1
|
Ebadpour N, Mahmoudi M, Kamal Kheder R, Abavisani M, Baridjavadi Z, Abdollahi N, Esmaeili SA. From mitochondrial dysfunction to neuroinflammation in Parkinson's disease: Pathogenesis and mitochondrial therapeutic approaches. Int Immunopharmacol 2024; 142:113015. [PMID: 39222583 DOI: 10.1016/j.intimp.2024.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and intricate neurological condition resulting from a combination of several factors, such as genetics, environment, and the natural process of aging. Degeneration of neurons in the substantia nigra pars compacta (SN) can cause motor and non-motor impairments in patients with PD. In PD's etiology, inflammation and mitochondrial dysfunction play significant roles in the disease's development. Studies of individuals with PD have revealed increased inflammation in various brain areas. Furthermore, mitochondrial dysfunction is an essential part of PD pathophysiology. Defects in the components of the mitochondrial nucleus, its membrane or internal signaling pathways, mitochondrial homeostasis, and morphological alterations in peripheral cells have been extensively documented in PD patients. According to these studies, neuroinflammation and mitochondrial dysfunction are closely connected as pathogenic conditions in neurodegenerative diseases like PD. Given the mitochondria's role in cellular homeostasis maintenance in response to membrane structural flaws or mutations in mitochondrial DNA, their dynamic nature may present therapeutic prospects in this area. Recent research investigates mitochondrial transplantation as a potential treatment for Parkinson's disease in damaged neurons. This review delves into the impact of inflammation and mitochondrial dysfunction on PD occurrence, treatment approaches, and the latest developments in mitochondrial transplantation, highlighting the potential consequences of these discoveries.
Collapse
Affiliation(s)
- Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Fatima S, Zhou H, Chen Y, Liu Q. Role of ferroptosis in the pathogenesis of heart disease. Front Physiol 2024; 15:1450656. [PMID: 39318361 PMCID: PMC11420141 DOI: 10.3389/fphys.2024.1450656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Ferroptosis is a new form of regulated necrosis characterized by iron-dependent lipid peroxidation, leading to irreparable lipid damage, membrane permeabilization, and necrotic cell death. Ferroptosis has recently been implicated in the pathogenesis of multiple forms of heart disease such as myocardial infarction, cardiac hypertrophy, heart failure, and various cardiomyopathies. Important progress has also been made regarding how ferroptosis is regulated in vitro and in vivo as well as its role in cardiac homeostasis and disease pathogenesis. In this review, we discuss molecular mechanisms that regulates ferroptosis in the heart, including pathways leading to iron overload and lipid peroxidation as well as the roles of key organelles in this process. We also discuss recent findings pertaining to the new pathogenic role of ferroptosis in various forms of heart disease as well as genetic and pharmacologic strategies targeting ferroptosis in the heart.
Collapse
Affiliation(s)
| | | | | | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother 2024; 178:117084. [PMID: 39088967 DOI: 10.1016/j.biopha.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
The accumulation of excess reactive oxygen species (ROS) can lead to oxidative stress (OS), which can induce gene mutations, protein denaturation, and lipid peroxidation directly or indirectly. The expression is reduced ATP level in cells, increased cytoplasmic Ca2+, inflammation, and so on. Consequently, ROS are recognized as significant risk factors for human aging and various diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria are involved in the production of ROS through the respiratory chain. Abnormal mitochondrial characteristics, including mitochondrial OS, mitochondrial fission, mitochondrial fusion, and mitophagy, play an important role in various tissues. However, previous excellent reviews focused on OS-induced diseases. In this review, we focus on the latest progress of OS-induced mitochondrial dynamics, discuss OS-induced mitochondrial damage-related diseases, and summarize the OS-induced mitochondrial dynamics-related signaling pathways. Additionally, it elaborates on potential therapeutic methods aimed at preventing oxidative stress from further exacerbating mitochondrial disorders.
Collapse
Affiliation(s)
- Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjing Shi
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Ichikawa Y, Sato B, Hirano SI, Takefuji Y, Satoh F. Realizing brain therapy with "smart medicine": mechanism and case report of molecular hydrogen inhalation for Parkinson's disease. Med Gas Res 2024; 14:89-95. [PMID: 39073335 DOI: 10.4103/2045-9912.385949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2023] [Indexed: 07/30/2024] Open
Abstract
The Michael J. Fox Foundation has been funding research on Parkinson's disease for 35 years, but has yet to find a cure. This is due to a problem with the philosophy behind the development of modern medical treatments. In this paper, we will introduce "smart medicine" with a substance that can solve all the problems of central nervous system drugs. The substance is the smallest diatomic molecule, the hydrogen molecule. Due to their size, hydrogen molecules can easily penetrate the cell membrane and enter the brain. In the midbrain of Parkinson's disease patients, hydroxyl radicals generated by the Fenton reaction cause a chain reaction of oxidation of dopamine, but hydrogen entering the midbrain can convert the hydroxyl radicals into water molecules and inhibit the oxidation of dopamine. In this paper, we focus on the etiology of neurological diseases, especially Parkinson's disease, and present a case in which hydrogen inhalation improves the symptoms of Parkinson's disease, such as body bending and hand tremor. And we confidently state that if Michael J. Fox encountered "smart medicine" that could be realized with molecular hydrogen, he would not be a "lucky man" but a "super-lucky man."
Collapse
Affiliation(s)
- Yusuke Ichikawa
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Bunpei Sato
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Shin-Ichi Hirano
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
| | - Yoshiyasu Takefuji
- Faculty of Data Science, Musashino University, Tokyo, Japan
- Keio University, Tokyo, Japan
| | - Fumitake Satoh
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| |
Collapse
|
5
|
Li H, Sun H, Li S, Huang L, Zhang M, Wang S, Liu Q, Ying J, Zhao F, Su X, Mu D, Qu Y. Hydrogen alleviates hypoxic-ischaemic brain damage in neonatal rats by inhibiting injury of brain pericytes. J Cell Mol Med 2024; 28:e18505. [PMID: 39001579 PMCID: PMC11245570 DOI: 10.1111/jcmm.18505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hao Sun
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qian Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zheng Y, Zheng YH, Wang JH, Zhao TJ, Wang L, Liang TJ. Progress of mitochondrial and endoplasmic reticulum-associated signaling and its regulation of chronic liver disease by Chinese medicine. World J Hepatol 2024; 16:494-505. [PMID: 38689744 PMCID: PMC11056900 DOI: 10.4254/wjh.v16.i4.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/24/2024] Open
Abstract
The endoplasmic reticulum (ER) is connected to mitochondria through mitochondria-associated ER membranes (MAMs). MAMs provide a framework for crosstalk between the ER and mitochondria, playing a crucial role in regulating cellular calcium balance, lipid metabolism, and cell death. Dysregulation of MAMs is involved in the development of chronic liver disease (CLD). In CLD, changes in MAMs structure and function occur due to factors such as cellular stress, inflammation, and oxidative stress, leading to abnormal interactions between mitochondria and the ER, resulting in liver cell injury, fibrosis, and impaired liver function. Traditional Chinese medicine has shown some research progress in regulating MAMs signaling and treating CLD. This paper reviews the literature on the association between mitochondria and the ER, as well as the intervention of traditional Chinese medicine in regulating CLD.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China
| | - Yi-Hui Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China
| | - Jia-Hui Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China
| | - Tie-Jian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China
| | - Tian-Jian Liang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Kong J, Fan R, Zhang Y, Jia Z, Zhang J, Pan H, Wang Q. Oxidative stress in the brain-lung crosstalk: cellular and molecular perspectives. Front Aging Neurosci 2024; 16:1389454. [PMID: 38633980 PMCID: PMC11021774 DOI: 10.3389/fnagi.2024.1389454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Jining, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Jining, China
| | - Yuanqi Zhang
- College of Sports Science, Qufu Normal University, Jining, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Huixin Pan
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
8
|
Liu X, Hu X, Niu C, Yang Y, Huang Z, Xie J. Fibroblast growth factor 7 protects osteoblasts against oxidative damage through targeting mitochondria. FASEB J 2024; 38:e23524. [PMID: 38466191 DOI: 10.1096/fj.202301650rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
The pathophysiology of osteoporosis is significantly influenced by the impaired functioning of osteoblasts, which is particularly caused by oxidative stress. Nevertheless, the underlying mechanisms responsible for this phenomenon are still not well understood. The objective of this study was to elucidate the impact of fibroblast growth factor 7 (FGF7) on the behavior of osteoblasts under conditions of oxidative stress. The osteoblast-like MC3T3 cells were pretreated with recombinant FGF7 in the presence of oxidative stress induced by hydrogen peroxide (H2 O2 ). We first provided the evidence that the endogenous FGF7 was significantly increased in osteoblasts in response to the increased H2 O2 levels. Recombined FGF7 demonstrated a remarkable capacity to resist the detrimental effects of H2 O2 -induced oxidative stress, including the increase in cell apoptosis, decrease in osteoblast viability, and impairment in osteogenic differentiation capacity, on osteoblasts. Furthermore, we extensively explored the mechanism underlying these protective effects and discovered a remarkable modulation of reactive oxygen species (ROS) homeostasis in H2 O2 -treated cells following the pronounced expression of FGF7, which significantly differed from the control group. Additionally, we observed that FGF7 exerted partial preservation on both the morphology and function of mitochondria when exposed to oxidative stress conditions. Furthermore, FGF7 exhibited the ability to enhance the activation of the p38/MAPK signaling pathway while concurrently suppressing the JNK/MAPK signaling pathway in response to oxidative stress. These results underscore the promising role and underlying mechanisms of FGF7 in preserving osteoblast homeostasis in the face of oxidative stress.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuchen Hu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yueyi Yang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jing Xie
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhicheng J, Yongqian L, Peixuan W, Kai Y, Mengyu S, Wen C, Qihui L, Ying G. ErZhiTianGui Decoction alleviates age-related ovarian aging by regulating mitochondrial homeostasis and inhibiting ferroptosis. J Ovarian Res 2024; 17:12. [PMID: 38200521 PMCID: PMC10777630 DOI: 10.1186/s13048-023-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
AIM This study was designed to investigate the pharmacological effects and mechanisms of ErZhiTianGui Decoction (EZTG) for age-related ovarian aging in mice. METHODS This study used naturally aging mice as a model, and EZTG was used for intragastric administration. Ovarian pathological changes, as well as follicular reserve were assessed by hematoxylin and eosin staining, and serum hormone levels (anti-mullerian hormone, follicle-stimulating hormone), mitochondrial reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) damage marker 8-hydroxy-2'-deoxyguanosine(8-OHdG), and lipid peroxidation markers glutathione(GSH) and malondialdehyde(MDA) were determined by enzyme-linked immunosorbent assay. Mitochondrial membrane potential (MMP) levels in ovaries were determined using flow cytometry. The levels of PINK1 and Parkin were observed using immunofluorescence staining. Mitochondrial-derived vesicles (MDVs) and mitochondrial morphology were observed using electron microscopy. Prussian blue staining was used to observe iron ion aggregation in ovarian tissue. The Iron assay kits detected total iron levels. Western blot was used to detect the expression of proteins related to mitochondrial and ferroptosis related genes. RESULTS After EZTG treatment, aged mice showed increased ovarian reserve, improved serum hormone levels, increased MMP, GSH levels, and decreased mitochondrial ROS, 8-OHdG, and MDA levels. Immunofluorescence staining showed decreased levels of PINK1 and Parkin, and the same trend was observed for the Western blot. Meanwhile, electron microscopy showed that EZTG improved the mitochondrial morphology in the ovaries of aged mice. EZTG also decreased the total iron and protein levels of Acyl-CoA synthetase long-chain family4 (ACSL4) and increased the protein level of glutathione peroxidase 4 (GPX4) in the ovaries of aged mice. CONCLUSIONS EZTG can maintain PINK1/Parkin-mediated mitochondrial homeostasis, reduce the lipid peroxidation caused by the accumulation of ROS, and inhibit the occurrence of ferroptosis and delaying ovarian aging. These findings suggest that EZTG may be a promising drug for treating age-related ovarian aging in females.
Collapse
Affiliation(s)
- Jia Zhicheng
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Yongqian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wang Peixuan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Kai
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi Mengyu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Wen
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Qihui
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guo Ying
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Lin F, Zhang S, Zhu X, Lv Z. Autophagy-related 7 proteindependent autophagy mediates resveratrol-caused upregulation of mitochondrial biogenesis and steroidogenesis in aged Leydig cell. Mol Biol Rep 2023; 51:28. [PMID: 38133746 DOI: 10.1007/s11033-023-08935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Mitochondrial dysfunction may contribute to decreased testosterone synthesis in aged Leydig cells. Resveratrol (RSV) as an antioxidant has been shown to exhibit multiple positive effects on mitochondrion, where steroidogenesis takes place. Whether RSV can improve steroidogenesis in aged testis is still unknown. This study investigates the effect of RSV on testosterone production during aging and corresponding changes in mitochondrial biogenesis and autophagy activity, which are closely associated with steroidogenesis. Whether ATG7, an important autophagy-related protein, functions in RSV-treated aged Leydig cells will also be explored. METHODS AND RESULTS Two-month-old male C57BL/6 mice were fed for 16 months by customized regular diet with or without RSV as diet supplement. Leydig cell line TM3 cells were treated with D-galactose to induce senescence, followed with or without RSV treatment. Results found that RSV supplement increased testosterone production in both aged mice and D-galactose-induced senescent Leydig cells. Western blot results revealed that RSV treatment elevated levels of steroidogenic rate-limiting enzymes StAR and 3β-HSD, as well as autophagy-related proteins LC3II, Beclin1, ATG5 and ATG7 and mitochondrial function-related proteins mtTFA and COXIV. However, after Atg7 was knocked down in senescent Leydig cells, even though RSV was added, levels of these proteins declined significantly, accompanied by decreased levels of mitochondrial transcript factors PGC-1α, mtTFA and NRF-1 and more fragmented mitochondria, demonstrating that Atg7 knockdown wrecked the protective effects of RSV on steroidogenesis in senescent Leydig cells. CONCLUSION ATG7-dependent autophagy plays a key role in RSV-brought testosterone production increase through regulating mitochondrial biogenesis in senescent Leydig cells.
Collapse
Affiliation(s)
- Fanhong Lin
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Histology & Embryology, Clinical College of Anhui Medical University, Hefei, 230601, China
| | - Shoubing Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaomei Zhu
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhengmei Lv
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Toropova AA, Razuvaeva YG, Olennikov DN, Markova KV, Lemza SV. Protective effects of Leuzea uniflora ( Rhaponticum uniflorum) on the brain mitochondrial function in white rats at hypoxia/reoxygenation. Nat Prod Res 2023; 37:3878-3883. [PMID: 36495287 DOI: 10.1080/14786419.2022.2155646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Protective effects of Leuzea uniflora (L.) Holub (Rhaponticum uniflorum (L.) DC., Asteraceae) on the white rats' brain mitochondrial function in acute hypobaric hypoxia/reoxygenation were studied. The extract of L. uniflora in the dose of 100 mg/kg was administered to animals for 14 days. The effects of the extract on the brain mitochondria respiration rate as well as on the NADH- and succinate dehydrogenase activities were determined. The extract of L. uniflora increased the oxidative phosphorylation processes coupling in brain mitochondria, namely, it significantly stimulated basal respiration, caused an increase in NADH-oxidase and succinate dehydrogenase complexes activity, increased the ATP content, reduced the lipid peroxidation intensity and improved the antioxidant state. The results obtained indicate the presence of energy-protective and antioxidant activities of L. uniflora, which are due to its ability to reduce the oxidation of biomacromolecules in hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Anyuta A Toropova
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, SB RAS, Ulan-Ude, Russia
| | - Yanina G Razuvaeva
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, SB RAS, Ulan-Ude, Russia
| | - Daniil N Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, SB RAS, Ulan-Ude, Russia
| | - Kristina V Markova
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, SB RAS, Ulan-Ude, Russia
| | - Sergey V Lemza
- Laboratory of Experimental Pharmacology, Institute of General and Experimental Biology, SB RAS, Ulan-Ude, Russia
| |
Collapse
|
12
|
Hibino M, Maeki M, Tokeshi M, Ishitsuka Y, Harashima H, Yamada Y. A system that delivers an antioxidant to mitochondria for the treatment of drug-induced liver injury. Sci Rep 2023; 13:6961. [PMID: 37164988 PMCID: PMC10172346 DOI: 10.1038/s41598-023-33893-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Mitochondria, a major source of reactive oxygen species (ROS), are intimately involved in the response to oxidative stress in the body. The production of excessive ROS affects the balance between oxidative responses and antioxidant defense mechanisms thus perturbing mitochondrial function eventually leading to tissue injury. Therefore, antioxidant therapies that target mitochondria can be used to treat such diseases and improve general health. This study reports on an attempt to establish a system for delivering an antioxidant molecule coenzyme Q10 (CoQ10) to mitochondria and the validation of its therapeutic efficacy in a model of acetaminophen (APAP) liver injury caused by oxidative stress in mitochondria. A CoQ10-MITO-Porter, a mitochondrial targeting lipid nanoparticle (LNP) containing encapsulated CoQ10, was prepared using a microfluidic device. It was essential to include polyethylene glycol (PEG) in the lipid composition of this LNP to ensure stability of the CoQ10, since it is relatively insoluble in water. Based on transmission electron microscope (TEM) observations and small angle X-ray scattering (SAXS) measurements, the CoQ10-MITO-Porter was estimated to be a 50 nm spherical particle without a regular layer structure. The use of the CoQ10-MITO-Porter improved liver function and reduced tissue injury, suggesting that it exerted a therapeutic effect on APAP liver injury.
Collapse
Affiliation(s)
- Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Manabu Tokeshi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
- Japan Science and Technology Agency (JST) Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Kawaguchi, Japan.
| |
Collapse
|
13
|
Li Y, Du Z, Li T, Ren X, Yu Y, Duan J, Sun Z. MitoQ ameliorates PM 2.5-induced pulmonary fibrosis through regulating the mitochondria DNA homeostasis. CHEMOSPHERE 2023; 330:138745. [PMID: 37088202 DOI: 10.1016/j.chemosphere.2023.138745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Pulmonary fibrosis is a severe pulmonary disease, and may related to PM2.5 exposure. Our study aims to explore the pathogenesis of PM2.5-induced pulmonary fibrosis, and MitoQ protective effect in this process. Our results find that inflammatory cells aggregation and pulmonary fibrosis in mice lung after PM2.5 exposure. Moreover, Collagen I/III overproduction, EMT and TGF-β1/Smad2 pathway activation in mice lung and BEAS-2B after PM2.5 exposure. Fortunately, these changes were partially ameliorated after MitoQ treatment. Meanwhile, severe oxidative stress, mitochondrial homeostasis imbalance, overproduction of 8-oxoG (7,8-dihydro-8-oxoguanine), as well as the inhibition of SIRT3/OGG1 pathway have founded in mice lung or BEAS-2B after PM2.5 exposure, which were alleviated by MitoQ treatment. Collectively, our study found that oxidative stress, especially mitochondrial oxidative stress participates in the PM2.5-induced pulmonary fibrosis, and MitoQ intervention had a protective effect on this progress. Moreover, mitochondrial DNA homeostasis might participate in the pulmonary fibrosis caused by PM2.5 exposure. Our study provides a novel pathogenesis of PM2.5-caused pulmonary fibrosis and a possible targeted therapy for the pulmonary diseases triggered by PM2.5.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
14
|
Wang M, Zhang M, Hu X, Wang W, Zhang Y, Zhang L, Wang J. Lipid-functionalized gold nanorods with plug-to-direct mitochondria targeting ligand for synergetic photothermal-chemotherapy of tumor therapy. Eur J Pharm Biopharm 2023; 185:71-81. [PMID: 36828240 DOI: 10.1016/j.ejpb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Mitochondria targeting therapeutic strategies are promising for more effective and precise cancer therapy. Photothermal therapy are extensively studied as noninvasive cancer treatment. With regards to all-in-one nanocarrier-mediated drug delivery platform, it is still a challenge to enhance one of the features but not compromise other merits. Herein, we present a mitochondrial targeting photothermal-chemotherapy all-in-one nanoplatform involving lipid-functionalized gold nanorods (AuNR) with plug-to-direct mitochondria targeting ligand for synergetic enhanced tumor therapy. Firstly, AuNR were modified by DSPE-PEG-SH owing to the special affinity of sulfhydryl group and gold. And then, DSPE-PEG-DOX with mitochondrial targeting character was directly inserted into DSPE-PEG-SH layer. Meanwhile, paclitaxel (PTX) was loaded in hydrophobic region of the lipid layer. Quite different from introducing additional mitochondrial targeting molecules, we incorporated amphiphilic DSPE-PEG-DOX into a DSPE-PEG-SH layer modified around AuNR to achieve both mitochondrial targeting, photothermal and dual drug loading in a simple AuNR-lipid-DOX/PTX platform, in the case that efficiently enhanced production of reactive oxygen species (ROS) in mitochondria and excellent anti-tumor efficacy were achieved. With good biocompatibility, the constructed nanoplatform based on lipid-functionalized AuNR synergistically combined mitochondrial targeted DSPE-PEG-DOX with mitochondrial-acted PTX and photothermal therapy (PTT), which provided a feasible strategy for organelle-targeted combination PTT-chemotherapy to improve therapeutic effects.
Collapse
Affiliation(s)
- Mi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wenli Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yao Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lina Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
15
|
Mendelsohn DH, Niedermair T, Walter N, Alt V, Rupp M, Brochhausen C. Ultrastructural Evidence of Mitochondrial Dysfunction in Osteomyelitis Patients. Int J Mol Sci 2023; 24:5709. [PMID: 36982790 PMCID: PMC10053973 DOI: 10.3390/ijms24065709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Osteomyelitis is a difficult-to-treat disease with high chronification rates. First studies suggest increases in mitochondrial fission and mitochondrial dysfunction as possible contributors to the accumulation of intracellular reactive oxygen species and thereby to the cell death of infected bone cells. The aim of the present study is to analyze the ultrastructural impact of bacterial infection on osteocytic and osteoblastic mitochondria. Human infected bone tissue samples were visualized via light microscopy and transmission electron microscopy. Osteoblasts, osteocytes and their mitochondria were analyzed histomorphometrically and compared with the control group of noninfectious human bone tissue samples. The results depicted swollen hydropic mitochondria including depleted cristae and a decrease in matrix density in the infected samples. Furthermore, perinuclear clustering of mitochondria could also be observed regularly. Additionally, increases in relative mitochondrial area and number were found as a correlate for increased mitochondrial fission. In conclusion, mitochondrial morphology is altered during osteomyelitis in a comparable way to mitochondria from hypoxic tissues. This gives new perspectives on the treatment strategies since the manipulation of mitochondrial dynamics may improve bone cell survival as a potential new target for the therapy of osteomyelitis.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Kubota F, Takano Y, Maeki M, Tokeshi M, Harashima H, Yamada Y. Fine-tuning the encapsulation of a photosensitizer in nanoparticles reveals the relationship between internal structure and phototherapeutic effects. JOURNAL OF BIOPHOTONICS 2023; 16:e202200119. [PMID: 36054273 DOI: 10.1002/jbio.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Photodynamic therapy (PDT) is a cancer therapy that uses a photosensitizer (PS) in the presence of oxygen molecules. Since singlet oxygen is highly reactive, it is important to deliver it to the target site. Thus, an efficient drug delivery system (DDS) is essential for enhancing the efficacy of such a treatment and protecting against the side effects of PDT. Here, we report on attempts to increase the therapeutic effect of PDT by using a DDS, a lipid nanoparticle (LNP). We prepared a porphyrin analog, rTPA (PS) that was encapsulated in LNPs using a microfluidic device. The findings indicated that the internal structure of the prepared particles changed depending on the amount of rTPA in LNPs. The photoactivity and cell-killing effect of PS in LNPs also changed when the amount of the cargo increased. These results suggest that the internal structure of LNPs is important factors that affect drug efficacy.
Collapse
Affiliation(s)
- Fumika Kubota
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | | - Manabu Tokeshi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. PLANT COMMUNICATIONS 2023; 4:100501. [PMID: 36463409 PMCID: PMC9860193 DOI: 10.1016/j.xplc.2022.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial retrograde signaling (MRS) supports photosynthetic function under a variety of conditions. Induction of mitochondrial dysfunction with myxothiazol (a specific inhibitor of the mitochondrial bc1 complex) or antimycin A (an inhibitor of the mitochondrial bc1 complex and cyclic electron transport in the chloroplast under light conditions) in the light and dark revealed diurnal control of MRS. This was evidenced by (1) significantly enhanced binding of ANAC017 to promoters in the light compared with the dark in Arabidopsis plants treated with myxothiazol (but not antimycin A), (2) overlap in the experimentally determined binding sites for ANAC017 and circadian clock regulators in the promoters of ANAC013 and AOX1a, (3) a diurnal expression pattern for ANAC017 and transcription factors it regulates, (4) altered expression of ANAC017-regulated genes in circadian clock mutants with and without myxothiazol treatment, and (5) a decrease in the magnitude of LHY and CCA1 expression in an ANAC017-overexpressing line and protein-protein interaction between ANAC017 and PIF4. This study also shows a large difference in transcriptome responses to antimycin A and myxothiazol in the dark: these responses are ANAC017 independent, observed in shoots and roots, similar to biotic challenge and salicylic acid responses, and involve ERF and ZAT transcription factors. This suggests that antimycin A treatment stimulates a second MRS pathway that is mediated or converges with salicylic acid signaling and provides a merging point with chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
18
|
Miao C, Zhao Y, Chen Y, Wang R, Ren N, Chen B, Dong P, Zhang Q. Investigation of He's Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function. Front Endocrinol (Lausanne) 2023; 14:1077315. [PMID: 36777359 PMCID: PMC9911881 DOI: 10.3389/fendo.2023.1077315] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is a common gynecological disease with serious ramifications including low pregnancy rate and low estrogen symptoms. Traditional Chinese medicine is regarded as an effective treatment for POI. However, the therapeutic mechanism of it is unclear. METHODS In this study, a mouse model of primary ovarian insufficiency was established by intraperitoneal injection of cyclophosphamide (CTX) and He's Yang Chao Recipe (HSYC) concentrate was used for intragastric administration. Serum hormone levels (Anti-Müllerian Hormone, Estradiol, Progesterone, Luteinizing Hormone and Follicle Stimulating Hormone) and Oxidative Stress (OS) related products, superoxide dismutase (SOD), GSH-Px, and malondialdehyde (MDA) were measured by enzyme-linked immunosorbent assay. Pathological changes in ovarian tissue were evaluated by hematoxylin and eosin staining, and flow cytometry was used to determine reactive oxygen species content and mitochondrial membrane potential levels in granulosa cells. Mitochondrial distribution and morphology were investigated using immunofluorescence staining. The level of mitophagy was evaluated by LC3 immunofluorescence staining and autophagosome counts using electron microscopy. Western blotting and qPCR were used to detect the expression of proteins and genes related to mitophagy and the NLRP3 inflammasome. RESULTS After HSYC treatment, the ovarian damage was milder than in the CTX group. Compared with the CTX group; SOD, GSH-Px, and the total antioxidant capacity were significantly increased, while MDA and ROS were decreased in the HSYC treatment groups. Furthermore, mitochondrial distribution and membrane potential levels were improved after HSYC treatment compared to the CTX group. After the HSYC treatment, the LC3 fluorescent intensity and autophagosome counts were decreased. Similarly, mitophagy related markers PINK1, Parkin, LC3, and Beclin1 were decreased, while p62 was significantly increased, compared with the CTX groups. The mRNA and protein expression of NLRP3 inflammasome, NLRP3, caspase-1, GSDMD, IL-18, and IL-1β were significantly decreased in the HSYC treatment groups. CONCLUSION This is the first study in molecular mechanisms underlying HSYC against granulosa cell injury in POI. HSYC protects ovaries from CTX-induced ovarian damage and oxidative stress. HSYC enhanced ovarian function in mice with primary ovarian insufficiency by inhibiting PINK1-Parkin mitophagy and NLRP3 inflammasome activation.
Collapse
|
19
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Dou R, Cai X, Ruan L, Zhang J, Rouzi A, Chen J, Chai Z, Hu Y. Precision Nanomedicines: Targeting Hot Mitochondria in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4103-4117. [PMID: 36066886 DOI: 10.1021/acsabm.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrion is a multifunctional organelle in a cell, and it is one of the important targets of antitumor therapy. Conventional mitochondrial targeting strategies can hardly distinguish the mitochondria in cancer cells from those in normal cells, which might raise a concern about the biosafety. Recent studies suggest that a relatively high temperature of mitochondria exists in cancer cells. We named it tumor intrinsic mitochondrial overheating (TIMO). By taking advantage of the difference in mitochondrial temperatures between cancer cells and normal cells, therapeutic agents can be specifically delivered to the mitochondria in cancer cells. Here we will briefly overview the mitochondria-targeted delivery strategies. In addition, the recent discovery of hot mitochondria in cancer cells and the development of mitochondrial temperature-responsive delivery systems for antitumor therapy will be reviewed.
Collapse
Affiliation(s)
- Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Aisha Rouzi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| |
Collapse
|
21
|
Xin Z, Shen Y, Hao H, Zhang L, Hu X, Wang J. Hyaluronic acid coated mesoporous carbon-copper peroxide for H 2O 2 self-supplying and near-infrared responsive multi-mode breast cancer oncotherapy. Colloids Surf B Biointerfaces 2022; 218:112776. [PMID: 36007311 DOI: 10.1016/j.colsurfb.2022.112776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
It is challenging to develop the synergistic intelligent therapeutic nanoplatform to cure cancer. In the present study, a novel nanotherapeutic platform was constructed for H2O2 self-supplying and multimodal breast cancer therapy. In which, copper peroxide nanoparticles (CP NPs) were adsorbed on the surface of mesoporous carbon nanospheres (MCN) through electrostatic attraction, followed by loading doxorubicin (DOX) into the nanocomposite (MCN-CP) and coating hyaluronic acid (HA) on the surface, the DOX/MCN-CP-HA nanoplatform was obtained. In the system, the MCN not only possessed a high DOX loading capacity, but produced excellent photothermal therapy (PTT) effect. Importantly, the ultra-small CP NPs as the Fenton agent not only could selectively self-supplying H2O2 in acidic condition, but simultaneously release Cu2+ to catalyze the production of ·OH in the presence of H2O2. Meantime, the resulting Cu2+ possessed GSH-elimination property, which afforded enhanced chemodynamic therapy (CDT). Furthermore, the outer layer HA targeted to CD44 and achieved breast cancer cell targeting. The elevated temperature from PTT and acidic tumor microenvironment accelerated the release of DOX, which enabled DOX/MCN-CP-HA as an intelligent CDT-PTT-chemotherapy synergistic nanoplatform. In vitro and in vivo pharmacodynamic evaluations confirmed the potential of the nanoplatform for CDT-PTT-chemotherapy synergistic oncotherapy of breast cancer.
Collapse
Affiliation(s)
- Zhichuan Xin
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Han Hao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lina Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
22
|
Shen C, Huang G, Hu D, Zhao H. Brain extracellular matrix attenuates photodynamic cytotoxicity of glioma cells. Photodiagnosis Photodyn Ther 2022; 39:103008. [PMID: 35817370 DOI: 10.1016/j.pdpdt.2022.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
Glioma is the most common tumor in the central nervous system, which is often accompanied by poor prognosis. Brain extracellular matrix (ECM) plays an important role in regulating the growth and migration of glioma. Photodynamic therapy (PDT) has been an effective method for the treatment of solid tumors by oxidative modifications in recent years, and ECM may have an impact on the cytotoxicity of photodynamic therapy. In this work, we prepared decellularized brain ECM by chemical method to investigate the influence of the photodynamic effect of glioma C6 cells. Compared with decellularized liver ECM, brain ECM reduces PDT cytotoxicity. By observing the content of reactive oxygen species produced by near-infrared light active indocyanine green in cells, it was found that ECM did not affect the production of reactive oxygen species. Therefore, it is speculated that brain ECM may enhance the oxidative stress adaptability of glioma cells through potential signal regulation, or protect photodynamic targeting biomolecules (such as proteins and other cellular components) from oxidation in PDT mediated by indocyanine green and 808 nm laser in glioma cells.
Collapse
Affiliation(s)
- Cong Shen
- Department of Geriatric, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Guoying Huang
- Department of Neurology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Dan Hu
- Department of Geriatric, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hongjian Zhao
- Department of Neurology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Zhang C, Zhao Y, Yu M, Qin J, Ye B, Wang Q. Mitochondrial Dysfunction and Chronic Liver Disease. Curr Issues Mol Biol 2022; 44:3156-3165. [PMID: 35877442 PMCID: PMC9319137 DOI: 10.3390/cimb44070218] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengli Yu
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianru Qin
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| |
Collapse
|
24
|
Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022; 188:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
A new era of nanomedicines that involve nucleic acids/gene therapy has been opened after two decades in 21st century and new types of more efficient drug delivery systems (DDS) are highly expected and will include extrahepatic delivery. In this review, we summarize the possibility and expectations for the extrahepatic delivery of small interfering RNA/messenger RNA/plasmid DNA/genome editing to the spleen, lung, tumor, lymph nodes as well as the liver based on our studies as well as reported information. Passive targeting and active targeting are discussed in in vivo delivery and the importance of controlled intracellular trafficking for successful therapeutic results are also discussed. In addition, mitochondrial delivery as a novel strategy for nucleic acids/gene therapy is introduced to expand the therapeutic dimension of nucleic acids/gene therapy in the liver as well as the heart, kidney and brain.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud M Abd Elwakil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
25
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022; 348:357-369. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Japan Science and Technology Agency (JST) Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022; 22:1209-1219. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION After the emergence of lipid nanoparticles (LNP) containing therapeutic mRNA as vaccines for use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the clinical usefulness of nucleic acid-encapsulated LNPs is now a fact. In addition to the nucleus and cytoplasm, mitochondria, which have their own genome, are a site where nucleic acids function in the cell. Gene therapies targeting mitochondria are expected to pave the way for the next generation of therapies. AREAS COVERED Methods for delivering nucleic acids to mitochondria are needed in order to realize such innovative therapies. However, only a few reports on delivery systems targeting mitochondria have appeared. In this review, we summarize the current state of research on RNA-based therapeutics targeted to mitochondria, with emphasis on mitochondrial RNA delivery therapies and on therapies that involve the use of mitochondrial genome editing devices. EXPERT OPINION We hope that this review article will focus our attention to this area of research, stimulate more interest in this field of research, and lead to the development of mitochondria-targeted nucleic acid medicine. It has the potential to become a major weapon against urgent and unknown diseases, including SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Japan
| | - Sen Ishizuka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Manae Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
27
|
Samluk L, Ostapczuk P, Dziembowska M. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Mol Biol Cell 2022; 33:ar67. [PMID: 35446108 PMCID: PMC9635289 DOI: 10.1091/mbc.e21-11-0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence indicates that mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases. Both of these conditions are often associated with an increase in protein aggregation. However, still unknown are the specific defects of mitochondrial biology that play a critical role in the development of Alzheimer’s disease, in which Tau protein aggregates are observed in the brains of some patients. Here, we report that long-term mitochondrial stress triggered Tau dimerization, which is the first step of protein aggregation. Mitochondrial dysfunction was induced in HEK293T cells that received prolonged treatment with rotenone and in HEK293T cells with the knockout of NDUFA11 protein. To monitor changes in Tau protein aggregation, we took advantage of the bimolecular fluorescence complementation assay using HEK293T cells that were transfected with plasmids that encoded Tau. Inhibition of the ISR with ISRIB induced Tau dimerization, whereas ISR activation with salubrinal, guanabenz, and sephin1 partially reversed this process. Cells that were treated with ROS scavengers, N-acetyl-l-cysteine or MitoQ, significantly reduced the amount of ROS and Tau dimerization, indicating the involvement of oxidative stress in Tau aggregation. Our results indicate that long-term mitochondrial stress may induce early steps of Tau protein aggregation by affecting oxidative balance and cellular proteostasis.
Collapse
Affiliation(s)
- Lukasz Samluk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Piotr Ostapczuk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Magdalena Dziembowska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
28
|
Transplantation of MITO cells, mitochondria activated cardiac progenitor cells, to the ischemic myocardium of mouse enhances the therapeutic effect. Sci Rep 2022; 12:4344. [PMID: 35318358 PMCID: PMC8941106 DOI: 10.1038/s41598-022-08583-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the potential for myocardial stem cell transplantation as a promising treatment for heart failure, numerous clinical trials have been conducted and its usefulness has been clearly confirmed. However, the low rate of engraftment of transplanted cells has become a clinical problem, and this needs to be improved in the case of transplanting cells to the heart. To address this issue, we report on attempts to prepare mitochondria-activated stem cells (MITO cells) for use in transplantation. MITO cells, which is cardiac progenitor cells (CPCs) activated by the mitochondrial delivery of resveratrol with an anti-oxidant and mitochondrial activation effects were successfully prepared using a mitochondrial targeting nanocarrier (MITO-Porter). The purpose of this study was to validate the therapeutic effect of cell transplantation by the MITO cells using a mouse model of myocardial ischemia–reperfusion. Mouse CPCs were used as transplanted cells. The transplantation of CPCs and MITO cells were conducted after myocardial ischemia–reperfusion, and the therapeutic effect was determined. The MITO cells transplanted group showed increase in postoperative weight gain, improve cardiac function and inhibition of fibrosis compared to the non-transplanted group and the CPC group. The transplantation of MITO cells to the ischemic myocardium showed a stronger transplantation effect compared to conventional CPC transplantation.
Collapse
|
29
|
Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood brain barrier with "nano" warriors: Novel strategy against ischemic stroke. Theranostics 2022; 12:689-719. [PMID: 34976208 PMCID: PMC8692911 DOI: 10.7150/thno.64806] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability resulting in inevitable burden globally. Ischemic injury initiates cascade of pathological events comprising energy dwindling, failure of ionic gradients, failure of blood brain barrier (BBB), vasogenic edema, calcium over accumulation, excitotoxicity, increased oxidative stress, mitochondrial dysfunction, inflammation and eventually cell death. In spite of such complexity of the disease, the only treatment approved by US Food and Drug Administration (FDA) is tissue plasminogen activator (t-PA). This therapy overcome blood deficiency in the brain along with side effects of reperfusion which are responsible for considerable tissue injury. Therefore, there is urgent need of novel therapeutic perspectives that can protect the integrity of BBB and salvageable brain tissue. Advancement in nanomedicine is empowering new approaches that are potent to improve the understanding and treatment of the IS. Herein, we focus nanomaterial mediated drug delivery systems (DDSs) and their role to bypass and cross BBB especially via intranasal drug delivery. The various nanocarriers used in DDSs are also discussed. In a nut shell, the objective is to provide an overview of use of nanomedicine in the diagnosis and treatment of IS to facilitate the research from benchtop to bedside.
Collapse
|
30
|
Ávila-Sánchez MA, Isaac-Olivé K, Aranda-Lara L, Morales-Ávila E, Plata-Becerril A, Jiménez-Mancilla NP, Ocampo-García B, Estrada JA, Santos-Cuevas CL, Torres-García E, Camacho-López MA. Targeted photodynamic therapy using reconstituted high-density lipoproteins as rhodamine transporters. Photodiagnosis Photodyn Ther 2021; 37:102630. [PMID: 34798347 DOI: 10.1016/j.pdpdt.2021.102630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023]
Abstract
Reconstituted high-density lipoprotein (rHDL) nanoparticles are excellent transporters of molecules and very useful for targeted therapy as they specifically recognize the scavenger receptor, class B1 (SR-B1) that is present on the surface of a wide range of tumor cells. However, they have rarely been employed to transport photosensitizers (PS) for photodynamic therapy (PDT). Rhodamine (R) compounds have been dismissed as useful PSs for PDT due to their low 1O2 production, excitation wavelengths with little tissue penetration, and poor selectivity for tumor cells. It was recently demonstrated that when irradiating at 532 nm or with Cerenkov radiation (CR) from a β-emitting radionuclide, R123, R6G, and RB undergo electron transfer reactions (type I reaction) with folic acid. R6G also produces type I reactions with O2. In this work, the photodynamic effects of the rHDL-R system were evaluated in vitro. rHDL nanoparticles loaded with R123, R6G, and RB were synthesized, and the PS was internalized into T47D tumor cells. When cells were irradiated with a 532-nm laser in the presence of an rHDL-R systems, a cytotoxic photodynamic effect was obtained in the order R6G > R123 > RB. In the presence of CR from a 177Lu source, cytotoxicity showed the order R6G > RB > R123. The higher cytotoxicity induced by R6G in both cases corresponds to higher cellular internalization and larger production of type I and II reactions. Thus, in this work, it is proposed that rHDL-R/177Lu system can be applied in theragnostics as a multimodal radiotherapy-PDT-imaging system (imaging by SPECT or Cerenkov) and in hypoxic solid tumors in which external radiation is not effective and 177Lu-CR acts as light source.
Collapse
Affiliation(s)
- Marcela A Ávila-Sánchez
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Enrique Morales-Ávila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Adriana Plata-Becerril
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Nallely P Jiménez-Mancilla
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico.
| | - Blanca Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Clara L Santos-Cuevas
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Miguel A Camacho-López
- Laboratorio de Fotomedicina, Biofotónica y Espectroscopía Láser de Pulsos Ultracortos, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| |
Collapse
|
31
|
Validation of the mitochondrial delivery of vitamin B 1 to enhance ATP production using SH-SY5Y cells, a model neuroblast. J Pharm Sci 2021; 111:432-439. [PMID: 34478755 DOI: 10.1016/j.xphs.2021.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Large amounts of ATP are produced in mitochondria especially in the brain and heart, where energy consumption is high compared with other organs. Thus, a decrease in ATP production in such organs could be a cause of many diseases such as neurodegenerative diseases and heart disease. Based on thus assumption, increasing intracellular ATP production in such organs could be a therapeutic strategy. In this study, we report on the delivery of vitamin B1, a coenzyme that activates the tricarboxylic acid (TCA) cycle, to the inside of mitochondria. Since the TCA cycle is responsible for ATP production, we hypothesized delivering vitamin B1 to mitochondria would enhance ATP production. To accomplish this, we used a mitochondrial targeted liposome a "MITO-Porter" as the carrier. Using SH-SY5Y cells, a model neuroblast, cellular uptake and intracellular localization were analyzed using flow cytometry and confocal laser scanning microscopy. The optimized MITO-Porter containing encapsulated vitamin B1 (MITO-Porter (VB1)) was efficiently accumulated in mitochondria of SH-SY5Y cells. Further studies confirmed that the level of ATP production after the MITO-Porter (VB1) treatment was significantly increased as compared to a control group that was treated with naked vitamin B1. This study provides the potential for an innovative therapeutic strategy in which the TCA cycle is activated, thus enhancing ATP production.
Collapse
|
32
|
Zhao Z, Hou Y, Zhou W, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes. Bioeng Transl Med 2021; 6:e10209. [PMID: 34027095 PMCID: PMC8126821 DOI: 10.1002/btm2.10209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbon tetrachloride (CCl4)-induced liver injury is predominantly caused by free radicals, in which mitochondrial function of hepatocytes is impaired, accompanying with the production of ROS and decreased ATP energy supply in animals intoxicated with CCl4. Here we explored a novel therapeutic approach, mitochondrial transplantation therapy, for treating the liver injury. The results showed that mitochondria entered hepatocytes through macropinocytosis pathway, and thereby cell viability was recovered in a concentration-dependent manner. Mitochondrial therapy could increase ATP supply and reduce free radical damage. In liver injury model of mice, mitochondrial therapy significantly improved liver function and prevented tissue fibrogenesis. Transcriptomic data revealed that mitochondrial unfold protein response (UPRmt), a protective transcriptional response of mitochondria-to-nuclear retrograde signaling, would be triggered after mitochondrial administration. Then the anti-oxidant genes were up-regulated to scavenge free radicals. The mitochondrial function was rehabilitated through the transcriptional activation of respiratory chain enzyme and mitophage-associated genes. The protective response re-balanced the cellular homeostasis, and eventually enhanced stress resistance that is linked to cell survival. The efficacy of mitochondrial transplantation therapy in the animals would suggest a novel approach for treating liver injury caused by toxins.
Collapse
Affiliation(s)
- Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Yixue Hou
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Wei Zhou
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | | | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
33
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
34
|
Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants (Basel) 2020; 9:antiox9121188. [PMID: 33260826 PMCID: PMC7759788 DOI: 10.3390/antiox9121188] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.
Collapse
|
35
|
Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7385458. [PMID: 34493950 PMCID: PMC8418694 DOI: 10.1155/2020/7385458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.
Collapse
|
36
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
37
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J Control Release 2020; 327:533-545. [PMID: 32916227 PMCID: PMC7477636 DOI: 10.1016/j.jconrel.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Due to the rapid changes that have occurred in the field of drug discovery and the recent developments in the early 21st century, the role of drug delivery systems (DDS) has become increasingly more important. For the past 20 years, our laboratory has been developing gene delivery systems based on lipid-based delivery systems. One of our efforts has been directed toward developing a multifunctional envelope-type nano device (MEND) by modifying the particle surface with octaarginine, which resulted in a remarkably enhanced cellular uptake and improved intracellular trafficking of plasmid DNA (pDNA). When we moved to in vivo applications, however, we were faced with the PEG-dilemma and we shifted our strategy to the incorporation of ionizable cationic lipids into our system. This resulted in some dramatic improvements over our original design and this can be attributed to the development of a new lipid library. We have also developed a mitochondrial targeting system based on a membrane fusion mechanism using a MITO-Porter, which can deliver nucleic acids/pDNA into the matrix of mitochondria. After the appearance of antibody medicines, Opdivo, an immune checkpoint inhibitor, has established cancer immunology as the 4th strategy in cancer therapy. Our DDS technologies can also be applied to this new field of cancer therapy to cure cancer by controlling our immune mechanisms. The latest studies are summarized in this review article.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
38
|
Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci 2020; 21:ijms21176365. [PMID: 32887310 PMCID: PMC7504154 DOI: 10.3390/ijms21176365] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial transplantation therapy is an innovative strategy for the treatment of mitochondrial dysfunction. The approach has been reported to be useful in the treatment of cardiac ischemic reperfusion injuries in human clinical trials and has also been shown to be useful in animal studies as a method for treating mitochondrial dysfunction in various tissues, including the heart, liver, lungs, and brain. On the other hand, there is no methodology for using preserved mitochondria. Research into the pharmaceutical formulation of mitochondria to promote mitochondrial transplantation therapy as the next step in treating many patients is urgently needed. In this review, we overview previous studies on the therapeutic effects of mitochondrial transplantation. We also discuss studies related to immune responses that occur during mitochondrial transplantation and methods for preserving mitochondria, which are key to their stability as medicines. Finally, we describe research related to mitochondrial targeting drug delivery systems (DDS) and discuss future perspectives of mitochondrial transplantation.
Collapse
|