1
|
Ferrari S, Galla R, Mulè S, Uberti F. Analysis of the Beneficial Effects of Probiotics on the Gut-Prostate Axis Using Prostatic Co-Culture Model. Foods 2024; 13:3647. [PMID: 39594064 PMCID: PMC11593767 DOI: 10.3390/foods13223647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The link between the gut environment and the prostate has recently been proposed as a potential therapeutic approach for treating benign prostatic hyperplasia (BPH). Therefore, this study examined the advantages of a novel oral probiotic supplement to improve intestinal health and treat BPH. A 3D intestinal barrier model that simulated oral intake was used to analyse the combined regulative abilities of Bifidobacterium longum and Bifidobacterium psychaerophilum. Then, a co-culture prostatic model was used to investigate the biological consequences of the combination under conditions mimicking BPH. The results show the connection between the gut microbiome and prostate disease since the probiotics successfully modulate the primary mechanism involved in the pathogenesis of BPH. Indeed, after the intestinal passage, the mediators released from B. longum and B. psychaerophilum induced a substantial decrease in reactive oxidative species of about 6 times and inflammation (about 5 times regarding interleukine-6 and 10) and a sharp increase in testosterone and serotonin levels (about 95%). Further, proliferation and BPH principal mediators (such as androgen and dihydrotestosterone) were highly affected and nearly restored to physiological levels. Thus, BPH can be directly affected by probiotic supplementation; specifically, B. longum and B. psychaerophilum, in combination, seem able to promote the mitigation of this disease.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| |
Collapse
|
2
|
Anastasi F, Genius P, Rodriguez-Fernandez B, Yang C, Gorijala P, Timsina J, Hernández-Villamizar F, Lorenzini L, Del Campo M, Sanchez-Benavides G, Minguillon C, Navarro A, Cruchaga C, Suárez-Calvet M, Vilor-Tejedor N. Polygenic proxies of age-related plasma protein levels reveal TIMP2 role in cognitive performance. RESEARCH SQUARE 2024:rs.3.rs-5267673. [PMID: 39483923 PMCID: PMC11527218 DOI: 10.21203/rs.3.rs-5267673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background While numerous studies have identified blood proteins that modulate brain aging in mice, the direct translation of these findings to human health remains a substantial challenge. Bridging this gap is critical for developing interventions that can effectively target human brain aging and associated diseases. Methods We first identified 12 proteins with aging or rejuvenating properties in murine brains through a systematic review. Using protein quantitative trait loci data for these proteins, we developed polygenic scores to predict plasma protein levels, which we then validated in two independent human cohorts. We employed association models to explore the association between these genetically predicted protein levels and cognitive performance, focusing specifically on their interaction with key genetic markers such as sex, APOE-ε4 and Aβ42 status. Results Predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans, also when the models were stratified by sex, APOE-ε4, and Aβ42 status. Conclusions This finding aligns with TIMP2's brain-rejuvenating role in murine models, suggesting it as a promising therapeutic target for brain aging and age-related brain diseases in humans.
Collapse
Affiliation(s)
- Federica Anastasi
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation
| | - Patricia Genius
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation
| | | | - Chengran Yang
- Department of Psychiatry, Washington University, St. Louis
| | | | | | | | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center
| | - Marta Del Campo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation
| | | | | | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation
| | | | | | | |
Collapse
|
3
|
Mulè S, Ferrari S, Rosso G, Galla R, Battaglia S, Curti V, Molinari C, Uberti F. The Combined Effect of Green Tea, Saffron, Resveratrol, and Citicoline against Neurodegeneration Induced by Oxidative Stress in an In Vitro Model of Cognitive Decline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:7465045. [PMID: 39380915 PMCID: PMC11461078 DOI: 10.1155/2024/7465045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/10/2024]
Abstract
During ageing, the brain is vulnerable to a growing imbalance of the antioxidant defence system, resulting in increased oxidative stress. This condition may be mainly responsible for cognitive decline, resulting in synaptic transmission disruptions and the onset of neuronal dysfunction. In this context, developing efficient preventive and therapeutic strategies against increased oxidative stress and decreased antioxidant defence mechanisms should be considered a public health priority to promote healthy ageing. Therefore, the current study explored the benefits of a novel combination of green tea, saffron, trans-Reveratrol, and citicoline, called MIX, on improving intracellular processes to ameliorate the mechanisms linked to cognitive decline under oxidative stress conditions. First, the ability of MIX to cross the blood-brain barrier (BBB) was evaluated in an in vitro model, analysing TEER value and the specific tight junctions; second, the CCF-STTG1 cell line was pretreated with 200 µM H2O2 for 30 min to explore the effects of the single active compounds and their combination under oxidative stress conditions. Our results demonstrated for the first time the synergistic effects of the new combination to improve the absorption rate of individual agents through the BBB and maintain its integrity. Subsequently, further research was done to assess the positive role of the combination to counteract oxidative damage; as expected, MIX restored the neurodegenerative state activated by 200 µM H2O2, reducing mitochondrial damage, and improving survival pathways. Additionally, MIX acted as a regulator of both cellular energy metabolism and apoptosis, reducing the inflammatory state activated by oxidative stress. Finally, MIX can balance neurotrophin production to prevent mitochondrial disruption. In conclusion, MIX counteracted the adverse effects of brain oxidative stress, suggesting that this new proposed formulation prevents the molecular mechanisms underlying the onset of cognitive decline, even in support of conventional therapy.
Collapse
Affiliation(s)
- Simone Mulè
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
| | - Sara Ferrari
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
| | - Giorgia Rosso
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
| | - Rebecca Galla
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
- Noivita S.r.l.s.UPOSpin-Off of University of Eastern Piedmont, Via Solaroli 17, Novara (NO) 28100, Italy
| | - Stefania Battaglia
- R&D DepartmentKolinpharma S.p.A., Corso Europa 5, Lainate (MI) 20045, Italy
| | - Valeria Curti
- R&D DepartmentKolinpharma S.p.A., Corso Europa 5, Lainate (MI) 20045, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
| | - Francesca Uberti
- Department for Sustainable Development and Ecological TransitionLaboratory of Physiology, Via Sant Eusebio 37, Vercelli (VC) 13100, Italy
| |
Collapse
|
4
|
Li D, Zhao Z, Zhu L, Feng H, Song J, Fu J, Li J, Chen Z, Fu H. 7,8-DHF inhibits BMSC oxidative stress via the TRKB/PI3K/AKT/NRF2 pathway to improve symptoms of postmenopausal osteoporosis. Free Radic Biol Med 2024; 223:413-429. [PMID: 39155025 DOI: 10.1016/j.freeradbiomed.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Postmenopausal osteoporosis (PMO) is characterized by bone loss and microstructural damage, and it is most common in older adult women. Currently, there is no cure for PMO. The flavonoid chemical 7,8-dihydroxyflavone (7,8-DHF) specifically activates tropomyosin receptor kinase B (TRKB). Furthermore, 7,8-DHF has various biological characteristics, including anti-inflammatory and antioxidant effects. However, the specific implications and fundamental mechanisms of 7,8-DHF in PMO remain unclear. We used protein imprinting, flow cytometry, tissue staining, and other methods to estimate the preventive mechanisms of 7,8-DHF against hydrogen peroxide (H2O2)-induced apoptosis in primary mouse bone marrow mesenchymal stem cells (BMSCs), osteogenic differentiation ability, and bone mass in ovariectomized (OVX) mice. We found that 7,8-DHF effectively prevented H2O2-induced reductions in the viability and osteogenic differentiation capacity of primary BMSCs. Mechanistically, 7,8-DHF induced the TRKB to activate the PI3K/AKT/NRF2 pathway. In vivo experiments with the OVX mouse model confirmed that 7,8-DHF can inhibit oxidative stress and promote bone formation, indicating that 7,8-DHF improves the viability and osteogenic differentiation ability of BMSCs stimulated via H2O2 by activating the TRKB/PI3K/AKT and NRF2 pathways, thereby improving PMO.
Collapse
Affiliation(s)
- Dailuo Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zihang Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Liyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Haoran Feng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Junlong Song
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jiawei Fu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jincheng Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhanzhi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hailiang Fu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
6
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
7
|
Anastasi F, Genius P, Rodriguez-Fernandez B, Yang C, Gorijala P, Timsina J, Hernández-Villamizar F, Lorenzini L, Del Campo M, Sánchez-Benavides G, Minguillon C, Navarro A, Cruchaga C, Suárez-Calvet M, Vilor-Tejedor N. Polygenic proxies of age-related plasma protein levels reveal TIMP2 role in cognitive performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.23.24310854. [PMID: 39211866 PMCID: PMC11361219 DOI: 10.1101/2024.07.23.24310854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Several studies have identified blood proteins that influence brain aging performance in mice, yet translating these findings to humans remains challenging. Here we found that higher predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans. We first identified 12 proteins with aging or rejuvenating effects on murine brains through a systematic review. Using protein quantitative trait loci data for these proteins, we computed polygenic scores as proxies for plasma protein levels and validated their prediction accuracy in two independent cohorts. Association models between genetic proxies and cognitive performance highlighted the significance of TIMP2, also when the models were stratified by sex, APOE -ε4, and Aβ42 status. This finding aligns with TIMP2's brain-rejuvenating role in murine models, suggesting it as a promising therapeutic target for brain aging and age-related brain diseases in humans.
Collapse
|
8
|
Cheriki M, Habibian M, Moosavi SJ. Curcumin attenuates brain aging by reducing apoptosis and oxidative stress. Metab Brain Dis 2024; 39:833-840. [PMID: 38687459 DOI: 10.1007/s11011-023-01326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 05/02/2024]
Abstract
Brain aging is a physiological event, and oxidative stress and apoptosis are involved in the natural aging process of the brain. Curcumin is a natural antioxidant with potent anti-aging and neuroprotective properties. Therefore, we investigated the protective effects of curcumin on brain apoptosis and oxidative stress, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) in aged rats. Old female Wistar rats were randomly divided into three groups (n = 7); as follows: (1) control; (2); saline and (3) curcumin (received 30 mg/kg of curcumin, 5 days/week for 8 weeks, intraperitoneally). Our results indicated that treatment with curcumin in aged rats attenuates brain lipid peroxidation, which was accompanied by a significant increase in the BDNF, VEGF, superoxide dismutase (SOD) activity, and anti-apoptotic protein BCl-2. No significant change in brain anti-apoptotic Bax protein levels was observed after curcumin treatment. The study indicates that curcumin could alleviate brain aging which may be due to attenuating oxidative stress, inhibiting apoptosis, and up-regulating SOD activity, which in turn enhances VEGF and BDNF. Therefore, curcumin has potential therapeutic value in the treatment of neurological apoptosis, neurogenesis, and angiogenesis changes caused by brain aging.
Collapse
Affiliation(s)
- Mehran Cheriki
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| | - Masoumeh Habibian
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran.
| | - Seyyed Jafar Moosavi
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| |
Collapse
|
9
|
Ceylan Hİ, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:323. [PMID: 38785805 PMCID: PMC11117522 DOI: 10.3390/biology13050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = -0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study's results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile;
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
10
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
11
|
Ferrari S, Mulè S, Rosso G, Parini F, Galla R, Molinari C, Uberti F. An Innovative Probiotic-Based Supplement to Mitigate Molecular Factors Connected to Depression and Anxiety: An In Vitro Study. Int J Mol Sci 2024; 25:4774. [PMID: 38731995 PMCID: PMC11083558 DOI: 10.3390/ijms25094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The gut-brain axis is a bidirectional relationship between the microbiota and the brain; genes related to the brain and gut synaptic formation are similar. Research on the causal effects of gut microbiota on human behavior, brain development, and function, as well as the underlying molecular processes, has emerged in recent decades. Probiotics have been shown in several trials to help reduce anxiety and depressive symptoms. Because of this, probiotic combinations have been tested in in vitro models to see whether they might modulate the gut and alleviate depression and anxiety. Therefore, we sought to determine whether a novel formulation might affect the pathways controlling anxiety and depression states and alter gut barrier activities in a 3D model without having harmful side effects. Our findings indicate that B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL, and L. paracasei TJB8 10 mg/mL may influence the intestinal barrier and enhance the synthesis of short-chain fatty acids. Additionally, the probiotics studied did not cause neuronal damage and, in combination, exert a protective effect against the condition of anxiety and depression triggered by L-Glutamate. All these findings show that probiotics can affect gut function to alter the pathways underlying anxiety and depression.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Giorgia Rosso
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Francesca Parini
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
- Noivita Srls, Spin Off of the University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Claudio Molinari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| |
Collapse
|
12
|
Arozal W, Safutra MS, Barinda AJ, Hardi H, Dwita NC, Lee HJ. Comparative Neuroprotective Effects of Moringa oleifera Seed Oil and Aqueous Extract on Cognitive Functions on a High-Fat, High-Fructose Diet Mice: Focus on Senescence Markers. ScientificWorldJournal 2024; 2024:8034401. [PMID: 38633104 PMCID: PMC11022517 DOI: 10.1155/2024/8034401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
Several studies have demonstrated that Moringa oleifera (MO) has different pharmacological properties, including neuroprotective effects. However, the role of MO in preventing brain impairment in high-fat, high-fructose diet (HFFD) remains unknown. This study aimed to investigate the neuroprotective effects of MO leaves aqueous extract (MOE) and moringa seed oil (MOO) against brain impairment in mice with HFFD. Twenty-eight male mice were randomly divided into four groups: normal diet, HFFD, HFFD + MOE 500 mg/kgBW, and HFFD + MOO 2 mL/kgBW. Cognitive function was assessed using the Y-maze and novel object recognition (NOR) tests. The p16, p21, and BDNF expressions were analyzed using the RT-PCR method. Senescence-associated beta-galactosidase (SA-β-gal) staining in the brain was also performed. The results showed that administration of MOE or MOO could increase the percentage of alternation and recognition of new objects, prevent the increase of p16 and p21 expression, and ameliorate SA-β-Gal activity in the brain. MOO, but not MOE, increased BDNF expression in senescence brains isolated from HFFD mice. The findings indicate that MOO and MOE possess neuroprotective properties, with MOO demonstrating a greater ability to inhibit the brain senescence process compared to MOE.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic Cardiovascular and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Clinical Pharmacology Specialist Study Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nounik Cheri Dwita
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hee J. Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
14
|
Hardiany NS, Dewi PKK, Dewi S, Tejo BA. Exploration of neuroprotective effect from Coriandrum sativum L. ethanolic seeds extracts on brain of obese rats. Sci Rep 2024; 14:603. [PMID: 38182767 PMCID: PMC10770154 DOI: 10.1038/s41598-024-51221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = < 0.001), SA-β-Gal activity (p = 0.010), and increased GSH concentration (p = 0.047) in the brain of obese rats; however, the decrease of IL-6, NSE, and p16 as well as the increase of catalase specific activity and BDNF expression were not significant. Moreover, the mature/pro-BDNF ratio was significantly higher in the brains of non-obese rats, both given the control diet and the high-fat diet compared to the control. Our results suggest that obese rats benefited from consuming CSES, showing improved oxidative stress levels, reduced cellular senescence and increased endogenous antioxidants, making CSES a potential neuroprotective agent.
Collapse
Affiliation(s)
- Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Putri Krishna Kumara Dewi
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
- Medical Biochemistry Division, Department of Biomedical Science, Faculty of Medicine, Universitas Pendidikan Ganesha, Bali, 81116, Indonesia
| | - Syarifah Dewi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Bimo A Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
15
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
16
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
17
|
Shapira G, Israel-Elgali I, Grad M, Avnat E, Rachmany L, Sarne Y, Shomron N. Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice. Front Neurosci 2023; 17:1182932. [PMID: 37534036 PMCID: PMC10393280 DOI: 10.3389/fnins.2023.1182932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3-4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.
Collapse
Affiliation(s)
- Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel-Elgali
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Meitar Grad
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eden Avnat
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lital Rachmany
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Sarne
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Vyas CM, Mischoulon D, Chang G, Reynolds CF, Cook NR, Weinberg A, Copeland T, Bubes V, Bradwin G, Lee IM, Buring JE, Mora S, Rifai N, Manson JE, Okereke OI. Relation of serum BDNF to major depression and exploration of mechanistic roles of serum BDNF in a study of vitamin D3 and omega-3 supplements for late-life depression prevention. J Psychiatr Res 2023; 163:357-364. [PMID: 37267732 PMCID: PMC10306120 DOI: 10.1016/j.jpsychires.2023.05.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
This study: 1) examined cross-sectional and longitudinal relations of serum brain-derived neurotrophic factor (BDNF) to late-life depression (LLD); 2) tested effects of vitamin D3 and omega-3s on change in BDNF; 3) explored modifying or mediating roles of BDNF on effects of vitamin D3 and omega-3s for LLD. We selected 400 adults from a completed trial of vitamin D3 and omega-3 supplements for LLD prevention. BDNF was measured using an enzyme-linked immunosorbent assay. We administered semi-structured diagnostic interviews and Patient Health Questionnaire [PHQ]-9 to ascertain outcomes at baseline (depression caseness vs. non-caseness; PHQ-9) and at 2-year follow-up among baseline non-depressed individuals (incident vs. no incident MDD; change in PHQ-9). At baseline, while there were no significant differences in mean serum BDNF comparing depression cases and non-cases, being in the lowest vs. highest serum BDNF quartile was significantly associated with worse depressive symptoms. There were no significant longitudinal associations between serum BDNF and LLD. Neither supplement significantly affected change in BDNF; serum BDNF did not appear to modify or mediate treatment effects on LLD. In conclusion, we observed significant cross-sectional but not longitudinal associations between serum BDNF levels and LLD. Vitamin D3 or omega-3s did not alter serum BDNF over 2 years.
Collapse
Affiliation(s)
- Chirag M Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Charles F Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alison Weinberg
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Trisha Copeland
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim Bubes
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gary Bradwin
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Samia Mora
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nader Rifai
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Key MN, Szabo-Reed AN. Impact of Diet and Exercise Interventions on Cognition and Brain Health in Older Adults: A Narrative Review. Nutrients 2023; 15:2495. [PMID: 37299458 PMCID: PMC10255782 DOI: 10.3390/nu15112495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The ability to preserve cognitive function and protect brain structure from the effects of the aging process and neurodegenerative disease is the goal of non-pharmacologic, lifestyle interventions focused on brain health. This review examines, in turn, current diet and exercise intervention trends and the collective progress made toward understanding their impact on cognition and brain health. The diets covered in this review include the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), ketogenic diet, intermittent fasting, and weight loss management. The exercise approaches covered in this review include endurance, resistance, combined exercise programs, yoga, tai chi, and high-intensity interval training. Although valuable evidence is building concerning how diet and exercise influence cognitive performance and brain structure, many of the open questions in the field are concerned with why we see these effects. Therefore, more strategically designed intervention studies are needed to reveal the likely multiple mechanisms of action in humans.
Collapse
Affiliation(s)
- Mickeal N. Key
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amanda N. Szabo-Reed
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA;
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Usmani MT, Krattli RP, El-Khatib SM, Le ACD, Smith SM, Baulch JE, Ng DQ, Acharya MM, Chan A. BDNF Augmentation Using Riluzole Reverses Doxorubicin-Induced Decline in Cognitive Function and Neurogenesis. Neurotherapeutics 2023; 20:838-852. [PMID: 36720792 PMCID: PMC10275819 DOI: 10.1007/s13311-022-01339-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/02/2023] Open
Abstract
Cancer-related cognitive impairment (CRCI) considerably affects the quality of life of millions of cancer survivors. Brain-derived neurotrophic factor (BDNF) has been shown to promote survival, differentiation, and maintenance of in vivo dentate neurogenesis, and chemotherapy induces a plethora of physiological and cellular alterations, including a decline in neurogenesis and increased neuroinflammation linked with cognitive impairments. In our clinical studies, breast cancer patients treated with doxorubicin (Adriamycin®, ADR) experienced a significant reduction in the blood levels of BDNF that was associated with a higher risk of CRCI. Our past rodent studies in CRCI have also shown a significant reduction in dentate neurogenesis accompanied by cognitive impairment. In this study, using a female mouse model of ADR-induced cognitive decline, we tested the impact of riluzole (RZ), an orally active BDNF-enhancing medication that is FDA-approved for amyotrophic lateral sclerosis. ADR-treated mice receiving RZ in the drinking water for 1 month showed significant improvements in hippocampal-dependent learning and memory function (spatial recognition), fear extinction memory consolidation, and reduced anxiety-like behavior. RZ prevented chemotherapy-induced reductions of BDNF levels in the hippocampus. Importantly, RZ mitigated chemotherapy-induced loss of newly born, immature neurons, dentate neurogenesis, and neuroinflammation. In conclusion, this data provides pre-clinical evidence for a translationally feasible approach to enhance the neuroprotective effects of RZ treatment to prevent CRCI.
Collapse
Affiliation(s)
- Manal T Usmani
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Robert P Krattli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sanad M El-Khatib
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Anh C D Le
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sarah M Smith
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Ding Quan Ng
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA.
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
22
|
Goulet N, McCormick JJ, King KE, Notley SR, Goldfield GS, Fujii N, Amano T, Kenny GP. Elevations in serum brain-derived neurotrophic factor following occupational heat stress are not influenced by age or common chronic disease. Temperature (Austin) 2023; 10:454-464. [PMID: 38130657 PMCID: PMC10732602 DOI: 10.1080/23328940.2023.2176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
With global warming, workers are increasingly exposed to strenuous occupations in hot environments. Given age- and disease-associated declines in thermoregulatory function, older workers are at an elevated risk of developing heat-related injuries. Brain-derived neurotrophic factor (BDNF) is thought to confer neuroprotection during acute exercise, however, the influence of environmental heat on BDNF responses during prolonged work remains unclear. Therefore, we evaluated serum BDNF concentrations before and after 180 min of moderate-intensity treadmill walking (200 W/m2) and after 60 min of post-exercise recovery in temperate (wet-bulb globe temperature (WBGT) 16°C) and hot (WBGT 32°C) environments in 13 healthy young men (mean [SD; 22 [3] years), 12 healthy older men (59 [4] years), 10 men with hypertension (HTN) (60 [4] years), and 9 men with type 2 diabetes (T2D) (60 [5] years). In the temperate condition, all but one participant (1 HTN) completed the 180 min of exercise. While exercise tolerance in the heat was lower in older men with HTN (117 min [45]) and T2D (123 min [42]) compared to healthy older men (159 min [31]) (both p ≤ 0.049), similar end-exercise rectal temperatures (38.9°C [0.4]) were observed across groups, paralleled by similar elevations in serum BDNF across groups at end-exercise (+1106 pg/mL [203]) and end-recovery (+938 pg/mL [146]; all p ≤ 0.01) in the heat. No changes in serum BDNF were observed in the temperate condition. Our findings indicate similar BDNF responses in individuals with HTN or T2D compared to their healthy counterparts, despite exhibiting reduced tolerance to heat.
Collapse
Affiliation(s)
- Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - James J. McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Kelli E. King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Gary S. Goldfield
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ontario, Canada, Canada
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ontario, Canada, Canada
| |
Collapse
|
23
|
Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int J Mol Sci 2023; 24:ijms24043866. [PMID: 36835277 PMCID: PMC9968045 DOI: 10.3390/ijms24043866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), spinal cord injury (SCI), and amyotrophic lateral sclerosis (ALS), are characterized by acute or chronic progressive loss of one or several neuronal subtypes. However, despite their increasing prevalence, little progress has been made in successfully treating these diseases. Research has recently focused on neurotrophic factors (NTFs) as potential regenerative therapy for neurodegenerative diseases. Here, we discuss the current state of knowledge, challenges, and future perspectives of NTFs with a direct regenerative effect in chronic inflammatory and degenerative disorders. Various systems for delivery of NTFs, such as stem and immune cells, viral vectors, and biomaterials, have been applied to deliver exogenous NTFs to the central nervous system, with promising results. The challenges that currently need to be overcome include the amount of NTFs delivered, the invasiveness of the delivery route, the blood-brain barrier permeability, and the occurrence of side effects. Nevertheless, it is important to continue research and develop standards for clinical applications. In addition to the use of single NTFs, the complexity of chronic inflammatory and degenerative diseases may require combination therapies targeting multiple pathways or other possibilities using smaller molecules, such as NTF mimetics, for effective treatment.
Collapse
|
24
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
25
|
Han J, Wang J, Shi H, Li Q, Zhang S, Wu H, Li W, Gan L, Brown-Borg HM, Feng W, Chen Y, Zhao RC. Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence. Mater Today Bio 2023; 19:100544. [PMID: 36747580 PMCID: PMC9898451 DOI: 10.1016/j.mtbio.2023.100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Senescence is a cellular response characterized by cells irreversibly stopping dividing and entering a state of permanent growth arrest. One of the underlying pathophysiological causes of senescence is the oxidative stress-induced damage, indicating that eliminating the reactive oxygen and nitrogen species (RONS) may be beneficial to prevent and/or alleviate senescence. Herein, we developed ultra-small polydopamine nanoparticles (UPDA NPs) with superoxide dismutase (SOD)/catalase (CAT) enzyme-mimic activities, featuring broad-spectrum RONS-scavenging capability for inducing cytoprotective effects against RONS-mediated damage. The engineered UPDA NPs can restore senescence-related renal function, tissue homeostasis, fur density, and motor ability in mice, potentially associated with the regulation of multiple genes involved in lipid metabolism, mitochondrial function, energy homeostasis, telomerase activity, neuroprotection, and inflammatory responses. Importantly, the dietary UPDA NPs can enhance the antioxidant capacity, improve the climbing ability, and prolong the lifespan of Drosophila. Notably, UPDA NPs possess excellent biocompatibility stemming from the ultra-small size, ensuring quick clearance out of the body. These findings reveal that UPDA NPs can delay aging through reducing oxidative stress and provide a paradigm and practical strategy for treating senescence and senescence-related diseases.
Collapse
Affiliation(s)
- Jiamei Han
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongwei Shi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Cell Energy Life Sciences Group Co. LTD, Qingdao, Shandong, China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Linhua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND, USA,Corresponding author.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding authors.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding author.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Corresponding authors. School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
26
|
Díaz A, Flores I, Treviño S. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen Res 2023; 18:51-56. [PMID: 35799508 PMCID: PMC9241392 DOI: 10.4103/1673-5374.331867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes. During this physiological process, the brain is the most affected organ due to changes in its structural and chemical functions, such as changes in plasticity and decrease in the number, diameter, length, and branching of dendrites and dendritic spines. Likewise, it presents a great reduction in volume resulting from the contraction of the gray matter. Consequently, aging can affect not only cognitive functions, including learning and memory, but also the quality of life of older people. As a result of the phenomena, various molecules with notable neuroprotective capacity have been proposed, which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases. It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models. This review aims to describe the neurotrophic potential of molecules such as resveratrol (3,5,4′-trihydroxystilbene), neurotrophins (brain-derived neurotrophic factor), and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin, cerebrolysin, neuropeptide-12, and rapamycin. Most of these molecules have been evaluated by our research group. Studies suggest that these molecules exert an important therapeutic potential, restoring brain function in aging conditions or models of neurodegenerative diseases. Hence, our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.
Collapse
|
27
|
Bhandari A, Kalotra S, Bajaj P, Sunkaria A, Kaur G. Dietary intervention with Tinospora cordifolia improved aging-related decline in locomotor coordination and cerebellar cell survival and plasticity in female rats. Biogerontology 2022; 23:809-824. [PMID: 35767131 DOI: 10.1007/s10522-022-09975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Reduced bone mineral density, and muscle strength are the hallmark of aging-related motor coordination deficits and related neuropathologies. Since cerebellum regulates motor movements and balance perception of our body, therefore it may be an important target to control the age-related progression of motor dysfunctions. Dry stem powder of Tinospora cordifolia (TCP) was tested as a food supplement to elucidate its activity to attenuate age-associated locomotor dysfunctions. Intact acyclic middle-aged female rats were used in this study as the model system of the transition phase from premenopause to menopause in women along with cycling young adult rats. Normal chow or 30% High Fat Diet (HFD), supplemented with or without TCP was fed to animals for 12 weeks and then tested for locomotor performance on rotarod followed by post-sacrifice protein expression studies. In comparison to young adults, middle-aged animals showed an increase in number of falls and lesser time spent in rotarod performance test, whereas, animals given TCP supplemented feed showed improvement in performance with more pronounced effects observed in normal chow than HFD fed middle-aged rats. Further, due to its multicomponent nature TCP was found to target the expression of various markers of neuroinflammation, apoptosis, cell survival, and synaptic plasticity in the cerebellum region. The current findings suggest that TCP supplementation in the diet may prove to be a potential interventional strategy for the management of frailty and fall-associated morbidities caused by aging-related deterioration of bone mineral density, and muscle strength.
Collapse
Affiliation(s)
- Anmol Bhandari
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shikha Kalotra
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Payal Bajaj
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Aditya Sunkaria
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Gurcharan Kaur
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
28
|
Zappelli E, Daniele S, Vergassola M, Ceccarelli L, Chelucci E, Mangano G, Durando L, Ragni L, Martini C. A specific combination of nutraceutical Ingredients exerts cytoprotective effects in human cholinergic neurons. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Galla R, Ruga S, Ferrari S, Saccone S, Saccuman L, Invernizzi M, Uberti F. In vitro analysis of the effects of plant-derived chondroitin sulfate from intestinal barrier to chondrocytes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
30
|
Chen X, Zhao Y, You S, Xia Q, Mo X, Yuan F. 7,8-Dihydroxyflavone Simultaneously Provides Neuroprotection of Retinal Explants and Proangiogenesis of Human Umbilical Vein Endothelial Cells via the Tropomyosin-Related Kinase Receptor B Signaling Pathway In Vitro. J Ocul Pharmacol Ther 2022; 38:635-644. [PMID: 36260383 DOI: 10.1089/jop.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: This study aimed to investigate the simultaneous neuroprotective and proangiogenic effects of 7,8-dihydroxyflavone (7,8-DHF) and explore the potential underlying molecular mechanisms. Methods: A coculture system of rat retinal explants and human umbilical vein endothelial cells (HUVECs) was established to determine the optimal concentration of 7,8-DHF, promoting neurite regeneration and HUVEC proliferation. Subsequently, the neuroprotective effect, proangiogenesis properties, and action mechanism of 7,8-DHF at an optimal concentration were investigated. Results: The cell proliferation, survival, migration, tube formation and p-tropomyosin-related kinase receptor B (TrkB)/TrkB levels in HUVECs were significantly promoted by 5 μM 7,8-DHF. The ganglion cell layer neuron survival, neurite regeneration, and p-TrkB/TrkB levels in retinal explants were also significantly promoted by 5 μM 7,8-DHF. All of these pharmacological actions of 7,8-DHF were blocked by N-[2-[(2-oxoazepan-3-yl)carbamoyl]phenyl]-1-benzothiophene-2-carboxamide. Conclusions: 7,8-DHF yields neuroprotection of retinal explants and proangiogenesis of HUVECs through the TrkB signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiangwu Chen
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yingxi Zhao
- Department of Ophthalmology, Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuqi You
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Qing Xia
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xiaofen Mo
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
Rondão CADM, Mota MP, Oliveira MM, Peixoto F, Esteves D. Multicomponent exercise program effects on fitness and cognitive function of elderlies with mild cognitive impairment: Involvement of oxidative stress and BDNF. Front Aging Neurosci 2022; 14:950937. [PMID: 36092805 PMCID: PMC9453672 DOI: 10.3389/fnagi.2022.950937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Regular exercise has been shown to be one of the most important lifestyle influences on improving functional performance, and decreasing morbidity and all-cause mortality among older people. However, although there is some evidence on the effects of aerobic training on oxidative stress, there is little information regarding the effects of multicomponent exercise (dual-task training) and combination of exercise with cognitive stimulation on oxidative stress. In this context, the aim of this study was to verify the effects of a multicomponent exercise program on physical fitness and cognitive function in the elderly with mild cognitive impairment and determine the role of oxidative stress and brain-derived neurotrophic factor (BDNF). At baseline, 37 elderly nursing home residents with mild cognitive impairment were divided into two groups: the control group (CG, n = 12, 81.8 years) and the experimental group (EG, n = 25, 83.2 years). These elderlies followed multicomponent exercise training for 24 weeks, with two sessions per week and 45–50 min per session. The exercises included both aerobic and strength exercises, considering functional movements and light to moderate intensity. Cognitive stimulation comprehended exercises based on word games, puzzles, mathematical calculations, forward and backward counting, computer exercises, exergames, and games on a balanced platform. Physical assessments (weight, height, and body mass index), health and functional parameters (fitness tests: chair stand, arm curls, chair sit-and-reach, eight feet up-and-go, back scratch, 6-min walking, feet together, semi-tandem, and full tandem), lipid profile (total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides), measures of lipid peroxidation damage, thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), and BDNF were measured in plasma, based on which analyses were performed before and after the 24 weeks of the multicomponent exercise intervention. The results showed an overall improvement in physical and functional performance. Regarding biochemical measures, multicomponent exercises lead to a significant decrease in oxidative damage. The results indicate that multicomponent exercise training induces benefits in functional capacity and reduces damage due to oxidative stress.
Collapse
Affiliation(s)
- Catarina Alexandra de Melo Rondão
- Department of Sports, University of Beira Interior, Covilhã, Portugal
- Camara Municipal do Fundão, Fundão, Portugal
- *Correspondence: Catarina Alexandra de Melo Rondão
| | - Maria Paula Mota
- University of Trás-os Montes e Alto Douro, Vila Real, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal
| | - Maria Manuel Oliveira
- University of Trás-os Montes e Alto Douro, Vila Real, Portugal
- Centro de Química, Vila Real, Portugal
| | - Francisco Peixoto
- University of Trás-os Montes e Alto Douro, Vila Real, Portugal
- Centro de Química, Vila Real, Portugal
| | - Dulce Esteves
- Department of Sports, University of Beira Interior, Covilhã, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal
| |
Collapse
|
32
|
Zappelli E, Daniele S, Ceccarelli L, Vergassola M, Ragni L, Mangano G, Martini C. α-glyceryl-phosphoryl-ethanolamine protects human hippocampal neurons from aging-induced cellular alterations. Eur J Neurosci 2022; 56:4514-4528. [PMID: 35902984 PMCID: PMC9545488 DOI: 10.1111/ejn.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Brain ageing has been related to a decrease in cellular metabolism, to an accumulation of misfolded proteins and to an alteration of the lipid membrane composition. These alterations act as contributive aspects of age‐related memory decline by reducing membrane excitability and neurotransmitter release. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and ameliorate the cellular defects associated with brain ageing. In particular, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been shown to restore mitochondrial function, reduce the accumulation of amyloid beta (Aβ) and, at the same time, provide the amount of acetylcholine needed to reduce memory deficit. Among PL precursors, alpha‐glycerylphosphorylethanolamine (GPE) has shown to protect astrocytes from Aβ injuries and to slow‐down ageing of human neural stem cells. GPE has been evaluated in aged human hippocampal neurons, which are implicated in learning and memory, and constitute a good in vitro model to investigate the beneficial properties of GPE. In order to mimic cellular ageing, the cells have been maintained 21 days in vitro and challenged with GPE. Results of the present paper showed GPE ability to increase PE and PC content, glucose uptake and the activity of the chain respiratory complex I and of the GSK‐3β pathway. Moreover, the nootropic compound showed an increase in the transcriptional/protein levels of neurotrophic and well‐being related genes. Finally, GPE counteracted the accumulation of ageing‐related misfolded proteins (a‐synuclein and tau). Overall, our data underline promising effects of GPE in counteracting cellular alterations related to brain ageing and cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | - Lorella Ragni
- Global R&D PLCM -Angelini Pharma S.p.A, Ancona, Italy
| | | | | |
Collapse
|
33
|
New Hyaluronic Acid from Plant Origin to Improve Joint Protection—An In Vitro Study. Int J Mol Sci 2022; 23:ijms23158114. [PMID: 35897688 PMCID: PMC9332867 DOI: 10.3390/ijms23158114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In recent decades, hyaluronic acid (HA) has attracted great attention as a new treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic®) in maintaining joint homeostasis and preventing the harmful processes of osteoarthritis. Methods: The bioavailability of GreenIuronic® was investigated in a 3D intestinal barrier model that mimics human oral intake while excluding damage to the intestinal barrier. Furthermore, the chemical significance and biological properties of GreenIuronic® were investigated in conditions that simulate osteoarthritis. Results: Our data demonstrated that GreenIuronic® crosses the intestinal barrier without side effects as it has a chemical–biological profile, which could be responsible for many specific chondrocyte functions. Furthermore, in the osteoarthritis model, GreenIuronic® can modulate the molecular mechanism responsible for preventing and restoring the degradation of cartilage. Conclusion: According to our results, this new form of HA appears to be well absorbed and distributed to chondrocytes, preserving their biological activities. Therefore, the oral administration of GreenIuronic® in humans can be considered a valid strategy to obtain beneficial therapeutic effects during osteoarthritis.
Collapse
|
34
|
de Souza JM, Ferreira-Vieira TH, Maciel EMA, Silva NC, Lima IBQ, Doria JG, Olmo IG, Ribeiro FM. mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype. Sci Rep 2022; 12:8982. [PMID: 35643779 PMCID: PMC9148310 DOI: 10.1038/s41598-022-13029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5−/−, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5−/−/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5−/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5−/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5−/− and BACHD/mGluR5−/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.
Collapse
|
35
|
Miyanishi H, Kitazawa A, Izuo N, Muramatsu SI, Nitta A. N-Acetyl Transferase, Shati/Nat8l, in the Dorsal Hippocampus Suppresses Aging-induced Impairment of Cognitive Function in Mice. Neurochem Res 2022; 47:2703-2714. [DOI: 10.1007/s11064-022-03594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
|
36
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
38
|
Xu J, Zhou H, Xiang G. Identification of Key Biomarkers and Pathways for Maintaining Cognitively Normal Brain Aging Based on Integrated Bioinformatics Analysis. Front Aging Neurosci 2022; 14:833402. [PMID: 35356296 PMCID: PMC8959911 DOI: 10.3389/fnagi.2022.833402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Background Given the arrival of the aging population has caused a series of social and economic problems, we aimed to explore the key genes underlying cognitively normal brain aging and its potential molecular mechanisms. Methods GSE11882 was downloaded from Gene Expression Omnibus (GEO). The data from different brain regions were divided into aged and young groups for analysis. Co-expressed differentially expressed genes (DEGs) were screened. Functional analysis, protein–protein interaction (PPI) network, microRNA (miRNA)-gene, and transcription factor (TF)-gene networks were performed to identify hub genes and related molecular mechanisms. AlzData database was used to elucidate the expression of DEGs and hub genes in the aging brain. Animal studies were conducted to validate the hub genes. Results Co-expressed DEGs contained 7 upregulated and 87 downregulated genes. The enrichment analysis indicated DEGs were mainly involved in biological processes and pathways related to immune-inflammatory responses. From the PPI network, 10 hub genes were identified: C1QC, C1QA, C1QB, CD163, FCER1G, VSIG4, CD93, CD14, VWF, and CD44. CD44 and CD93 were the most targeted DEGs in the miRNA-gene network, and TIMP1, HLA-DRA, VWF, and FGF2 were the top four targeted DEGs in the TF-gene network. In AlzData database, the levels of CD44, CD93, and CD163 in patients with Alzheimer’s disease (AD) were significantly increased than those in normal controls. Meanwhile, in the brain tissues of cognitively normal mice, the expression of CD44, CD93, and CD163 in the aged group was significantly lower than those in the young group. Conclusion The underlying molecular mechanisms for maintaining healthy brain aging are related to the decline of immune-inflammatory responses. CD44, CD93, and CD 163 are considered as potential biomarkers. This study provides more molecular evidence for maintaining cognitively normal brain aging.
Collapse
Affiliation(s)
- Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Hui Zhou
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Guangda Xiang,
| |
Collapse
|
39
|
Molinari C, Ruga S, Farghali M, Galla R, Fernandez-Godino R, Clemente N, Uberti F. Effects of a New Combination of Natural Extracts on Glaucoma-Related Retinal Degeneration. Foods 2021; 10:1885. [PMID: 34441662 PMCID: PMC8391439 DOI: 10.3390/foods10081885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glaucoma is currently the leading cause of irreversible blindness; it is a neuropathy characterized by structural alterations of the optic nerve, leading to visual impairments. The aim of this work is to develop a new oral formulation able to counteract the early changes connected to glaucomatous degeneration. The composition is based on gastrodin and vitamin D3 combined with vitamin C, blackcurrant, and lycopene. METHODS Cells and tissues of the retina were used to study biological mechanisms involved in glaucoma, to slow down the progression of the disease. Experiments mimicking the conditions of glaucoma were carried out to examine the etiology of retinal degeneration. RESULTS Our results show a significant ability to restore glaucoma-induced damage, by counteracting ROS production and promoting cell survival by inhibiting apoptosis. These effects were confirmed by the intracellular mechanism that was activated following administration of the compound, either before or after the glaucoma induction. In particular, the main results were obtained as a preventive action of glaucoma, showing a beneficial action on all selected markers, both on cells and on eyecup preparations. It is therefore possible to hypothesize both the preventive and therapeutic use of this formulation, in the presence of risk factors, and due to its ability to inhibit the apoptotic cycle and to stimulate cell survival mechanisms, respectively. CONCLUSION This formulation has exhibited an active role in the prevention or restoration of glaucoma damage for the first time.
Collapse
Affiliation(s)
- Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Sara Ruga
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Mahitab Farghali
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA;
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| |
Collapse
|
40
|
l-Theanine Ameliorates d-Galactose-Induced Brain Damage in Rats via Inhibiting AGE Formation and Regulating Sirtuin1 and BDNF Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8850112. [PMID: 34336115 PMCID: PMC8315880 DOI: 10.1155/2021/8850112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of homeostasis is essential for mitigating stress and delaying degenerative diseases such as Alzheimer's disease (AD). AD is generally defined as the abnormal production of β-amyloid (Aβ) and advanced glycation end products (AGEs). The effects of l-theanine on Aβ and AGE generation were investigated in this study. Decreased AGEs and Aβ1-42 levels were reflected by increased acetylcholine (ACh) concentration and acetylcholinesterase (AChE) activity inhibition compared to model rats. l-Theanine also inhibited nuclear factor-κB (p65) protein expression by activating sirtuin1 (SIRT1), reducing inflammatory factor expression, and downregulating the mRNA and protein expression of AGE receptors (RAGE). Superoxide dismutase 2 and catalase protein expressions were markedly upregulated by l-theanine, whereas oxidative stress-related injury was alleviated. The expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) was also found to be increased. H&E staining showed that the apoptosis of hippocampal neurons was mitigated by decreased Bax and cleaved-caspase-3 protein expression and the increase of Bcl-2 protein expression. Moreover, l-theanine increased the gene and protein expression of brain-derived neurotrophic factor (BDNF). These findings suggest that the potential preventive effects of l-theanine against AD may be attributed to its regulation of SIRT1 and BDNF proteins and its mitigation of AGEs/RAGE signaling pathways in the brain tissue of AD model rats.
Collapse
|
41
|
Movement as a Positive Modulator of Aging. Int J Mol Sci 2021; 22:ijms22126278. [PMID: 34208002 PMCID: PMC8230594 DOI: 10.3390/ijms22126278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children’s own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients’ clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
Collapse
|
42
|
Velioglu HA, Hanoglu L, Bayraktaroglu Z, Toprak G, Guler EM, Bektay MY, Mutlu-Burnaz O, Yulug B. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem 2021; 180:107410. [PMID: 33610772 DOI: 10.1016/j.nlm.2021.107410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuromodulation technique which is increasingly used for cognitive impairment in Alzheimer's Disease (AD). Although rTMS has been shown to modify Brain-Derived Neurotrophic Factor (BDNF) and oxidative stress levels in many neurological and psychiatric diseases, there is still no study evaluating the relationship between memory performance, BDNF, oxidative stress, and resting brain connectivity following rTMS in Alzheimer's patients. Furthermore, there are increasing clinical data showing that the stimulation of strategic brain regions may lead to more robust improvements in memory functions compared to conventional rTMS. In this study, we aimed to evaluate the possible disease-modifying effects of rTMS on the lateral parietal cortex in AD patients who have the highest connectivity with the hippocampus. To fill the mentioned research gaps, we have evaluated the relationships between resting-state Functional Magnetic Resonance Imaging (fMRI), cognitive scores, blood BDNF levels, and total oxidative/antioxidant status to explain the therapeutic and potential disease-modifying effects of rTMS which has been applied at 20 Hz frequencies for two weeks. Our results showed significantly increased visual recognition memory functions and clock drawing test scores which were associated with elevated peripheral BDNF levels, and decreased oxidant status after two weeks of left lateral parietal TMS stimulation. Clinically our findings suggest that the left parietal region targeted rTMS application leads to significant improvement in familiarity-based cognition associated with the network connections between the left parietal region and the hippocampus.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Lutfu Hanoglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University, International School of Medicine Department of Physiology, Istanbul, Turkey
| | - Guven Toprak
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Eray Metin Guler
- University of Health Sciences Hamidiye School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| | - Muhammed Yunus Bektay
- Bezmialem Vakif University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey; Marmara University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ozlem Mutlu-Burnaz
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- Alanya Alaaddin Keykubat University School of Medicine, Department of Neurology, Alanya/Antalya, Turkey.
| |
Collapse
|
43
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
44
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|