1
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
2
|
Ishchenko Y, Jeng AT, Feng S, Nottoli T, Manriquez-Rodriguez C, Nguyen KK, Carrizales MG, Vitarelli MJ, Corcoran EE, Greer CA, Myers SA, Koleske AJ. Heterozygosity for neurodevelopmental disorder-associated TRIO variants yields distinct deficits in behavior, neuronal development, and synaptic transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574442. [PMID: 39131289 PMCID: PMC11312463 DOI: 10.1101/2024.01.05.574442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Genetic variants in TRIO are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete TRIO variants differentially impact these neurodevelopmental events. Here, we investigate how heterozygosity for NDD-associated Trio variants - +/K1431M (ASD), +/K1918X (SCZ), and +/M2145T (bipolar disorder, BPD) - impact mouse behavior, brain development, and synapse structure and function. Heterozygosity for different Trio variants impacts motor, social, and cognitive behaviors in distinct ways that align with clinical phenotypes in humans. Trio variants differentially impact head and brain size with corresponding changes in dendritic arbors of motor cortex layer 5 pyramidal neurons (M1 L5 PNs). Although neuronal structure was only modestly altered in the Trio variant heterozygotes, we observe significant changes in synaptic function and plasticity. We also identified distinct changes in glutamate synaptic release in +/K1431M and +/M2145T cortico-cortical synapses. The TRIO K1431M GEF1 domain has impaired ability to promote GTP exchange on Rac1, but +/K1431M mice exhibit increased Rac1 activity, associated with increased levels of the Rac1 GEF Tiam1. Acute Rac1 inhibition with NSC23766 rescued glutamate release deficits in +/K1431M variant cortex. Our work reveals that discrete NDD-associated Trio variants yield overlapping but distinct phenotypes in mice, demonstrates an essential role for Trio in presynaptic glutamate release, and underscores the importance of studying the impact of variant heterozygosity in vivo.
Collapse
Affiliation(s)
- Yevheniia Ishchenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Amanda T Jeng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Shufang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Gerontology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Khanh K Nguyen
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Melissa G Carrizales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew J Vitarelli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ellen E Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Shahwar D, Baqai S, Khan F, Khan MI, Javaid S, Hameed A, Raza A, Saleem Uddin S, Hazrat H, Rahman MH, Musharraf SG, Chotani MA. Proteomic Analysis of Rap1A GTPase Signaling-Deficient C57BL/6 Mouse Pancreas and Functional Studies Identify an Essential Role of Rap1A in Pancreas Physiology. Int J Mol Sci 2024; 25:8013. [PMID: 39125590 PMCID: PMC11312117 DOI: 10.3390/ijms25158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Ras-related Rap1A GTPase is implicated in pancreas β-cell insulin secretion and is stimulated by the cAMP sensor Epac2, a guanine exchange factor and activator of Rap1 GTPase. In this study, we examined the differential proteomic profiles of pancreata from C57BL/6 Rap1A-deficient (Null) and control wild-type (WT) mice with nanoLC-ESI-MS/MS to assess targets of Rap1A potentially involved in insulin regulation. We identified 77 overlapping identifier proteins in both groups, with 8 distinct identifier proteins in Null versus 56 distinct identifier proteins in WT mice pancreata. Functional enrichment analysis showed four of the eight Null unique proteins, ERO1-like protein β (Ero1lβ), triosephosphate isomerase (TP1), 14-3-3 protein γ, and kallikrein-1, were exclusively involved in insulin biogenesis, with roles in insulin metabolism. Specifically, the mRNA expression of Ero1lβ and TP1 was significantly (p < 0.05) increased in Null versus WT pancreata. Rap1A deficiency significantly affected glucose tolerance during the first 15-30 min of glucose challenge but showed no impact on insulin sensitivity. Ex vivo glucose-stimulated insulin secretion (GSIS) studies on isolated Null islets showed significantly impaired GSIS. Furthermore, in GSIS-impaired islets, the cAMP-Epac2-Rap1A pathway was significantly compromised compared to the WT. Altogether, these studies underscore an essential role of Rap1A GTPase in pancreas physiological function.
Collapse
Affiliation(s)
- Durrey Shahwar
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Baqai
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Faisal Khan
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Israr Khan
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
| | - Shafaq Javaid
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Abdul Hameed
- Ziauddin College of Molecular Medicine, Ziauddin University, Clifton, Karachi 75600, Pakistan;
| | - Aisha Raza
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Saleem Uddin
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Hina Hazrat
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - M. Hafizur Rahman
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
- Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh
- Dhaka International University, Satarkul, Badda, Dhaka 1212, Bangladesh
| | - Syed Ghulam Musharraf
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maqsood A. Chotani
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| |
Collapse
|
4
|
Woolley L, Burbidge A, Vermant J, Christakopoulos F. A microrheological examination of insulin-secreting β-cells in healthy and diabetic-like conditions. SOFT MATTER 2024; 20:3464-3472. [PMID: 38573072 DOI: 10.1039/d3sm01141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Pancreatic β-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma β-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.
Collapse
Affiliation(s)
- Lukas Woolley
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Adam Burbidge
- Nestlé Research, Route de Jorat 57, vers-chez-les Blanc, 1000 Lausanne, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fotis Christakopoulos
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
- Linnet Bischof
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Franziska Schweitzer
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
6
|
Gleason N, Kowluru A. Hyperglycemic Stress Induces Expression, Degradation, and Nuclear Association of Rho GDP Dissociation Inhibitor 2 (RhoGDIβ) in Pancreatic β-Cells. Cells 2024; 13:272. [PMID: 38334664 PMCID: PMC10854874 DOI: 10.3390/cells13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Small G proteins (e.g., Rac1) play critical regulatory roles in islet β-cell function in health (physiological insulin secretion) and in metabolic stress (cell dysfunction and demise). Multiple regulatory factors for these G proteins, such as GDP dissociation inhibitors (GDIs), have been implicated in the functional regulation of these G proteins. The current set of investigations is aimed at understanding impact of chronic hyperglycemic stress on the expression and subcellular distribution of three known isoforms of RhoGDIs (RhoGDIα, RhoGDIβ, and RhoGDIγ) in insulin-secreting β-cells. The data accrued in these studies revealed that the expression of RhoGDIβ, but not RhoGDIα or RhoGDIγ, is increased in INS-1 832/13 cells, rat islets, and human islets. Hyperglycemic stress also promoted the cleavage of RhoGDIβ, leading to its translocation to the nuclear compartment. We also report that RhoGDIα, but not RhoGDIγ, is associated with the nuclear compartment. However, unlike RhoGDIβ, hyperglycemic conditions exerted no effects on RhoGDIα's association with nuclear fraction. Based on these observations, and our earlier findings of the translocation of Rac1 to the nuclear compartment under the duress of metabolic stress, we conclude that the RhoGDIβ-Rac1 signaling module promotes signals from the cytosolic to the nucleus, culminating in accelerated β-cell dysfunction under metabolic stress.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Kwon J, Kim MS, Blagojevic C, Mailloux J, Medwid S, Tirona RG, Wang R, Schwarz UI. Differential effects of OATP2B1 on statin accumulation and toxicity in a beta cell model. Toxicol Mech Methods 2024; 34:130-147. [PMID: 37771097 DOI: 10.1080/15376516.2023.2262568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.
Collapse
Affiliation(s)
- Jihoon Kwon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michelle S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christina Blagojevic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaymie Mailloux
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Gleason N, Williams CL, Kowluru A. Novel regulatory roles of small G protein GDP dissociation stimulator (smgGDS) in insulin secretion from pancreatic β-cells. Mol Cell Endocrinol 2024; 580:112104. [PMID: 38013223 PMCID: PMC10842139 DOI: 10.1016/j.mce.2023.112104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Emerging evidence implicates novel roles for small G protein GDP dissociation stimulator (smgGDS) in G protein activation and subsequent targeting to relevant subcellular compartments for effector regulation. Given the well-established roles of small G proteins in insulin secretion, we undertook this investigation to determine the putative roles of smgGDS in insulin secretion. Immunoblotting studies revealed that both splice variants of smgGDS are expressed in human islets, rat islets and INS-1 832/13 cells. A significant inhibition (-52%) of glucose-stimulated insulin secretion (GSIS) was observed in INS-1 832/13 cells following siRNA-mediated depletion of smgGDS. In addition, insulin secretion elicited by a membrane depolarizing concentration of KCl (via increased calcium influx), forskolin (via increased cAMP generation) or IBMX (via inhibition of phosphodiesterase) was inhibited by -49%, -27%, and -28%, respectively. Subcellular distribution studies revealed no significant alterations in the abundance of smgGDS in the cytosolic and membrane fractions during the 45-min exposure of INS-1 832/13 cells to an insulinotropic concentration of glucose. Together, we present the first evidence of expression of smgGDS in human islets, rodent islets, and clonal β-cells. We also demonstrate novel regulatory roles of these proteins in insulin secretion derived from glucose metabolic events, including calcium- and cAMP-dependent signaling steps.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Carol L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Agarwal H, Tinsley B, Sarecha AK, Ozcan L. Rap1 in the Context of PCSK9, Atherosclerosis, and Diabetes. Curr Atheroscler Rep 2023; 25:931-937. [PMID: 37979063 DOI: 10.1007/s11883-023-01162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The focus of this article is to highlight the importance of the small GTPase, Ras-associated protein 1 (Rap1), in proprotein convertase subtilisin/kexin type 9 (PCSK9) regulation and atherosclerosis and type 2 diabetes etiology and discuss the potential therapeutic implications of targeting Rap1 in these disease areas. REVIEW FINDINGS Cardiometabolic disease characterized by obesity, glucose intolerance, dyslipidemia, and atherosclerotic cardiovascular disease remain an important cause of mortality. Evidence using mouse models of obesity and insulin resistance indicates that Rap1 deficiency increases proatherogenic PCSK9 and low-density lipoprotein cholesterol levels and predisposes these mice to develop obesity- and statin-induced hyperglycemia, which highlights Rap1's role in cardiometabolic dysfunction. Rap1 may also contribute to cardiovascular disease through its effects on vascular wall cells involved in the atherosclerosis progression. Rap1 activation, specifically in the liver, could be beneficial in the prevention of cardiometabolic perturbations, including type 2 diabetes, hypercholesterolemia, and atherosclerosis.
Collapse
Affiliation(s)
- Heena Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brea Tinsley
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Zaïmia N, Obeid J, Varrault A, Sabatier J, Broca C, Gilon P, Costes S, Bertrand G, Ravier MA. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep 2023; 42:113326. [PMID: 37897727 DOI: 10.1016/j.celrep.2023.113326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease β-arrestin 2 (ARRB2) levels in human islets. In mouse β cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.
Collapse
Affiliation(s)
- Nour Zaïmia
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Joelle Obeid
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Annie Varrault
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète, et Nutrition, Brussels, Belgium
| | - Safia Costes
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
12
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
13
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Filić V, Weber I. Rho GTPases in Model Systems. Cells 2023; 12:cells12050779. [PMID: 36899915 PMCID: PMC10000384 DOI: 10.3390/cells12050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Since the discovery of their role in the regulation of actin cytoskeleton 30 years ago, Rho GTPases have taken center stage in cell motility research [...].
Collapse
|
15
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|
16
|
Liu G, Li J, Wu C. Reciprocal regulation of actin filaments and cellular metabolism. Eur J Cell Biol 2022; 101:151281. [PMID: 36343493 DOI: 10.1016/j.ejcb.2022.151281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.
Collapse
Affiliation(s)
- Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; International Cancer Institute, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|
18
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
19
|
dos Santos C, Karagiannopoulos A, Rafacho A, Perfilyev A, Eliasson L, Ling C, Bacos K. Glucocorticoids and glucolipotoxicity alter the DNA methylome and function of human EndoC-βH1 cells. Life Sci 2022; 307:120854. [DOI: 10.1016/j.lfs.2022.120854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
20
|
Yang J, Li X, Yang X, Wei H, Deng L, Fu N. Aberrant blood cell division cycle 42 expression and its correlation with disease severity, inflammation and mortality risk in patients with acute pancreatitis. Exp Ther Med 2022; 24:458. [PMID: 35747149 PMCID: PMC9204537 DOI: 10.3892/etm.2022.11385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cell division cycle 42 (CDC42) can inhibit inflammation by regulating the activity of macrophage and T cells, which contributes to the pathophysiology of acute pancreatitis (AP). Therefore, CDC42 may have application as a potential biomarker for AP. The present study aimed to explore this possibility. Peripheral blood mononuclear cells (PBMCs) were collected from 149 patients with AP and 50 healthy controls (HCs). Subsequently, CDC42 expression in the PBMCs was measured using RT-qPCR; C-reactive protein (CRP), TNF-α and IL-6 in the serum of patients with AP were measured using ELISA. Meanwhile, Mann-Whitney U test, Kruskal-Wallis test, and Spearman's rank correlation test were performed on the data. The CDC42 expression levels were lower in patients with AP compared with those in HCs (P<0.001). CDC42 expression was declined in patients with moderate-severe AP (MSAP) vs. patients with mild AP (MAP) (P=0.029), and in patients with severe AP (SAP) vs. patients with MAP (P=0.004). CDC42 expression correlated negatively with the Ranson's score (P<0.001), APACEH II score (P=0.011) and SOFA score (P<0.001) in patients with AP. CDC42 expression also correlated negatively with CRP (P<0.001) and TNF-α (P=0.004) levels but not with IL-6 levels (P=0.177). Furthermore, CDC42 expression was lower in deceased patients with AP vs. AP survivors (P<0.001) and in deceased patients with SAP vs. SAP survivors (P=0.026). CDC42 had good potential in predicting mortality from AP, with AUC of 0.829 and a 95% CI of 0.731-0.927, and it also had certain potential in predicting mortality from SAP and MSAP, with AUC (95% CI) of 0.794 (0.616-0.973) and 0.757 (0.558-0.956), respectively. In conclusion, data from the present study suggest that lower CDC42 expression levels correlate with higher disease susceptibility, disease severity, inflammation, and mortality risk in patients with AP.
Collapse
Affiliation(s)
- Jun Yang
- Department of Emergency, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Xiaoqian Li
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Xuefeng Yang
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.,Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Hongjiang Wei
- Department of Emergency, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Lipu Deng
- Department of Emergency, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Nian Fu
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
21
|
Gamage S, Hali M, Chen F, Kowluru A. CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress. Cell Physiol Biochem 2022; 56:120-137. [PMID: 35362297 PMCID: PMC9150799 DOI: 10.33594/000000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence implicates Caspase recruitment domain containing protein 9 (CARD9) in innate immunity. Given its recently suggested roles in obesity and insulin resistance, we investigated its regulatory role(s) in the onset of islet beta cell dysfunction under chronic hyperglycemic (metabolic stress) conditions. METHODS Islets from mouse pancreas were isolated by the collagenase digestion method. Expression of CARD9 was suppressed in INS-1 832/13 cells by siRNA transfection using the DharmaFect1 reagent. The degree of activation of Rac1 was assessed by a pull-down assay kit. Interactions between CARD9, RhoGDIβ and Rac1 under metabolic stress conditions were determined by co-immunoprecipitation assay. The degree of phosphorylation of stress kinases was assessed using antibodies directed against phosphorylated forms of the respective kinases. RESULTS CARD9 expression is significantly increased following exposure to high glucose, not to mannitol (both at 20 mM; 24 hrs.) in INS-1 832/13 cells. siRNA-mediated knockdown of CARD9 significantly attenuated high glucose-induced activation of Rac1 and phosphorylation of p38MAPK and p65 subunit of NF-κB (RelA), without significantly impacting high glucose-induced effects on JNK1/2 and ERK1/2 activities. CARD9 depletion also suppressed high glucose-induced CHOP expression (a marker for endoplasmic reticulum stress) in these cells. Co-immunoprecipitation studies revealed increased association between CARD9-RhoGDIβ and decreased association between RhoGDIβ-Rac1 in cells cultured under high glucose conditions. CONCLUSION Based on these data, we conclude that CARD9 regulates activation of Rac1-p38MAPK-NFκB signaling pathway leading to functional abnormalities in beta cells under metabolic stress conditions.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Stony Brook Cancer Center, and Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
22
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
23
|
Kowluru A. Multiple Guanine Nucleotide Exchange Factors Mediate Glucose-Induced Rac1 Activation and Insulin Secretion: Is It Precise Regulatory Control or a Case of Two Peas from the Same Pod? ACS Pharmacol Transl Sci 2021; 4:1702-1704. [PMID: 34661084 DOI: 10.1021/acsptsci.1c00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/27/2022]
Abstract
Glucose-stimulated insulin secretion involves G protein (Rac1)-mediated cytoskeletal remodeling and vesicular transport and fusion with the plasma membrane. Recent evidence implicates at least three guanine nucleotide exchange factors (GEFs), namely, Tiam1, Vav2, and P-Rex1, in glucose-induced activation of Rac1 and insulin secretion. This Viewpoint highlights potential mechanisms underlying Tiam1/Vav2/P-Rex1 sensitive Rac1-mediated insulin secretion in the glucose-stimulated β-cell.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|