1
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
2
|
Grissom NM, Glewwe N, Chen C, Giglio E. Sex mechanisms as nonbinary influences on cognitive diversity. Horm Behav 2024; 162:105544. [PMID: 38643533 PMCID: PMC11338071 DOI: 10.1016/j.yhbeh.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Essentially all neuropsychiatric diagnoses show some degree of sex and/or gender differences in their etiology, diagnosis, or prognosis. As a result, the roles of sex-related variables in behavior and cognition are of strong interest to many, with several lines of research showing effects on executive functions and value-based decision making in particular. These findings are often framed within a sex binary, with behavior of females described as less optimal than male "defaults"-- a framing that pits males and females against each other and deemphasizes the enormous overlap in fundamental neural mechanisms across sexes. Here, we propose an alternative framework in which sex-related factors encompass just one subset of many sources of valuable diversity in cognition. First, we review literature establishing multidimensional, nonbinary impacts of factors related to sex chromosomes and endocrine mechanisms on cognition, focusing on value- based decision-making tasks. Next, we present two suggestions for nonbinary interpretations and analyses of sex-related data that can be implemented by behavioral neuroscientists without devoting laboratory resources to delving into mechanisms underlying sex differences. We recommend (1) shifting interpretations of behavior away from performance metrics and towards strategy assessments to avoid the fallacy that the performance of one sex is worse than another; and (2) asking how much variance sex explains in measures and whether any differences are mosaic rather than binary, to avoid assuming that sex differences in separate measures are inextricably correlated. Nonbinary frameworks in research on cognition will allow neuroscience to represent the full spectrum of brains and behaviors.
Collapse
Affiliation(s)
- Nicola M Grissom
- Department of Psychology, University of Minnesota, United States of America.
| | - Nic Glewwe
- Department of Psychology, University of Minnesota, United States of America
| | - Cathy Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States of America
| | - Erin Giglio
- Department of Psychology, University of Minnesota, United States of America
| |
Collapse
|
3
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Kharrat M, Issa AB, Tlili A, Jallouli O, Alila-Fersi O, Maalej M, Chouchen J, Ghouylia Y, Kamoun F, Triki C, Fakhfakh F. A Novel Mutation in the MAP7D3 Gene in Two Siblings with Severe Intellectual Disability and Autistic Traits: Concurrent Assessment of BDNF Functional Polymorphism, X-Inactivation and Oxidative Stress to Explain Disease Severity. J Mol Neurosci 2023; 73:853-864. [PMID: 37817054 DOI: 10.1007/s12031-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) are characterized by extreme genetic and phenotypic heterogeneity. However, understanding this heterogeneity is difficult due to the intricate interplay among multiple interconnected genes, epigenetic factors, oxidative stress, and environmental factors. Employing next-generation sequencing (NGS), we revealed the genetic cause of ID and autistic traits in two patients from a consanguineous family followed by segregation analysis. Furthermore, in silico prediction methods and 3D modeling were conducted to predict the effect of the variants. To establish genotype-phenotype correlation, X-chromosome inactivation using Methylation-specific PCR and oxidative stress markers were also investigated. By analyzing the NGS data of the two patients, we identified a novel frameshift mutation c.2174_2177del (p.Thr725MetfsTer2) in the MAP7D3 gene inherited from their mother along with the functional BDNF Val66Met polymorphism inherited from their father. The 3D modeling demonstrated that the p.Thr725MetfsTer2 variant led to the loss of the C-terminal tail of the MAP7D3 protein. This change could destabilize its structure and impact kinesin-1's binding to microtubules via an allosteric effect. Moreover, the analysis of oxidative stress biomarkers revealed an elevated oxidative stress in the two patients compared to the controls. To the best of our knowledge, this is the first report describing severe ID and autistic traits in familial cases with novel frameshift mutation c.2174_2177del in the MAP7D3 gene co-occurring with the functional polymorphism Val66M in the BDNF gene. Besides, our study underlines the importance of investigating combined genetic variations, X-chromosome inactivation (XCI) patterns, and oxidative stress markers for a better understanding of ID and autism etiology.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| | - Abir Ben Issa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouylia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| |
Collapse
|
6
|
Johansson J, Lidéus S, Höijer I, Ameur A, Gudmundsson S, Annerén G, Bondeson ML, Wilbe M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci Rep 2023; 13:12856. [PMID: 37553382 PMCID: PMC10409790 DOI: 10.1038/s41598-023-34413-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2023] [Indexed: 08/10/2023] Open
Abstract
X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
7
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Canton APM, Tinano FR, Guasti L, Montenegro LR, Ryan F, Shears D, de Melo ME, Gomes LG, Piana MP, Brauner R, Espino-Aguilar R, Escribano-Muñoz A, Paganoni A, Read JE, Korbonits M, Seraphim CE, Costa SS, Krepischi AC, Jorge AAL, David A, Kaisinger LR, Ong KK, Perry JRB, Abreu AP, Kaiser UB, Argente J, Mendonca BB, Brito VN, Howard SR, Latronico AC. Rare variants in the MECP2 gene in girls with central precocious puberty: a translational cohort study. Lancet Diabetes Endocrinol 2023; 11:545-554. [PMID: 37385287 PMCID: PMC7615084 DOI: 10.1016/s2213-8587(23)00131-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.
Collapse
Affiliation(s)
- Ana P M Canton
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Flávia R Tinano
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luciana R Montenegro
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Fiona Ryan
- Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Larissa G Gomes
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université de Paris, Paris, France
| | | | - Arancha Escribano-Muñoz
- Endocrinology Unit, Department of Pediatrics, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Alyssa Paganoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos E Seraphim
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Silvia S Costa
- Discipline of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine and Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Cristina Krepischi
- Discipline of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine and Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexander A L Jorge
- Genetic Endocrinology Unit LIM/25, University of Sao Paulo, Sao Paulo, Brazil
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Lena R Kaisinger
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ken K Ong
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, Madrid, Spain
| | - Berenice B Mendonca
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius N Brito
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| | - Ana Claudia Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Dohr KA, Tokic S, Gastager-Ehgartner M, Stojakovic T, Dumic M, Plecko B, Dumic KK. Two Single Nucleotide Deletions in the ABCD1 Gene Causing Distinct Phenotypes of X-Linked Adrenoleukodystrophy. Int J Mol Sci 2023; 24:ijms24065957. [PMID: 36983033 PMCID: PMC10051867 DOI: 10.3390/ijms24065957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for transport of the very long chain fatty acids (VLCFA) from cytoplasm into the peroxisomes. Therefore, altered function or lack of the ABCD1 protein leads to accumulation of VLCFA in various tissues and blood plasma leading to either rapidly progressive leukodystrophy (cerebral ALD), progressive adrenomyeloneuropathy (AMN), or isolated primary adrenal insufficiency (Addison's disease). We report two distinct single nucleotide deletions in the ABCD1 gene, c.253delC [p.Arg85Glyfs*18] in exon 1, leading to both cerebral ALD and to AMN phenotype in one family, and c.1275delA [p.Phe426Leufs*15] in exon 4, leading to AMN and primary adrenal insufficiency in a second family. For the latter variant, we demonstrate reduced mRNA expression and a complete absence of the ABCD1 protein in PBMC. Distinct mRNA and protein expression in the index patient and heterozygous carriers does not associate with VLCFA concentration in plasma, which is in line with the absence of genotype-phenotype correlation in X-ALD.
Collapse
Affiliation(s)
- Katrin A Dohr
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Magdalena Gastager-Ehgartner
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036 Graz, Austria
| | - Miroslav Dumic
- Department of Paediatric Endocrinology and Diabetes, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Barbara Plecko
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katja K Dumic
- Department of Paediatric Endocrinology and Diabetes, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Leonardi E, Aspromonte MC, Drongitis D, Bettella E, Verrillo L, Polli R, McEntagart M, Licchetta L, Dilena R, D'Arrigo S, Ciaccio C, Esposito S, Leuzzi V, Torella A, Baldo D, Lonardo F, Bonato G, Pellegrin S, Stanzial F, Posmyk R, Kaczorowska E, Carecchio M, Gos M, Rzońca-Niewczas S, Miano MG, Murgia A. Expanding the genetics and phenotypic spectrum of Lysine-specific demethylase 5C (KDM5C): a report of 13 novel variants. Eur J Hum Genet 2023; 31:202-215. [PMID: 36434256 PMCID: PMC9905063 DOI: 10.1038/s41431-022-01233-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Lysine-specific demethylase 5C (KDM5C) has been identified as an important chromatin remodeling gene, contributing to X-linked neurodevelopmental disorders (NDDs). The KDM5C gene, located in the Xp22 chromosomal region, encodes the H3K4me3-me2 eraser involved in neuronal plasticity and dendritic growth. Here we report 30 individuals carrying 13 novel and one previously identified KDM5C variants. Our cohort includes the first reported case of somatic mosaicism in a male carrying a KDM5C nucleotide substitution, and a dual molecular finding in a female carrying a homozygous truncating FUCA1 alteration together with a de novo KDM5C variant. With the use of next generation sequencing strategies, we detected 1 frameshift, 1 stop codon, 2 splice-site and 10 missense variants, which pathogenic role was carefully investigated by a thorough bioinformatic analysis. The pattern of X-chromosome inactivation was found to have an impact on KDM5C phenotypic expression in females of our cohort. The affected individuals of our case series manifested a neurodevelopmental condition characterized by psychomotor delay, intellectual disability with speech disorders, and behavioral features with particular disturbed sleep pattern; other observed clinical manifestations were short stature, obesity and hypertrichosis. Collectively, these findings expand the current knowledge about the pathogenic mechanisms leading to dysfunction of this important chromatin remodeling gene and contribute to a refinement of the KDM5C phenotypic spectrum.
Collapse
Affiliation(s)
- Emanuela Leonardi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Cristina Aspromonte
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Elisa Bettella
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Roberta Polli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Meriel McEntagart
- Medical Genetics Unit, St. George's University Hospitals, London, UK
| | - Laura Licchetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Robertino Dilena
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Annalaura Torella
- University of Campania "Luigi Vanvitelli", Caserta, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Demetrio Baldo
- Unit of medical genetics, ULSS 2 Treviso Hospital, Treviso, Italy
| | | | - Giulia Bonato
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Serena Pellegrin
- Child Neurology and Neurorehabilitation Unit, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monika Gos
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Sylwia Rzońca-Niewczas
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Alessandra Murgia
- Department of Women's and Children's Health, University of Padova, Padova, Italy.
- Pediatric Research Institute, Città della Speranza, Padova, Italy.
| |
Collapse
|
12
|
Touhami R, Foddha H, Alix E, Jalloul A, Mougou-Zerelli S, Saad A, Sanlaville D, Haj Khelil A. Case report: 7p22.3 deletion and 8q24.3 duplication in a patient with epilepsy and psychomotor delay-Does both possibly act to modulate a candidate gene region for the patient's phenotype? Front Genet 2023; 13:1061539. [PMID: 36778913 PMCID: PMC9909830 DOI: 10.3389/fgene.2022.1061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Psychomotor delay, epilepsy and dysmorphic features are clinical signs which are described in multiple syndromes due to chromosomal imbalances or mutations involving key genes implicated in the stages of Early Embryonic Development. In this context, we report a 10 years old Tunisian patient with these three signs. Our objective is to determine the cause of developmental, behavioral and facial abnormalities in this patient. Methods: We used banding cytogenetics (karyotype) and Array Comparative Genomic Hybridization (Array CGH) to this purpose. Results: The karyotype was in favor of a derivative of chromosome 7 in the patient and Array CGH analysis revealed a loss of genetic material in 7p22.3-p22.1 (4,56 Mb) with a gain at 8q24.23-q24 (9.20 Mb) resulting from maternal 7/8 reciprocal translocation. An in silico analysis of the unbalanced region was carried out and showed that the 7p22.3-p22.1 deletion contains eight genes. Among them, BRAT1 gene, previously described in several neurodevelopmental diseases, may be a candidate gene which absence could be correlated to the patient's phenotype. However, the 8q24.23-q24 duplication could be involved in the phenotype of this patient. Conclusion: In this study, we report for the first time a 7p deletion/8q duplication in a patient with psychomoteur delay, epilepsy and facial dysmorphism. Our study showed that Array CGH still useful for delivering a conclusive genetic diagnosis for patients having neurodevelopmental abnormalities in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Rahma Touhami
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Hajer Foddha
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Eudeline Alix
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Afef Jalloul
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Soumaya Mougou-Zerelli
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Damien Sanlaville
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Amel Haj Khelil
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,*Correspondence: Amel Haj Khelil,
| |
Collapse
|
13
|
Calixte R, Helzner EP, Islam S, Camacho-Rivera M, Pati S. Unmet Medical Needs and Food Insecurity in Children with Neurodevelopmental Disorders: Findings from the 2019 National Health Interview Survey (NHIS). CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121798. [PMID: 36553242 PMCID: PMC9776614 DOI: 10.3390/children9121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
In the United States, 17% of children ages 3−17 have a developmental disorder. The complexity of care for such children require families to provide a significant amount of health care at home, representing a substantial economic cost. Our study identifies sociodemographic characteristics of children with neurodevelopmental disorders (NDD) that are predictive of unmet medical needs and food insecurity. We modeled the outcomes using a multivariable generalized linear model and a robust Cox proportional hazard model. Among children with NDD, 7.4% reported a delay in obtaining care, 3.6% avoided getting care and 17.3% live in a household that experienced food insecurity. Lack of health insurance and lack of usual source of care increased the risk for cost-related delay in medical care and cost-related avoidance of medical care. Children with NDD whose parents have less than a college degree and those from households with income <$75,000 had increased risk for food insecurity in the past 30 days. Our results underscore the need to implement additional screening to identify children with NDD who are at greater risk for unmet medical and social needs by health care providers and care coordination organizations.
Collapse
Affiliation(s)
- Rose Calixte
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Correspondence:
| | - Elizabeth P. Helzner
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Sumaiya Islam
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of General Public Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Marlene Camacho-Rivera
- Department of Community Health Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Susmita Pati
- Department ofPediatrics, Renaissance School of Medicine, Stony Brook, NY 11794, USA
- Alan Alda Center for Communicating Science®, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Tolmacheva EN, Fonova EA, Lebedev IN. X-Linked CNV in Pathogenetics of Intellectual Disability. RUSS J GENET+ 2022; 58:1193-1207. [DOI: 10.1134/s102279542210009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2025]
|
15
|
Zhi X, Pu L, Wu B, Cui Y, Yu C, Dong Y, Li D, Cai C. Identification of two aberrant transcripts by RNA sequencing for a novel variant c.3354 + 5 G > A of MED12 in a Chinese girl with non-syndromic intellectual disability. Clin Chim Acta 2022; 532:137-144. [PMID: 35690084 DOI: 10.1016/j.cca.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Missense variants in MED12 are associated with MED12-related disorders. We aimed to clarify the molecular level changes and underlying pathogenic mechanism of a female patient in our study. METHODS We reported a Chinese girl with clinical characteristics similar to MED12-related disorders. Trio whole exome sequencing (WES) was performed to identify related pathogenic variant(s) and RNA sequencing (RNA-seq) was subsequently applied to evaluate the effect of identified variant(s) on mRNA splicing. Moreover, X-chromosome inactivation (XCI) assay based on AR and RP2 was performed to reveal the XCI pattern of the female patient. RESULTS The proband manifested mainly as mental retardation and language impairment. Trio WES revealed a novel heterozygous variant c.3354 + 5 G > A in intron 23 of MED12. RNA-seq identified two aberrant transcripts. XCI assay on AR revealed a homozygous result, while XCI based on RP2 showed random pattern in peripheral blood. CONCLUSION In conclusion, we identified a novel variant c.3354 + 5 G > A by WES combined with RNA-seq, which extends the spectrum of MED12 variants and provide a basis for further genetic counseling. According to the result of two aberrant transcripts by RNA-seq, we speculate that our patient's milder clinical feature may be the consequence of multiple different transcripts.
Collapse
Affiliation(s)
- Xiufang Zhi
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Linjie Pu
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Bo Wu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Changshun Yu
- Tianjin Kingmed Center for Clinical Laboratory Co. Ltd, Haitai Huake 5th Rd, Huayuan Industrial Park, High Tech Zone, Xiqing District, Tianjin 300392, China
| | - Yan Dong
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China.
| |
Collapse
|
16
|
Castro AC, Monteiro P. Auditory Dysfunction in Animal Models of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:845155. [PMID: 35493332 PMCID: PMC9043325 DOI: 10.3389/fnmol.2022.845155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder mainly characterized by social-communication impairments, repetitive behaviors and altered sensory perception. Auditory hypersensitivity is the most common sensory-perceptual abnormality in ASD, however, its underlying neurobiological mechanisms remain elusive. Consistently with reports in ASD patients, animal models for ASD present sensory-perception alterations, including auditory processing impairments. Here we review the current knowledge regarding auditory dysfunction in rodent models of ASD, exploring both shared and distinct features among them, mechanistic and molecular underpinnings, and potential therapeutic approaches. Overall, auditory dysfunction in ASD models seems to arise from impaired central processing. Depending on the model, impairments may arise at different steps along the auditory pathway, from auditory brainstem up to the auditory cortex. Common defects found across models encompass atypical tonotopicity in different regions of the auditory pathway, temporal and spectral processing impairments and histological differences. Imbalance between excitation and inhibition (E/I imbalance) is one of the most well-supported mechanisms explaining the auditory phenotype in the ASD models studied so far and seems to be linked to alterations in GABAergic signaling. Such E/I imbalance may have a large impact on the development of the auditory pathway, influencing the establishment of connections responsible for normal sound processing.
Collapse
Affiliation(s)
- Ana Carolina Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
17
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|