1
|
Cone AS, Zhou Y, McNamara RP, Eason AB, Arias GF, Landis JT, Shifflett KW, Chambers MG, Yuan R, Willcox S, Griffith JD, Dittmer DP. CD81 fusion alters SARS-CoV-2 Spike trafficking. mBio 2024; 15:e0192224. [PMID: 39140770 PMCID: PMC11389398 DOI: 10.1128/mbio.01922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.
Collapse
Affiliation(s)
- Allaura S. Cone
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yijun Zhou
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anthony. B. Eason
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel F. Arias
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle W. Shifflett
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Chambers
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Runjie Yuan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2024:10.1007/s12013-024-01495-3. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Tanzi A, Buono L, Grange C, Iampietro C, Brossa A, Arcolino FO, Arigoni M, Calogero R, Perin L, Deaglio S, Levtchenko E, Peruzzi L, Bussolati B. Urine-derived podocytes from steroid resistant nephrotic syndrome patients as a model for renal-progenitor derived extracellular vesicles effect and drug screening. J Transl Med 2024; 22:762. [PMID: 39143486 PMCID: PMC11323595 DOI: 10.1186/s12967-024-05575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.
Collapse
Affiliation(s)
- Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Emma Centrum of Personalized Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Laura Perin
- Department of Urology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Levtchenko
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Licia Peruzzi
- Pediatric Nephrology, ERKNet Center, Regina Margherita Children's Hospital, AOU Città della, Salute e della Scienza di Torino, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy.
| |
Collapse
|
4
|
Tanzi A, Buono L, Grange C, Iampietro C, Brossa A, Arcolino FO, Arigoni M, Calogero R, Perin L, Deaglio S, Levtchenko E, Peruzzi L, Bussolati B. Urine-derived podocytes from steroid resistant nephrotic syndrome patients as a model for renal-progenitor derived extracellular vesicles effect and drug screening. RESEARCH SQUARE 2024:rs.3.rs-3959549. [PMID: 38464119 PMCID: PMC10925474 DOI: 10.21203/rs.3.rs-3959549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Personalized disease models are crucial for assessing the specific response of diseased cells to drugs, particularly novel biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells. Methods EVs were isolated from kidney progenitor cells (nKPCs) derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport patient podocytes were characterized and used to assess albumin permeability in response to various drugs or to nKPC-EVs. RNA sequencing was conducted to identify commonly modulated pathways. Results Podocytes appeared unresponsive to pharmacological treatments, except for a podocyte line demonstrating responsiveness, in alignment with the patient's clinical response at 48 months. At variance, treatment with the nKPC-EVs was able to significantly reduce permeability in all the steroid-resistant patients-derived podocytes as well as in the line of Alport-derived podocytes. RNA sequencing of nKPC-EV-treated podocytes revealed the common upregulation of two genes (small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2)) involved in the SUMOylation pathway, a process recently demonstrated to play a role in slit diaphragm stabilization. Gene ontology analysis on podocyte expression profile highlighted cell-to-cell adhesion as the primary upregulated biological activity in treated podocytes. Conclusions nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocyte dysfunction. Furthermore, our findings suggest the possibility of establishing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.
Collapse
Affiliation(s)
- Adele Tanzi
- University of Turin: Universita degli Studi di Torino
| | - Lola Buono
- University of Turin: Universita degli Studi di Torino
| | | | | | | | | | | | | | | | | | | | - Licia Peruzzi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino: Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino
| | | |
Collapse
|
5
|
Lai JJ, Hill JJ, Huang CY, Lee GC, Mai KW, Shen MY, Wang SK. Unveiling the Complex World of Extracellular Vesicles: Novel Characterization Techniques and Manufacturing Considerations. Chonnam Med J 2024; 60:1-12. [PMID: 38304124 PMCID: PMC10828078 DOI: 10.4068/cmj.2024.60.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Extracellular vesicles (EVs) function as potent mediators of intercellular communication for many in vivo processes, contributing to both health and disease related conditions. Given their biological origins and diverse functionality from correspondingly unique "cargo" compositions, both endogenous and modified EVs are garnering attention as promising therapeutic modalities and vehicles for targeted therapeutic delivery applications. Their diversity in composition, however, has revealed a significant need for more comprehensive analytical-based characterization methods, and manufacturing processes that are consistent and scalable. In this review, we explore the dynamic landscape of EV research and development efforts, ranging from novel isolation approaches, to their analytical assessment through novel characterization techniques, and to their production by industrial-scale manufacturing process considerations. Expanding the horizon of these topics to EVs for in-human applications, we underscore the need for stringent development and adherence to Good Manufacturing Practice (GMP) guidelines. Wherein, the intricate interplay of raw materials, production in bioreactors, and isolation practices, along with analytical assessments compliant with the Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines, in conjunction with reference standard materials, collectively pave the way for standardized and consistent GMP production processes.
Collapse
Affiliation(s)
- James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - John J. Hill
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- BioProcess Technology Group, BDO, Boston, MA, USA
| | - Casey Y. Huang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Gino C. Lee
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Karol W. Mai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maggie Y. Shen
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Simon K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Paba C, Dorigo V, Senigagliesi B, Tormena N, Parisse P, Voitchovsky K, Casalis L. Lipid bilayer fluidity and degree of order regulates small EVs adsorption on model cell membrane. J Colloid Interface Sci 2023; 652:1937-1943. [PMID: 37690301 DOI: 10.1016/j.jcis.2023.08.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Small extracellular vesicles (sEVs) are known to play an important role in the communication between distant cells and to deliver biological information throughout the body. To date, many studies have focused on the role of sEVs characteristics such as cell origin, surface composition, and molecular cargo on the resulting uptake by the recipient cell. Yet, a full understanding of the sEV fusion process with recipient cells and in particular the role of cell membrane physical properties on the uptake are still lacking. Here we explore this problem using sEVs from a cellular model of triple-negative breast cancer fusing to a range of synthetic planar lipid bilayers both with and without cholesterol, and designed to mimic the formation of 'raft'-like nanodomains in cell membranes. Using time-resolved Atomic Force Microscopy we were able to track the sEVs interaction with the different model membranes, showing the process to be strongly dependent on the local membrane fluidity. The strongest interaction and fusion is observed over the less fluid regions, with sEVs even able to disrupt ordered domains at sufficiently high cholesterol concentration. Our findings suggest the biophysical characteristics of recipient cell membranes to be crucial for sEVs uptake regulation.
Collapse
Affiliation(s)
- Carolina Paba
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | | | | | - Nicolò Tormena
- Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom
| | - Pietro Parisse
- Elettra Sincrotrone Trieste, 34149 Basovizza TS, Italy; IOM-CNR, 34149 Basovizza TS, Italy.
| | - Kislon Voitchovsky
- Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
7
|
Yagüe Relimpio A, Fink A, Bui DT, Fabritz S, Schröter M, Ruggieri A, Platzman I, Spatz JP. Bottom-up Assembled Synthetic SARS-CoV-2 Miniviruses Reveal Lipid Membrane Affinity of Omicron Variant Spike Glycoprotein. ACS NANO 2023; 17:23913-23923. [PMID: 37976416 PMCID: PMC10722588 DOI: 10.1021/acsnano.3c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The ongoing COVID-19 pandemic has been brought on by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike glycoprotein (S), which decorates the viral envelope forming a corona, is responsible for the binding to the angiotensin-converting enzyme 2 (ACE2) receptor and initiating the infection. In comparison to previous variants, Omicron S presents additional binding sites as well as a more positive surface charge. These changes hint at additional molecular targets for interactions between virus and cell, such as the cell membrane or proteoglycans on the cell surface. Herein, bottom-up assembled synthetic SARS-CoV-2 miniviruses (MiniVs), with a lipid composition similar to that of infectious particles, are implemented to study and compare the binding properties of Omicron and Alpha variants. Toward this end, a systematic functional screening is performed to study the binding ability of Omicron and Alpha S proteins to ACE2-functionalized and nonfunctionalized planar supported lipid bilayers. Moreover, giant unilamellar vesicles are used as a cell membrane model to perform competitive interaction assays of the two variants. Finally, two cell lines with and without presentation of the ACE2 receptor are used to confirm the binding properties of the Omicron and Alpha MiniVs to the cellular membrane. Altogether, the results reveal a significantly higher affinity of Omicron S toward both the lipid membrane and ACE2 receptor. The research presented here highlights the advantages of creating and using bottom-up assembled SARS-CoV-2 viruses to understand the impact of changes in the affinity of S for ACE2 in infection studies.
Collapse
Affiliation(s)
- Ana Yagüe Relimpio
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Andreas Fink
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Duc Thien Bui
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Sebastian Fabritz
- Department
for Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Martin Schröter
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Heidelberg
University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department
of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
- Max Planck
School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Xia J, Wang J, Ying L, Huang R, Zhang K, Zhang R, Tang W, Xu Q, Lai D, Zhang Y, Hu Y, Zhang X, Zang R, Fan J, Shu Q, Xu J. RAGE Is a Receptor for SARS-CoV-2 N Protein and Mediates N Protein-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:508-520. [PMID: 37478333 PMCID: PMC10633841 DOI: 10.1165/rcmb.2022-0351oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.
Collapse
Affiliation(s)
- Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Liyang Ying
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ruoyang Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqi Tang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Xu
- Hangzhou Medical College, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaodie Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoxi Zang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
9
|
Ghanam J, Chetty VK, Zhu X, Liu X, Gelléri M, Barthel L, Reinhardt D, Cremer C, Thakur BK. Single Molecule Localization Microscopy for Studying Small Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205030. [PMID: 36635058 DOI: 10.1002/smll.202205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Small extracellular vesicles (sEVs) are 30-200 nm nanovesicles enriched with unique cargoes of nucleic acids, lipids, and proteins. sEVs are released by all cell types and have emerged as a critical mediator of cell-to-cell communication. Although many studies have dealt with the role of sEVs in health and disease, the exact mechanism of sEVs biogenesis and uptake remain unexplored due to the lack of suitable imaging technologies. For sEVs functional studies, imaging has long relied on conventional fluorescence microscopy that has only 200-300 nm resolution, thereby generating blurred images. To break this resolution limit, recent developments in super-resolution microscopy techniques, specifically single-molecule localization microscopy (SMLM), expanded the understanding of subcellular details at the few nanometer level. SMLM success relies on the use of appropriate fluorophores with excellent blinking properties. In this review, the basic principle of SMLM is highlighted and the state of the art of SMLM use in sEV biology is summarized. Next, how SMLM techniques implemented for cell imaging can be translated to sEV imaging is discussed by applying different labeling strategies to study sEV biogenesis and their biomolecular interaction with the distant recipient cells.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | | | - Xingfu Zhu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Cremer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
10
|
Casalone E, Birolo G, Pardini B, Allione A, Russo A, Catalano C, Mencoboni M, Ferrante D, Magnani C, Sculco M, Dianzani I, Grosso F, Mirabelli D, Filiberti RA, Rena O, Sacerdote C, Rodriguez-Barranco M, Smith-Byrne K, Panico S, Agnoli C, Johnson T, Kaaks R, Tumino R, Huerta JM, Riboli E, Heath AK, Trobajo-Sanmartín C, Schulze MB, Saieva C, Amiano P, Agudo A, Weiderpass E, Vineis P, Matullo G. Serum Extracellular Vesicle-Derived microRNAs as Potential Biomarkers for Pleural Mesothelioma in a European Prospective Study. Cancers (Basel) 2022; 15:125. [PMID: 36612122 PMCID: PMC9817828 DOI: 10.3390/cancers15010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Early therapeutic interventions could improve patient outcomes. We aimed to identify a pattern of microRNAs (miRNAs) as potential early non-invasive markers of MPM. In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort, we screened the whole miRNome in serum extracellular vesicles (EVs) of preclinical MPM cases. In a subgroup of 20 preclinical samples collected five years prior MPM diagnosis, we observed an upregulation of miR-11400 (fold change (FC) = 2.6, adjusted p-value = 0.01), miR-148a-3p (FC = 1.5, p-value = 0.001), and miR-409-3p (FC = 1.5, p-value = 0.04) relative to matched controls. The 3-miRNA panel showed a good classification capacity with an area under the receiver operating characteristic curve (AUC) of 0.81 (specificity = 0.75, sensitivity = 0.70). The diagnostic ability of the model was also evaluated in an independent retrospective cohort, yielding a higher predictive power (AUC = 0.86). A signature of EV miRNA can be detected up to five years before MPM; moreover, the identified miRNAs could provide functional insights into the molecular changes related to the late carcinogenic process, preceding MPM development.
Collapse
Affiliation(s)
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Catalano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Manlio Mencoboni
- Medical Oncology, ASL 3 Genovese, Villa Scassi Hospital, 16149 Genoa, Italy
| | - Daniela Ferrante
- Unit of Medical Statistics, Department of Translational Medicine, University of Eastern Piedmont and Cancer Epidemiology, CPO Piemonte, 28100 Novara, Italy
| | - Corrado Magnani
- Unit of Medical Statistics, Department of Translational Medicine, University of Eastern Piedmont and Cancer Epidemiology, CPO Piemonte, 28100 Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Federica Grosso
- Mesothelioma Unit, AO SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Mirabelli
- Unit of Cancer Epidemiology, Città della Salute e della Scienza, University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy
| | | | - Ottavio Rena
- Unit of Thoracic Surgery, University of Novara, 28100 Novara, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza, University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Salvatore Panico
- EPIC Centre of Naples, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80100 Napoli, Italy
| | - Claudia Agnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Center for Lung Research (DZL), Translational Lung Research Center (TLRC), 69120 Heidelberg, Germany
| | - Rosario Tumino
- Hyblean Association for Epidemiology Research AIRE ONLYS, 97100 Ragusa, Italy
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London W2 1PG, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London W2 1PG, UK
| | - Camino Trobajo-Sanmartín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Calogero Saieva
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO, 08908 L’Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London W2 1PG, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza, 10126 Turin, Italy
- Department of Medical Sciences, Via Santena 19, 10126 Torino, Italy
| |
Collapse
|
11
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
12
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|