1
|
Tan Q, Zhou C, Xu P, Huang X, Pan Z, Wei Y, Wang W, Wang L. Effects of Substrate Composition on the Growth Traits of Grafted Seedling in Macadamia ( Macadamia integrifolia) Nuts. PLANTS (BASEL, SWITZERLAND) 2024; 13:1700. [PMID: 38931133 PMCID: PMC11207545 DOI: 10.3390/plants13121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for plant growth. The results showed that the survival rate of the HAES788 variety as rootstock and Guire No. 1 as scion was the highest, reaching 96%. The optimal grafting time in December was better than that in March. Furthermore, among 16 substrate formulations, T12, T13, T15, and T16 had advantages of agglomerated soil and more well-developed root systems compared to the CK made of loess. The plant height, stem diameter, leaf length, leaf width, and dry weight of the aboveground and underground parts of the grafted seedlings planted in these substrate formulations were significantly higher than those plants planted in the CK. In addition, the substrate formulations T12, T13, T15, and T16 significantly improved the organic matter, total nitrogen, and total potassium content of the substrate soils, but little improvement was observed for total phosphorus content after 13 months. Overall, macadamia grafting times are best in December, with HAES788 and Guire No. 1 being the best rootstock and scion. The optimal substrate formulations are T12, T13, T15, and T16. This study provides a solid foundation for the production of high-quality macadamia plants.
Collapse
Affiliation(s)
- Qiujin Tan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Chunheng Zhou
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Peng Xu
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Xiyun Huang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Zhenzhen Pan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Yuanrong Wei
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China (X.H.)
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Bitežnik L, Štukelj R, Flajšman M. The Efficiency of CBD Production Using Grafted Cannabis sativa L. Plants Is Highly Dependent on the Type of Rootstock: A Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1117. [PMID: 38674526 PMCID: PMC11054458 DOI: 10.3390/plants13081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The global cannabis market is continuously expanding and as a result, the cannabis industry demands new and improved agronomic cultivation practices to increase production efficiency of cannabidiol (CBD), which is valued for its therapeutic benefits. This study investigates the influence of three rootstock types on the survival rate, morphological parameters, and biochemical composition of cannabis: potentially dwarfing rootstocks (PDR), potentially vigorous rootstocks (PVR), and seedlings-as-rootstocks (SAR). Rootstocks were used for grafting two scion genotypes: 'ScionII' = chemotype II of industrial hemp, and 'ScionIII' = chemotype III of high CBD accumulating variety. Contrary to expectations, PVR and SAR did not outperform PDR on most of the measured variables. SAR showed the highest survival rate of the grafted cannabis plants (40-70%). The rootstock type had a statistically significant influence only on the bud compactness index in 'ScionII', with PDR being particularly noticeable. A comparative analysis of the 'rootstock/scion' combinations with their controls (non-grafted scions) revealed grafting's substantial improvement in most traits. Specifically, PDR increased CBD content by 27% in 'ScionIII', inflorescence yield and CBD yield per plant increased by 71% and 84%, respectively, when SAR was used in 'ScionII'. SAR showed to be the most effective rootstock type for CBD production. Our findings suggest grafting as a promising technique for optimizing cannabis's agronomic and medicinal potential, highlighting the necessity for further research on its underlying mechanisms to refine production efficiency and quality.
Collapse
Affiliation(s)
- Luka Bitežnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Roman Štukelj
- Research Institute, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Mallor C, Bertolín JR, Paracuellos P, Juan T. Nutraceutical Potential of Leafy Vegetables Landraces at Microgreen, Baby, and Adult Stages of Development. Foods 2023; 12:3173. [PMID: 37685105 PMCID: PMC10486669 DOI: 10.3390/foods12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Nutraceutical compounds present in leafy vegetables have gained substantial attention due to the health benefits they offer beyond their nutritional value. The biosynthesis, composition, and concentration of these compounds vary widely among leafy vegetables and carry the influence of genetic, agronomic, and environmental factors. Recently, micro-vegetables are gaining importance among consumers worldwide and are used in gastronomy at different development stages. Another tendency is the utilization of local genetic resources as an integral component of agricultural biodiversity crucial for sustainable production. The present study identifies the nutraceutical potential of 10 leafy vegetables at the microgreen, baby, and adult development stages using local genetic resources from the Spanish Vegetable Genebank (CITA, Aragón). Specifically, two landraces for each of the following crops were used: chard (Beta vulgaris), spinach (Spinacia oleracea), lettuce (Lactuca sativa), borage (Borago officinalis), and chicory (Cichorium intybus). The results reinforce the value of traditional local genetics and demonstrate the potential of these leafy vegetables as a source of functional compounds (fatty acids, vitamin C, carotenoids, polyphenols, antioxidant activity, and tocopherols). The observed variability depending on the crop and the developmental stage recommends the necessity of having a varied diet, since each leafy vegetable product offers a unique nutritional profile.
Collapse
Affiliation(s)
- Cristina Mallor
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Juan Ramón Bertolín
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Pablo Paracuellos
- Basque Culinary Center (BCC), Paseo Juan Avelino Barriola, 101, 20009 Donostia, Spain
| | - Teresa Juan
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| |
Collapse
|
4
|
Guijarro-Real C, Adalid-Martínez AM, Pires CK, Ribes-Moya AM, Fita A, Rodríguez-Burruezo A. The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020231. [PMID: 36678946 PMCID: PMC9863480 DOI: 10.3390/plants12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/10/2023]
Abstract
Peppers (Capsicum sp.) are used both as vegetables and/or spice and their fruits are used in a plethora of recipes, contributing to their flavor and aroma. Among flavor-related traits, pungency (capsaicinoids) and lately volatiles have been considered the most important factors. However, the knowledge of sugars is low, probably due to the fact peppers were historically considered tasteless. Here, using HPLC, we studied the content and profile of major sugars and capsaicinoids in a comprehensive collection of varietal types (genotype, G), grown under different growing systems (environment, E) in two years (Y) and considered the two main ripening stages (R). We found a major contribution to the ripening stage and the genotype in total and individual sugars and capsaicinoids. The year was also significant in most cases, as well as the G × E and G × Y interactions, while the growing system was low or nil. Ripening increased considerably in sugars (from 19.6 to 36.1 g kg-1 on average) and capsaicinoids (from 97 to 142 mg kg-1 on average), with remarkable differences among varieties. Moreover, sugars in fully ripe fruits ranged between 7.5 and 38.5 g kg-1 in glucose and between 5.2 and 34.3 g kg-1 in fructose, and several accessions reached total sugars between 40 and 70 g kg-1, similar to tomatoes. The results reveal the importance of the genotype and the ripening for these traits, particularly sugars, which should be considered key for the improvement of taste and flavor in peppers.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana M. Adalid-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Cherrine K. Pires
- Centro Multidisciplinar, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé 27930-560, Brazil
| | - Ana M. Ribes-Moya
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Influence of different rootstocks on quality and volatile constituents of cantaloupe and honeydew melons (Cucumis melo. L) grown in high tunnels. Food Chem 2022; 393:133388. [DOI: 10.1016/j.foodchem.2022.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
|
6
|
The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods 2022; 11:foods11030423. [PMID: 35159573 PMCID: PMC8834567 DOI: 10.3390/foods11030423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/11/2023] Open
Abstract
Interest in the cultivation of lettuce landraces is increasing because native varieties, as high-quality products, are particularly attractive to consumers. Lettuce is a popular leafy vegetable worldwide, and interest in the consumption of first leaves (microgreens) and seedlings (baby leaves) has grown due to the general belief that young plants offer higher nutritional value. The content of some bioactive compounds and antioxidants (chlorophylls, carotenoids, anthocyanins, ascorbic acid, phenols, antioxidant activity) was monitored in six lettuce landraces and five commercial varieties, and compared across three development stages: microgreen, baby, and adult. Ascorbic acid and phenolic contents were 42% and 79% higher, respectively, in the early stages than in adult lettuces, and red-leaf varieties (CL4 and L11) stood out. This finding agrees with lettuce’s marked antioxidant capacity and correlates with its pigment contents, especially anthocyanins. The nutritional value of adult lettuce is conditioned by its size, shape, and head structure as phytochemical concentrations are regulated by light. The low content of ascorbic acid, phenolics, and anthocyanins in crisphead lettuce (CL5) is a clear example (49, 67%, and 27% lower, respectively, than the adult mean). Our results indicate the wide variability of lettuces’ nutritional characteristics and emphasize that traditional varieties are a helpful source of agricultural biodiversity.
Collapse
|
7
|
Thies JA. Grafting for managing vegetable crop pests. PEST MANAGEMENT SCIENCE 2021; 77:4825-4835. [PMID: 34148287 DOI: 10.1002/ps.6512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/25/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
Nematode and disease resistant rootstocks have been developed for many vegetable crops including tomato, eggplant, melon, watermelon, and cucumber and are being utilized by an increasing number of growers. Grafting commercially desirable vegetable scions on nematode and disease resistant rootstocks has been significantly stimulated by the need for an alternative to banned soil fumigation with methyl bromide, which had been the primary method for managing soil-borne nematodes, diseases, and weeds. Rootstocks resistant to root-knot nematodes (Meloidogyne spp.) and diseases including Fusarium wilt, Fusarium crown and root rot, Verticillium wilt, bacterial wilt, Southern blight, and sudden wilt have been developed and many are available commercially. New technologies such as transcriptomics, identification of differentially expressed genes, transgene rootstocks, and RNAi silencing are being used in the development of vegetable rootstocks which are resistant to pests, salt tolerant, and heat and cold tolerant. Overall, grafting has proven to be a successful and environmentally safe method for managing root-knot nematodes and soil-borne diseases by reducing infection, disease development, and inoculum build-up in the soil, which is especially important for growth of healthy subsequent crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Judy A Thies
- Former employer: USDA, Agricultural Research Service, USVL, Charleston, SC, USA
| |
Collapse
|
8
|
López-Espinoza MÁ, Lozano-Lozano JA, Prieto-Merino D. A Method to Estimate the Efficacy vs. Effectiveness in Meta-Analysis of Clinical Trials with Different Adherence Scenarios: A Monte Carlo Simulation Study in Nutrition. Nutrients 2021; 13:2352. [PMID: 34371861 PMCID: PMC8308700 DOI: 10.3390/nu13072352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Randomized clinical trials (RCTs) evaluating the effectiveness of interventions to promote fruit and vegetable (FV) consumption usually report intention-to-treat (ITT) analysis as the main outcome. These analyses compare the randomly assigned groups and accept that some individuals may not follow the recommendations received in their group. The ITT analysis is useful to quantify the global effect of promoting the consumption of FV in a population (effectiveness) but, if non-adherence is significant in the RCT, they cannot estimate the specific effect in the individuals that increased their FV consumption (efficacy). To calculate the efficacy of FV consumption, a per protocol analysis (PP) would have to be carried out, in which groups of individuals are compared according to their actual adherence to FV consumption, regardless of the group to which they were assigned; unfortunately, many RCTs do not report the PP analysis. The objective of this article is to apply a new method to estimate the efficacy of Meta-analysis (MA) PP which include RCTs of effectiveness by ITT, without estimates of adherence. The method is based on generating Monte Carlo simulations of percentages of adherence in each allocation group from prior distributions informed by expert knowledge. We illustrate the method reanalyzing a Cochrane Systematic Review (SR) of RCTs on increased FV consumption reported with ITT, simulating 1000 times the estimation of a PP meta-analyses, and obtaining means and ranges of the potential PP effects. In some cases, the range of estimated PP effects was clearly more favourable than the effect calculated with the original ITT assumption, and therefore this corrected analysis must be considered when estimating the true effect of the consumption of a certain food.
Collapse
Affiliation(s)
| | - José Antonio Lozano-Lozano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile (Chile), Santiago 7500912, Región Metropolitana, Chile;
| | - David Prieto-Merino
- Cátedra Internacional de Análisis Estadístico y Big Data, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain;
| |
Collapse
|
9
|
Martínez-Ispizua E, Calatayud Á, Marsal JI, Mateos-Fernández R, Díez MJ, Soler S, Valcárcel JV, Martínez-Cuenca MR. Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. FRONTIERS IN PLANT SCIENCE 2021; 12:696272. [PMID: 34276746 PMCID: PMC8281111 DOI: 10.3389/fpls.2021.696272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 05/05/2023]
Abstract
Given the little variability among commercialised eggplants mainly in developed countries, exploring, and structuring of traditional varieties germplasm collections have become a key element for extending ecotypes and promoting biodiversity preservation and consumption. Thirty-one eggplant landraces from Spain were characterised with 22 quantitative and 14 qualitative conventional morphological descriptors. Landraces were grouped based on their fruit skin colour (black-purple, striped, white, and reddish). Landraces B7, B20, and B24 were left out for their distinctive fruit characteristics. Wide variation for plant, leaf, flower, and fruit phenology traits was observed across the local landraces, and fruit descriptors were considered the most important ones. In a second experiment, landraces, B14, B16, and B17 were selected to determine fruit quality. By contemplating the benefits provided by antioxidants and sugars for human health, pulp antioxidant capacity, total phenolic, ascorbic acid, carotenoid, flavonoid, and total sugar content were determined. Significant differences were observed across these three landraces, and B14 was highlighted for its antioxidant properties, while B17 stood out for its high sugar content. B16 did not stand out for any traits. The results indicate the wide variability in eggplants for their phenotypic and nutritional characteristics, which emphasises the importance of traditional varieties as the main source of agricultural biodiversity.
Collapse
Affiliation(s)
- Eva Martínez-Ispizua
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - Ángeles Calatayud
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - José Ignacio Marsal
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - Rubén Mateos-Fernández
- Plants Genomics and Biotechnology Department, Institute for Plant Molecular and Cell Biology (IBMCP), Valencia, Spain
| | - María José Díez
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | - Salvador Soler
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | - José Vicente Valcárcel
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | | |
Collapse
|
10
|
Bioactive Compounds and Antioxidant Capacity of Valencian Pepper Landraces. Molecules 2021; 26:molecules26041031. [PMID: 33672083 PMCID: PMC7919661 DOI: 10.3390/molecules26041031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper is one of the most important economic fruits with nutritional attributes. In this sense, the nutraceutical value of consumed products is a major concern nowadays so the content of some bioactive compounds and antioxidants (phenols, ascorbic acid, lycopene, carotenoids, chlorophylls, and antioxidant activity) was monitored in 18 sweet pepper landraces at two maturity stages (green and red). All the traits except chlorophylls significantly increased in red fruits (between 1.5- and 2.3-fold for phenols, ascorbic acid, and 2-2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity, 4.8-fold for carotenoid and 27.4-fold for lycopene content), which suggests that ripening is key for obtaining desired fruit quality. Among landraces, P-44 in green fruits is highlighted for its content in carotenoids, chlorophylls, phenols, and ascorbic acid, and P-46 for its antioxidant capacity and lycopene content. Upon maturity, P-48, P-44, and P-41 presented higher levels of phenols and lycopene, and P-39 of phenols, carotenoid, and DPPH. This work reflects a wide variability in the 18 pepper landraces at bioactive compounds concentration and in relation to fruit ripeness. The importance of traditional landraces in terms of organoleptic properties is emphasized as they are the main source of agricultural biodiversity today and could be helpful for breeders to develop new functional pepper varieties.
Collapse
|
11
|
Ahmed B, Syed A, Rizvi A, Shahid M, Bahkali AH, Khan MS, Musarrat J. Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116218. [PMID: 33316490 DOI: 10.1016/j.envpol.2020.116218] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/16/2023]
Abstract
The current study for the first time demonstrates the interference of a free-living, N2-fixing, and nanoparticle (NP) tolerant Azotobacter salinestris strain ASM recovered from metal-polluted soil with tomato plant-metal oxide NPs (ZnO, CuO, Al2O3, and TiO2) interactions in a sandy clay loam soil system with bulk materials as control. Tomato plants were grown till full maturity in soils amended with 20-2000 mg kg-1 of each metal-oxide NP with and without seed biopriming and root-inoculation of A. salinestris. A. salinestris was found metabolically active, producing considerably high amounts of bioactive indole-3-acetic-acid, morphologically unaffected, and with low alteration of cell membrane permeability under 125-1500 μgml-1 of NPs. However, ZnO-NPs slightly alter bacterial membrane permeability. Besides, A. salinestris secreted significantly higher amounts of extracellular polymeric substance (EPS) even under NP exposure, which could entrap the NPs and form metal-EPS complex as revealed and quantified by SEM-EDX. NPs were also found adsorbed on bacterial biomass. EPS stabilized the NPs and provided negative zeta potential to NPs. Following soil application, A. salinestris improved the plant performance and augmented the yield of tomato fruits and lycopene content even in NPs stressed soils. Interestingly, A. salinestris inoculation enhanced photosynthetic pigment formation, flower attributes, plant and fruit biomass, and reduced proline level. Bacterial inoculation also reduced the NP's uptake and accumulation significantly in vegetative organs and fruits. The organ wise order of NP's internalization was roots > shoots > fruits. Conclusively, A. salinestris inoculation could be an alternative to increase the production of tomato in metal-oxide NPs contaminated soils.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|