1
|
Kunwar A, Aishwarya J. "Reductive stress" the overlooked side of cellular redox modulation in cancer: opportunity for design of next generation redox chemotherapeutics. Free Radic Res 2024; 58:782-795. [PMID: 39604822 DOI: 10.1080/10715762.2024.2433988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The last three decades of redox biology research have been dominated by the term "oxidative stress" since it was first coined by Helmut Sies to represent a form of cellular redox modulation characterized by redox imbalance toward overproduction of oxidants. Almost every pathological condition, including cancer, has been linked with oxidative stress and so forth; targeting oxidative stress became the strategy for the new drug discovery with anticancer drugs aiming to selectively induce oxidative stress in cancerous cells while antioxidants aiming to prevent carcinogenesis as prophylactic agents. Time has now come to realize, how harmful the other side of the cellular redox spectrum, "reductive stress," characterized by redox imbalance toward the accumulation of reducing equivalents, maybe during carcinogenesis, and to tap its potential for the design of next-generation chemotherapeutic agents. Adjuvants-causing reductive stress may also work synergistically with radiation therapy under hypoxia to achieve better tumor control. Keeping this evolving field into account, the present review provides a current understating of the role of reductive stress in carcinogenesis, the status of reductive stress-based chemotherapeutic agents with particular emphasis on sulfhydryl and selenium-containing compounds and the gap areas that need to be addressed in future.
Collapse
Affiliation(s)
- Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| |
Collapse
|
2
|
Connell E, Le Gall G, McArthur S, Lang L, Breeze B, Pontifex MG, Sami S, Pourtau L, Gaudout D, Müller M, Vauzour D. (Poly)phenol-rich grape and blueberry extract prevents LPS-induced disruption of the blood-brain barrier through the modulation of the gut microbiota-derived uremic toxins. Neurochem Int 2024; 180:105878. [PMID: 39389472 DOI: 10.1016/j.neuint.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The dynamic protective capacity of (poly)phenols, attributed to their potent antioxidant and anti-inflammatory properties, has been consistently reported. Due to their capacity to alter gut microbiome composition, further actions of (poly)phenols may be exerted through the modulation of the microbiota-gut-brain axis. However, the underlying mechanisms remain poorly defined. Here, we investigated the protective effect of a (poly)phenol-rich grape and blueberry extract (Memophenol™), on the microbiota-gut-brain axis in a model of chronic low-grade inflammation (0.5 mg/kg/wk lipopolysaccharide (LPS) for 8 weeks). Dietary supplementation of male C57BL/6 J mice with Memophenol™ prevented LPS-induced increases in the microbe-derived uremia-associated molecules, indoxyl sulfate (IS) and trimethylamine N-oxide (TMAO). These changes coincided with shifts in gut microbiome composition, notably Romboutsia and Desulfovibrio abundance, respectively. In the brain, LPS exposure disrupted the marginal localisation of the endothelial tight junction ZO-1 and downregulated ZO-1 mRNA expression to an extent closely correlated with TMAO and IS levels; a process prevented by Memophenol™ intake. Hippocampal mRNA sequencing analysis revealed significant downregulation in regulatory pathways of neurodegeneration with Memophenol™ intake. These findings may indicate a novel protective role of the (poly)phenol-rich grape and blueberry extract on the endothelial tight junction component ZO-1, acting through modulation of gut microbial metabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, London, E1 2AT, United Kingdom
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
3
|
Kansal H, Chopra V, Garg K, Sharma S. Genetic variations in the antioxidant genes and their role in modulating susceptibility towards chronic obstructive pulmonary disease in the North Indian population. Free Radic Biol Med 2024; 223:118-130. [PMID: 39094709 DOI: 10.1016/j.freeradbiomed.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a persistent inflammatory lung condition characterized by an obstruction in removing oxygen from the lungs. Oxidant and antioxidant imbalance have long been hallmarks of COPD development, where the amount of antioxidants produced is less than that of oxidants. Here, polymorphism in the antioxidant enzymes like Catalase, Superoxide dismutase and Glutathione peroxidase plays an essential role in regulating the levels of oxidants. METHODS 1000 subjects, including 500 COPD cases and 500 controls, have been recruited and genotyped to assess the correlation between COPD and the particular SNPS of antioxidant genes. Logistic regression was used to compute odds ratios (ORs) and 95 % confidence intervals (CIs) to assess the association between SNPs and COPD risk. The relationship between spirometry value and COPD for all SNPs has been analyzed using Kruskal Wallis's. Haplotype analysis has also been performed. The effect of SNP interactions on COPD risk was assessed through the Multifactor Dimensionality Reduction (MDR) approach, a nonparametric test for overcoming some of the limitations of the logistic regression for detecting and characterizing SNP interactions. RESULTS Our findings indicated a strong association between COPD and the variations in the CAT rs7943316 (OR = 0.61, Pc = 0.0001), SOD2 rs4880 (OR = 2.07, Pc = 0.0006), and GPx rs1050450 (OR = 0.60, Pc = 0.0018). Furthermore, SOD2 rs4880 was associated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) of COPD patients. Our study found that the triple combination of SOD1 (rs2234694), SOD1 (rs36232792) and SOD2 (rs4880) was found to be elevating the risk of COPD (OR = 2.83, Pc = 0.006). SOD2 rs4880 and GPx rs1050450 are also linked to cough and mucus production. The Haplotype study reveals a substantial relationship between CAT (rs7943316 and rs1001179) and SOD (rs2234694 and rs4880), which increases the risk of COPD. The three-locus model (CAT rs794331, CAT rs1101179, and GPx rs1050450) was the most effective for COPD risk assessment based on the MDR findings, which were statistically significant (p < 0.0001). CONCLUSION This study shows that rs7943316, rs4880, and rs1050450 are associated with the risk of COPD in the north Indian population and have the potential to enhance our knowledge of COPD at the molecular level, which in turn might pave the way for earlier detection, treatment, and preventive efforts.
Collapse
Affiliation(s)
- Heena Kansal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Vishal Chopra
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India.
| |
Collapse
|
4
|
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, Ristić N, Stefanović R, Stevanović M, Filipović N, Stojsavljević A, Pavlović S. Antioxidant Response of Maternal and Fetal Rat Liver to Selenium Nanoparticle Supplementation Compared to Sodium Selenite: Sex Differences between Fetuses. Antioxidants (Basel) 2024; 13:756. [PMID: 39061825 PMCID: PMC11274326 DOI: 10.3390/antiox13070756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
To compare the effects of organic selenium nanoparticles (SeNPs, Se0) and inorganic sodium selenite (NaSe, Na2SeO3, Se4+) on the antioxidant response in maternal and fetal rat liver, pregnant females were treated with two forms of selenium (Se) at equivalent doses during gestation (0.5 mg SeNPs or 0.5 mg NaSe/kg body weight/day). Structural parameters of the liver of gravid females and their fetuses were examined in a sex-specific manner. The oxidative stress parameters superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (GSH) and sulfhydryl groups (SH) were established. In addition, the Se concentration was determined in the blood, liver, urine and feces of the gravid females and in the liver of the fetuses. The structure of the liver of gravid females remained histologically the same after supplementation with both forms of Se, while the oxidative stress in the liver was significantly lower after the use of SeNPs compared to NaSe. Immaturity of fetal antioxidant defenses and sex specificity were demonstrated. This study provides a detailed insight into the differences in the bioavailability of the nano form of Se compared to sodium selenite in the livers of pregnant females and fetuses.
Collapse
Affiliation(s)
- Milica Manojlović-Stojanoski
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Nataša Nestorović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Nataša Ristić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Radomir Stefanović
- Department of Pathology and Medical Citology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, dr Koste Todorovića 26, 11000 Belgrde, Serbia
| | - Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (M.S.); (N.F.)
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (M.S.); (N.F.)
| | - Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| |
Collapse
|
5
|
Dauplais M, Romero S, Lazard M. Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04244-y. [PMID: 38777874 DOI: 10.1007/s12011-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Stephane Romero
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France.
| |
Collapse
|
6
|
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM, Tan M. Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability. Foods 2024; 13:1363. [PMID: 38731734 PMCID: PMC11083276 DOI: 10.3390/foods13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Peng Ge
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Chen GY, O’Leary BR, Du J, Carroll RS, Steers GJ, Buettner GR, Cullen JJ. Pharmacologic Ascorbate Radiosensitizes Pancreatic Cancer but Radioprotects Normal Tissue: The Role of Oxidative Stress-Induced Lipid Peroxidation. Antioxidants (Basel) 2024; 13:361. [PMID: 38539894 PMCID: PMC10967795 DOI: 10.3390/antiox13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 12/08/2024] Open
Abstract
The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.
Collapse
Affiliation(s)
- Gloria Y. Chen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Brianne R. O’Leary
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Juan Du
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rory S. Carroll
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garett J. Steers
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Joseph J. Cullen
- Departments of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (G.Y.C.); (B.R.O.); (J.D.); (R.S.C.); (G.J.S.)
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
8
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
9
|
Xie J, Wu Q, Tao L, Wu F, Tu S, Chen D, Lin T, Li T. Essential and non-essential elements in tuna and billfish around the world: Distribution patterns and influencing factors. MARINE POLLUTION BULLETIN 2023; 196:115587. [PMID: 37797540 DOI: 10.1016/j.marpolbul.2023.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Tuna and billfish are widely distributed in oceans worldwide. Their survival is relied on a decent share of essential and non-essential elements. We conducted a comprehensive evaluation of essential and non-essential elements in livers of tuna and billfish collected from global oceans. The individual element consistently shown similar orders of magnitude in both tuna and billfish, with essential elements generally being 1-3 orders of magnitude higher than non-essential elements. Various physicochemical properties and behaviors contributed to four distinct clusters of these elements. Also, element distribution pattern indicated the presence of four sample groups based on regions and categories. Nine elements served as characteristic indicators. Among them, fish category was the most important influencing factor. Hg, Fe, Tl, Co, and Se were influenced by body size, trophic level, and feeding habits. Ni was influenced by sampling regions, while Mg, Mn and As were influenced by body size and local primary production.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|
10
|
Ramos-Inza S, Aliaga C, Encío I, Raza A, Sharma AK, Aydillo C, Martínez-Sáez N, Sanmartín C, Plano D. First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants (Basel) 2023; 12:1666. [PMID: 37759969 PMCID: PMC10525927 DOI: 10.3390/antiox12091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Cesar Aliaga
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain;
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (C.A.); (A.R.)
| | - Carlos Aydillo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Nuria Martínez-Sáez
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (S.R.-I.); (C.A.); (N.M.-S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
11
|
Staneviciene I, Levinas D, Sadauskiene I, Liekis A, Viezeliene D, Kursvietiene L, Naginiene R, Baranauskiene D, Simakauskiene V, Vaitkiene P, Miniotaite G, Sulinskiene J. Effect of Organic Selenium on the Homeostasis of Trace Elements, Lipid Peroxidation, and mRNA Expression of Antioxidant Proteins in Mouse Organs. Int J Mol Sci 2023; 24:ijms24119704. [PMID: 37298655 DOI: 10.3390/ijms24119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Dovydas Levinas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Giedre Miniotaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
12
|
Toubhans B, Alkafri N, Quintela M, James DW, Bissardon C, Gazze S, Knodel F, Proux O, Gourlan AT, Rathert P, Bohic S, Gonzalez D, Francis LW, Charlet L, Conlan RS. Selenium nanoparticles modulate histone methylation via lysine methyltransferase activity and S-adenosylhomocysteine depletion. Redox Biol 2023; 61:102641. [PMID: 36842241 PMCID: PMC9988660 DOI: 10.1016/j.redox.2023.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.
Collapse
Affiliation(s)
- Benoit Toubhans
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK; Université Grenoble Alpes, ISTerre, 38000, Grenoble, France
| | - Nour Alkafri
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Marcos Quintela
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - David W James
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Caroline Bissardon
- Université Grenoble Alpes, INSERM, UA7 STROBE, Synchrotron Radiation for Biomedicine, Grenoble, France
| | - Salvatore Gazze
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, D-70550, Stuttgart, Germany
| | - Olivier Proux
- OSUG, UAR 832 CNRS, Université Grenoble Alpes, 38041, Grenoble, France
| | | | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, D-70550, Stuttgart, Germany
| | - Sylvain Bohic
- Université Grenoble Alpes, INSERM, UA7 STROBE, Synchrotron Radiation for Biomedicine, Grenoble, France; ESRF, European Synchrotron Radiation Facility, CS, 40220, 38043, Grenoble, Cedex 9, France
| | - Deyarina Gonzalez
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Lewis W Francis
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | | - R Steven Conlan
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
13
|
Korowash SI, Sharifulden NSN, Ibrahim DM, Chau DY. Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications. J Appl Biomater Funct Mater 2023; 21:22808000231187959. [PMID: 37776108 DOI: 10.1177/22808000231187959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
Limitations with the majority of bone therapeutic treatments include low availability, ethical constraints and low biological compatibility. Although a number of choice materials have been exploited successfully, there has always been scope for improvement as well as development of the next-generation of materials. Herein, scaffolds - developed from gelatin, chitosan and eggshell membranes - were crosslinked using tannic acid, and further infused with selenium and/or copper substituted hydroxyapatite nanoparticles to generate a novel nanocomposite substrate. FESEM images of the nanocomposite scaffolds revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold, alongside XRD and FTIR profiling that detailed the formation of hydroxyapatite as a sole phase. Moreover, physical characterisation of the nanocomposite confirmed that the hydroxyapatite particulates and the eggshell membrane fibres were uniformly distributed and contributed to the surface roughness of the scaffold. Biocompatibility and cytotoxicity of the novel constructs were assessed using the mouse-derived osteoblastic cell line, MC3T3-E1, and standard cell culture assays. Metabolic activity assessment (i.e. MTS assay), LDH-release profiles and Live/Dead staining demonstrated good cell adhesion, viability, and proliferation rates. Accordingly, this work summarises the successful development of a novel construct which may be exploited as a clinical/therapeutic treatment for bone repair as well as a possible translational application as a novel biomaterial for the drug development pipeline.
Collapse
Affiliation(s)
- Sara Ibrahim Korowash
- Department of Ceramics, National Research Centre, Cairo, Egypt
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, UCL, London, UK
| | - Nik Sa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, UCL, London, UK
| | | | - David Ys Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, UCL, London, UK
| |
Collapse
|
14
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
16
|
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, Ristić N, Trifunović S, Stevanović M, Filipović N, Stojsavljević A, Pavlović S. The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. Int J Mol Sci 2022; 23:13068. [PMID: 36361856 PMCID: PMC9654536 DOI: 10.3390/ijms232113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.
Collapse
Affiliation(s)
- Milica Manojlović-Stojanoski
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Nestorović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Ristić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana Trifunović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia
| | - Aleksandar Stojsavljević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
17
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
18
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
19
|
Chen J, Feng T, Wang B, He R, Xu Y, Gao P, Zhang ZH, Zhang L, Fu J, Liu Z, Gao X. Enhancing organic selenium content and antioxidant activities of soy sauce using nano-selenium during soybean soaking. Front Nutr 2022; 9:970206. [PMID: 36051904 PMCID: PMC9426641 DOI: 10.3389/fnut.2022.970206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 12/28/2022] Open
Abstract
Nano-selenium has a greater potential than inorganic selenium in preventing selenium-deficiency diseases due to its higher safety. In this study, spherical nano-selenium particles (53.8 nm) were prepared using sodium selenite, ascorbic acid and chitosan. Selenium-enriched soy sauces were prepared by soaking soybean in nano-selenium and sodium selenite solutions (2–10 mg/L), respectively. Total selenium and organic selenium contents of soy sauces prepared by nano-selenium and sodium selenite were increased by 32–191-fold and 29–173-fold compared to the control (without selenium), and organic selenium accounted for over 90% of total selenium. Soy sauce prepared using 6 mg/L nano-selenium had the strongest antioxidant activities, which were 9.25–28.02% higher than the control. Nano-selenium (6 mg/L) markedly enhanced the koji's enzyme activities (9.76–33.59%), then the latter promoted the release of total phenolics (27.54%), total flavonoids (27.27%) and the formation of free amino acids (16.19%), Maillard reaction products (24.50%), finally the antioxidant activities of selenium-enriched soy sauce were enhanced.
Collapse
Affiliation(s)
- Jingru Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tuo Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yanling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Peipei Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Fu
- Guangdong Chubang Food Co., Yangjiang, China
| | - Zhan Liu
- Guangdong Chubang Food Co., Yangjiang, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Xianli Gao
| |
Collapse
|
20
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
21
|
Staneviciene I, Sulinskiene J, Sadauskiene I, Liekis A, Ruzgaite A, Naginiene R, Baranauskiene D, Simakauskiene V, Krusnauskas R, Viezeliene D. Effect of Selenium on the Iron Homeostasis and Oxidative Damage in Brain and Liver of Mice. Antioxidants (Basel) 2022; 11:antiox11071216. [PMID: 35883707 PMCID: PMC9311717 DOI: 10.3390/antiox11071216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Selenium is an essential trace element that maintains normal brain function, mainly due its antioxidant properties. Although the amount of Se in the body is tightly regulated by the liver, both an excess of and deficiency in Se can modulate the cellular redox status and affect the homeostasis of other essential elements for both humans and animals. The aim of this study was to determine the effect of inorganic selenium excess on oxidative stress and iron homeostasis in brain and liver of laboratory BALB/c mice, which were supplemented with Na2SeO3 solution (0.2 mg and 0.4 mg Se/kg body weight) for 8 weeks. The content of the lipid peroxidation product malondialdehyde and antioxidant enzyme catalase activity/gene expression were used as markers of oxidative damage and were evaluated by spectrophotometric assays. Selenium and iron concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). Catalase gene expression was analyzed by qRT-PCR and ΔΔCt methods. Our results showed that doses of 0.2 mg Se and 0.4 mg Se caused a relatively low accumulation of Se in the brain of mice; however, it induced a 10-fold increase in its accumulation in the liver and also increased iron accumulation in both tested organs. Both doses of Se increased the content of malondialdehyde as well as decreased catalase activity in the liver, while the 0.4 mg Se dose has also activated catalase gene expression. Brain of mice exposed to 0.2 mg Se showed reduced lipid peroxidation; however, the exposure to 0.4 mg of Se increased the catalase activity as well as gene expression. One may conclude that exposure to both doses of Se caused the accumulation of this micronutrient in mice brain and liver and have also provided a disrupting effect on the levels of iron. Both doses of Se have triggered oxidative liver damage. In the brain, the effect of Se was dose dependent, where −0.2 mg of Se provided antioxidant activity, which was observed through a decrease in lipid peroxidation. On the contrary, the 0.4 mg dose increased brain catalase activity as well as gene expression, which may have contributed to maintaining brain lipid peroxidation at the control level.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Correspondence:
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Ausrine Ruzgaite
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Raulas Krusnauskas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
| |
Collapse
|
22
|
Collery P, Lagadec P, Krossa I, Cohen C, Antomarchi J, Varlet D, Lucio M, Guigonis JM, Scimeca JC, Schmid-Antomarchi H, Schmid-Alliana A. Relationship between the oxidative status and the tumor growth in transplanted triple-negative 4T1 breast tumor mice after oral administration of rhenium(I)-diselenoether. J Trace Elem Med Biol 2022; 71:126931. [PMID: 35063816 DOI: 10.1016/j.jtemb.2022.126931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Selective inhibitory effects of rhenium(I)-diselenoether (Re-diSe) were observed in cultured breast malignant cells. They were attributed to a decrease in Reactive Oxygen Species (ROS) production. A concomitant decrease in the production of Transforming Growth Factor-beta (TGFβ1), Insulin Growth Factor 1 (IGF1), and Vascular Endothelial Growth Factor A (VEGFA) by the malignant cells was also observed. AIM The study aimed to investigate the anti-tumor effects of Re-diSe on mice bearing 4T1 breast tumors, an experimental model of triple-negative breast cancer, and correlate them with several biomarkers. MATERIAL AND METHODS 4T1 mammary breast cancer cells were orthotopically inoculated into syngenic BALB/c Jack mice. Different doses of Re-diSe (1, 10, and 60 mg/kg) were administered orally for 23 consecutive days to assess the efficacy and toxicity. The oxidative status was evaluated by assaying Advanced Oxidative Protein Products (AOPP), and by the dinitrophenylhydrazone (DNPH) test in plasma of healthy mice, non-treated tumor-bearing mice (controls), treated tumor-bearing mice, and tumors in all tumor-bearing mice. Tumor necrosis factor (TNFα), VEGFA, VEGFB, TGFβ1, Interferon, and selenoprotein P (selenoP) were selected as biomarkers. RESULTS Doses of 1 and 10 mg/kg did not affect the tumor weights. There was a significant increase in the tumor weights in mice treated with the maximum dose of 60 mg/kg, concomitantly with a significant decrease in AOPP, TNFα, and TGFβ1 in the tumors. SelenoP concentrations increased in the plasma but not in the tumors. CONCLUSION We did not confirm the anti-tumor activity of the Re-diSe compound in this experiment. However, the transplantation of the tumor cells did not induce an expected pro-oxidative status without any increase of the oxidative biomarkers in the plasma of controls compared to healthy mice. This condition could be essential to evaluate the effect of an antioxidant drug. The choice of the experimental model will be primordial to assess the effects of the Re-diSe compound in further studies.
Collapse
Affiliation(s)
- Philippe Collery
- Société de Coordination de Recherches Thérapeutiques, 20220, Algajola, France.
| | - Patricia Lagadec
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Imène Krossa
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Charlotte Cohen
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Julie Antomarchi
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | | | - Marianna Lucio
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764, Neuherberg, Germany
| | - Jean-Marie Guigonis
- Université Nice Sophia Antipolis, Plateforme "Bernard Rossi", UFR de médecine Pasteur, UMR 4320, CEA TIRO, 06107, Nice cedex 2, France
| | - Jean-Claude Scimeca
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Heidy Schmid-Antomarchi
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Annie Schmid-Alliana
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| |
Collapse
|
23
|
Selmani A, Seibert E, Tetyczka C, Kuehnelt D, Vidakovic I, Kornmueller K, Absenger-Novak M, Radatović B, Vinković Vrček I, Leitinger G, Fröhlich E, Bernkop-Schnürch A, Roblegg E, Prassl R. Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles. Pharmaceutics 2022; 14:803. [PMID: 35456640 PMCID: PMC9032237 DOI: 10.3390/pharmaceutics14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery.
Collapse
Affiliation(s)
- Atiđa Selmani
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Elisabeth Seibert
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Ivan Vidakovic
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Karin Kornmueller
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (M.A.-N.); (E.F.)
| | - Borna Radatović
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, 10000 Zagreb, Croatia;
| | | | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria;
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (M.A.-N.); (E.F.)
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Ruth Prassl
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| |
Collapse
|
24
|
Skotnicki K, Janik I, Sadowska K, Leszczynska G, Bobrowski K. Radiation-Induced Oxidation Reactions of 2-Selenouracil in Aqueous Solutions: Comparison with Sulfur Analog of Uracil. Molecules 2021; 27:molecules27010133. [PMID: 35011366 PMCID: PMC8746332 DOI: 10.3390/molecules27010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
One-electron oxidation of 2-selenouracil (2-SeU) by hydroxyl (●OH) and azide (●N3) radicals leads to various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by the density functional theory (DFT) method. The transient absorption spectra recorded in the reactions of ●OH with 2-SeU are dominated by an absorption band with an λmax = 440 nm, the intensity of which depends on the concentration of 2-SeU and pH. Based on the combination of conductometric and DFT studies, the transient absorption band observed both at low and high concentrations of 2-SeU was assigned to the dimeric 2c-3e Se-Se-bonded radical in neutral form (2●). The dimeric radical (2●) is formed in the reaction of a selenyl-type radical (6●) with 2-SeU, and both radicals are in equilibrium with Keq = 1.3 × 104 M−1 at pH 4 (below the pKa of 2-SeU). Similar equilibrium with Keq = 4.4 × 103 M−1 was determined for pH 10 (above the pKa of 2-SeU), which admittedly involves the same radical (6●) but with a dimeric 2c-3e Se-Se bonded radical in anionic form (2●−). In turn, at the lowest concentration of 2-SeU (0.05 mM) and pH 10, the transient absorption spectrum is dominated by an absorption band with an λmax = 390 nm, which was assigned to the ●OH adduct to the double bond at C5 carbon atom (3●) based on DFT calculations. Similar spectral and kinetic features were also observed during the ●N3-induced oxidation of 2-SeU. In principle, our results mostly revealed similarities in one-electron oxidation pathways of 2-SeU and 2-thiouracil (2-TU). The major difference concerns the stability of dimeric radicals with a 2c-3e chalcogen-chalcogen bond in favor of 2-SeU.
Collapse
Affiliation(s)
- Konrad Skotnicki
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
- Correspondence: (K.S.); (I.J.); Tel.: +48-22-504-1292 (K.S.)
| | - Ireneusz Janik
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: (K.S.); (I.J.); Tel.: +48-22-504-1292 (K.S.)
| | - Klaudia Sadowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (K.S.); (G.L.)
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (K.S.); (G.L.)
| | - Krzysztof Bobrowski
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| |
Collapse
|
25
|
Yang Y, Li D, Wu W, Huang D, Zheng H, Aihaiti Y. A Pan-Cancer Analysis of the Role of Selenoprotein P mRNA in Tumorigenesis. Int J Gen Med 2021; 14:7471-7485. [PMID: 34754222 PMCID: PMC8568700 DOI: 10.2147/ijgm.s332031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background Selenium (Se) exhibits its anti-carcinogenic properties by regulating the redox system. However, the relationship between selenoprotein P (SeP), mRNA (SELENOP mRNA) and tumorigenesis remains unclear. Plasma SeP transports Se to various target tissues and has antioxidant characteristics. The present study aimed to explore the multifaceted pan-cancer properties of SELENOP in terms of its tissue-specific expression, prognostic value, immune function, and signaling pathway enrichment. Patients and Methods The expression profile of SELENOP was determined in 33 tumor types and survival, pathway enrichment, and correlation analyses were conducted based on TCGA database. The relationship between SELENOP expression and immune infiltration and macrophage subtype gene markers was investigated using the TIMER and GEPIA. Results SELENOP gene expression was decreased in many cancer tissues, but was upregulated in brain lower grade glioma (LGG). Furthermore, SELENOP expression was associated with a better prognosis in most cancers, but a poorer prognosis in LGG and uterine corpus endometrioid carcinoma (UCEC). Our results showed that SELENOP was correlated with infiltration level of six immune cell types, where SELENOP also showed a strong correlation with macrophages in some cancer types. However, we failed to determine macrophage polarization in 33 tumor types. SELENOP negatively regulated vascular endothelial cell proliferation in LGG and UCEC and epidermal cell differentiation in six tumor types. In contrast, upregulation was related to immune function, including T cell activation, B cell-mediated immunity, adaptive immune response and immune response regulation cell surface receptor signaling pathways in another six tumor types. Conclusion These findings highlighted the tissue-specific expression, prognostic value and immune characteristics of SELENOP in pan-cancer, and provided insights for illustrating the role of SELENOP in tumorigenesis.
Collapse
Affiliation(s)
- Yanni Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Daning Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wentao Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dingxing Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 2021; 39:934-943. [PMID: 34189659 DOI: 10.1007/s00774-021-01240-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
27
|
Petronek MS, Stolwijk JM, Murray SD, Steinbach EJ, Zakharia Y, Buettner GR, Spitz DR, Allen BG. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol 2021; 42:101864. [PMID: 33485837 PMCID: PMC8113052 DOI: 10.1016/j.redox.2021.101864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - S D Murray
- Department of Cancer Biology, University of Iowa, Iowa City, IA, USA
| | - E J Steinbach
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Y Zakharia
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
29
|
Martín-Escolano R, Molina-Carreño D, Plano D, Espuelas S, Rosales MJ, Moreno E, Aydillo C, Sanmartín C, Sánchez-Moreno M, Marín C. Library of Selenocyanate and Diselenide Derivatives as In Vivo Antichagasic Compounds Targeting Trypanosoma cruzi Mitochondrion. Pharmaceuticals (Basel) 2021; 14:ph14050419. [PMID: 34062791 PMCID: PMC8147293 DOI: 10.3390/ph14050419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is usually caused by tropical infection with the insect-transmitted protozoan Trypanosoma cruzi. Currently, Chagas disease is a major public health concern worldwide due to globalization, and there are no treatments neither vaccines because of the long-term nature of the disease and its complex pathology. Current treatments are limited to two obsolete drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Taking into account the urgent need for strict research efforts to find new therapies, here, we describe the in vitro and in vivo trypanocidal activity of a library of selected forty-eight selenocyanate and diselenide derivatives that exhibited leishmanicidal properties. The inclusion of selenium, an essential trace element, was due to the well-known extensive pharmacological activities for selenium compounds including parasitic diseases as T. cruzi. Here we present compound 8 as a potential compound that exhibits a better profile than benznidazole both in vitro and in vivo. It shows a fast-acting behaviour that could be attributed to its mode of action: it acts in a mitochondrion-dependent manner, causing cell death by bioenergetic collapse. This finding provides a step forward for the development of a new antichagasic agent.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (R.M.-E.); (C.M.)
| | - Daniel Molina-Carreño
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Daniel Plano
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - María J. Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Esther Moreno
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
- Correspondence: (R.M.-E.); (C.M.)
| |
Collapse
|
30
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
31
|
Vaquette C, Bock N, Tran PA. Layered Antimicrobial Selenium Nanoparticle-Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55638-55648. [PMID: 33270424 DOI: 10.1021/acsami.0c17017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell-nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe- ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.
Collapse
Affiliation(s)
- Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4059, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Interface Science and Materials Engineering Group, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
32
|
Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance. Antibiotics (Basel) 2020; 9:antibiotics9120896. [PMID: 33322639 PMCID: PMC7763688 DOI: 10.3390/antibiotics9120896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.
Collapse
|
33
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|