1
|
Jin L, Tian X, Ji X, Xiao G. The expression of Catsup in the hindgut is essential for zinc homeostasis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:601-612. [PMID: 38664880 DOI: 10.1111/imb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 11/06/2024]
Abstract
Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.
Collapse
Affiliation(s)
- Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xueke Tian
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
2
|
Wang J, Cao C, Jiang WB, Sun HC, Jiang T, Hu JD. Circulating levels of micronutrients and the risk of benign paroxysmal positional vertigo: A Mendelian randomization study. Heliyon 2024; 10:e38782. [PMID: 39430529 PMCID: PMC11489335 DOI: 10.1016/j.heliyon.2024.e38782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background Benign paroxysmal positional vertigo (BPPV) is a typical vestibular disease characterized by recurrent episodes of vertigo. The role of micronutrients in BPPV pathogenesis has not been extensively studied, prompting this investigation into the relationship between circulating micronutrients and BPPV risk. This research aimed to explore the relationship between blood micronutrient levels and BPPV risk via Mendelian randomization (MR) analysis, a robust method for inferring causality from observational data. Methods A total of 15 circulating micronutrients were assessed for their association with BPPV risk. MR analysis was conducted via the following methods: MR‒Egger, weighted median, simple model, inverse variance weighting (IVW), and weighted mode. Sensitivity analyses were performed to assess heterogeneity and pleiotropy. A multivariate MR analysis was also conducted, incorporating potential confounders such as trauma, chronic otitis media, hearing loss, peripheral atherosclerosis, ageing, and osteoporosis. Results MR analysis revealed an obvious association between selenium and BPPV risk (OR 1.074, 95 % CI 1.005 to 1.148; P = 0.035). Folate was negatively related (OR 0.694, 95 % CI 0.501 to 0.962, P = 0.028) but was excluded because of inconsistent OR values across methods. Sensitivity analysis supported the IVW results, and there was no evidence of significant heterogeneity among the selenium-related instrumental variables included in the study, nor was horizontal pleiotropy detected among the instrumental variables. Multivariate MR analysis confirmed that selenium was an independent risk factor for BPPV (OR 1.22, 95 % CI 1.059 to 1.406, P = 0.006), with no significant associations observed for other micronutrients or exposure factors. Conclusion This study provides evidence that blood selenium levels are positively associated with the risk of BPPV, suggesting a potential role for selenium in the pathogenesis of this disorder. These findings are robust to various sensitivity analyses and support the use of MR analysis to identify novel risk factors for BPPV. The identification of selenium as an independent risk factor for BPPV has implications for the development of preventive strategies and targeted interventions. It is necessary to analyse the biological mechanisms of this association and determine the therapeutic value of limiting selenium intake for BPPV to provide support for the treatment of such patients.
Collapse
Affiliation(s)
- Jian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Cheng Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Wen-Bo Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Hong-Cun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Tao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Jian-Dao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| |
Collapse
|
3
|
Adoma PO, Amponsah AS, Ankrah KT, Acquah F, Amu H, Agjei RO, Hanson R. Health Risk Assessment of Heavy Metals in Lettuce and Spring Onion on Human Health in Kumasi, Ghana. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241285737. [PMID: 39421462 PMCID: PMC11483760 DOI: 10.1177/11786302241285737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Introduction The demand and consumption of vegetables are significantly increasing worldwide, which has resulted in urban farming on anthropogenic sites. This study assessed the concentrations of some selected heavy metals in lettuce and spring onion in line with the WHO/FAO required standard and its implications on human health. Methods The study was carried out in Kumasi, within moist semi-deciduous forest vegetation, Ghana. The digested samples were analyzed for heavy metals (Cu, Cr, Fe, Mg, Ni, and Zn) using atomic absorption spectrophotometer (AAS Model AA 400p). Analysis of variance was used to test the level of significance at α = .05. Results The study found mean concentrations of chromium and iron in lettuce and spring onion to be below detection level (BDL) in all study sites based on WHO/FAO permissible level. Also, while copper in lettuce was BDL at all the sites, there were higher mean concentration of copper in spring onion at BSGS (131.5 ± 0.31 mg/kg) and BSG (120.8 ± 0.01 mg/kg). The mean concentration of nickel in lettuce (137.15 ± 0.0231) and spring onion (173.55 ± 0.02 mg/kg) at BSGS were higher than WHO/FAO permissible level. Mean concentration of zinc in both lettuce and spring onion were higher than WHO/FAO permissible level in all the study sites, except zinc in spring onion at KT. The ANOVA test statistics showed no significant difference among the concentrations of heavy metals in all sites, except zinc in lettuce and nickel in spring onion. The study found cancer risk factor for nickel, which exceeded the benchmark of 1 × 10-6 for both lettuce and spring onion, indicating that long-term consumption could increase the risk of cancer in consumers. Conclusion The study's findings call for strict regulation and regular monitoring of heavy metals in vegetables cultivated at anthropogenic sites in urban areas to ensure food safety and consumer health.
Collapse
Affiliation(s)
- Prince Owusu Adoma
- Department of Health Administration and Education, Faculty of Health, Allied Science and Home Economics Education, University of Education, Winneba – C/R, Ghana
| | - Afia Sakyiwaa Amponsah
- Department of Hospitality and Tourism, Sunyani Technical University, Sunyani – B/R, Ghana
| | - Kwarteng Twumasi Ankrah
- Department of Chemistry Education, Faculty of Science Education, University of Education, Winneba – C/R, Ghana
| | - Francis Acquah
- Department of Health Administration and Education, Faculty of Health, Allied Science and Home Economics Education, University of Education, Winneba – C/R, Ghana
| | - Hubert Amu
- Department of Population and Behavioural Science, Fred Binka School of Public Health, University of Health and Allied Science, Ho, Ghana
| | - Richard Osei Agjei
- Department of Health Administration and Education, Faculty of Health, Allied Science and Home Economics Education, University of Education, Winneba – C/R, Ghana
| | - Ruby Hanson
- Department of Chemistry Education, Faculty of Science Education, University of Education, Winneba – C/R, Ghana
| |
Collapse
|
4
|
Gavazov KB, Racheva PV, Saravanska AD, Genc F, Delchev VB. Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II). Molecules 2024; 29:4511. [PMID: 39339505 PMCID: PMC11434516 DOI: 10.3390/molecules29184511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The hydrophobic reagent 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR) was investigated as part of a cloud-point extraction (CPE) system for the spectrophotometric determination of Zn(II). In the system, complexes with different stoichiometries, including 1:1 and 2:2 (Zn:HTAR), are formed. Their ground-state equilibrium geometries were optimized at the B3LYP/6-31G level of theory. The obtained structures were then used to calculate vertical excitation energies in order to generate theoretical UV/Vis absorption spectra. The comparison between theoretical and experimental spectra demonstrated that, under optimal conditions, a binuclear complex containing oxygen-bridging atoms is the dominant species. The absorbance was found to be linearly dependent on the concentration of Zn(II) within the range of 15.7 to 209 ng mL-1 (R2 = 0.9996). The fraction extracted (%E), logarithm of the conditional extraction constant (log Kex), and molar absorption coefficient (ε) at λmax = 553 nm were calculated to be 98.3%, 15.9, and 4.47 × 105 L mol-1 cm-1, respectively. The method developed is characterized by simplicity, convenience, profitability, sensitivity, and ecological friendliness. It has been successfully applied to the analysis of pharmaceutical and industrial samples.
Collapse
Affiliation(s)
- Kiril B. Gavazov
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Petya V. Racheva
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Antoaneta D. Saravanska
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Fatma Genc
- Faculty of Pharmacy, Istanbul Yeni Yüzyıl Üniversitesi, 26 Yılanlı Ayazma Caddesi, 34010 Istanbul, Turkey;
| | - Vassil B. Delchev
- Faculty of Chemistry, University of Plovdiv ‘Paisii Hilendarskii’, 24 Tsar Assen St., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
5
|
Camp OG, Moussa DN, Hsu R, Awonuga AO, Abu-Soud HM. The interplay between oxidative stress, zinc, and metabolic dysfunction in polycystic ovarian syndrome. Mol Cell Biochem 2024:10.1007/s11010-024-05113-x. [PMID: 39266804 DOI: 10.1007/s11010-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a functional endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology that has been associated with chronic disease and comorbidities including adverse metabolic and cardiac disorders. This review aims to evaluate the role of oxidative stress and zinc in the metabolic dysfunction observed in PCOS, with a focus on insulin resistance. Recent studies indicate that oxidative stress markers are elevated in PCOS and correlate with hyperandrogenemia, obesity, and insulin resistance. Zinc, an essential trace element, is crucial for metabolic processes, particularly in the pancreas for beta-cell function and glucagon secretion. Insufficient zinc levels have been linked to diabetes, obesity, and lipid metabolism disorders. This review aims to highlight the interplay between oxidative stress, zinc, and metabolic dysfunction in PCOS, suggesting that zinc supplementation could mitigate some metabolic and endocrine manifestations of PCOS.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Richard Hsu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
7
|
Hamzi I, Mered Y, Mostefa-Kara B. Highly Sensitive and Selective Recognition of Zn 2⁺ and Fe 2⁺ Ions Using a Novel Thiophene-Derived Hydrazone Dual Fluorometric Sensor. J Fluoresc 2024:10.1007/s10895-024-03897-1. [PMID: 39126605 DOI: 10.1007/s10895-024-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The selective detection of Zn2⁺ and Fe2⁺ ions is critical in environmental and biological studies. Schiff base chemosensors hold promise, but exploration of thiophene-derived variants remains limited. This work introduces a novel thiophene-derived Schiff base sensor (TBH), synthesized through the condensation reaction of thiophene-2-carboxaldehyde with benzil-bis-hydrazone, for the selective detection of Zn2⁺ and Fe2⁺ ions. TBH exhibits remarkable selectivity, with a significant 185-fold fluorescence enhancement for Zn2⁺ and complete quenching 99% for Fe2⁺, allowing for distinct detection of both ions. Notably, TBH demonstrates high binding affinity towards Zn2⁺ and Fe2⁺, even in the presence of competing cations, forming stable 1:1 complexes. This finding is supported by absorption and emission titration studies and FT-IR analysis as well. This easily synthesized, rapid and cost-effective sensor offers a promising approach for sensitive and differentiated dual detection of Zn2⁺ and Fe2⁺ in environmental and biological systems.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, Tlemcen, 13000, Algeria.
| | - Y Mered
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria
| | - B Mostefa-Kara
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria
| |
Collapse
|
8
|
Wei Y, Zhu X, Lin S, Yang W, Wang T, Nie X, Shi Z, Liu Z, Zhang R, Li D. Zinc gluconate improves atopic dermatitis by modulating CXCL10 release of keratinocytes via PPARα activation. Biomed Pharmacother 2024; 177:117129. [PMID: 39018874 DOI: 10.1016/j.biopha.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with complex causes involving immune factors. The presence of essential trace elements that support immune system function can influence the development of this condition. This study investigated how serum trace elements impact the pathogenesis of atopic dermatitis. Upon analyzing serum microelements in AD patients and control subjects, it was observed that patients with AD had notably lower zinc levels. Genomic analysis of AD skin revealed distinct gene expression patterns, specifically the increased expression of CXCL10 in the epidermis. The heightened levels of CXCL10 in AD skin lesions were found to correlate with reduced serum zinc levels. Treatment with zinc gluconate showed reduced chemotactic response and CXCL10 release, suggesting its potential to regulate CXCL10 expression of keratinocytes in AD. The mechanism behind this involved the downregulation of STAT phosphorylation through activating PPARα. In the AD-like dermatitis mouse model, zinc gluconate therapy decreased serum IgE levels, alleviated skin lesion severity, reduced skin thickness, and lowered CXCL10 expression, demonstrating its efficacy in managing AD-like skin conditions. These findings indicate that zinc gluconate can reduce inflammation in keratinocytes by activating PPARα, inhibiting STAT signaling, and decreasing CXCL10 release, thus highlighting its potential as a therapeutic target for AD.
Collapse
Affiliation(s)
- Yujia Wei
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Xiaomei Zhu
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tingmei Wang
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Xiaoqi Nie
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Zeqi Shi
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Zhong Liu
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Ri Zhang
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| | - Dong Li
- Department of Dermatology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China.
| |
Collapse
|
9
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024:10.1007/s43032-024-01638-0. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
10
|
González Maciel A, Rosas López LE, Romero-Velázquez RM, Ramos-Morales A, Ponce-Macotela M, Calderón-Guzmán D, Trujillo-Jiménez F, Alfaro-Rodríguez A, Reynoso-Robles R. Postnatal zinc deficiency due to giardiasis disrupts hippocampal and cerebellar development. PLoS Negl Trop Dis 2024; 18:e0012302. [PMID: 38950061 PMCID: PMC11244800 DOI: 10.1371/journal.pntd.0012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/12/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 μm; HGINV 37 ± 5 μm; WB 28 ± 3 μm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.
Collapse
Affiliation(s)
- Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Laura Elizabeth Rosas López
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Rosa María Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Andrea Ramos-Morales
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratory of Experimental Parasitology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - David Calderón-Guzmán
- Laboratory of Neuroscience, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | - Alfonso Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
11
|
Pellowski D, Heinze T, Tuchtenhagen M, Müller SM, Meyer S, Maares M, Gerbracht C, Wernicke C, Haase H, Kipp AP, Grune T, Pfeiffer AFH, Mai K, Schwerdtle T. Fostering healthy aging through selective nutrition: A long-term comparison of two dietary patterns and their holistic impact on mineral status in middle-aged individuals-A randomized controlled intervention trial in Germany. J Trace Elem Med Biol 2024; 84:127462. [PMID: 38701651 DOI: 10.1016/j.jtemb.2024.127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with a decline in physiological functions and an increased risk of age-related diseases, emphasizing the importance of identifying dietary strategies for healthy aging. Minerals play a crucial role in maintaining optimal health during aging, making them relevant targets for investigation. Therefore, we aimed to analyze the effect of different dietary pattern on mineral status in the elderly. We included 502 individuals aged 50-80 years in a 36-month randomized controlled trial (RCT) (NutriAct study). This article focuses on the results within the two-year intervention period. NutriAct is not a mineral-modulating-targeted intervention study, rather examining nutrition in the context of healthy aging in general. However, mineral status might be affected in an incidental manner. Participants were assigned to either NutriAct dietary pattern (proportionate intake of total energy consumption (%E) of 35-45 %E carbohydrates, 35-40 %E fats, and 15-25 %E protein) or the German Nutrition Society (DGE) dietary pattern (proportionate intake of total energy consumption (%E) of 55 %E carbohydrates, 30 %E fats, and 15 %E protein), differing in the composition of macronutrients. Data from 368 participants regarding dietary intake (energy, calcium, magnesium, iron, and zinc) and serum mineral concentrations of calcium, magnesium, iron, copper, zinc, selenium, iodine, and manganese, free zinc, and selenoprotein P were analyzed at baseline, as well as after 12 and 24 months to gain comprehensive insight into the characteristics of the mineral status. Additionally, inflammatory status - sensitive to changes in mineral status - was assessed by measurement of C-reactive protein and interleukin-6. At baseline, inadequate dietary mineral intake and low serum concentrations of zinc and selenium were observed in both dietary patterns. Throughout two years, serum zinc concentrations decreased, while an increase of serum selenium, manganese and magnesium concentrations was observable, likely influenced by both dietary interventions. No significant changes were observed for serum calcium, iron, copper, or iodine concentrations. In conclusion, long-term dietary interventions can influence serum mineral concentrations in a middle-aged population. Our findings provide valuable insights into the associations between dietary habits, mineral status, and disease, contributing to dietary strategies for healthy aging.
Collapse
Affiliation(s)
- Denny Pellowski
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany
| | - Tom Heinze
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Max Tuchtenhagen
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany
| | - Sören Meyer
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Maria Maares
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin 13355, Germany
| | - Christiana Gerbracht
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
| | - Charlotte Wernicke
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany
| | - Hajo Haase
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin 13355, Germany
| | - Anna P Kipp
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Tilman Grune
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Andreas F H Pfeiffer
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany
| | - Knut Mai
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, 85764, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin 10115, Germany; Department of Human Nutrition, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; German Federal Institute for Risk Assessment (BfR), Berlin 10589, Germany.
| |
Collapse
|
12
|
Gu X, Mu C, Zheng R, Zhang Z, Zhang Q, Liang T. The Cancer Antioxidant Regulation System in Therapeutic Resistance. Antioxidants (Basel) 2024; 13:778. [PMID: 39061847 PMCID: PMC11274344 DOI: 10.3390/antiox13070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Antioxidants play a pivotal role in neutralizing reactive oxygen species (ROS), which are known to induce oxidative stress. In the context of cancer development, cancer cells adeptly maintain elevated levels of both ROS and antioxidants through a process termed "redox reprogramming". This balance optimizes the proliferative influence of ROS while simultaneously reducing the potential for ROS to cause damage to the cell. In some cases, the adapted antioxidant machinery can hamper the efficacy of treatments for neoplastic diseases, representing a significant facet of the resistance mechanisms observed in cancer therapy. In this review, we outline the contribution of antioxidant systems to therapeutic resistance. We detail the fundamental constituents of these systems, encompassing the central regulatory mechanisms involving transcription factors (of particular importance is the KEAP1/NRF2 signaling axis), the molecular effectors of antioxidants, and the auxiliary systems responsible for NADPH generation. Furthermore, we present recent clinical trials based on targeted antioxidant systems for the treatment of cancer, assessing the potential as well as challenges of this strategy in cancer therapy. Additionally, we summarize the pressing issues in the field, with the aim of illuminating a path toward the emergence of novel anticancer therapeutic approaches by orchestrating redox signaling.
Collapse
Affiliation(s)
- Xuanhao Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Chunyang Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Rujia Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
13
|
Hamzi I. Colorimetric and Fluorometric N-Acylhydrazone-based Chemosensors for Detection of Single to Multiple Metal Ions: Design Strategies and Analytical Applications. J Fluoresc 2024:10.1007/s10895-024-03748-z. [PMID: 38856800 DOI: 10.1007/s10895-024-03748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
The development of optical sensors for metal ions has gained significant attention due to their broad applications in biology, the environment, and medicine. Colorimetric and fluorometric detection methods are particularly valued for their simplicity, cost-effectiveness, high detection limits, and analytical power. Among various chemical probes, the hydrazone functional group stands out for its extensive study and utility, owing to its ease of synthesis and adaptability. This review provides a comprehensive overview of N-acylhydrazone-based probes, serving as highly effective colorimetric and fluorometric chemosensors for a diverse range of metal ions. Probes are categorized into single-ion, dual-ion, and multi-ion chemosensors, each further classified based on the detected metal(s). Additionally, the review discusses detection modes, detection limits, association constants, and spectroscopic measurements.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, 13000, Tlemcen, Algeria.
| |
Collapse
|
14
|
Wenegieme TY, Elased D, McMichael KE, Rockwood J, Hasrat K, Ume AC, Marshall AG, Neikirk K, Kirabo A, Elased KM, Hinton A, Williams CR. Strategies for inducing and validating zinc deficiency and zinc repletion. Am J Physiol Heart Circ Physiol 2024; 326:H1396-H1401. [PMID: 38578238 PMCID: PMC11380977 DOI: 10.1152/ajpheart.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Given the growing interest in the role of zinc in the onset and progression of diseases, there is a crucial demand for reliable methods to modulate zinc homeostasis. Using a dietary approach, we provide validated strategies to alter whole-body zinc in mice, applicable across species. For confirmation of zinc status, animal growth rates as well as plasma and urine zinc levels were evaluated. The accessible and cost-effective methodology outlined will increase scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of diseases.NEW & NOTEWORTHY This methods paper details dietary approaches to alter zinc homeostasis in rodents and qualitative and quantitative methods to ensure the zinc status of experimental animals. The outlined accessible and cost-effective protocol will elevate scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of a multitude of health conditions and diseases.
Collapse
Affiliation(s)
- Tara-Yesomi Wenegieme
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Dalia Elased
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Kelia E McMichael
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Khanzada Hasrat
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Adaku C Ume
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Khalid M Elased
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology and Physiology; Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
15
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
16
|
Shi Y, Ye R, Gao Y, Xia F, Yu XF. A prognostic and immune related risk model based on zinc homeostasis in hepatocellular carcinoma. iScience 2024; 27:109389. [PMID: 38510110 PMCID: PMC10951649 DOI: 10.1016/j.isci.2024.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The dysfunction of zinc homeostasis participates in the early and advancing malignancy of HCC. However, the prognostic ability of zinc homeostasis in HCC has not been clarified yet. Here, we showed a zinc-homeostasis related risk model in HCC. Five signature genes including ADAMTS5, PLOD2, PTDSS2, KLRB1, and UCK2 were screened out via survival analyses and regression algorithms to construct the nomogram with clinical characteristics. Experimental researches indicated that UCK2 participated in the progression of HCC. Patients with higher risk scores always had worse outcomes and were more associated with immune suppression according to the analyses of immune related-pathway activation, cell infiltration, and gene expression. Moreover, these patients were likely to exhibit more sensitivity to sorafenib and other antitumor drugs. This study highlights the significant prognostic role of zinc homeostasis and suggests potential treatment strategies in HCC.
Collapse
Affiliation(s)
- Yifei Shi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Runxin Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Yuan Gao
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing 312035, P.R. China
| | - Fengyan Xia
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310016, P.R. China
- Cancer Center of Zhejiang University, Hangzhou 310016, P.R. China
| |
Collapse
|
17
|
Podgórska A, Kicman A, Naliwajko S, Wacewicz-Muczyńska M, Niczyporuk M. Zinc, Copper, and Iron in Selected Skin Diseases. Int J Mol Sci 2024; 25:3823. [PMID: 38612631 PMCID: PMC11011755 DOI: 10.3390/ijms25073823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Trace elements are essential for maintaining the body's homeostasis, and their special role has been demonstrated in skin physiology. Among the most important trace elements are zinc, copper, and iron. A deficiency or excess of trace elements can be associated with an increased risk of skin diseases, so increasing their supplementation or limiting intake can be helpful in dermatological treatment. In addition, determinations of their levels in various types of biological material can be useful as additional tests in dermatological treatment. This paper describes the role of these elements in skin physiology and summarizes data on zinc, copper, and iron in the course of selected, following skin diseases: psoriasis, pemphigus vulgaris, atopic dermatitis, acne vulgaris and seborrheic dermatitis. In addition, this work identifies the potential of trace elements as auxiliary tests in dermatology. According to preliminary studies, abnormal levels of zinc, copper, and iron are observed in many skin diseases and their determinations in serum or hair can be used as auxiliary and prognostic tests in the course of various dermatoses. However, since data for some conditions are conflicting, clearly defining the potential of trace elements as auxiliary tests or elements requiring restriction/supplement requires further research.
Collapse
Affiliation(s)
- Aleksandra Podgórska
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Sylwia Naliwajko
- Department of Bromatology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | | | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| |
Collapse
|
18
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
19
|
Wenegieme TY, Elased D, McMichael KE, Rockwood J, Hasrat K, Ume AC, Marshall AG, Neikirk K, Kirabo A, Elased KM, Hinton A, Williams CR. Strategies for Inducing and Validating Zinc Deficiency and Zinc Repletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582542. [PMID: 38463970 PMCID: PMC10925336 DOI: 10.1101/2024.02.28.582542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Given the growing interest in the role of zinc in the onset and progression of diseases, there is a crucial demand for reliable methods to modulate zinc homeostasis. Using a dietary approach, we provide validated strategies to alter whole-body zinc in mice, applicable across species. For confirmation of zinc status, animal growth rates as well as plasma and urine zinc levels were evaluated. The accessible and cost-effective methodology outlined will increase scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of diseases.
Collapse
Affiliation(s)
- Tara-Yesomi Wenegieme
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
- Technical Contact
| | - Dalia Elased
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Kelia E. McMichael
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Khanzada Hasrat
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Adaku C. Ume
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Khalid M. Elased
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435 USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
- Technical Contact
- Lead Contact
| |
Collapse
|
20
|
Yang F, Smith MJ, Siow RC, Aarsland D, Maret W, Mann GE. Interactions between zinc and NRF2 in vascular redox signalling. Biochem Soc Trans 2024; 52:269-278. [PMID: 38372426 PMCID: PMC10903478 DOI: 10.1042/bst20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3β (GSK3β) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Fan Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Matthew J. Smith
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard C.M. Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, U.K
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College, London, U.K
| | - Giovanni E. Mann
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
21
|
Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease. Clin Exp Med 2024; 24:38. [PMID: 38367035 PMCID: PMC10874324 DOI: 10.1007/s10238-024-01302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Collapse
Affiliation(s)
- Lucy I Stiles
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kevin Ferrao
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK.
| |
Collapse
|
22
|
Iqbal S, Abid J, Akram S, Shah HBU, Farooq U, Ahmad AMR. Zinc status or supplementation and its relation to soil-transmitted helminthiasis in children: A systematic review. Parasite Immunol 2024; 46:e13015. [PMID: 37846743 DOI: 10.1111/pim.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Soil-transmitted helminths (STHs) parasitic infection is known as one of the most common infections around the world affecting more than a quarter of the world's population. The relationship between STH infections and micronutrient deficiencies are closely related and often coexist among the affected population. The study, therefore, aimed to summarise the available literature focusing on the effect of zinc status/deficiency or supplementation on STH infection or reinfection in children. For this purpose, we adopted a systematic approach and searched the existing literature on PubMed, Scopus, and Cochrane Library databases. A search term was entered to retrieve the available data. A total of 12 articles were included in this review after applying the inclusion/exclusion criteria. Most of the included studies reported a lower zinc status in children affected with any parasitic infection. Regarding the effect of zinc status and supplementation on parasitic infection in children, we found only a few studies (n = 4) with inconsistent result findings. This review reported that children infected with STH have lower zinc levels; however, a limited number of studies showed the effect of zinc supplements on the risk of STH warrants the need for further studies in this regard.
Collapse
Affiliation(s)
- Sehar Iqbal
- College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates
| | - Juweria Abid
- Department of Nutrition & Dietetics, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sajeela Akram
- Department of Human Nutrition & Dietetics, University of Chakwal, Chakwal, Pakistan
| | | | - Umar Farooq
- Department of Nutrition & Dietetics, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Abdul Momin Rizwan Ahmad
- Department of Nutrition & Dietetics, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
23
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Li M, Mao C, Li X, Jiang L, Zhang W, Li M, Liu H, Fang Y, Liu S, Yang G, Hou X. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023; 12:4073. [PMID: 38002131 PMCID: PMC10670618 DOI: 10.3390/foods12224073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Edible insects are a highly nutritious source of protein and are enjoyed by people all over the world. Insects contain various other nutrients and beneficial compounds, such as lipids, vitamins and minerals, chitin, phenolic compounds, and antimicrobial peptides, which contribute to good health. The practice of insect farming is far more resource-efficient compared to traditional agriculture and animal husbandry, requiring less land, energy, and water, and resulting in a significantly lower carbon footprint. In fact, insects are 12 to 25 times more efficient than animals in converting low-protein feed into protein. When it comes to protein production per unit area, insect farming only requires about one-eighth of the land needed for beef production. Moreover, insect farming generates minimal waste, as insects can consume food and biomass that would otherwise go to waste, contributing to a circular economy that promotes resource recycling and reuse. Insects can be fed with agricultural waste, such as unused plant stems and food scraps. Additionally, the excrement produced by insects can be used as fertilizer for crops, completing the circular chain. Despite the undeniable sustainability and nutritional benefits of consuming insects, widespread acceptance of incorporating insects into our daily diets still has a long way to go. This paper provides a comprehensive overview of the nutritional value of edible insects, the development of farming and processing technologies, and the problems faced in the marketing of edible insect products and insect foods to improve the reference for how people choose edible insects.
Collapse
Affiliation(s)
- Mengjiao Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Chengjuan Mao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Xin Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Wen Zhang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Mengying Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Huixue Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
25
|
Guillin O, Albalat E, Vindry C, Errazuriz-Cerda E, Ohlmann T, Balter V, Chavatte L. Zinc Uptake by HIV-1 Viral Particles: An Isotopic Study. Int J Mol Sci 2023; 24:15274. [PMID: 37894953 PMCID: PMC10607083 DOI: 10.3390/ijms242015274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.
Collapse
Affiliation(s)
- Olivia Guillin
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Emmanuelle Albalat
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5276 (UMR5276), 69007 Lyon, France
| | - Caroline Vindry
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Elisabeth Errazuriz-Cerda
- Center of Quantitative Imagery Lyon Est (CIQLE), Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Vincent Balter
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5276 (UMR5276), 69007 Lyon, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| |
Collapse
|
26
|
Shao J, Tang W, Huang K, Ding C, Wang H, Zhang W, Li R, Aamer M, Hassan MU, Elnour RO, Hashem M, Huang G, Qari SH. How Does Zinc Improve Salinity Tolerance? Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:3207. [PMID: 37765371 PMCID: PMC10534951 DOI: 10.3390/plants12183207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.
Collapse
Affiliation(s)
- Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wei Tang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Can Ding
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Haocheng Wang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wenlong Zhang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Rehab O. Elnour
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub, Abha 64353, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
27
|
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI JOURNAL 2023; 22:809-827. [PMID: 37780941 PMCID: PMC10539547 DOI: 10.17179/excli2023-6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023]
Abstract
Zinc is a multipurpose trace element for the human body, as it plays a crucial part in various physiological processes, such as cell growth and development, metabolism, cognitive, reproductive, and immune system function. Its significance in human health is widely acknowledged, and this has led the scientific community towards more research that aims to uncover all of its beneficial properties, especially when compared to other essential metal ions. One notable area where zinc has shown beneficial effects is in the prevention and treatment of various diseases, including cancer. This review aims to explain the involvement of zinc in specific health conditions such as cancer, coronavirus disease 2019 (COVID-19) and neurological disorders like Alzheimer's disease, as well as its impact on the gut microbiome.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Evi Tsoupra
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Maria E. Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
28
|
Mouri H, Malepe RE, Candeias C. Geochemical composition and potential health risks of geophagic materials: an example from a rural area in the Limpopo Province of South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6305-6322. [PMID: 37296282 PMCID: PMC10403411 DOI: 10.1007/s10653-023-01551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/24/2023] [Indexed: 06/12/2023]
Abstract
Geophagy is a common practice among rural population of the Fetakgomo Tubatse Local Municipality area in the Limpopo Province of South Africa. Although, the practice might be beneficial to the health of the consumers, its negative effects could overshadow the positive effects and might lead to detrimental health issues. The present work sought to investigate the geochemical composition as well as pH and organic matter (OM) content of geophagic materials commonly consumed in the study area. Furthermore, assessment of the potential health risk of the materials on geophagic individuals was also considered. Twelve samples were collected in the study area and analysed by X-ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for major and trace elements composition. The results showed higher concentrations of non-essential elements (e.g., As, Cr, Pb) than the proposed recommended daily standards intake, suggesting a potential health risk. The alkaline nature (pH 6.80 to 9.22) of the studied samples might affect the bioacessibility of some essential elements. Furthermore, the OM content (> 0.7%) observed in some of the studied samples may retain pathogenic micro-organisms detrimental to health. Although As and Cr presented a low bioaccessible fraction (< 16.0%), health risk assessment revealed that their concentrations represented a hazard (HQ > 1) and might induce non-carcinogenic health threats to geophagic individuals. Based on the geochemical analysis, pH and OM content as well as health risk assessment findings, the studied geophagic materials are not considered suitable for human consumption. The practice should therefore be discouraged amongst the population in the study area to avoid possible detrimental health issues.
Collapse
Affiliation(s)
- Hassina Mouri
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.
| | | | - Carla Candeias
- GeoBioTec Research Unit, Geosciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
29
|
Abu Jamra SR, Komatsu CG, Barbosa F, Roxo-Junior P, Navarro AM. Proposal to Screen for Zinc and Selenium in Patients with IgA Deficiency. Nutrients 2023; 15:2145. [PMID: 37432290 DOI: 10.3390/nu15092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
The increase in life expectancy can be a consequence of the world's socioeconomic, sanitary and nutritional conditions. Some studies have demonstrated that individuals with a satisfactory diet variety score present a lower risk of malnutrition and better health status. Zinc and selenium are important micronutrients that play a role in many biochemical and physiological processes of the immune system. Deficient individuals can present both innate and adaptive immunity abnormalities and increased susceptibility to infections. Primary immunodeficiency diseases, also known as inborn errors of immunity, are genetic disorders classically characterized by an increased susceptibility to infection and/or dysregulation of a specific immunologic pathway. IgA deficiency (IgAD) is the most common primary antibody deficiency. This disease is defined as serum IgA levels lower than 7 mg/dL and normal IgG and IgM levels in individuals older than four years. Although many patients are asymptomatic, selected patients suffer from different clinical complications, such as pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy. Knowing the nutritional status as well as the risk of zinc and selenium deficiency could be helpful for the management of IgAD patients. OBJECTIVES to investigate the anthropometric, biochemical, and nutritional profiles and the status of zinc and selenium in patients with IgAD. METHODS in this descriptive study, we screened 16 IgAD patients for anthropometric and dietary data, biochemical evaluation and determination of plasma and erythrocyte levels of zinc and selenium. RESULTS dietary intake of zinc and selenium was adequate in 75% and 86% of the patients, respectively. These results were consistent with the plasma levels (adequate levels of zinc in all patients and selenium in 50% of children, 25% of adolescents and 100% of adults). However, erythrocyte levels were low for both micronutrients (deficiency for both in 100% of children, 75% of adolescents and 25% of adults). CONCLUSION our results highlight the elevated prevalence of erythrocyte zinc and selenium deficiency in patients with IgAD, and the need for investigation of these micronutrients in their follow-up.
Collapse
Affiliation(s)
- Soraya Regina Abu Jamra
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Camila Gomes Komatsu
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14800-060, Brazil
| | - Fernando Barbosa
- Laboratory of Toxicology and Metal Essentiality, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Sao Paulo 05508-090, Brazil
| | - Persio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Anderson Marliere Navarro
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| |
Collapse
|
30
|
Chouraqui JP. Risk Assessment of Micronutrients Deficiency in Vegetarian or Vegan Children: Not So Obvious. Nutrients 2023; 15:2129. [PMID: 37432244 DOI: 10.3390/nu15092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023] Open
Abstract
Vegetarian diets have gained in popularity worldwide and therefore an increasing number of children may be exposed to the resulting nutritional consequences. Among them, the risk of micronutrient shortfall is particularly of concern. This narrative review aims to assess and discuss the relevance of micronutrient deficiency risk based on the available data. It mainly draws attention to iron, zinc, iodine, and vitamins B12 and D intake. Diets that are more restrictive in animal source foods, such as vegan diets, have a greater likelihood of nutritional deficiencies. However, the actual risk of micronutrient deficiency in vegetarian children is relatively difficult to assert based on the limitations of evidence due to the lack of well-designed studies. The risk of vitamin B12 deficiency must be considered in newborns from vegan or macrobiotic mothers and children with the most restrictive diet, as well as the risk of iron, zinc, and iodine deficiency, possibly by performing the appropriate tests. A lacto-ovo-vegetarian diet exposes a low risk if it uses a very varied diet with a sufficient intake of dairy products. Vegan and macrobiotic diets should be avoided during pregnancy and childhood. There is a need for education and nutrition guidance and the need for supplementation should be assessed individually.
Collapse
Affiliation(s)
- Jean-Pierre Chouraqui
- Paediatric Nutrition and Gastroenterology, Paediatrics Department, University Hospital of Grenoble-Alpes (CHUGA), Quai Yermoloff, 38700 La Tronche, France
| |
Collapse
|
31
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
32
|
Tadokoro T, Morishita A, Himoto T, Masaki T. Nutritional Support for Alcoholic Liver Disease. Nutrients 2023; 15:nu15061360. [PMID: 36986091 PMCID: PMC10059060 DOI: 10.3390/nu15061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Malnutrition is a common finding in alcohol use disorders and is associated with the prognosis of patients with alcoholic liver disease (ALD). These patients also frequently show deficiencies in vitamins and trace elements, increasing the likelihood of anemia and altered cognitive status. The etiology of malnutrition in ALD patients is multifactorial and complex and includes inadequate dietary intake, abnormal absorption and digestion, increased skeletal and visceral protein catabolism, and abnormal interactions between ethanol and lipid metabolism. Most nutritional measures derive from general chronic liver disease recommendations. Recently, many patients with ALD have been diagnosed with metabolic syndrome, which requires individualized treatment via nutritional therapy to avoid overnutrition. As ALD progresses to cirrhosis, it is frequently complicated by protein–energy malnutrition and sarcopenia. Nutritional therapy is also important in the management of ascites and hepatic encephalopathy as liver failure progresses. The purpose of the review is to summarize important nutritional therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
- Correspondence: ; Tel.: +81-87-891-2156
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| |
Collapse
|
33
|
Xing B, Yu J, Liu Y, He S, Chen X, Li Z, He L, Yang N, Ping F, Xu L, Li W, Zhang H, Li Y. High Dietary Zinc Intake Is Associated with Shorter Leukocyte Telomere Length, Mediated by Tumor Necrosis Factor-α: A Study of China Adults. J Nutr Health Aging 2023; 27:904-910. [PMID: 37960914 DOI: 10.1007/s12603-023-1992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Diet can influence peripheral leukocyte telomere length (LTL), and various micronutrients have been reported to correlate with it. Zinc is known for its antioxidant properties and immunomodulatory effects. However, there are few epidemiological investigations on the relationship between dietary zinc intake and LTL. This study analyzed the association between dietary zinc and LTL and the potential role of inflammation and oxidative stress among them. DESIGN Cross-sectional and community-based study. SETTING AND PARTICIPANTS 599 participants from rural communities in the Changping suburb of Beijing, China, were recruited. MEASUREMENTS Serum lipid profile, glycosylated hemoglobin (HbA1c), oxidative stress marker, and inflammatory cytokines levels were measured. Detailed dietary data were obtained using a 24 h food recall. LTL was assessed using a real-time PCR assay. Spearman analysis, restricted cubic splines (RCS), and general linear regression models were used to determine the association between dietary zinc intake and LTL. Simple regulatory models were also applied to analyze the role of inflammation and oxidative stress among them. RESULTS A total of 482 subjects were ultimately included in this analysis. Spearman analysis showed that dietary zinc intake and zinc intake under energy density were negatively correlated with LTL (r=-0.142 and -0.126, all P <0.05) and positively correlated with tumor necrosis factor-α (TNF-α) (r=0.138 and 0.202, all P <0.05) while only dietary zinc without energy adjustment had a positive correlation with superoxide dismutase (SOD). RCS (P for non-linearity=0.933) and multiple linear regression (B=-0.084, P=0.009) indicated a negative linear association between dietary zinc and LTL. The adjustment of TNF-α rather than SOD could abolish the relationship. The mediation model suggested that the unfavorable effect of dietary zinc on LTL was mediated by TNF-α. CONCLUSIONS High dietary zinc may correlate with telomere attrition, and TNF-α can act as a mediator in this relationship. In the future, more extensive cohort studies are needed to further explore the relationship between dietary zinc and cellular aging and the specific mechanisms.
Collapse
Affiliation(s)
- B Xing
- Wei Li, Huabing Zhang, Yuxiu Li, Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, Wei Li, ; Huabing Zhang, ; Yuxiu Li,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|