1
|
Kobayashi H, Iida T, Ochiai Y, Malagola E, Zhi X, White RA, Qian J, Wu F, Waterbury QT, Tu R, Zheng B, LaBella JS, Zamechek LB, Ogura A, Woods SL, Worthley DL, Enomoto A, Wang TC. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression. Cancer Discov 2025; 15:202-226. [PMID: 39137067 PMCID: PMC11729495 DOI: 10.1158/2159-8290.cd-24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
SIGNIFICANCE Our work demonstrates that the bidirectional interplay between sympathetic nerves and NGF-expressing CAFs drives colorectal tumorigenesis. This study also offers novel mechanistic insights into catecholamine action in colorectal cancer. Inhibiting the neuro-mesenchymal interaction by TRK blockade could be a potential strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruth A. White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin Qian
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Quin T. Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Jonathan S. LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Leah B. Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Daniel L. Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Lutwyche, QLD, 4030, Australia
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Oppelstrup T, Stanton LG, Tempkin JOB, Ozturk TN, Ingólfsson HI, Carpenter TS. Anisotropic interactions for continuum modeling of protein-membrane systems. J Chem Phys 2024; 161:244908. [PMID: 39786911 DOI: 10.1063/5.0237408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions. As applications, we consider two membrane proteins of biological interest: a RAS-RAF complex tethered to the membrane and a membrane embedded G protein-coupled receptor. A strong qualitative and quantitative agreement is found between the numerical results and the corresponding molecular dynamics simulations. Combining the scope of continuum level simulations with the details from molecular level particle simulations enables research into protein-membrane behaviors at a more biologically relevant scale, which crucially can also be accessed via experiment.
Collapse
Affiliation(s)
- T Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L G Stanton
- Department of Mathematics and Statistics, San José State University, San José, California 95192, USA
| | - J O B Tempkin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T N Ozturk
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
3
|
Shaw R, Prakash P. Thiamine (Vitamin B1) Promoted Organic Transformations: A Recent Updates. Chem Asian J 2024; 19:e202400841. [PMID: 39171681 DOI: 10.1002/asia.202400841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Due to the growing significance of sustainable and environmentally friendly organic transformations, there has been increasing interest in utilizing vitamins as catalysts owing to their green nature, biocompatibility, and ease of preparation. Among these, Vitamin B1, also known as thiamine stands out for its nonflammable, water-soluble, inexpensive, and non-toxic characteristics. This review summarized recent developments on the catalytic application of Vitamin B1 in organic transformations, particularly in facilitating C-C and C-X (N, O, S) bond formations, thus demonstrating its efficacy in synthesizing complex molecules. Vitamin B1 exhibits versatility in these reactions, functioning as both an organocatalyst as well as a co-catalyst or ligand with other metal catalysts. The review also delves into the application of thiamine diphosphate-dependent enzymes as catalysts in organic reactions, drawing inspiration from natural enzymatic processes. Additionally, the mechanistic intricacies of thiamine-catalyzed reactions and the roles of co-catalysts or additives are thoroughly examined, providing insights into reaction pathways and facilitating informed catalyst design strategies.
Collapse
Affiliation(s)
- Ranjay Shaw
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Prasoon Prakash
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, 110016, India
| |
Collapse
|
4
|
Entezari S, Thygesen MM, Staehr C, Melnikova E, Skov M, Rajanathan R, Rasmussen M, Rasmussen MM, Matchkov VV. Spinal cord blood flow elevation with systemic vasopressor noradrenaline is partly mediated by vasodilation of spinal arteries due to reduced expression of alpha adrenoreceptors. Spine J 2024:S1529-9430(24)01151-3. [PMID: 39613033 DOI: 10.1016/j.spinee.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND CONTEXT Elevation of mean arterial blood pressure (MAP) has been proposed to raise spinal cord blood flow (SCBF) after traumatic spinal cord injury (TSCI). Current clinical guidelines for cervical TSCI suggest maintaining MAP 85-90 mmHg for 5-7 days using vasopressors, eg, noradrenaline. However, it remains unknown whether these interventions that promote an increased systemic MAP result in improved perfusion in the spinal cord. The local effect of vasopressors on the spinal cord arteries also remains unknown. PURPOSE The aim of this study was to investigate whether the increased systemic MAP results in increased SCBF, and secondly, to examine the mechanism behind noradrenaline (NA) action in spinal cord arteries. STUDY DESIGN An experimental animal study. METHODS The study included nine 38-42 kg landrace pigs. In six pigs, MAP was gradually elevated using NA and continuous SCBF was recorded by laser doppler flowmetry. Spinal cord samples from these 6 pigs were excised for isolation of spinal cord arteries that were used for ex-vivo vascular function assessment in isometric myograph. Segments of mesentery from another 3 pigs were used to dissect mesenteric small arteries that were also studied in myograph, as control peripheral arteries. Other spinal cord and mesenteric arterial segments from the same biopsies were dissected and snap-frozen for the following expression analysis. Adrenoceptor's expression in arteries of all included animals was assessed with quantitative PCR. RESULTS The controlled mixed model found that SCBF was lower at MAP below 50 mmHg and that SCBF increased significantly in the MAP range of 50-100 mmHg (p=.02). Further increase of MAP did not significantly affect SCBF (at MAP range of 100-150 mmHg, p=.15; at 150-200 mmHg, p=.51). However, SCBF significantly increased over the study time-course (at 80 min, p=.002; at 100 min, p<.001), which was dependent on the experimental duration being a confounder of increased exposure to large doses of NA. Isolated spinal arteries did not contract to NA ex-vivo and even showed a tendency for vasorelaxation. This relaxation was abolished by β-adrenoceptor inhibitor, propranolol. In contrast, mesenteric arteries were contracted by NA and propranolol potentiated this contraction. Mesenteric arteries showed a higher expression of α1A adrenoceptors than spinal arteries, while no significant difference was found in other adrenoceptor isoforms. CONCLUSIONS We found SCBF reduced at MAP below 50 mmHg and that the SCBF increased significantly in MAP range between 50 and 100 mmHg. Elevating MAP above 100 mmHg was not associated with a further increase in SCBF. We also showed that NA increases SCBF in-vivo and relaxes spinal arteries ex-vivo. This effect was associated with a low arterial expression of α adrenoceptors over β adrenoceptors in the spinal cord. CLINICAL SIGNIFICANCE These findings challenge the assumption that SCBF is solely dictated by MAP within autoregulatory limits, emphasizing the necessity of considering noradrenaline-induced vasorelaxation in the spinal arteries of TSCI patients.
Collapse
Affiliation(s)
- Seyar Entezari
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | - Mathias Møller Thygesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mathias Skov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Mads Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Anesthesiology, Section of Neuro Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Mylius Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
5
|
Plazinski W, Archala A, Jozwiak K, Plazinska A. Unraveling the Structural Basis of Biased Agonism in the β 2-Adrenergic Receptor Through Molecular Dynamics Simulations. Proteins 2024. [PMID: 39548888 DOI: 10.1002/prot.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Biased agonism in G protein-coupled receptors is a phenomenon resulting in the selective activation of distinct intracellular signaling pathways by different agonists, which may exhibit bias toward either Gs, Gi, or arrestin-mediated pathways. This study investigates the structural basis of ligand-induced biased agonism within the context of the β2-adrenergic receptor (β2-AR). Atomistic molecular dynamics simulations were conducted for β2-AR complexes with two stereoisomers of methoxynaphtyl fenoterol (MNFen), that is, compounds eliciting qualitatively different cellular responses. The simulations reveal distinct interaction patterns within the binding cavity, dependent on the stereoisomer. These changes propagate to the intracellular parts of the receptor, triggering various structural responses: the dynamic structure of the intracellular regions of the (R,R)-MNFen complex more closely resembles the "Gs-compatible" and "β-arrestin-compatible" conformation of β2-AR, while both stereoisomers maintain structural responses equidistant from the inactive conformation. These findings are confirmed by independent coarse-grained simulations. In the context of deciphered molecular mechanisms, Trp313 plays a pivotal role, altering its orientation upon interactions with (R,R)-MNFen, along with the Lys305-Asp192 ionic bridge. This effect, accompanied by ligand interactions with residues on TM2, increases the strength of interactions within the extracellular region and the binding cavity, resulting in a slightly more open conformation and a minor (by ca. 0.2 nm) increase in the distance between the TM5-TM7, TM1-TM6, TM6-TM7, and TM1-TM5 pairs. On the other hand, an even slighter decrease in the distance between the TM1-TM4 and TM2-TM4 pairs is observed.
Collapse
Affiliation(s)
- Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Poland
| | - Aneta Archala
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Zhang C, Li J, Wang L, Ma J, Li X, Wu Y, Ren Y, Yang Y, Song H, Li J, Yang Y. Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway. Cell Prolif 2024:e13764. [PMID: 39413003 DOI: 10.1111/cpr.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024] Open
Abstract
GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119-/- mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.
Collapse
Affiliation(s)
- Chenglei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xin Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanru Ren
- Day-Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui Song
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
9
|
Lou JS, Su M, Wang J, Do HN, Miao Y, Huang XY. Distinct binding conformations of epinephrine with α- and β-adrenergic receptors. Exp Mol Med 2024; 56:1952-1966. [PMID: 39218975 PMCID: PMC11447022 DOI: 10.1038/s12276-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024] Open
Abstract
Agonists targeting α2-adrenergic receptors (ARs) are used to treat diverse conditions, including hypertension, attention-deficit/hyperactivity disorder, pain, panic disorders, opioid and alcohol withdrawal symptoms, and cigarette cravings. These receptors transduce signals through heterotrimeric Gi proteins. Here, we elucidated cryo-EM structures that depict α2A-AR in complex with Gi proteins, along with the endogenous agonist epinephrine or the synthetic agonist dexmedetomidine. Molecular dynamics simulations and functional studies reinforce the results of the structural revelations. Our investigation revealed that epinephrine exhibits different conformations when engaging with α-ARs and β-ARs. Furthermore, α2A-AR and β1-AR (primarily coupled to Gs, with secondary associations to Gi) were compared and found to exhibit different interactions with Gi proteins. Notably, the stability of the epinephrine-α2A-AR-Gi complex is greater than that of the dexmedetomidine-α2A-AR-Gi complex. These findings substantiate and improve our knowledge on the intricate signaling mechanisms orchestrated by ARs and concurrently shed light on the regulation of α-ARs and β-ARs by epinephrine.
Collapse
Affiliation(s)
- Jian-Shu Lou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Anghel SA, Dinu-Pirvu CE, Costache MA, Voiculescu AM, Ghica MV, Anuța V, Popa L. Receptor Pharmacogenomics: Deciphering Genetic Influence on Drug Response. Int J Mol Sci 2024; 25:9371. [PMID: 39273318 PMCID: PMC11395000 DOI: 10.3390/ijms25179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The paradigm "one drug fits all" or "one dose fits all" will soon be challenged by pharmacogenetics research and application. Drug response-efficacy or safety-depends on interindividual variability. The current clinical practice does not include genetic screening as a routine procedure and does not account for genetic variation. Patients with the same illness receive the same treatment, yielding different responses. Integrating pharmacogenomics in therapy would provide critical information about how a patient will respond to a certain drug. Worldwide, great efforts are being made to achieve a personalized therapy-based approach. Nevertheless, a global harmonized guideline is still needed. Plasma membrane proteins, like receptor tyrosine kinase (RTK) and G protein-coupled receptors (GPCRs), are ubiquitously expressed, being involved in a diverse array of physiopathological processes. Over 30% of drugs approved by the FDA target GPCRs, reflecting the importance of assessing the genetic variability among individuals who are treated with these drugs. Pharmacogenomics of transmembrane protein receptors is a dynamic field with profound implications for precision medicine. Understanding genetic variations in these receptors provides a framework for optimizing drug therapies, minimizing adverse reactions, and advancing the paradigm of personalized healthcare.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cristina-Elena Dinu-Pirvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela-Andreea Costache
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Ana Maria Voiculescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
11
|
Inchiosa MA. Beta 2-Adrenergic Suppression of Neuroinflammation in Treatment of Parkinsonism, with Relevance for Neurodegenerative and Neoplastic Disorders. Biomedicines 2024; 12:1720. [PMID: 39200184 PMCID: PMC11351568 DOI: 10.3390/biomedicines12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
There is a preliminary record suggesting that β2-adrenergic agonists may have therapeutic value in Parkinson's disease; recent studies have proposed a possible role of these agents in suppressing the formation of α-synuclein protein, a component of Lewy bodies. The present study focuses on the importance of the prototypical β2-adrenergic agonist epinephrine in relation to the incidence of Parkinson's disease in humans, and its further investigation via synthetic selective β2-receptor agonists, such as levalbuterol. Levalbuterol exerts significant anti-inflammatory activity, a property that may suppress cytokine-mediated degeneration of dopaminergic neurons and progression of Parkinsonism. In a completely novel finding, epinephrine and certain other adrenergic agents modeled in the Harvard/MIT Broad Institute genomic database, CLUE, demonstrated strong associations with the gene-expression signatures of anti-inflammatory glucocorticoids. This prompted in vivo confirmation in mice engrafted with human peripheral blood mononuclear cells (PBMCs). Upon toxic activation with mononuclear antibodies, levalbuterol inhibited (1) the release of the eosinophil attractant chemokine eotaxin-1, which is implicated in CNS and peripheral inflammatory disorders, (2) elaboration of the tumor-promoting angiogenic factor VEGFa, and (3) release of the pro-inflammatory cytokine IL-13 from activated PBMCs. These observations suggest possible translation to Parkinson's disease, other neurodegenerative syndromes, and malignancies, via several mechanisms.
Collapse
Affiliation(s)
- Mario A Inchiosa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
12
|
Talamonti E, Davegardh J, Kalinovich A, van Beek SMM, Dehvari N, Halleskog C, Bokhari HM, Hutchinson DS, Ham S, Humphrys LJ, Dijon NC, Motso A, Sandstrom A, Zacharewicz E, Mutule I, Suna E, Spura J, Ditrychova K, Stoddart LA, Holliday ND, Wright SC, Lauschke VM, Nielsen S, Scheele C, Cheesman E, Hoeks J, Molenaar P, Summers RJ, Pelcman B, Yakala GK, Bengtsson T. The novel adrenergic agonist ATR-127 targets skeletal muscle and brown adipose tissue to tackle diabesity and steatohepatitis. Mol Metab 2024; 85:101931. [PMID: 38796310 PMCID: PMC11258667 DOI: 10.1016/j.molmet.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVE Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective β-AR agonist isoprenaline across various rodent β-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS Our results demonstrate that ATR-127 is a highly effective, novel β2- and β3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.
Collapse
Affiliation(s)
| | - Jelena Davegardh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | - Nodi Dehvari
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden
| | | | | | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Seungmin Ham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Laura J Humphrys
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Nicola C Dijon
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Aikaterini Motso
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | - Evelyn Zacharewicz
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ilga Mutule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Jana Spura
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Karolina Ditrychova
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Leigh A Stoddart
- Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Nicholas D Holliday
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Shane C Wright
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Tübingen University, Tübingen, Germany
| | - Soren Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | - Tore Bengtsson
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
13
|
Gutiérrez-Mondragón MA, Vellido A, König C. A Study on the Robustness and Stability of Explainable Deep Learning in an Imbalanced Setting: The Exploration of the Conformational Space of G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:6572. [PMID: 38928278 PMCID: PMC11203844 DOI: 10.3390/ijms25126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
G-protein coupled receptors (GPCRs) are transmembrane proteins that transmit signals from the extracellular environment to the inside of the cells. Their ability to adopt various conformational states, which influence their function, makes them crucial in pharmacoproteomic studies. While many drugs target specific GPCR states to exert their effects-thereby regulating the protein's activity-unraveling the activation pathway remains challenging due to the multitude of intermediate transformations occurring throughout this process, and intrinsically influencing the dynamics of the receptors. In this context, computational modeling, particularly molecular dynamics (MD) simulations, may offer valuable insights into the dynamics and energetics of GPCR transformations, especially when combined with machine learning (ML) methods and techniques for achieving model interpretability for knowledge generation. The current study builds upon previous work in which the layer relevance propagation (LRP) technique was employed to interpret the predictions in a multi-class classification problem concerning the conformational states of the β2-adrenergic (β2AR) receptor from MD simulations. Here, we address the challenges posed by class imbalance and extend previous analyses by evaluating the robustness and stability of deep learning (DL)-based predictions under different imbalance mitigation techniques. By meticulously evaluating explainability and imbalance strategies, we aim to produce reliable and robust insights.
Collapse
Affiliation(s)
- Mario A. Gutiérrez-Mondragón
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| | - Alfredo Vellido
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
- Centro de Investigacion Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Caroline König
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| |
Collapse
|
14
|
Cammalleri M, Filippi L, Dal Monte M, Bagnoli P. A promising case of preclinical-clinical translation: β-adrenoceptor blockade from the oxygen-induced retinopathy model to retinopathy of prematurity. Front Physiol 2024; 15:1408605. [PMID: 38938747 PMCID: PMC11208707 DOI: 10.3389/fphys.2024.1408605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Although compartmentalization of the eye seems to promote its experimental manipulation, drug penetration to its posterior part is severely limited by hard barriers thus hindering drug development for eye diseases. In particular, angiogenesis-related retinal diseases share common mechanisms and are responsible for the majority of cases of blindness. Their prevalence is globally increasing mostly because of the increased incidence of systemic pathologies in the adult. Despite the number of preclinical findings demonstrating the efficacy of novel treatments, therapy of retinal neovascular diseases still remains confined to intravitreal anti-vascular endothelial growth factor treatments with some extension to anti-inflammatory therapy. In the mare magnum of preclinical findings aimed to develop novel avenues for future therapies, most compounds, despite their efficacy in experimental models, do not seem to meet the criteria for their therapeutic application. In particular, the groove between preclinical findings and their clinical application increases instead of decreasing and the attempt to bridging the gap between them creates intense frustration and a sense of defeat. In this complex scenario, we will discuss here the role that overactivation of the sympathetic system plays in retinal vessel proliferation in response to hypoxia using the oxygen-induced retinopathy (OIR) model. The potential application of the beta-adrenoceptor (β-AR) blockade with propranolol to the treatment of retinopathy of prematurity will be also discussed in light of preclinical findings in the OIR model and clinical trials using propranolol in preterm infants either per os or as eye drops.
Collapse
Affiliation(s)
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
16
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
18
|
Ozdemir E. Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). MEDICINE INTERNATIONAL 2024; 4:20. [PMID: 38476984 PMCID: PMC10928664 DOI: 10.3892/mi.2024.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Epilepsy is a complex and common neurological disorder characterized by spontaneous and recurrent seizures, affecting ~75 million individuals worldwide. Numerous studies have been conducted to develop new pharmacological drugs for the effective treatment of epilepsy. In recent years, numerous experimental and clinical studies have focused on the role of the adrenergic receptor (AR) system in the regulation of epileptogenesis, seizure susceptibility and convulsions. α1-ARs (α1A, α1B and α1D), α2-ARs (α2A, α2B and α2C) and β-ARs (β1, β2 and β3), known to have convulsant or anticonvulsant effects, have been isolated. Norepinephrine (NE), the key endogenous agonist of ARs, is considered to play a crucial role in the pathophysiology of epileptic seizures. However, the effects of NE on different ARs have not been fully elucidated. Although the activation of some AR subtypes produces conflicting results, the activation of α1, α2 and β receptor subtypes, in particular, produces anticonvulsant effects. The present review focuses on NE and ARs involved in epileptic seizure formation and discusses therapeutic approaches.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
19
|
Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RA, Chalmers DK, Scott DJ. Identification of a Novel Subtype-Selective α 1B-Adrenoceptor Antagonist. ACS Chem Neurosci 2024; 15:671-684. [PMID: 38238043 PMCID: PMC10854767 DOI: 10.1021/acschemneuro.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
Collapse
Affiliation(s)
- Alaa Abdul-Ridha
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lazarus A. de Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Mattia Deluigi
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tasneem M. Vaid
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice Whitehead
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yifan Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Davis
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | - Richard Harris
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | | | - Roderick E. Hubbard
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Paul R. Gooley
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ross A.D. Bathgate
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel J. Scott
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Actis Dato AB, Martinez VR, Velez Rueda JO, Portiansky EL, De Giusti V, Ferrer EG, Williams PAM. Improvement of the cardiovascular effect of methyldopa by complexation with Zn(II): Synthesis, characterization and mechanism of action. J Trace Elem Med Biol 2024; 81:127327. [PMID: 37890445 DOI: 10.1016/j.jtemb.2023.127327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND the antihypertensive drug α-methyldopa (MD) stands as one of the extensively used medications for managing hypertension during pregnancy. Zinc deprivation has been associated with many diseases. In this context, the synthesis of a Zn coordination complex [Zn(MD)(OH)(H2O)2]·H2O (ZnMD) provide a promising alternative pathway to improve the biological properties of MD. METHODS ZnMD was synthesized and physicochemically characterized. Fluorescence spectral studies were conducted to examine the binding of both, the ligand and the metal with bovine serum albumin (BSA). MD, ZnMD, and ZnCl2 were administered to spontaneous hypertensive rats (SHR) rats during 8 weeks and blood pressure and echocardiographic parameters were determined. Ex vivo assays were conducted to evaluate levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO). Cross-sectional area (CSA) and collagen levels of left ventricular cardiomyocytes were also assessed. Furthermore, the expression of NAD(P)H oxidase subunits (gp91phox and p47phox) and Superoxide Dismutase 1 (SOD1) was quantified through western blot analysis. RESULTS The complex exhibited a moderate affinity for binding with BSA showing a spontaneous interaction (indicated by negative ΔG values) and moderate affinity (determined by affinity constant values). The binding process involved the formation of Van der Waals forces and hydrogen bonds. Upon treatment with MD and ZnMD, a reduction in the systolic blood pressure in SHR was observed, being ZnMD more effective than MD (122 ± 8.1 mmHg and 145 ± 5.6 mmHg, at 8th week of treatment, respectively). The ZnMD treatment prevented myocardial hypertrophy, improved the heart function and reduced the cardiac fibrosis, as evidenced by parameters such as left ventricular mass, fractional shortening, and histological studies. In contrast, MD did not show noticeable differences in these parameters. ZnMD regulates negatively the oxidative damage by reducing levels of ROS and lipid peroxidation, as well as the cardiac NAD(P)H oxidase, and increasing SOD1 expression, while MD did not show significant effect. Moreover, cardiac nitric oxide levels were greater in the ZnMD therapy compared to MD treatment. CONCLUSION Both MD and ZnMD have the potential to be transported by albumin. Our findings provide important evidence suggesting that this complex could be a potential therapeutic drug for the treatment of hypertension and cardiac hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Agustin B Actis Dato
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Valeria R Martinez
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900 La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina.
| |
Collapse
|
21
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Halim SA, Waqas M, Khan A, Ogaly HA, Othman G, Al-Harrasi A. Identification of potential agonist-like molecules for α2-adrenergic receptor by multi-layer virtual screening to combat sinusitis. Comput Biol Med 2023; 167:107693. [PMID: 37976818 DOI: 10.1016/j.compbiomed.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Sinusitis is one of the most common respiratory inflammatory conditions and a significant health issue that affects millions of people worldwide with a global prevalence of 10-15%. The side effects of available drug regimens of sinus infection demand the urgent development of new drug candidates to combat sinusitis. With the aim of identifying new drug-like candidates to control sinus, we have conducted multifold comprehensive screening of drug-like molecules targeting α2-adrenergic receptor (α2-AR), which serve as the primary drug target in sinusitis. By structure-based virtual screening of in-house compound's database, ten molecules (CP1-CP10) with agonistic effects for α2-AR were selected, and their binding mechanism with critical residues of α2-AR and their physicochemical properties were studied. Moreover, the process of receptor activation by these compounds and the conformational changes in α2-AR caused by these molecules, were further explored by molecular dynamic simulation. The MM-PBSA estimated free energies of compounds are higher than that of reference agonist (ΔGTOTAL = -39.0 kcal/mol). Among all, CP2-CP3, CP7-CP8 and CP6 have the highest binding free energies of -78.9 kcal/mol, -77.3 kcal/mol, -75.60 kcal/mol, -64.8 kcal/mol, and -61.6 kcal/mol, respectively. While CP4 (-55.0 kcal/mol), CP5 (-49.2 kcal/mol), CP9 (-54.8 ± 0.07 kcal/mol), CP10 (-56.7 ± 0.10 kcal/mol) and CP1 (-46.0 ± 0.08 kcal/mol) also exhibited significant binding free energies. These energetically favorable binding energies indicate strong binding affinity of our compounds for α2-AR as compared to known partial agonist. Therefore, these molecules can serve as excellent drug-like candidates for sinusitis.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman.
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman; Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, 21120, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman.
| |
Collapse
|
23
|
Kaczor A, Knutelska J, Kucwaj-Brysz K, Zygmunt M, Żesławska E, Siwek A, Bednarski M, Podlewska S, Jastrzębska-Więsek M, Nitek W, Sapa J, Handzlik J. The Subtype Selectivity in Search of Potent Hypotensive Agents among 5,5-Dimethylhydantoin Derived α 1-Adrenoceptors Antagonists. Int J Mol Sci 2023; 24:16609. [PMID: 38068933 PMCID: PMC10706087 DOI: 10.3390/ijms242316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Joanna Knutelska
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, University of the National Education Commision, Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Siwek
- Department of Pharmacobiology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, 31-343 Krakow, Poland;
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| |
Collapse
|
24
|
Sitnikova E. Adrenergic mechanisms of absence status epilepticus. Front Neurol 2023; 14:1298310. [PMID: 38073616 PMCID: PMC10703303 DOI: 10.3389/fneur.2023.1298310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 10/16/2024] Open
Abstract
Absence status epilepticus is a prolonged, generalized absence seizure that lasts more than half an hour. The mechanisms underlying the absence of status epilepticus are still not entirely understood. In this study, the study concentrates on alpha2-adrenergic mechanisms of absence status using the WAG/Rij rat model. In this model, a prolonged spike-wave activity was associated with a specific behavioral state in transition between sedation («alpha2-wakefulness»)-resembled absence status in human patients. Pharmacological activation of alpha2-adrenoreceptors may target the locus coeruleus (presynaptic alpha2-adrenoreceptors) and the thalamic part of the seizure-generating thalamocortical system (postsynaptic alpha2B-adrenoreceptors). The duration of EEG-behavioral correlates of absence status was not dose-dependent and was predetermined by the intensity of absence seizures at baseline. This model could help scientists better understand the underlying causes of absence status and develop more effective and personalized treatments for each individual.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Calderón JC, Ibrahim P, Gobbo D, Gervasio FL, Clark T. Activation/Deactivation Free-Energy Profiles for the β 2-Adrenergic Receptor: Ligand Modes of Action. J Chem Inf Model 2023; 63:6332-6343. [PMID: 37824365 DOI: 10.1021/acs.jcim.3c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We use enhanced-sampling simulations with an effective collective variable to study the activation of the β2-adrenergic receptor in the presence of ligands with different efficacy. The free-energy profiles are computed for the ligand-free (apo) receptor and binary (apo-receptor + G-protein α-subunit and receptor + ligand) and ternary complexes. The results are not only compatible with available experiments but also allow unprecedented structural insight into the nature of GPCR conformations along the activation pathway and their role in the activation mechanism. In particular, the simulations reveal an unexpected mode of action of partial agonists such as salmeterol and salbutamol that arises already in the binary complex without the G-protein. Specific differences in the polar interactions with residues in TM5, which are required to stabilize an optimal TM6 conformation that facilitates G-protein binding and receptor activation, play a major role in differentiating them from full agonists.
Collapse
Affiliation(s)
- Jacqueline C Calderón
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstraße 25, 91052 Erlangen, Germany
| | - Passainte Ibrahim
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, 04109 Leipzig, Germany
| | - Dorothea Gobbo
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
- Chemistry Department, University College London, WC1H 0AJ London, United Kingdom
- Swiss Bioinformatics Institute, CH1206 Geneva, Switzerland
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstraße 25, 91052 Erlangen, Germany
| |
Collapse
|
26
|
Otani Y, Yoshikawa S, Nagao K, Tanaka T, Toyooka S, Fujimura A. Connective tissue mast cells store and release noradrenaline. J Physiol Sci 2023; 73:24. [PMID: 37828465 DOI: 10.1186/s12576-023-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Mast cells are present in mucosal and connective tissues throughout the body. They synthesize and release a wide variety of bioactive molecules, such as histamine, proteases, and cytokines. In this study, we found that a population of connective tissue mast cells (CTMCs) stores and releases noradrenaline, originating from sympathetic nerves. Noradrenaline-storing cells, not neuronal fibers, were predominantly identified in the connective tissues of the skin, mammary gland, gastrointestinal tract, bronchus, thymus, and pancreas in wild-type mice but were absent in mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice. In vitro studies using bone marrow-derived mast cells revealed that extracellular noradrenaline was taken up but not synthesized. Upon ionomycin stimulation, noradrenaline was released. Electron microscopy analyses further suggested that noradrenaline is stored in and released from the secretory granules of mast cells. Finally, we found that noradrenaline-storing CTMCs express organic cation transporter 3 (Oct3), which is also known as an extraneuronal monoamine transporter, SLC22A3. Our findings indicate that mast cells may play a role in regulating noradrenaline concentration by storing and releasing it in somatic tissues.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kei Nagao
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
27
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
28
|
Yáñez-Barrientos E, Barragan-Galvez JC, Hidalgo-Figueroa S, Reyes-Luna A, Gonzalez-Rivera ML, Cruz Cruz D, Isiordia-Espinoza MA, Deveze-Álvarez MA, Villegas Gómez C, Alonso-Castro AJ. Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine. Pharmaceuticals (Basel) 2023; 16:1175. [PMID: 37631090 PMCID: PMC10459336 DOI: 10.3390/ph16081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Argemone ochroleuca Sweet (Papaveraceae) is used in folk medicine as a sedative and hypnotic agent. This study aimed to evaluate the anxiolytic-like, sedative, antidepressant-like, and anticonvulsant activities of a dichloromethane extract of A. ochroleuca stems (AOE), chemically standardized using gas chromatography-mass spectrometry (GC-MS), and its active compound dihydrosanguinarine (DHS). The anxiolytic-like, sedative, antidepressant-like, and anticonvulsant activities of the AOE (0.1-50 mg/kg p.o.) and DHS (0.1-10 mg/kg p.o.) were evaluated using murine models. A possible mechanism for the neurological actions induced by the AOE or DHS was assessed using inhibitors of neurotransmission pathways and molecular docking. Effective dose 50 (ED50) values were calculated by a linear regression analysis. The AOE showed anxiolytic-like activity in the cylinder exploratory test (ED50 = 33 mg/kg), and antidepressant-like effects in the forced swimming test (ED50 = 3 mg/kg) and the tail suspension test (ED50 = 23 mg/kg), whereas DHS showed anxiolytic-like activity (ED50 = 2 mg/kg) in the hole board test. The AOE (1-50 mg/kg) showed no locomotive affectations or sedation in mice. A docking study revealed the affinity of DHS for α2-adrenoreceptors and GABAA receptors. The anxiolytic-like and anticonvulsant effects of the AOE are due to GABAergic participation, whereas the antidepressant-like effects of the AOE are due to the noradrenergic system. The noradrenergic and GABAergic systems are involved in the anxiolytic-like actions of DHS.
Collapse
Affiliation(s)
- Eunice Yáñez-Barrientos
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Juan Carlos Barragan-Galvez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - Sergio Hidalgo-Figueroa
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico;
| | - Alfonso Reyes-Luna
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Maria L. Gonzalez-Rivera
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - David Cruz Cruz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Martha Alicia Deveze-Álvarez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - Clarisa Villegas Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| |
Collapse
|
29
|
Su M, Wang J, Xiang G, Do HN, Levitz J, Miao Y, Huang XY. Structural basis of agonist specificity of α 1A-adrenergic receptor. Nat Commun 2023; 14:4819. [PMID: 37563160 PMCID: PMC10415349 DOI: 10.1038/s41467-023-40524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
α1-adrenergic receptors (α1-ARs) play critical roles in the cardiovascular and nervous systems where they regulate blood pressure, cognition, and metabolism. However, the lack of specific agonists for all α1 subtypes has limited our understanding of the physiological roles of different α1-AR subtypes, and led to the stagnancy in agonist-based drug development for these receptors. Here we report cryo-EM structures of α1A-AR in complex with heterotrimeric G-proteins and either the endogenous common agonist epinephrine or the α1A-AR-specific synthetic agonist A61603. These structures provide molecular insights into the mechanisms underlying the discrimination between α1A-AR and α1B-AR by A61603. Guided by the structures and corresponding molecular dynamics simulations, we engineer α1A-AR mutants that are not responsive to A61603, and α1B-AR mutants that can be potently activated by A61603. Together, these findings advance our understanding of the agonist specificity for α1-ARs at the molecular level, opening the possibility of rational design of subtype-specific agonists.
Collapse
Affiliation(s)
- Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Mahmoodi N, Minnow YVT, Harijan RK, Bedard GT, Schramm VL. Cell-Effective Transition-State Analogue of Phenylethanolamine N-Methyltransferase. Biochemistry 2023; 62:2257-2268. [PMID: 37467463 PMCID: PMC10646973 DOI: 10.1021/acs.biochem.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent methylation of norepinephrine to form epinephrine. Epinephrine is implicated in the regulation of blood pressure, respiration, Alzheimer's disease, and post-traumatic stress disorder (PTSD). Transition-state (TS) analogues bind their target enzymes orders of magnitude more tightly than their substrates. A synthetic strategy for first-generation TS analogues of human PNMT (hPNMT) permitted structural analysis of hPNMT and revealed potential for second-generation inhibitors [Mahmoodi, N.; J. Am. Chem. Soc. 2020, 142, 14222-14233]. A second-generation TS analogue inhibitor of PNMT was designed, synthesized, and characterized to yield a Ki value of 1.2 nM. PNMT isothermal titration calorimetry (ITC) measurements of inhibitor 4 indicated a negative cooperative binding mechanism driven by large favorable entropic contributions and smaller enthalpic contributions. Cell-based assays with HEK293T cells expressing PNMT revealed a cell permeable, intracellular PNMT inhibitor with an IC50 value of 81 nM. Structural analysis demonstrated inhibitor 4 filling catalytic site regions to recapitulate both norepinephrine and SAM interactions. Conformation of the second-generation inhibitor in the catalytic site of PNMT improves contacts relative to those from the first-generation inhibitors. Inhibitor 4 demonstrates up to 51,000-fold specificity for PNMT relative to DNA and protein methyltransferases. Inhibitor 4 also exhibits a 12,000-fold specificity for PNMT over the α2-adrenoceptor.
Collapse
Affiliation(s)
- Niusha Mahmoodi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gabriel T Bedard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
31
|
Sohn R, Jenei-Lanzl Z. Role of the Sympathetic Nervous System in Mild Chronic Inflammatory Diseases: Focus on Osteoarthritis. Neuroimmunomodulation 2023; 30:143-166. [PMID: 37429263 PMCID: PMC10428144 DOI: 10.1159/000531798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and β-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.
Collapse
Affiliation(s)
- Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
32
|
Maisat W, Han X, Koutsogiannaki S, Soriano SG, Yuki K. Differential effects of dexmedetomidine on Gram-positive and Gram-negative bacterial killing and phagocytosis. Int Immunopharmacol 2023; 120:110327. [PMID: 37201408 PMCID: PMC10330683 DOI: 10.1016/j.intimp.2023.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Dexmedetomidine is a commonly used sedative in perioperative and intensive care settings with purported immunomodulatory properties. Since its effects on immune functions against infections have not been extensively studied, we tested the effects of dexmedetomidine on Gram-positive [Staphylococcus aureus and Enterococcus faecalis] and Gram-negative bacteria [Escherichia coli], and on effector functions of human monocytes THP-1 cells against them. We evaluated phagocytosis, reactive oxygen species (ROS) formation, and CD11b activation, and performed RNA sequencing analyses. Our study revealed that dexmedetomidine improved Gram-positive but mitigated Gram-negative bacterial phagocytosis and killing in THP-1 cells. The attenuation of Toll-like receptor 4 (TLR4) signaling by dexmedetomidine was previously reported. Thus, we tested TLR4 inhibitor TAK242. Similar to dexmedetomidine, TAK242 reduced E. coli phagocytosis but enhanced CD11b activation. The reduced TLR4 response potentially increases CD11b activation and ROS generation and subsequently enhances Gram-positive bacterial killing. Conversely, dexmedetomidine may inhibit the TLR4-signaling pathway and mitigate the alternative phagocytosis pathway induced by TLR4 activation through LPS-mediated Gram-negative bacteria, resulting in worsened bacterial loads. We also examined another α2 adrenergic agonist, xylazine. Because xylazine did not affect bacterial clearance, we proposed that dexmedetomidine may have an off-target effect on bacterial killing process, potentially involving crosstalk between CD11b and TLR4. Despite its potential to attenuate inflammation, we provide a novel insight into potential risks of dexmedetomidine use during Gram-negative infections, highlighting the differential effect of dexmedetomidine on Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Xiaohui Han
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
33
|
Sitnikova E, Pupikina M, Rutskova E. Alpha2 Adrenergic Modulation of Spike-Wave Epilepsy: Experimental Study of Pro-Epileptic and Sedative Effects of Dexmedetomidine. Int J Mol Sci 2023; 24:9445. [PMID: 37298397 PMCID: PMC10254047 DOI: 10.3390/ijms24119445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In the present report, we evaluated adrenergic mechanisms of generalized spike-wave epileptic discharges (SWDs), which are the encephalographic hallmarks of idiopathic generalized epilepsies. SWDs link to a hyper-synchronization in the thalamocortical neuronal activity. We unclosed some alpha2-adrenergic mechanisms of sedation and provocation of SWDs in rats with spontaneous spike-wave epilepsy (WAG/Rij and Wistar) and in control non-epileptic rats (NEW) of both sexes. Dexmedetomidine (Dex) was a highly selective alpha-2 agonist (0.003-0.049 mg/kg, i.p.). Injections of Dex did not elicit de novo SWDs in non-epileptic rats. Dex can be used to disclose the latent form of spike-wave epilepsy. Subjects with long-lasting SWDs at baseline were at high risk of absence status after activation of alpha2- adrenergic receptors. We create the concept of alpha1- and alpha2-ARs regulation of SWDs via modulation of thalamocortical network activity. Dex induced the specific abnormal state favorable for SWDs-"alpha2 wakefulness". Dex is regularly used in clinical practice. EEG examination in patients using low doses of Dex might help to diagnose the latent forms of absence epilepsy (or pathology of cortico-thalamo-cortical circuitry).
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, 117485 Moscow, Russia (E.R.)
| | | | | |
Collapse
|
34
|
Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: New insights for studying cortical plasticity through pupillometry. Front Neural Circuits 2023; 17:1151847. [PMID: 37063384 PMCID: PMC10102476 DOI: 10.3389/fncir.2023.1151847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in pre-clinical studies.
Collapse
Affiliation(s)
| | | | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- Institute of Neuroscience, National Research Council, Pisa, Italy
| |
Collapse
|
35
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
36
|
Geevarghese M, Patel K, Gulati A, Ranjan AK. Role of adrenergic receptors in shock. Front Physiol 2023; 14:1094591. [PMID: 36726848 PMCID: PMC9885157 DOI: 10.3389/fphys.2023.1094591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Shock is a severe, life-threatening medical condition with a high mortality rate worldwide. All four major categories of shock (along with their various subtypes)-hypovolemic, distributive, cardiogenic, and obstructive, involve a dramatic mismatch between oxygen supply and demand, and share standard features of decreased cardiac output, reduced blood pressure, and overall hypoperfusion. Immediate and appropriate intervention is required regardless of shock type, as a delay can result in cellular dysfunction, irreversible multiple organ failure, and death. Studies have shown that dysfunction and downregulation of adrenergic receptors (ARs) are often implicated in these shock conditions; for example, their density is shown to be decreased in hypovolemic and cardiogenic shock, while their reduced signaling in the brain and vasculature decrease blood perfusion and oxygen supply. There are two main categories of ARs, α, and β, each with its subtypes and distributions. Our group has demonstrated that a dose of .02 mg/kg body wt of centhaquine (CQ) specifically activates α2B ARs on venous circulation along with the central α2A ARs after hypovolemic/hemorrhagic shock. Activating these receptors by CQ increases cardiac output (CO) and reduces systemic vascular resistance (SVR), with a net increase in blood pressure and tissue perfusion. The clinical trials of CQ conducted by Pharmazz Inc. in India have demonstrated significantly improved survival in shock patients. CQ improved blood pressure and shock index, indicating better blood circulation, and reduced lactate levels in the blood compared to in-use standard resuscitative agents. After successful clinical trials, CQ is being marketed as a drug (Lyfaquin®) for hypovolemic/hemorrhagic shock in India, and United States FDA has approved the phase III IND application. It is anticipated that the phase III trial in the United States will begin in 2023. Thus, we have demonstrated that α2 ARs could be suitable targets for treating or managing hypovolemic/hemorrhagic shock. Further understanding of ARs in shock would help find new potential pharmacological targets.
Collapse
Affiliation(s)
- Mathew Geevarghese
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, United States
| | - Krishna Patel
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, United States
| | - Anil Gulati
- Pharmazz Inc., Research and Development, Willowbrook, IL, United States,Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, United States,Midwestern University College of Pharmacy Downers Grove, Downers Grove, IL, United States,*Correspondence: Anil Gulati, ; Amaresh K. Ranjan,
| | - Amaresh K. Ranjan
- Midwestern University College of Pharmacy Downers Grove, Downers Grove, IL, United States,*Correspondence: Anil Gulati, ; Amaresh K. Ranjan,
| |
Collapse
|
37
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
38
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
39
|
Costa MGS, Batista PR, Gomes A, Bastos LS, Louet M, Floquet N, Bisch PM, Perahia D. MDexciteR: Enhanced Sampling Molecular Dynamics by Excited Normal Modes or Principal Components Obtained from Experiments. J Chem Theory Comput 2023; 19:412-425. [PMID: 36622950 DOI: 10.1021/acs.jctc.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.
Collapse
Affiliation(s)
- Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| | - Paulo R Batista
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Antoniel Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - Leonardo S Bastos
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| |
Collapse
|
40
|
Luo L, Pan Y, Li Q, Zhang Y, Chen C, Shen J, Wang Z. Current progress in the detection of adrenergic receptor agonist residues in animal-derived foods. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
42
|
Chiesa L, Kellenberger E. One class classification for the detection of β2 adrenergic receptor agonists using single-ligand dynamic interaction data. J Cheminform 2022; 14:74. [PMID: 36309734 PMCID: PMC9617447 DOI: 10.1186/s13321-022-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are involved in many biological processes, relaying the extracellular signal inside the cell. Signaling is regulated by the interactions between receptors and their ligands, it can be stimulated by agonists, or inhibited by antagonists or inverse agonists. The development of a new drug targeting a member of this family requires to take into account the pharmacological profile of the designed ligands in order to elicit the desired response. The structure-based virtual screening of chemical libraries may prioritize a specific class of ligands by combining docking results and ligand binding information provided by crystallographic structures. The performance of the method depends on the relevance of the structural data, in particular the conformation of the targeted site, the binding mode of the reference ligand, and the approach used to compare the interactions formed by the docked ligand with those formed by the reference ligand in the crystallographic structure. Here, we propose a new method based on the conformational dynamics of a single protein–ligand reference complex to improve the biased selection of ligands with specific pharmacological properties in a structure-based virtual screening exercise. Interactions patterns between a reference agonist and the receptor, here exemplified on the β2 adrenergic receptor, were extracted from molecular dynamics simulations of the agonist/receptor complex and encoded in graphs used to train a one-class machine learning classifier. Different conditions were tested: low to high affinity agonists, varying simulation duration, considering or ignoring hydrophobic contacts, and tuning of the classifier parametrization. The best models applied to post-process raw data from retrospective virtual screening obtained by docking of test libraries effectively filtered out irrelevant poses, discarding inactive and non-agonist ligands while identifying agonists. Taken together, our results suggest that consistency of the binding mode during the simulation is a key to the success of the method.
Collapse
Affiliation(s)
- Luca Chiesa
- Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, 67400, Illkirch, France
| | - Esther Kellenberger
- Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, 67400, Illkirch, France.
| |
Collapse
|
43
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
44
|
Wu Y, Cai Z, Liu L, Wang J, Li Y, Kang Y, An N. Impact of intravenous dexmedetomidine on gastrointestinal function recovery after laparoscopic hysteromyomectomy: a randomized clinical trial. Sci Rep 2022; 12:14640. [PMID: 36030343 PMCID: PMC9420113 DOI: 10.1038/s41598-022-18729-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
Postoperative intestinal ileus is common after laparoscopic surgery, the incidence of those after hysterectomy was 9.2%. Anesthesia is one of the independent risk factors of postoperative ileus. Dexmedetomidine has been widely used in perioperative anesthesia and previous reports suggested that intraoperative dexmedetomidine may be associated with the improvement of gastrointestinal function recovery after abdominal surgery. We hypothesized that dexmedetomidine could improve gastrointestinal function recovery after laparoscopic hysteromyomectomy. Participants in elective laparoscopic hysteromyomectomy were enrolled with a single dose of 0.5 μg kg−1 dexmedetomidine or the same volume of placebo intravenously administered for 15 min, followed by continuous pumping of 0.2 μg kg−1 h−1 of corresponding drugs until 30 min before the end of surgery. The primary outcome was the time to first flatus. Secondary outcomes were the time to first oral feeding and the first defecation, the occurrence of flatulence, pain score and postoperative nausea and vomiting until 48 h after the surgery. Eventually, 106 participants (54 in dexmedetomidine group and 52 in placebo group) were included for final analysis. The time to first flatus (SD, 25.83 [4.18] vs 27.67 [3.77], P = 0.019), oral feeding time (SD, 27.29 [4.40] vs 28.92 [3.82], P = 0.044), the time to first defecation (SD, 59.82 [10.49] vs 63.89 [7.71], P = 0.025), abdominal distension (n%, 12 (22.2) vs 21 (40.4), P = 0.044), PONV at 24 h (n%, 10 (18.5) vs 19 (36.5), P = 0.037), NRS 6 h (3.15(0.68) vs 3.46 (0.87), P = 0.043) and NRS 12 h (3.43 (0.88) vs 3.85 (0.85), P = 0.014) of dexmedetomidine group were significantly shorter than those of the placebo group. Intraoperative dexmedetomidine reduced the time to first flatus, first oral feeding, and first defecation. These results suggested that this treatment may be a feasible strategy for improving postoperative gastrointestinal function recovery in patients undergoing laparoscopic hysteromyomectomy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China.
| | - Zenghua Cai
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Lishuang Liu
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Jinbao Wang
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Yanli Li
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Yuling Kang
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Ni An
- Department of Anesthesiology and Pain, Troop 32295 of the Chinese People's Liberation Army, Liaoyang, China
| |
Collapse
|
45
|
Krama A, Tokura N, Isoda H, Shigemori H, Miyamae Y. Cyanidin 3-Glucoside Induces Hepatocyte Growth Factor in Normal Human Dermal Fibroblasts through the Activation of β 2-Adrenergic Receptor. ACS OMEGA 2022; 7:22889-22895. [PMID: 35811916 PMCID: PMC9261277 DOI: 10.1021/acsomega.2c02659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Hepatocyte growth factor (HGF) is expressed in various organs and involved in the fundamental cellular functions such as mitogenic, motogenic, and morphogenic activities. Induction of HGF may be therapeutically useful for controlling organ regeneration, wound healing, and embryogenesis. In this study, we examined the stimulation effect of cyanidin 3-glucoside (C3G), an anthocyanidin derivative, on HGF production in normal human dermal fibroblasts (NHDFs) and the underlying mechanisms. C3G induced HGF production at both mRNA and protein levels in NHDF cells and enhanced the phosphorylation of cAMP-response element-binding protein. We also observed that treatment with C3G increased intracellular cAMP level and promoter activity of cAMP-response element in HEK293 cells expressing β2-adrenergic receptor (β2AR). In contrast, cyanidin, an aglycon of C3G, did not show the activation of β2AR signaling and HGF production. These results indicate that C3G behaves as an agonist for β2AR signaling to activate the protein kinase A pathway and induce the production of HGF.
Collapse
Affiliation(s)
- Annisa Krama
- Life
Science Innovation, School of Integrative
and Global Majors, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Natsu Tokura
- Agro-Bioresources
Science and Technology, Life and Earth Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
- Alliance
for Research on the Mediterranean and North Africa, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideyuki Shigemori
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology
Research Center for Sustainability, University
of Tsukuba, 1-1-1, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yusaku Miyamae
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
46
|
Efimov AV, Meshcheryakova OV, Ryazanov AG. Agonists in the Extended Conformation Stabilize the Active State of β-Adrenoceptors. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:628-639. [PMID: 36154885 DOI: 10.1134/s0006297922070057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
In this study, we conducted a comparative analysis of the structure of agonists and antagonists of transmembrane (TM) β-adrenoceptors (β-ARs) and their interactions with the β-ARs and proposed the mechanism of receptor activation. A characteristic feature of agonist and antagonist molecules is the presence of a hydrophobic head (most often, one or two aromatic rings) and a tail with a positively charged amino group. All β-adrenergic agonists have two carbon atoms between the aromatic ring of the head and the nitrogen atom of the amino group. In antagonist molecules, this fragment can be either reduced or increased to four atoms due to the additional carbon and oxygen atoms. The agonist head, as a rule, has two H-bond donors or acceptors in the para- and meta-positions of the aromatic rings, while in the antagonist heads, these donors/acceptors are absent or located in other positions. Analysis of known three-dimensional structures of β-AR complexes with agonists showed that the agonist head forms two H-bonds with the TM5 helix, and the tail forms an ionic bond with the D3.32 residue of the TM3 helix and one or two H-bonds with the TM7 helix. The tail of the antagonist can form similar bonds, but the interaction between the head and the TM5 helix is much weaker. As a result of these interactions, the agonist molecule acquires an extended "strained string" conformation, in contrast to the antagonist molecule, which has a longer, bended, and flexible tail. The "strained string" of the agonist interacts with the TM6 helix (primarily with the W6.48 residue) and turns it, which leads to the opening of the G protein-binding site on the intracellular side of the receptor, while flexible and larger antagonist molecules do not have the same effect on the receptor.
Collapse
Affiliation(s)
- Alexander V Efimov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Olga V Meshcheryakova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia.
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
47
|
Amraei R, Moreira JD, Wainford RD. Central Gαi 2 Protein Mediated Neuro-Hormonal Control of Blood Pressure and Salt Sensitivity. Front Endocrinol (Lausanne) 2022; 13:895466. [PMID: 35837296 PMCID: PMC9275552 DOI: 10.3389/fendo.2022.895466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension, a major public health issue, is estimated to contribute to 10% of all deaths worldwide. Further, the salt sensitivity of blood pressure is a critical risk factor for the development of hypertension. The hypothalamic paraventricular nucleus (PVN) coordinates neuro-hormonal responses to alterations in plasma sodium and osmolality and multiple G Protein-Coupled Receptors (GPCRs) are involved in fluid and electrolyte homeostasis. In acute animal studies, our laboratory has shown that central Gαi/o subunit protein signal transduction mediates hypotensive and bradycardic responses and that Gz/q, proteins mediate the release of arginine vasopressin (AVP) and subsequent aquaretic responses to acute pharmacological stimuli. Extending these studies, our laboratory has shown that central Gαi2 proteins selectively mediate the hypotensive, sympathoinhibitory and natriuretic responses to acute pharmacological activation of GPCRs and in response to acute physiological challenges to fluid and electrolyte balance. In addition, following chronically elevated dietary sodium intake, salt resistant rats demonstrate site-specific and subunit-specific upregulation of Gαi2 proteins in the PVN, resulting in sympathoinhibition and normotension. In contrast, chronic dietary sodium intake in salt sensitive animals, which fail to upregulate PVN Gαi2 proteins, results in the absence of dietary sodium-evoked sympathoinhibition and salt sensitive hypertension. Using in situ hybridization, we observed that Gαi2 expressing neurons in parvocellular division of the PVN strongly (85%) colocalize with GABAergic neurons. Our data suggest that central Gαi2 protein-dependent responses to an acute isotonic volume expansion (VE) and elevated dietary sodium intake are mediated by the peripheral sensory afferent renal nerves and do not depend on the anteroventral third ventricle (AV3V) sodium sensitive region or the actions of central angiotensin II type 1 receptors. Our translational human genomic studies have identified three G protein subunit alpha I2 (GNAI2) single nucleotide polymorphisms (SNPs) as potential biomarkers in individuals with salt sensitivity and essential hypertension. Collectively, PVN Gαi2 proteins-gated pathways appear to be highly conserved in salt resistance to counter the effects of acute and chronic challenges to fluid and electrolyte homeostasis on blood pressure via a renal sympathetic nerve-dependent mechanism.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jesse D. Moreira
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
48
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
50
|
Nishioka R, Nishi Y, Choudhury ME, Miyaike R, Shinnishi A, Umakoshi K, Takada Y, Sato N, Aibiki M, Yano H, Tanaka J. Surgical stress quickly affects the numbers of circulating B-cells and neutrophils in murine septic and aseptic models through a β 2 adrenergic receptor. J Immunotoxicol 2022; 19:8-16. [PMID: 35232327 DOI: 10.1080/1547691x.2022.2029630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Sepsis is a pathology accompanied by increases in myeloid cells and decreases in lymphoid cells in circulation. In a murine sepsis model induced by cecum ligation and puncture (CLP), increasing numbers of neutrophils and decreasing levels of B-cells in circulation are among the earliest changes in the immune system. However, to date, the mechanisms for these changes remain to be elucidated. The study here sought to elucidate mechanisms underlying the changes in the leukocyte levels after CLP and also to determine what, if any, role for an involvement of the sympathetic nervous system (SNS). Here, male C57/BL6 mice were subjected to CLP or sham-CLP (abdominal wall incised, but cecum was not punctured). The changes in the number of circulating leukocytes over time were then investigated using flow cytometry. The results showed that a sham-CLP led to increased polymorphonuclear cells (PMN; most of which are neutrophils) and decreased B-cells in the circulation to an extent similar to that induced by CLP. Effects of adrenergic agonists and antagonists, as well as of adrenalectomy, were also examined in mice that underwent CLP or sham-CLP. Administering adrenaline or a β2 adrenergic receptor agonist (clenbuterol) to mice 3 h before sacrifice produced almost identical changes to as what was seen 2 h after performing a sham-CLP. In contrast, giving a β2 adrenergic receptor antagonist ICI118,551 1 h before a CLP or sham-CLP suppressed the expected changes 2 h after the operations. Noradrenaline and an α1 adrenergic receptor agonist phenylephrine did not exert significant effects. Adrenalectomy 24 h before a sham-CLP significantly abolished the expected sham-CLP-induced changes seen earlier. Clenbuterol increased splenocyte expression of Cxcr4 (a chemokine receptor gene); adrenalectomy abolished sham-CLP-induced Cxcr4 expression. A CXCR4 antagonist AMD3100 repressed the sham-CLP-induced changes. From these results, it may be concluded that sepsis-induced activation of the SNS may be one cause for immune dysfunction in sepsis - regardless of the pathogenetic processes.
Collapse
Affiliation(s)
- Ryutaro Nishioka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Yusuke Nishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Riko Miyaike
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Ayataka Shinnishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Kensuke Umakoshi
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan.,Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Norio Sato
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mayuki Aibiki
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|