1
|
Mansouri RA, Aboubakr EM, Alshaibi HF, Ahmed AM. L-arginine administration exacerbates myocardial injury in diabetics via prooxidant and proinflammatory mechanisms along with myocardial structural disruption. World J Diabetes 2025; 16:100395. [DOI: 10.4239/wjd.v16.i2.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND L-arginine (L-Arg) is one of the most widely used amino acids in dietary and pharmacological products. However, the evidence on its usefulness and dose limitations, especially in diabetics is still controversial.
AIM To investigate the effects of chronic administration of different doses of L-Arg on the cardiac muscle of type 2 diabetic rats.
METHODS Of 96 male rats were divided into 8 groups as follows (n = 12): Control, 0.5 g/kg L-Arg, 1 g/kg L-Arg, 1.5 g/kg L-Arg, diabetic, diabetic + 0.5 g/kg L-Arg, diabetic + 1 g/kg L-Arg, and diabetic + 1.5 g/kg L-Arg; whereas L-Arg was orally administered for 3 months to all treated groups.
RESULTS L-Arg produced a moderate upregulation of blood glucose levels to normal rats, but when given to diabetics a significant upregulation was observed, associated with increased nitric oxide, inflammatory cytokines, and malonaldehyde levels in diabetic rats treated with 1 g/kg L-Arg and 1.5 g/kg L-Arg. A substantial decrease in the antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione concentrations, and Nrf-2 tissue depletion were observed at 1 g/kg and 1.5 g/kg L-Arg diabetic treated groups, associated with myocardial injury, fibrosis, α-smooth muscle actin upregulation, and disruption of desmin cardiac myofilaments, and these effects were not noticeable at normal treated groups. On the other hand, L-Arg could significantly improve the lipid profile of diabetic rats and decrease their body weights.
CONCLUSION L-Arg dose of 1 g/kg or more can exacerbates the diabetes injurious effects on the myocardium, while 0.5 g/kg dose can improve the lipid profile and decrease the body weight.
Collapse
Affiliation(s)
- Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-South Valley University, Qena 83523, Egypt
| | - Huda F Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- Stem Cell Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel M Ahmed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
2
|
Yaribeygi H, Maleki M, Forouzanmehr B, Kesharwani P, Jamialahmadi T, Karav S, Sahebkar A. Exploring the antioxidant properties of semaglutide: A comprehensive review. J Diabetes Complications 2024; 38:108906. [PMID: 39549371 DOI: 10.1016/j.jdiacomp.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Patients with diabetes commonly experience an aberrant production of free radicals and weakened antioxidative defenses, making them highly susceptible to oxidative stress development. This, in turn, can induce and promote diabetic complications. Therefore, utilizing antidiabetic agents with antioxidative properties can offer dual benefits by addressing hyperglycemia and reducing oxidative damage. Semaglutide, a recently approved oral form of glucagon-like peptide-1 (GLP-1) analogues, has shown potent antidiabetic effects. Additionally, recent studies have suggested that it possesses antioxidative properties. However, the exact effects and the molecular pathways involved are not well understood. In this review, we present the latest findings on the antioxidative impacts of semaglutide and draw conclusions about the mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tucker RM, Kim N, Gurzell E, Mathi S, Chavva S, Senthilkumar D, Bartunek O, Fenton KC, Herndon-Fenton SJ, Cardino VN, Cooney GM, Young S, Fenton JI. Commonly Used Dose of Montmorency Tart Cherry Powder Does Not Improve Sleep or Inflammation Outcomes in Individuals with Overweight or Obesity. Nutrients 2024; 16:4125. [PMID: 39683518 DOI: 10.3390/nu16234125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Sleep problems are frequently experienced and play an important role in inflammation and disease risk. US Montmorency tart cherries (MTC) improve sleep outcomes in previous studies, but studies in individuals with overweight and obesity are lacking. METHODS A total of 34 individuals with sleep issues and overweight or obesity (BMI: 32.1 ± 7.0 kg/m2) were recruited to this randomized controlled, crossover study. MTC capsules (500 mg) or a placebo were taken one hour before bed for 14 days. Sleep outcomes including total sleep time, deep and REM sleep duration, nap duration, and nocturnal sleep duration were assessed using the Zmachine and/or Fitbit Inspire 3. Subjective sleep information on quality and insomnia symptoms was collected using the Pittsburgh Sleep Quality Index, the Sleep Quality Scale, and the Insomnia Severity Index. Markers of inflammation included C-reactive protein, TNF-α, and IL-6, IL-8, IL-10, and IL-17A. RESULTS No significant effects of MTC supplementation were observed for any of the measures of interest (p > 0.05 for all). CONCLUSIONS These results suggest studies of individuals with overweight and obesity should test higher doses of MTC than those currently recommended.
Collapse
Affiliation(s)
- Robin M Tucker
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Nahyun Kim
- Department of Physical Education, Korea University, Seoul 02841, Republic of Korea
| | - Eric Gurzell
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Sruti Mathi
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Shreya Chavva
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Dharshini Senthilkumar
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Olivia Bartunek
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Kayla C Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Sidney J Herndon-Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Vanessa N Cardino
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Gabrielle M Cooney
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Sam Young
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 S. Wilson Rd., Rm 204, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Karimzadeh L, Behrouz V, Sohrab G, Razavion T, Haji-Maghsoudi S. The association between dietary nitrate, nitrite and total antioxidant capacity with cardiometabolic risk factors: a cross-sectional study among patients with type 2 diabetes. Int J Food Sci Nutr 2024; 75:695-706. [PMID: 39192837 DOI: 10.1080/09637486.2024.2395817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Diabetes is a common, chronic, and complex disorder that leads to several disabilities and serious complications. Certain nutrients can be effective in the management of diabetes mellitus. In the present study, we aimed to investigate the effects of dietary nitrate, nitrite, dietary total antioxidant capacity (DTAC), and nitric oxide (NO) index on some cardiometabolic parameters in patients with diabetes. This cross-sectional study was conducted on 100 participants with type 2 diabetes. A validated, semi-quantitative, food frequency questionnaire was collected to evaluate dietary intakes. Anthropometric parameters, blood pressure, and biochemical parameters, including glycemic indices, lipid profile, high-sensitive C-reactive protein (hs-CRP), and serum NO were measured using standard methods. Higher intakes of nitrate and nitrite in our study were primarily attributed to drinking water, vegetables, grains (for nitrate), dairy products, and legumes (for nitrite) rather than higher meat intakes. After adjustment for total energy, MET, BMI, and age, higher intake of nitrate was related to lower HbA1C (p = 0.001) and hs-CRP (p = 0.0.23), and greater HDL-C (p < 0.001) and serum NO (p = 0.008). Moreover, a greater nitrite intake was associated with lower DBP (p = 0.017), HbA1C (p = 0.040), FPG (p = 0.011), and higher serum NO values (p = 0.001). Higher amounts of DTAC and NO index were also related to greater DBP (p < 0.001, and p = 0.004, respectively) and lower hs-CRP (p = 0.004, and p = 0.009, respectively). High intakes of dietary nitrate and nitrite, in the context of high DTAC, are significantly associated with the improvement of some cardiometabolic parameters in patients with diabetes.
Collapse
Affiliation(s)
- Laleh Karimzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taraneh Razavion
- Department of Medical Parasitology and Mycology of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saiedeh Haji-Maghsoudi
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Fan R, Kong J, Zhang J, Zhu L. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11:1471642. [PMID: 39526249 PMCID: PMC11543430 DOI: 10.3389/fmed.2024.1471642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is a global and severe complication that imposes a significant burden on individual health, families, and society. Currently, the main treatment approaches for DKD include medication, blood glucose control, protein-restricted diet, and blood pressure management, all of which have certain limitations. Exercise, as a non-pharmacological intervention, has attracted increasing attention. This review introduces the mechanisms and clinical evidence of exercise on DKD, and proposes potential exercise prescriptions. Exercise can improve blood glucose stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), reduce renal oxidative stress and inflammation, enhance the crosstalk between muscle and kidneys, and improve endothelial cell function. These mechanisms contribute to the comprehensive improvement of DKD. Compared to traditional treatment methods, exercise has several advantages, including safety, effectiveness, and no significant side effects. It can be used as an adjunct therapy to medication, blood glucose control, protein-restricted diet, and blood pressure management. Despite the evident benefits of exercise in DKD management, there is still a lack of large-scale, long-term randomized controlled trials to provide more evidence and develop exercise guidelines for DKD. Healthcare professionals should actively encourage exercise in DKD patients and develop personalized exercise plans based on individual circumstances.
Collapse
Affiliation(s)
| | | | | | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
6
|
Yang F, Du X, Zhao Z, Guo G, Wang Y. Impact of Diabetic Condition on the Remodeling of In Situ Tissue-Engineered Heart Valves. ACS Biomater Sci Eng 2024; 10:6569-6580. [PMID: 39324571 DOI: 10.1021/acsbiomaterials.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most in situ tissue-engineered heart valve (TEHV) evaluation studies are conducted in a healthy physical environment, which cannot accurately reflect the specific characteristics of patients. In this study, we established a diabetic rabbit model and implanted decellularized extracellular matrix (dECM) into the abdominal aorta of rabbits through interventional surgery with a follow-up period of 8 weeks. The results indicated that dECM implants in diabetic rabbits exhibited poorer endothelialization and more severe fibrosis compared to those in healthy animals. Furthermore, mechanistic studies revealed that high glucose induced endothelial cell (EC) apoptosis and impeded their proliferation and migration, accompanied by an increase in reactive oxygen species (ROS) concentration and a decrease in the nitric oxide (NO) level. High glucose also led to elevated ROS levels and an increased expression of inflammatory factors and transforming growth factor β1 (TGF-β1) in macrophages, contributing to fibrosis. These findings suggest that oxidative-stress-mediated mechanisms are likely the primary pathways affecting heart valve repair and regeneration under diabetic conditions. Therefore, future design and evaluation of TEHVs may concern more patient-specific circumstances.
Collapse
Affiliation(s)
- Fan Yang
- Chengdu Medical College, Chengdu 610500, China
| | - Xingzhuang Du
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Samimi F, Baazm M, Nadi Z, Dastghaib S, Rezaei M, Jalali-Mashayekhi F. Evaluation of Antioxidant Effects of Coenzyme Q10 against Hyperglycemia-Mediated Oxidative Stress by Focusing on Nrf2/Keap1/HO-1 Signaling Pathway in the Liver of Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:661-670. [PMID: 39449772 PMCID: PMC11497326 DOI: 10.30476/ijms.2023.100078.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Hyperglycemia-induced oxidative stress can damage the liver and lead to diabetes complications. Coenzyme Q10 (CoQ-10) reduces diabetes-related oxidative stress. However, its molecular mechanisms are still unclear. This study aimed to examine CoQ-10's antioxidant capabilities against hyperglycemia-induced oxidative stress in the livers of diabetic rats, specifically targeting the Nrf2/Keap1/ARE signaling pathway. Methods This study was conducted between 2020-2021 at Arak University of Medical Sciences. A total of 30 male adult Wistar rats (8 weeks old) weighing 220-250 g were randomly assigned to five groups (n=6 in each group): control healthy, sesame oil (CoQ-10 solvent), CoQ-10 (10 mg/Kg), diabetic, and diabetic+CoQ-10. Liver oxidative stress indicators, including malondialdehyde, catalase, glutathione peroxidase, and glutathione, were estimated using the spectrophotometry method. Nrf2, Keap1, HO-1, and NQO1 gene expressions were measured using real-time PCR tests in the liver tissue. All treatments were conducted for 6 weeks. Statistical analysis was performed using SPSS software. One-way ANOVA followed by LSD's or Tukey's post hoc tests were used to compare the results of different groups. P<0.05 was considered statistically significant. Results The findings showed that induction of diabetes significantly increased Keap1 expression (2.1±0.9 folds, P=0.01), and significantly inhibited the mRNA expression of Nrf2 (0.38±0.2 folds, P=0.009), HO-1 (0.27±0.1 folds, P=0.02), and NQO1 (0.26±0.1 folds P=0.01), compared with the healthy group. In the diabetic group, the activity of glutathione peroxidase, catalase enzymes, and glutathione levels was decreased with an increase in malondialdehyde level. CoQ-10 supplementation significantly up-regulated the expressions of Nrf2 (0.85±0.3, P=0.04), HO-1 (0.94±0.2, P=0.04), NQO1 (0.88±0.5, P=0.03) genes, and inhibited Keap1 expression (1.1±0.6, P=0.02). Furthermore, as compared to control diabetic rats, CoQ-10 ameliorated oxidative stress by decreasing malondialdehyde levels and increasing catalase, glutathione peroxidase activities, and glutathione levels in the liver tissues of the treated rats in the treatment group. Conclusion The findings of this study revealed that CoQ-10 could increase the antioxidant capacity of the liver tissue in diabetic rats by modulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Rezaei
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
8
|
Yu M, Fan R, Yang SM. Effect of tannic acid on adiponectin and gonads in male Brandt's voles (Lasiopodomys brandtii). Gen Comp Endocrinol 2024; 357:114592. [PMID: 39043324 DOI: 10.1016/j.ygcen.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Minghao Yu
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China; Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Ruiyang Fan
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Schwartz KS, Hernandez PV, Maurer GS, Wetzel EM, Sun M, Jalal DI, Stanhewicz AE. Impaired microvascular insulin-dependent dilation in women with a history of gestational diabetes. Am J Physiol Heart Circ Physiol 2024; 327:H793-H803. [PMID: 39058435 PMCID: PMC11482287 DOI: 10.1152/ajpheart.00223.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Women with a history of gestational diabetes mellitus (GDM) have a significantly greater lifetime risk of developing cardiovascular disease and type 2 diabetes compared with women who had an uncomplicated pregnancy (HC). Microvascular endothelial dysfunction, mediated via reduced nitric oxide (NO)-dependent dilation secondary to increases in oxidative stress, persists after pregnancy complicated by GDM. We examined whether this microvascular dysfunction reduces insulin-mediated vascular responses in women with a history of GDM. We assessed in vivo microvascular endothelium-dependent vasodilator function by measuring cutaneous vascular conductance responses to graded infusions of acetylcholine (10-10-10-1 M) and insulin (10-8-10-4 M) in control sites and sites treated with 15 mM l-NAME [NG-nitro-l-arginine methyl ester; NO-synthase (NOS) inhibitor] or 5 mM l-ascorbate. We also measured protein expression of total endothelial NOS (eNOS), insulin-mediated eNOS phosphorylation, and endothelial nitrotyrosine in isolated endothelial cells from GDM and HC. Women with a history of GDM had reduced acetylcholine (P < 0.001)- and insulin (P < 0.001)-mediated dilation, and the NO-dependent responses to both acetylcholine (P = 0.006) and insulin (P = 0.006) were reduced in GDM compared with HC. Insulin stimulation increased phosphorylated eNOS content in HC (P = 0.009) but had no effect in GDM (P = 0.306). Ascorbate treatment increased acetylcholine (P < 0.001)- and insulin (P < 0.001)-mediated dilation in GDM, and endothelial cell nitrotyrosine expression was higher in GDM compared with HC (P = 0.014). Women with a history of GDM have attenuated microvascular vasodilation responses to insulin, and this attenuation is mediated, in part, by reduced NO-dependent mechanisms. Our findings further implicate increased endothelial oxidative stress in this microvascular insulin resistance.NEW & NOTEWORTHY Women who have gestational diabetes during pregnancy are at a greater risk for cardiovascular disease and type 2 diabetes in the decade following pregnancy. The mechanisms mediating this increased risk are unclear. Herein, we demonstrate that insulin-dependent microvascular responses are reduced in women who had gestational diabetes, despite the remission of glucose intolerance. This reduced microvascular sensitivity to insulin may contribute to increased cardiovascular disease and type 2 diabetes risk in these women.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Paola V Hernandez
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Grace S Maurer
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Elizabeth M Wetzel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Mingyao Sun
- Department of Internal Medicine, Carver College of Medicine, Iowa City, Iowa, United States
| | - Diana I Jalal
- The Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States
- Department of Internal Medicine, Carver College of Medicine, Iowa City, Iowa, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
10
|
Ergul Erkec O, Huyut Z, Acikgoz E, Huyut MT. Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model. Arch Physiol Biochem 2024:1-11. [PMID: 39324977 DOI: 10.1080/13813455.2024.2407551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
11
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
12
|
Honório da Silva JV, Erthal RP, Vercellone IC, Santos DPD, Ferraz CR, de Matos RLN, Gonçalves LED, Bracarense APFRL, Verri WA, Câmara NOS, de Andrade FG, Fernandes GSA. Lisdexamfetamine dimesylate-exposition in male rats during the peripubertal period impairs inflammatory mechanisms, antioxidant activity, and apoptosis process in kidneys of male pubertal rats. J Biochem Mol Toxicol 2024; 38:e23781. [PMID: 39051179 DOI: 10.1002/jbt.23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Lisdexamfetamine dimesylate (LDX) is a prodrug of dextroamphetamine, which has been widely recommended for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). There are still no data in the literature relating the possible toxic effects of LDX in the kidney. Therefore, the present study aims to evaluate the effects of LDX exposure on morphological, oxidative stress, cell death and inflammation parameters in the kidneys of male pubertal Wistar rats, since the kidneys are organs related to the excretion of most drugs. For this, twenty male Wistar rats were distributed randomly into two experimental groups: LDX group-received 11,3 mg/kg/day of LDX; and Control group-received tap water. Animals were treated by gavage from postnatal day (PND) 25 to 65. At PND 66, plasma was collected to the biochemical dosage, and the kidneys were collected for determinations of the inflammatory profile, oxidative status, cell death, and for histochemical, and morphometric analyses. Our results show that there was an increase in the number of cells marked for cell death, and a reduction of proximal and distal convoluted tubules mean diameter in the group that received LDX. In addition, our results also showed an increase in MPO and NAG activity, indicating an inflammatory response. The oxidative status showed that the antioxidant system is working undisrupted and avoiding oxidative stress. Therefore, LDX-exposition in male rats during the peripubertal period causes renal changes in pubertal age involving inflammatory mechanisms, antioxidant activity and apoptosis process.
Collapse
Affiliation(s)
- João Vinícius Honório da Silva
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Isadora Chagas Vercellone
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Camila Rodrigues Ferraz
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | | | | | | - Waldiceu Aparecido Verri
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo - USP, São Paulo, Brazil
| | - Fábio Goulart de Andrade
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | |
Collapse
|
13
|
Cao X, Jiang Z, Bu X, Li Q, Tian Y, Xu Z, Zhang B, Yuan X. MicroRNA-204-5p Attenuates Oxidative Stress, Apoptosis and Inflammation by Targeting TXNIP in Diabetic Cataract. Biochem Genet 2024:10.1007/s10528-024-10863-w. [PMID: 38896379 DOI: 10.1007/s10528-024-10863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Diabetic cataract (DC) is a major cause of blindness in diabetic patients and it is characterized by early onset and rapid progression. MiR-204-5p was previously identified as one of the top five down-regulated miRNAs in human DC lens tissues. We aimed to determine the expression of miR-204-5p in human lens epithelial cells (HLECs) and explore its effects and mechanisms in regulating the progression of DC. The expression of miR-204-5p in the anterior capsules of DC patients and HLECs was examined by RT-qPCR. Bioinformatics tools were then used to identify the potential target of miR-204-5p. The relationship between miR-204-5p and the target gene was confirmed through a dual luciferase reporter assay. Additionally, the regulatory mechanism of oxidative stress, apoptosis, and inflammation in DC was investigated by overexpressing miR-204-5p using miR-204-5p agomir. The expression of miR-204-5p was downregulated in the anterior capsules of DC patients and HLECs. Overexpression of miR-204-5p reduced ROS levels, pro-apoptosis genes (Bid, Bax, caspase-3), and IL-1β production in HG-treated HLECs. TXNIP was the direct target of miR-204-5p by dual luciferase reporter assay. Therefore, this study demonstrated that miR-204-5p effectively reduced oxidative damage, apoptosis, and inflammation in HLECs under HG conditions by targeting TXNIP. Targeting miR-204-5p could be a promising therapeutic strategy for the potential treatment of DC.
Collapse
Affiliation(s)
- Xiang Cao
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
- Department of Ophthalmology, Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Zhixin Jiang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
| | - Xiaofei Bu
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
| | - Qingyu Li
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
| | - Ye Tian
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
| | - Zijiao Xu
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Boyang Zhang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, 300020, China.
| |
Collapse
|
14
|
Korsmo HW, Ekperikpe US, Daehn IS. Emerging Roles of Xanthine Oxidoreductase in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:712. [PMID: 38929151 PMCID: PMC11200862 DOI: 10.3390/antiox13060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.
Collapse
Affiliation(s)
| | | | - Ilse S. Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1243, New York, NY 10029, USA
| |
Collapse
|
15
|
Yaribeygi H, Maleki M, Jamialahmadi T, Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J Clin Transl Endocrinol 2024; 36:100340. [PMID: 38576822 PMCID: PMC10992717 DOI: 10.1016/j.jcte.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Semaglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti-inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide's anti-inflammatory effects and the potential pathways involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Aktas G, Duman TT, Atak Tel B. Controlling Nutritional Status (CONUT) score is a novel marker of type 2 diabetes mellitus and diabetic microvascular complications. Postgrad Med 2024; 136:496-503. [PMID: 38921178 DOI: 10.1080/00325481.2024.2373684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) and its microvascular complications are characterized by chronic inflammation. The Controlling Nutritional Status (CONUT) score is a tool used to assess nutritional status and is often associated indirectly with inflammatory processes. We aimed to compare the CONUT scores of T2DM patients with those of healthy volunteers and to compare T2DM patients with and without microvascular complications. METHODS Patients diagnosed with T2DM and healthy volunteers (as controls) were included in the study. The CONUT score is calculated using the following formula: serum albumin score + total cholesterol score + total lymphocyte count score. CONUT scores of T2DM patients and healthy controls, as well as those of diabetics with and without microvascular complications, were compared. RESULTS The CONUT scores of the T2DM and control groups were (1 [0-7]) and (0 [0-2]), respectively (p < 0.001). The sensitivity and specificity of the CONUT score (<1.5 threshold) in detecting T2DM were 43% and 90%, respectively (AUC: 0.67, p < 0.001, 95% CI: 0.64-0.71). Moreover, the CONUT score was an independent risk factor for T2DM (OR: 0.34, p < 0.001, 95% CI: 0.22-0.52). The CONUT score of T2DM patients with microvascular complications (2 [0-7]) was significantly higher than that of T2DM patients without microvascular complications (0 [0-4]) and control subjects (0 [0-2]) (p < 0.001). A CONUT score higher than 1.5 had 83% sensitivity and 92% specificity in detecting T2DM with microvascular complications (AUC: 0.91, p < 0.001, 95% CI: 0.89-0.93). CONCLUSION The CONUT score could be useful in detecting diabetic microvascular complications in clinical practice, as it is an inexpensive and easy-to-assess marker.
Collapse
Affiliation(s)
- Gulali Aktas
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, Bolu, Turkey
| | | | - Burcin Atak Tel
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, Bolu, Turkey
| |
Collapse
|
17
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
18
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
19
|
Cojic M, Klisic A, Sahmanovic A, Petrovic N, Kocic G. Cluster analysis of patient characteristics, treatment modalities, renal impairments, and inflammatory markers in diabetes mellitus. Sci Rep 2024; 14:5994. [PMID: 38472402 PMCID: PMC10933260 DOI: 10.1038/s41598-024-56451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is caused by an interplay of various factors where chronic hyperglycemia and inflammation have central role in its onset and progression. Identifying patient groups with increased inflammation in order to provide more personalized approach has become crucial. We hypothesized that grouping patients into clusters according to their clinical characteristics could identify distinct unique profiles that were previously invisible to the clinical eye. A cross-sectional record-based study was performed at the Primary Health Care Center Podgorica, Montenegro, on 424 T2DM patients aged between 30 and 85. Using hierarchical clustering patients were grouped into four distinct clusters based on 12 clinical variables, including glycemic and other relevant metabolic indicators. Inflammation was assessed through neutrophil-to-lymphocyte (NLR) and platelet to lymphocyte ratio (PLR). Cluster 3 which featured the oldest patients with the longest T2DM duration, highest hypertension rate, poor glycemic control and significant GFR impairment had the highest levels of inflammatory markers. Cluster 4 which featured the youngest patients, with the best glycemic control, the highest GFR had the lowest prevalence of coronary disease, but not the lowest levels of inflammatory markers. Identifying these clusters offers physicians opportunity for more personalized T2DM management, potentially mitigating its associated complications.
Collapse
Affiliation(s)
- Milena Cojic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro.
- Primary Health Care Center, Podgorica, Montenegro.
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | - Amina Sahmanovic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | | | - Gordana Kocic
- Department of Medical Biochemistry, School of Medicine, University of Nis, Niš, Serbia
| |
Collapse
|
20
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2024; 63:425-433. [PMID: 37971692 DOI: 10.1007/s00394-023-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1β slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
22
|
Cassano R, Curcio F, Sole R, Mellace S, Trombino S. Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes. Molecules 2024; 29:929. [PMID: 38474441 DOI: 10.3390/molecules29050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia caused by abnormalities in insulin secretion and/or action. In patients with diabetes, complications such as blindness, delayed wound healing, erectile dysfunction, renal failure, heart disease, etc., are generally related to an increase in ROS levels which, when activated, trigger hyperglycemia-induced lesions, inflammation and insulin resistance. In fact, extensive cell damage and death occurs mainly due to the effect that ROS exerts at the level of cellular constituents, causing the deterioration of DNA and peroxidation of proteins and lipids. Furthermore, elevated levels of reactive oxygen species (ROS) and an imbalance of redox levels in diabetic patients produce insulin resistance. These destructive effects can be controlled by the defense network of antioxidants of natural origin such as phloretin and gallic acid. For this reason, the objective of this work was to create a nanocarrier (hydrogel) based on gallic acid containing phloretin to increase the antioxidant effect of the two substances which function as fundamental for reducing the mechanisms linked to oxidative stress in patients suffering from chronic diabetes. Furthermore, since the bioavailability problems of phloretin at the intestinal level are known, this carrier could facilitate its release and absorption. The obtained hydrogel was characterized using Fourier transform infrared spectroscopy (FT-IR). Its degree of swelling (a%) and phloretin release were tested under pH conditions simulating the gastric and intestinal environment (1.2, 6.8 and 7.4). The antioxidant activity, inhibiting lipid peroxidation in rat liver microsomal membranes induced in vitro by a free radical source, was evaluated for four hours. All results showed that gallate hydrogel could be applied for releasing intestinal phloretin and reducing the ROS levels.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Silvia Mellace
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
23
|
Djordjevic-Jocic J, Kokoris JC, Mitic B, Bogdanovic D, Trenkic M, Zlatanovic N, Jocic H, Cukuranovic R. Assessment of Retinal Microangiopathy in Patients with Balkan Endemic Nephropathy Using Optical Coherence Tomography Angiography-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:192. [PMID: 38276071 PMCID: PMC10820983 DOI: 10.3390/medicina60010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Background and Objectives: It is well known that alterations in microvascular structure and function contribute to the development of ocular, renal, and cardiovascular diseases. Accordingly, the presence of fundus vascular changes in patients suffering from chronic kidney disease (CKD) and Balkan endemic nephropathy (BEN) may provide information of prognostic value regarding the progression of renal disease. This study aimed to examine the associations between clinical characteristics and retinal optical coherence tomography angiography (OCTA) parameters in patients with BEN and compare them with those in CKD. Materials and Methods: This pilot study, conducted from March 2021 to April 2022, included 63 patients who were divided into two groups: the first group consisted of 29 patients suffering from BEN, and the second was a control group of 34 patients with CKD. Demographic, laboratory, clinical, and medication data were noted for all the patients included in this study. Each eye underwent OCT angiography, and the results were interpreted in accordance with the practical guide for the interpretation of OCTA findings. Results: Statistically significantly higher levels of total serum protein and triglycerides were recorded in the BEN group than in the CKD group, while the level of HDL cholesterol was lower. Based on the performed urinalysis, statistically significantly higher values of total protein and creatinine were detected in patients with CKD compared to the BEN group. It was demonstrated that the OCTA vascular plexus density of certain parts of the retina was in significant association with systolic and diastolic blood pressure, creatinine clearance, urinary creatinine, total cholesterol, diabetes mellitus type 2, age, body mass index, total serum and urinary protein, sCRP, and diuretic and antihypertensive treatment. Conclusions: In comparison with CKD, BEN leads to more significant disturbances in retinal vasculature density.
Collapse
Affiliation(s)
- Jasmina Djordjevic-Jocic
- Clinic of Ophthalmology, Faculty of Medicine, University of Nis, Blvd. Dr Zorana Djindjica 81, 18000 Nis, Serbia;
| | | | - Branka Mitic
- Clinic of Nephrology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia;
| | - Dragan Bogdanovic
- Department of Statistics, State University of Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Marija Trenkic
- Clinic of Ophthalmology, Faculty of Medicine, University of Nis, Blvd. Dr Zorana Djindjica 81, 18000 Nis, Serbia;
| | | | - Hristina Jocic
- Clinic of Neurosurgery, University Clinical Center of Nis, 18000 Nis, Serbia;
| | - Rade Cukuranovic
- Department of Anatomy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia; (J.C.K.); (R.C.)
| |
Collapse
|
24
|
Bagheri SM, Hakimizadeh E, Allahtavakoli M. Nephroprotective Effect of Ferula assa-foetida Oleo Gum Resin on Type 2 Diabetic Rats. Curr Pharm Des 2024; 30:2485-2492. [PMID: 38910415 DOI: 10.2174/0113816128303631240530045628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVE Diabetic nephropathy is one of the main causes of kidney failure in the end stage of diabetes worldwide. On the other hand, asafoetida is a gum whose hypoglycemic effects have been proven. The present study was conducted with the aim of using asafoetida to prevent diabetic nephropathy. METHODS Diabetes was induced by a high-fat diet (60%) and streptozotocin injection (35 mg/kg) in rats. Diabetic rats were treated with an oral dose of 50 mg/kg of asafoetida for 8 weeks. At the end of the experiment, serum and urine parameters were examined. Antioxidant enzymes and lipid peroxidation levels in the kidney were also determined along with its histological examination. The expression levels of tumor necrosis factor-alpha and Transforming growth factor beta genes were also evaluated. RESULTS Glucose, cholesterol, triglyceride, and HbA1c concentrations were significantly reduced in the asafoetida 50. On the other hand, in the treatment group, serum creatinine, urea, and albumin levels decreased and increased in urine. Antioxidant enzymes in the kidney improved significantly, and the expression of tumour necrosis factor-alpha and transforming growth factor-beta genes decreased. Histopathological examination also showed that necrosis, epithelial damage, and leukocyte infiltration increased in the diabetic and decreased in the treatment group. CONCLUSION The result of biochemical analysis, enzymatic, and histological examinations showed that asafoetida may delay the progression of diabetic nephropathy due to the presence of anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
25
|
Bagheri SM, Hakimizadeh E, Allahtavakoli M. Nephroprotective effect of remote ischemic conditioning on type 2 diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1340-1345. [PMID: 39229583 PMCID: PMC11366939 DOI: 10.22038/ijbms.2024.77896.16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/14/2024] [Indexed: 09/05/2024]
Abstract
Objectives Diabetic nephropathy is one of the main causes of kidney failure in the end stage of diabetes worldwide. The present study was conducted with the aim of using the remote ischemic conditioning (RIC) method to prevent diabetic nephropathy. Materials and Methods Diabetes was induced by high-fat diet (60%) and streptozotocin injection (35 mg/kg) in rats. RIC was performed by tightening a tourniquet around the upper thigh and releasing it for three cycles of 5 min of ischemia and 5 min of reperfusion daily for an 8-week duration. At the end of the experiment, serum and urine parameters were examined. Anti-oxidant enzymes and lipid peroxidation levels in the kidney were also determined along with histological examination. The expression levels of tumor necrosis factor-alpha and transforming growth factor beta genes were also evaluated. Results Glucose, cholesterol, triglyceride, and HbA1c concentrations were not significantly reduced in the RIC group. On the other hand, serum creatinine, urea, and albumin levels decreased and increased in urine. Anti-oxidant enzymes did improve in the kidney significantly and the expression of tumor necrosis factor-alpha and transforming growth factor beta genes decreased significantly. Histopathological examination also showed that necrosis, epithelial damage, and leukocyte infiltration increased in the diabetic group and improved in the treatment group. Conclusion The results of biochemical analysis, and enzymatic and histological examinations showed that although RIC could not reduce blood glucose and lipids, nevertheless it may delay the progression of diabetic nephropathy due to the presence of anti-inflammatory and anti-oxidant activities.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
26
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
27
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
28
|
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia ( Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023; 28:8069. [PMID: 38138560 PMCID: PMC10745661 DOI: 10.3390/molecules28248069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Collapse
Affiliation(s)
- Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
29
|
Harvengt AA, Polle OG, Martin M, van Maanen A, Gatto L, Lysy PA. Post-Hypoglycemic hyperglycemia are highly relevant markers for stratification of glycemic variability and partial remission status of pediatric patients with new-onset type 1 diabetes. PLoS One 2023; 18:e0294982. [PMID: 38033011 PMCID: PMC10688654 DOI: 10.1371/journal.pone.0294982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
AIMS To evaluate whether parameters of post-hypoglycemic hyperglycemia (PHH) correlated with glucose homeostasis during the first year after type 1 diabetes onset and helped to distinguish pediatric patients undergoing partial remission or not. METHODS In the GLUREDIA (GLUcagon Response to hypoglycemia in children and adolescents with new-onset type 1 DIAbetes) study, longitudinal values of clinical parameters, continuous glucose monitoring metrics and residual β-cell secretion from children with new-onset type 1 diabetes were analyzed during the first year after disease onset. PHH parameters were calculated using an in-house algorithm. Correlations between PHH parameters (i.e., PHH frequency, PHH duration, PHH area under the curve [PHHAUC]) and glycemic homeostasis markers were studied using adjusted mixed-effects models. RESULTS PHH parameters were strong markers to differentiate remitters from non-remitters with PHH/Hyperglycemia duration ratio being the most sensitive (ratio<0.02; sensitivity = 86% and specificity = 68%). PHHAUC moderately correlated with parameters of glucose homeostasis including TIR (R2 = 0.35, p-value < 0.05), coefficient of variation (R2 = 0.22, p-value < 0.05) and Insulin-Dose Adjusted A1c (IDAA1C) (R2 = 0.32, p-value < 0.05) and with residual β-cell secretion (R2 = 0.17, p-value < 0.05). Classification of patients into four previously described glucotypes independently validated PHH parameters as reliable markers of glucose homeostasis and improved the segregation of patients with intermediate values of IDAA1C and estimated C-peptide (CPEPEST). Finally, a combination of PHH parameters identified groups of patients with specific patterns of hypoglycemia. CONCLUSION PHH parameters are new minimal-invasive markers to discriminate remitters from non-remitters and evaluate glycemic homeostasis during the first year of type 1 diabetes. PHH parameters may also allow patient-targeted therapeutic management of hypoglycemic episodes.
Collapse
Affiliation(s)
- Antoine A. Harvengt
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Olivier G. Polle
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Aline van Maanen
- Statistical Support Unit, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
30
|
Hou Q, Song R, Zhao X, Yang C, Feng Y. Lower circulating irisin levels in type 2 diabetes mellitus patients with chronic complications: A meta-analysis. Heliyon 2023; 9:e21859. [PMID: 38027674 PMCID: PMC10658327 DOI: 10.1016/j.heliyon.2023.e21859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of this study was to provide evidence of the differences in circulating irisin levels between type 2 diabetes mellitus (T2DM) patients with and without chronic complications. Methods We performed a meta-analysis to compare circulating irisin levels between different groups. Literature search was conducted in PubMed, Cochrane Library, Embase, WanFang, and China National Knowledge Infrastructure databases from inception through December 2022. Random effects model and standard mean difference (SMD) was used to calculate the pooled outcomes with 95 % confidence intervals (CIs). Results Forty-two studies that matched the inclusion criteria were analyzed. Circulating irisin levels were significantly lower in T2DM patients with chronic complications than those in T2DM patients without chronic complications (SMD: -1.43; 95 % CI: -1.76 to -1.09; p < 0.00001) and healthy control group (SMD: -2.40; 95 % CI: -3.02 to -1.77; p < 0.00001). Moreover, irisin levels further decrease with the aggravation of complications in T2DM patients with diabetic nephropathy or diabetic retinopathy. Conclusion Compared with T2DM patients without chronic complications, T2DM patients with chronic complications had lower circulating irisin levels. In addition, irisin levels were negatively correlated with the severity of chronic complications.
Collapse
Affiliation(s)
- Qiaoyu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
- Department of Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Xuecheng Zhao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
31
|
Li MY, Duan JQ, Wang XH, Liu M, Yang QY, Li Y, Cheng K, Liu HQ, Wang F. Inulin Inhibits the Inflammatory Response through Modulating Enteric Glial Cell Function in Type 2 Diabetic Mellitus Mice by Reshaping Intestinal Flora. ACS OMEGA 2023; 8:36729-36743. [PMID: 37841129 PMCID: PMC10568710 DOI: 10.1021/acsomega.3c03055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Inulin, a commonly used dietary fiber supplement, is capable of modulating the gut microbiome. Chronic inflammation resulting from metabolic abnormalities and gut flora dysfunction plays a significant role in the development of type 2 diabetes mellitus (T2DM). Our research has demonstrated that inulin administration effectively reduced colonic inflammation in T2DM mice by inducing changes in the gut microbiota and increasing the concentration of butyric acid, which in turn modulated the function of enteric glial cells (EGCs). Experiments conducted on T2DM mice revealed that inulin administration led to an increase in the Bacteroidetes/Firmicutes ratio and the concentration of butyric acid in the colon. The anti-inflammatory effects of altered gastrointestinal flora and its metabolites were further confirmed through fecal microbiota transplantation. Butyric acid was found to inhibit the activation of the κB inhibitor kinase β/nuclear factor κB pathway, regulate the expression levels of interleukin-6 and tumor necrosis factor-α, suppress the abnormal activation of EGCs, and prevent the release of inflammatory factors by EGCs. Similar results were observed in vitro experiments with butyric acid. Our findings demonstrate that inulin, by influencing the intestinal flora, modifies the activity of EGCs to effectively reduce colonic inflammation in T2DM mice.
Collapse
Affiliation(s)
- Meng-Ying Li
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Jia-Qi Duan
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Xiao-Hui Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Meng Liu
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Middle of Yanta Road No. 13, Xi’an 710055, China
| | - Qiao-Yi Yang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Yan Li
- Department
of Anatomy, Histology and Embryology and K. K. Leung Brain Research
Centre, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Kun Cheng
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Han-Qiang Liu
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Feng Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| |
Collapse
|
32
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
33
|
Hasan IH, Badr A, Almalki H, Alhindi A, Mostafa HS. Podocin, mTOR, and CHOP dysregulation contributes to nephrotoxicity induced of lipopolysaccharide/diclofenac combination in rats: Curcumin and silymarin could afford protective effect. Life Sci 2023; 330:121996. [PMID: 37536613 DOI: 10.1016/j.lfs.2023.121996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
AIM Sepsis is a common cause of acute kidney injury (AKI). Lipopolysaccharides (LPS) are the main gram-negative bacterial cell wall component with a well-documented inflammatory impact. Diclofenac (DIC) is a non-steroidal anti-inflammatory drug with a potential nephrotoxic effect. Curcumin (CUR) and silymarin (SY) are natural products with a wide range of pharmacological activities, including antioxidant and anti-inflammatory ones. The objective of this study was to examine the protective impact of CUR and SY against kidney damage induced by LPS/DIC co-exposure. MATERIALS AND METHODS Four groups of rats were used; control; LPS/DIC, LPS/DIC + CUR, and LPS/DIC + SY group. LPS/DIC combination induced renal injury at an LPS dose much lower than a nephrotoxic one. KEY FINDING Nephrotoxicity was confirmed by histopathological examination and significant elevation of renal function markers. LPS/DIC induced oxidative stress in renal tissues, evidenced by decreasing reduced glutathione and superoxide dismutase, and increasing lipid peroxidation. Inflammatory response of LPS/DIC was associated with a significant increase of renal IL-1β and TNF-α. Treatment with either CUR or SY shifted measured parameters to the opposite side. Moreover, LPS/DIC exposure was associated with upregulation of mTOR and endoplasmic reticulum stress protein (CHOP) and downregulation of podocin These effects were accompanied by reduced gene expression of cystatin C and KIM-1. CUR and SY ameliorated LPS/DIC effect on the aforementioned genes and protein significantly. SIGNIFICANCE This study confirms the potential nephrotoxicity; mechanisms include upregulation of mTOR, CHOP, cystatin C, and KIM-1 and downregulation of podocin. Moreover, both CUR and SY are promising nephroprotective products against LPS/DIC co-exposure.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Haneen Almalki
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Alanoud Alhindi
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Hesham S Mostafa
- Statistics Deanship of Scientific Research, College of Humanities and Social Sciences, King Saud University, P.O. Box 2456, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
35
|
Nguyen LT, Pollock CA, Saad S. Nutrition and Developmental Origins of Kidney Disease. Nutrients 2023; 15:4207. [PMID: 37836490 PMCID: PMC10574202 DOI: 10.3390/nu15194207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The developmental programming hypothesis proposes that adverse environmental insults during critical developmental periods increase the risk of diseases later in life. The kidneys are deemed susceptible to such a process, although the exact mechanisms remain elusive. Many factors have been reported to contribute to the developmental origin of chronic kidney diseases (CKD), among which peri-gestational nutrition has a central role, affecting kidney development and metabolism. Physiologically, the link between malnutrition, reduced glomerular numbers, and increased blood pressure is key in the developmental programming of CKD. However, recent studies regarding oxidative stress, mitochondrial dysfunction, epigenetic modifications, and metabolic changes have revealed potential novel pathways for therapeutic intervention. This review will discuss the role of imbalanced nutrition in the development of CKD.
Collapse
Affiliation(s)
- Long T. Nguyen
- Renal Research Group, Kolling Institute, St. Leonards, NSW 2065, Australia; (C.A.P.); (S.S.)
| | | | | |
Collapse
|
36
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
37
|
Banerjee M, Pal R, Maisnam I, Chowdhury S, Mukhopadhyay S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: A meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes Metab 2023; 25:2697-2703. [PMID: 37334516 DOI: 10.1111/dom.15157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
AIMS To pool the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors on gout and to investigate the association of these effects with baseline serum uric acid (SUA), SUA lowering, and underlying conditions, such as type 2 diabetes mellitus (T2DM)/heart failure (HF). METHODS PubMed, Embase, Web of Science, Cochrane Library and clinical trial registry websites were searched for randomized controlled trials (RCTs) or post hoc analyses (≥1-year duration; PROSPERO:CRD42023418525). The primary outcome was a composite of gouty arthritis/gout flares and commencement of anti-gout drugs (SUA-lowering drugs/colchicine). Hazard ratios (HRs) with 95% confidence interval (CI) were pooled using a generic inverse-variance method with a random-effects model. Mixed-effects model univariate meta-regression analysis was performed. RESULTS Five RCTs involving 29 776 patients (T2DM, n = 23 780) and 1052 gout-related events were identified. Compared to placebo, SGLT2 inhibitor use was significantly associated with reduced risk of composite gout outcomes (HR 0.55, 95% CI 0.45-0.67; I2 = 61%, P < 0.001). Treatment benefits did not differ between trials being conducted exclusively in baseline HF versus those conducted in patients with T2DM (P-interaction = 0.37), but were greater with dapagliflozin 10 mg and canagliflozin 100/300 mg (P < 0.01 for subgroup differences). Sensitivity analysis excluding trials that evaluated the effects of empagliflozin 10/25 mg (HR 0.68, 95% CI 0.57-0.81; I2 = 0%) accentuated the benefits of SGLT2 inhibitors with no between-trial heterogeneity (HR 0.46, 95% CI 0.39-0.55; I2 = 0%). Univariate meta-regression found no impact of baseline SUA, SUA lowering on follow-up, diuretic use, or other variables on their anti-gout effects. CONCLUSION We found that SGLT2 inhibitors significantly reduced the risk of gout in individuals with T2DM/HF. Lack of an association with SUA-lowering effects suggests that metabolic and anti-inflammatory effects of SGLT2 inhibitors may predominantly mediate their anti-gout benefits.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Indira Maisnam
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhankar Chowdhury
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
38
|
Goycheva P, Petkova-Parlapanska K, Georgieva E, Karamalakova Y, Nikolova G. Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications. Int J Mol Sci 2023; 24:13541. [PMID: 37686346 PMCID: PMC10488183 DOI: 10.3390/ijms241713541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as oxidative stress parameters, (2) lipid and protein oxidation, (3) the activity of antioxidant enzymes, and (4) cytokine production. Patients with type 2 diabetes mellitus were divided into three groups according to the loss of renal function: patients with compensated diabetes mellitus with normal renal function DMT2N0 measured as an estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2, a group with decompensated diabetes mellitus with complication diabetic nephropathy and mild-to-moderate loss of renal function DMT2N1 (eGFR < 60 mL/min/1.73 m2: 59-45 mL/min/1.73 m2), and a decompensated diabetes mellitus with diabetic nephropathy group with moderate-to-severe loss of renal function DMT2N2 (eGFR > 30 mL/min/1.73 m2: 30-44 mL/min/1.73 m2). All results were compared with healthy volunteers. The results showed that patients with diabetic nephropathy had significantly higher levels of ROS, cytokine production, and end products of lipid and protein oxidation compared to healthy volunteers. Furthermore, patients with diabetic nephropathy had depleted levels of nitric oxide (NO), an impaired NO synthase (NOS) system, and reduced antioxidant enzyme activity (p < 0.05). These findings suggest that patients with impaired renal function are unable to compensate for oxidative stress. The decreased levels of NO radicals in patients with advanced renal complications may be attributed to damage NO availability in plasma. The study highlights the compromised oxidative status as a contributing factor to impaired renal function in patients with decompensated type 2 diabetes mellitus. The findings of this study have implications for understanding the pathogenesis of diabetic nephropathy and the role of oxidative stress and chronic inflammation in its development. The assessment of oxidative stress levels and inflammatory biomarkers may aid in the early detection and prediction of diabetic complications.
Collapse
Affiliation(s)
- Petya Goycheva
- Propaedeutic of Internal Diseases Department, Medical Faculty, Trakia University Hospital, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| | - Ekaterina Georgieva
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| | - Galina Nikolova
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| |
Collapse
|
39
|
Darenskaya M, Kolesnikov S, Semenova N, Kolesnikova L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int J Mol Sci 2023; 24:12378. [PMID: 37569752 PMCID: PMC10419189 DOI: 10.3390/ijms241512378] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes mellitus (DM) belongs to the category of socially significant diseases with epidemic rates of increases in prevalence. Diabetic nephropathy (DN) is a specific kind of kidney damage that occurs in 40% of patients with DM and is considered a serious complication of DM. Most modern methods for treatments aimed at slowing down the progression of DN have side effects and do not produce unambiguous positive results in the long term. This fact has encouraged researchers to search for additional or alternative treatment methods. Hyperglycemia has a negative effect on renal structures due to a number of factors, including the activation of the polyol and hexosamine glucose metabolism pathways, the activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, the accumulation of advanced glycation end products and increases in the insulin resistance and endothelial dysfunction of tissues. The above mechanisms cause the development of oxidative stress (OS) reactions and mitochondrial dysfunction, which in turn contribute to the development and progression of DN. Modern antioxidant therapies for DN involve various phytochemicals (food antioxidants, resveratrol, curcumin, alpha-lipoic acid preparations, etc.), which are widely used not only for the treatment of diabetes but also other systemic diseases. It has also been suggested that therapeutic approaches that target the source of reactive oxygen species in DN may have certain advantages in terms of nephroprotection from OS. This review describes the significance of studies on OS biomarkers in the pathogenesis of DN and analyzes various approaches to reducing the intensity of OS in the prevention and treatment of DN.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Personalized and Preventive Medicine, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (S.K.); (N.S.); (L.K.)
| | | | | | | |
Collapse
|
40
|
Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, Esa NM. Stingless Bee ( Heterotrigona Itama) Honey and Its Phenolic-Rich Extract Ameliorate Oxidant-Antioxidant Balance via KEAP1-NRF2 Signalling Pathway. Nutrients 2023; 15:2835. [PMID: 37447162 DOI: 10.3390/nu15132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
Collapse
Affiliation(s)
| | - Fatin Aina Zulkhairi Amin
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Akmal Ishak
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
41
|
Bikbova G, Oshitari T, Bikbov M. Diabetic Neuropathy of the Retina and Inflammation: Perspectives. Int J Mol Sci 2023; 24:ijms24119166. [PMID: 37298118 DOI: 10.3390/ijms24119166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
A clear connection exists between diabetes and atherosclerotic cardiovascular disease. Consequently, therapeutic approaches that target both diseases are needed. Clinical trials are currently underway to explore the roles of obesity, adipose tissue, gut microbiota, and pancreatic beta cell function in diabetes. Inflammation plays a key role in diabetes pathophysiology and associated metabolic disorders; thus, interest has increased in targeting inflammation to prevent and control diabetes. Diabetic retinopathy is known as a neurodegenerative and vascular disease that occurs after some years of poorly controlled diabetes. However, increasing evidence points to inflammation as a key figure in diabetes-associated retinal complications. Interconnected molecular pathways, such as oxidative stress, and the formation of advanced glycation end-products, are known to contribute to the inflammatory response. This review describes the possible mechanisms of the metabolic changes in diabetes that involve inflammatory pathways.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| | - Mukharram Bikbov
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| |
Collapse
|
42
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
43
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
44
|
Tang X, Chen L, Wu Z, Li Y, Zeng J, Jiang W, Lv W, Wan M, Mao C, Zhou M. Lipophilic NO-Driven Nanomotors as Drug Balloon Coating for the Treatment of Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203238. [PMID: 35961946 DOI: 10.1002/smll.202203238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Drug-coated balloons (DCB) intervention is an important approach for the treatment of atherosclerosis (AS). However, this therapeutic approach has the drawbacks of poor drug retention and penetration at the lesion site. Here, a lipophilic drug-loaded nanomotor as a modified balloon coating for the treatment of AS is reported. First, a lipophilic nanomotor PMA-TPP/PTX loaded with drug PTX and lipophilic triphenylphosphine (TPP) compounds is synthesized. The PMA-TPP/PTX nanomotors use nitric oxide (NO) as the driving force, which is produced from the reaction between arginine on the motor substrate and excess reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in the AS microenvironment. The final in vitro and in vivo experimental results confirm that the introduction of the lipophilic drug-loaded nanomotor technology can greatly enhance the drug retention and permeability in atherosclerotic lesions. In particular, NO can also play an anti-AS role in improving endothelial cell function and reducing oxidative stress. The chemotherapeutic drug PTX loaded onto the nanomotors can inhibit cell division and proliferation, thereby exerting the effect of inhibiting vascular intimal hyperplasia, which is helpful for the multiple therapies of AS. Using nanomotor technology to solve cardiovascular diseases may be a promising research direction.
Collapse
Affiliation(s)
- Xueting Tang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziyu Wu
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yazhou Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiaqi Zeng
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Wentao Jiang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wenzhi Lv
- College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
45
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
46
|
Kaur S, Rubal, Kaur S, Kaur A, Kaur S, Gupta S, Mittal S, Dhiman M. A cross-sectional study to correlate antioxidant enzymes, oxidative stress and inflammation with prevalence of hypertension. Life Sci 2023; 313:121134. [PMID: 36544300 DOI: 10.1016/j.lfs.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
AIMS Hypertension a multifactorial consequence of environmental factors, life style and genetics is the well-recognized risk factor contributing to coronary heart diseases. The antioxidant imbalance, excessive reactive oxygen species (ROS) leads to oxidative stress which is pivotal in progression of hypertension. The present study aims to understand the complex interaction between oxidative stress, inflammation and antioxidant system which is crucial to maintain cellular homeostasis which further can exaggerate hypertension pathophysiology. MATERIALS AND METHODS The metabolic profile of hypertensive and normotensive subjects from Malwa region, Punjab was compared by estimating lipid profile, cardiac, hepatic and renal markers. The oxidative stress markers (protein carbonyls and lipid peroxidation), inflammatory markers (Nitric oxide, Myeloperoxidase and advanced oxygen protein products), and antioxidant enzymes (Superoxide Dismutase, Catalase, and Total Antioxidant Capacity) were analyzed. KEY FINDINGS It is observed that the metabolic markers are altered in hypertensive subjects which further these subjects showed increased oxidative, inflammatory profile and compromised antioxidant status when compared with normotensive subjects. Co-relation analysis validated the involvement of inflammation and oxidative stress in impaired endothelial function and vital organ damage. SIGNIFICANCE OF STUDY These markers may act as early indicators of hypertension which usually do not show any physical symptoms, thus can be diagnosed and treated at the earliest. The current study suggests that disturbed homeostasis, a consequence of altered interaction between antioxidant system and inflammatory events raises the oxidative stress levels which eventually leads to hypertension and associated complications. These indicators can serve as early indicators of future chronic complications of hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Satveer Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Amandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sushil Gupta
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sunil Mittal
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India.
| |
Collapse
|
47
|
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 64:5852-5877. [PMID: 36591787 DOI: 10.1080/10408398.2022.2159317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) is a global health issue in the twenty-first century, and there are numerous challenges in preventing and alleviating its chronic complications. The herb Epimedium has beneficial therapeutic effects on various human diseases, including DM. Its major flavonoid component, icariin, has significant anti-DM activity and may help improve pancreatic β-cell dysfunction and insulin resistance. Furthermore, preclinical evidence has shown that icariin and its in vivo bioactive form, icariside II, have preventive and therapeutic effects on several diabetic complications, including diabetic cardiomyopathy, diabetic vascular endothelial disorder, diabetic nephropathy, and diabetic erectile dysfunction. In this review, we present the general and toxicological information concerning icariin and icariside II and review the anti-DM effects of icariin from a molecular perspective. Additionally, we discuss the potential benefits of icariin and icariside II on the important pathological mechanisms of various diabetic complications. Despite positive preclinical evidence, additional investigations are needed before relevant clinical studies can be conducted. Therefore, we conclude with suggestions for future research. Hopefully, this review will provide a comprehensive molecular perspective for future research and product development related to icariin and icariside II in treating DM and diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Ren G, Jiao P, Yan Y, Ma X, Qin G. Baicalin Exerts a Protective Effect in Diabetic Nephropathy by Repressing Inflammation and Oxidative Stress Through the SphK1/S1P/NF-κB Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:1193-1205. [PMID: 37131503 PMCID: PMC10149099 DOI: 10.2147/dmso.s407177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Background Inflammation and oxidative stress contribute to the development of diabetic nephropathy (DN). Baicalin (BA) shows renal protection against DN through its anti-inflammatory and anti-oxidant properties. However, the molecular mechanism by which BA exerts the therapeutic effects on DN remains to be investigated. Methods The db/db mice and high glucose (HG)-induced HK-2 cells were used as the in vivo and in vitro model of DN, respectively. The effects of BA were assessed by detecting the related blood and urine biochemical parameters, kidney histopathology, inflammatory cytokine production, oxidative stress indicators, and apoptosis. Cell viability and apoptosis were detected by CCK-8 assay and TUNEL assay, respectively. Related protein levels were measured by an immunoblotting method. Results In db/db model mice, BA reduced serum glucose concentration, decreased blood lipid levels, ameliorated kidney functions, and decreased histopathological changes in kidney tissues. BA also alleviated oxidative stress and inflammation in db/db mice. In addition, BA blocked the activation of sphingosine kinases type 1/sphingosine 1-phosphate (SphK1/S1P)/NF-κB pathway in db/db mice. In HK-2 cells, BA hindered HG-induced apoptosis, oxidative stress and inflammation, while overexpression of SphK1 or S1P could reverse these effects. BA alleviated HG-induced apoptosis, oxidative stress and inflammation in HK-2 cells through the S1P/NF-κB pathway. Furthermore, BA blocked the NF-κB signaling by diminishing p65 nuclear translocation via the SphK1/S1P pathway. Conclusion Our study strongly suggests that BA protects against DN via ameliorating inflammation, oxidative stress and apoptosis through the SphK1/S1P/NF-κB pathway. This study provides a novel insight into the therapeutic effects of BA in DN.
Collapse
Affiliation(s)
- Gaofei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Pengfei Jiao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yushan Yan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Xiaojun Ma; Guijun Qin, Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, People’s Republic of China, Tel +86-0371-66295052, Email ;
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
49
|
Darenskaya M, Chugunova E, Kolesnikov S, Semenova N, Michalevich I, Nikitina O, Lesnaya A, Kolesnikova L. Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia. Metabolites 2022; 12:1282. [PMID: 36557320 PMCID: PMC9785540 DOI: 10.3390/metabo12121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress plays a leading role in the pathogenesis of diabetic nephropathy. However, many aspects of oxidative stress reactions in the initial stages of this disease are not fully understood. The men cohort is of particular interest because of the severe effects of diabetes on their urogenital system. The aim of this study is to assess the intensity of lipids, proteins, DNA oxidative damage, blood antioxidant defense enzymatic, and activity of non-enzymatic components in men with type 1 diabetes mellitus (T1DM) in the early stages of diabetic nephropathy using receiver operator characteristic (ROC) analysis. This study included eighty-nine reproductive-age men in the initial stages of diabetic nephropathy (DN) and thirty-nine age- and sex-matched individuals not suffering from glycemic disorders. The DN patients were divided into two subgroups: stage 1 patients (urinary albumin < 30 mg/day and albumin/creatinine ratio < 3 mg/mmol (n = 45)) and stage 2 patients (urinary albumin 30−300 mg/day and albumin/creatinine ratio 3−30 mg/mmol (n = 44)). Levels of oxidative damage products (conjugated dienes (CDs), thiobarbituric acid reactants (TBARs), methylglyoxal (MGO), and 8-hydroxy-2’-deoxyguanosine (8-OHdG)) and antioxidants (glutathione peroxidase (GPx), glutathione S-transferases π (GSTp), glutathione reductase (GR), copper and zinc-containing superoxide dismutase 1 (SOD-1), total antioxidant status (TAS), α-tocopherol, retinol, reduced glutathione (GSH), and oxidative glutathione (GSSG)) were estimated in plasma and erythrocytes. Oxidative damage to cellular structures (higher values of median CDs (1.68 µmol/L; p = 0.003), MGO (3.38 mg/L; p < 0.001) in the stage 1 group and CDs (2.28 µmol/L; p < 0.0001), MGO (3.52 mg/L; p < 0.001), 8-OHdG (19.44 ng/mL; p = 0.010) in the stage 2 group) and changes in the antioxidant defense system (lower values of TAS (1.14 units; p = 0.011), α-tocopherol (12.17 µmol/L; p = 0.009), GPx (1099 units; p = 0.0003) and elevated levels of retinol (1.35 µmol/L; p < 0.001) in the group with stage 1; lower values of α-tocopherol (12.65 µmol/L; p = 0.033), GPx (1029.7 units; p = 0.0001) and increased levels of GR (292.75 units; p < 0.001), GSH (2.54 mmol/L; p = 0.010), GSSG (2.31 mmol/L; p < 0.0001), and retinol (0.81 µmol/L; p = 0.005) in the stage 2 group) were identified. The ROC analysis established that the following indicators have the highest diagnostic significance for stage 1 diabetic nephropathy: CDs (AUC 0.755; p < 0.0001), TBARs (AUC 0.748; p = 0.0001), MGO (AUC 0.720; p = 0.0033), retinol (AUC 0.932; p < 0.0001), GPx (AUC 0.741; p = 0.0004), α-tocopherol (AUC 0.683; p = 0.0071), and TAS (AUC 0.686; p = 0.0052) and the following for stage 2 diabetic nephropathy: CDs (AUC 0.714; p = 0.001), TBARs (AUC 0.708; p = 0.001), 8-OHdG (AUC 0.658; p = 0.0232), GSSG (AUC 0.714; p = 0.001), and GSH (AUC 0.667; p = 0.0108). We conclude that changes in indicators of damage to lipids, proteins, DNA, and the insufficiency of antioxidant defense factors already manifest in the first stage of diabetic nephropathy in men with T1DM. The ROC established which parameters have the greatest diagnostic significance for stages 1 and 2 of diabetic nephropathy, which may be utilized as additional criteria for defining men with T1DM as being in the risk group for the development of initial manifestations of the disease and thus allow for substantiating appropriate approaches to optimize preventive measures.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Personalized and Preventive Medicine, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
The Effect of Allograft Inflammatory Factor-1 on Inflammation, Oxidative Stress, and Autophagy via miR-34a/ATG4B Pathway in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1668000. [PMID: 36345369 PMCID: PMC9637042 DOI: 10.1155/2022/1668000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Increasing evidence suggests that disorders of inflammation, oxidative stress, and autophagy contribute to the pathogenesis of diabetic kidney disease (DKD). This study attempted to clarify the effect of allograft inflammatory factor-1 (AIF-1), miR-34a, and ATG4B on inflammation, oxidative stress, and autophagy in DKD both in vitro and in vivo experiments. In vivo, it was found that the levels of AIF-1, miR-34a, oxidative stress, and inflammatory factors were significantly increased in blood and urine samples of DKD patients and mouse models and correlated with the level of urinary protein. In vitro, it was also found that the expressions of AIF-1, miR-34a, ROS, and inflammatory factors were increased, while ATG4B and other autophagy related proteins were decreased in human renal glomerular endothelial cells (HRGECs) cultured with high concentration glucose medium (30 mmol/L). When AIF-1 gene was overexpressed, the levels of miR-34a, ROS, and inflammatory factors were significantly upregulated, and autophagy-related proteins such as ATG4B were downregulated, while downregulation of AIF-1 gene had the opposite effect. In addition, miR-34a inhibited the expression of ATG4B and autophagy-related proteins and increased the levels of ROS and inflammation. Furthermore, the result of luciferase reporter assay suggested that ATG4B was the target gene of miR-34a. When ATG4B gene was overexpressed, the level of autophagy was upregulated, and inflammatory factors were downregulated. Conversely, when ATG4B gene was inhibited, the level of autophagy was downregulated, and inflammatory factors were upregulated. Then, autophagy inducers inhibited the levels of inflammation and ROS, whereas autophagy inhibitors had the opposite function in HRGECs induced by glucose (30 mmol/L). In conclusion, the above data suggested that AIF-1 regulated the levels of inflammation, oxidative stress, and autophagy in HRGECs via miR-34a/ATG4B pathway to contribute to the pathogenesis of diabetic kidney disease.
Collapse
|