactive substances (TBARS), glutathione (GSH)/GSH/glutathione disulfide (GSSG), superoxide dismutase (SOD) activity, catalase activity, and nitric oxide (NO) assays. RESULTS We observed that rats treated with vitamin E while exposed to prenatal stress demonstrated reduced total number and frequency of spasms. Expression of glutamate decarboxylase 67 (GAD67) and K+/Cl- co-transporter (KCC2) were reduced after prenatal stress; this recovered in the vitamin E treated group. Further, expression of calpain 2 was decreased and various markers of oxidative stress (malondialdehyde (MDA), GSH/GSSG, SOD, catalase, and NO) were reduced in the vitamin E treated group. CONCLUSIONS Our results provide evidence that vitamin E lowers oxidative stress and decreases seizure susceptibility in rat offspring exposed to prenatal stress. Given the well-known safety profile of vitamin E, these results indicate its potential as a strategy for preventing seizures.
Collapse
Affiliation(s)
- Hyeok Hee Kwon
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Pediatrics, Chungnam National University Hospital, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yuhua Yin
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Ah Hwang
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Joon Won Kang
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Pediatrics, Chungnam National University Hospital, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microb Cell Fact 2020; 19:201. [PMID: 33138823 PMCID: PMC7607653 DOI: 10.1186/s12934-020-01459-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Elisabet Sané
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
39
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|