1
|
Sun Y, Wang C, Wen L, Ling Z, Xia J, Cheng B, Peng J. Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway. Int J Mol Med 2025; 55:4. [PMID: 39450556 PMCID: PMC11537266 DOI: 10.3892/ijmm.2024.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chunyang Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Liling Wen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Wang B, Kou H, Wang Y, Zhang Q, Jiang D, Wang J, Zhao Z, Zhou Y, Zhang M, Sui L, Zhao M, Liu Y, Liu Y, Shi L, Wang F. LAP2α orchestrates alternative lengthening of telomeres suppression through telomeric heterochromatin regulation with HDAC1: unveiling a potential therapeutic target. Cell Death Dis 2024; 15:761. [PMID: 39426946 PMCID: PMC11490576 DOI: 10.1038/s41419-024-07116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
In response to the challenge of telomere attrition during DNA replication, cancer cells predominantly employ telomerase or, in 10-15% of cases, the alternative lengthening of telomeres (ALT). The intricate details of ALT, however, remain elusive. In this study, we unveil that the knockdown of lamina-associated polypeptide 2 alpha (LAP2α) in ALT cells results in telomere dysfunction, triggering a notable increase in ALT-associated hallmarks, including high frequencies of PML bodies (APBs), C-rich extrachromosomal circles (C-circles), and telomere sister chromatid exchange (T-SCE). Furthermore, LAP2α emerges as a crucial player in break-induced telomere replication for telomerase-positive cells following telomeric double-strand breaks. Mechanistically, our investigation suggests that LAP2α may influence the regulation of the heterochromatic state of telomeres, thereby affecting telomeric accessibility. In line with our findings, LAP2α expression is markedly reduced in ALT-positive osteosarcoma. And the use of methotrexate (MTX) can restore the heterochromatin state altered by LAP2α depletion. This is evidenced by a significant inhibition of tumor proliferation in ALT-positive patient-derived xenograft (PDX) mouse models. These results indicate the important role of LAP2α in regulating ALT activity and offer insights into the interplay between lamina-associated proteins and telomeres in maintaining telomere length. Importantly, our findings may help identify a more appropriate target population for the osteosarcoma therapeutic drug, MTX.
Collapse
Grants
- 32170762 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the grant from the National Natural Science Foundation of China (No. 32170762, 3217050514, 31771520, 31471293, 91649102, 92149302, 81772243, 81771135, 81970958, 82303619), Tianjin Health Research Project (No. 19YFZCSY00600), Science and Technology Project of Tianjin Municipal Health Committee (No. TJWJ2022XK018, TJWJ2022QN030) and the Natural Science Foundation of Tianjin City (No. 19JCJQJC63500)
Collapse
Affiliation(s)
- Bing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Haomeng Kou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Yuwen Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, P. R. China
| | - Duo Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Juan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Ziqin Zhao
- Department of Pathology, Tianjin Hospital, 300221, Tianjin, P. R. China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Miaomiao Zhang
- Department of Pathology, Jining No.1 People's Hospital, 272000, Jining, Shandong, P. R. China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 300221, Tianjin, P. R. China.
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, P. R. China.
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China.
| | - Feng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China.
| |
Collapse
|
3
|
Girard M, de la Cruz MO, Marko JF, Erbaş A. Heterogeneous flexibility can contribute to chromatin segregation in the cell nucleus. Phys Rev E 2024; 110:014403. [PMID: 39160964 PMCID: PMC11371272 DOI: 10.1103/physreve.110.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
The highly and slightly condensed forms of chromatin, heterochromatin and euchromatin, respectively, segregate in the cell nucleus. Heterochromatin is more abundant in the nucleus periphery. Here we study the mechanism of heterochromatin segregation by modeling interphase chromosomes as diblock ring copolymers confined in a rigid spherical shell using molecular dynamics simulations. In our model, heterochromatin and euchromatin are distinguished by their bending stiffnesses only, while an interaction potential between the spherical shell and chromatin is used to model lamin-associated proteins. Our simulations indicate that in the absence of attractive interactions between the nuclear shell and the chromatin, most heterochromatin segregates towards the nuclear interior due to the depletion of less flexible heterochromatin segments from the nuclear periphery. This inverted chromatin distribution,which is opposite to the conventional case with heterochromatin dominating at the periphery, is in accord with experimental observations in rod cells. This "inversion" is also found to be independent of the heterochromatin concentration and chromosome number. The chromatin distribution at the periphery found in vivo can be recovered by further increasing the bending stiffness of heterochromatin segments or by turning on attractive interactions between the nuclear shell and heterochromatin. Our results indicate that the bending stiffness of chromatin could be a contributor to chromosome organization along with differential effects of HP1α-driven phase segregation and of loop extruders and interactions with the nuclear envelope and topological constraints.
Collapse
Affiliation(s)
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Department of Chemistry, Department of Chemical and Biological Engineering, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | | | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Doronin SA, Ilyin AA, Kononkova AD, Solovyev MA, Olenkina OM, Nenasheva VV, Mikhaleva EA, Lavrov SA, Ivannikova AY, Simonov RA, Fedotova AA, Khrameeva EE, Ulianov SV, Razin SV, Shevelyov YY. Nucleoporin Elys attaches peripheral chromatin to the nuclear pores in interphase nuclei. Commun Biol 2024; 7:783. [PMID: 38951619 PMCID: PMC11217421 DOI: 10.1038/s42003-024-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.
Collapse
Affiliation(s)
- Semen A Doronin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Artem A Ilyin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Molecular Biosciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia
| | - Mikhail A Solovyev
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Oxana M Olenkina
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Valentina V Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Elena A Mikhaleva
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Sergey A Lavrov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna Y Ivannikova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Ruslan A Simonov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna A Fedotova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Regulation of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia.
| | - Sergey V Ulianov
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey V Razin
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia.
| |
Collapse
|
5
|
Lv T, Wang C, Zhou J, Feng X, Zhang L, Fan Z. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors. Cell Death Discov 2024; 10:269. [PMID: 38824174 PMCID: PMC11144256 DOI: 10.1038/s41420-024-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Nuclear lamin B1 (LMNB1) is a member of the nuclear lamin protein family. LMNB1 can maintain and ensure the stability of nuclear structure and influence the process of cell senescence by regulating chromatin distribution, DNA replication and transcription, gene expression, cell cycle, etc. In recent years, several studies have shown that the abnormal expression of LMNB1, a classical biomarker of cell senescence, is highly correlated with the progression of various malignant tumors; LMNB1 is therefore considered a new potential tumor marker and therapeutic target. However, the mechanism of action of LMNB1 is influenced by many factors, which are difficult to clarify at present. This article focuses on the recent progress in understanding the role of LMNB1 in cell senescence and malignant tumors and offers insights that could contribute to elucidating the mechanism of action of LMNB1 to provide a new direction for further research.
Collapse
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jialin Zhou
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, China.
| | - Lijun Zhang
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
6
|
Lin S, He X, Wang Y, Chen Y, Lin A. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ Sci B 2024; 25:280-292. [PMID: 38584091 PMCID: PMC11009445 DOI: 10.1631/jzus.b2300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024]
Abstract
Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.
Collapse
Affiliation(s)
- Siyi Lin
- College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyu He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310058, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
7
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. Nuclear lamina component KAKU4 regulates chromatin states and transcriptional regulation in the Arabidopsis genome. BMC Biol 2024; 22:80. [PMID: 38609974 PMCID: PMC11015597 DOI: 10.1186/s12915-024-01882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Pujadas Liwag EM, Wei X, Acosta N, Carter LM, Yang J, Almassalha LM, Jain S, Daneshkhah A, Rao SSP, Seker-Polat F, MacQuarrie KL, Ibarra J, Agrawal V, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biol 2024; 25:77. [PMID: 38519987 PMCID: PMC10958841 DOI: 10.1186/s13059-024-03212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.
Collapse
Affiliation(s)
- Emily M Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaolong Wei
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas M Carter
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fidan Seker-Polat
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle L MacQuarrie
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joe Ibarra
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erez Lieberman Aiden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, TX, 77030, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Mazhar Adli
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
10
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. KAKU4 regulates leaf senescence through modulation of H3K27me3 deposition in the Arabidopsis genome. BMC PLANT BIOLOGY 2024; 24:177. [PMID: 38448830 PMCID: PMC10919013 DOI: 10.1186/s12870-024-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Lamins are the major components of the nuclear lamina, which regulate chromatin structure and gene expression. KAKU4 is a unique nuclear lamina component in the nuclear periphery, modulates nuclear shape and size in Arabidopsis. The knowledge about the regulatory role of KAKU4 in leaf development remains limited. Here we found that knockdown of KAKU4 resulted in an accelerated leaf senescence phenotype, with elevated levels of H2O2 and hormones, particularly SA, JA, and ABA. Our results demonstrated the importance of KAKU4 as a potential negative regulator in age-triggered leaf senescence in Arabidopsis. Furthermore, we conducted combination analyses of transcriptomic and epigenomic data for the kaku4 mutant and WT leaves. The knockdown of KAKU4 lowered H3K27me3 deposition in the up-regulated genes associated with hormone pathways, programmed cell death, and leaf senescence, including SARD1, SAG113/HAI1, PR2, and so forth. In addition, we found the functional crosstalks between KAKU4 and its associated proteins (CRWN1/4, PNET2, GBPL3, etc.) through comparing multiple transcriptome datasets. Overall, our results indicated that KAKU4 may inhibit the expression of a series of genes related to hormone signals and H2O2 metabolism by affecting the deposition of H3K27me3, thereby suppressing leaf senescence.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Bannasch DL, Oertle DT, Vo J, Batcher KL, Stern JA, Kaplan JL, Li RHL, Madden IE, Christen M, Leeb T, Joshi N. Naturally occurring canine laminopathy leading to a dilated and fibrosing cardiomyopathy in the Nova Scotia Duck Tolling Retriever. Sci Rep 2023; 13:19077. [PMID: 37925523 PMCID: PMC10625583 DOI: 10.1038/s41598-023-46601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by decreased systolic function and dilation of one or both ventricles, often leading to heart failure or sudden death. Two 10-month-old sibling Nova Scotia Duck Tolling Retrievers (NSDTR) died acutely with evidence of dilated cardiomyopathy with myocardial fibrosis. Association analysis using two cases and 35 controls identified three candidate regions homozygous in the two cases. Whole genome sequencing identified a frameshift deletion in the LMNA gene (NC_049228.1:g.41688530del, NP_001274080:p.(Asp576ThrfsTer124)). Three retrospectively identified NSDTRs with sudden death before 2 years of age and severe myocardial fibrosis were also homozygous for the deletion. One 5 year old with sudden death and myocardial fibrosis was heterozygous for the deletion. This variant was not identified in 722 dogs of other breeds, nor was it identified to be homozygous in 784 NSDTR. LMNA codes for lamin A/C proteins, which are type V intermediate filaments that provide structural support to the nuclear membrane. In humans, LMNA variants can cause DCM with sudden death as well as diseases of striated muscles, lipodystrophy, neuropathies, and accelerated aging disorders. This frameshift deletion is predicted to affect processing of prelamin A into lamin A. Pedigree analysis in the NSDTR and functional evaluation of heterozygotes is consistent with a predominantly recessive mode of inheritance and possibly low penetrance in heterozygotes in contrast to people, where most pathogenic LMNA variants are dominantly inherited.
Collapse
Affiliation(s)
- Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Danielle T Oertle
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Julia Vo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ronald H L Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Indiana E Madden
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Nikhil Joshi
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
13
|
Gheyas R, Menko AS. The involvement of caspases in the process of nuclear removal during lens fiber cell differentiation. Cell Death Discov 2023; 9:386. [PMID: 37865680 PMCID: PMC10590423 DOI: 10.1038/s41420-023-01680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The terminal differentiation of lens fiber cells involves elimination of their organelles, which must occur while still maintaining their functionality throughout a lifetime. Removal of non-nuclear organelles is accomplished through induction of autophagy following the spatiotemporal suppression of the PI3K/Akt signaling axis. However, blocking this pathway is not alone sufficient to induce removal of fiber cell nuclei. While the final steps in fiber cell nuclear elimination are highlighted by the appearance of TUNEL-positive nuclei, which are associated with activation of the lens-specific DNaseIIβ, there are many steps in the process that precede the appearance of double stranded DNA breaks. We showed that this carefully regulated process, including the early changes in nuclear morphology resulting in nuclear condensation, cleavage of lamin B, and labeling by pH2AX, is reminiscent of the apoptotic process associated with caspase activation. Multiple caspases are known to be expressed and activated during lens cell differentiation. In this study, we investigated the link between two caspase downstream targets associated with apoptosis, ICAD, whose cleavage by caspase-3 leads to activation of CAD, a DNase that can create both single- and double-stranded DNA cleavages, and lamin B, a primary component of the nuclear lamina. We discovered that the specific inhibition of caspase-3 activation prevents both lamin B and DNA cleavage. Inhibiting caspase-3 did not prevent nuclear condensation or removal of the nuclear membrane. In contrast, a pan-caspase inhibitor effectively suppressed condensation of fiber cell nuclei during differentiation. These studies provide evidence that caspases play an important role in the process of removing fiber cell nuclei during lens differentiation.
Collapse
Affiliation(s)
- Rifah Gheyas
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
| |
Collapse
|
14
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
15
|
Pruvost M, Patzig J, Yattah C, Selcen I, Hernandez M, Park HJ, Moyon S, Liu S, Morioka MS, Shopland L, Al-Dalahmah O, Bendl J, Fullard JF, Roussos P, Goldman J, He Y, Dupree JL, Casaccia P. The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina. Cell Rep 2023; 42:112848. [PMID: 37515770 PMCID: PMC10600948 DOI: 10.1016/j.celrep.2023.112848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Julia Patzig
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Ipek Selcen
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Marylens Hernandez
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hye-Jin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Sarah Moyon
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Shibo Liu
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Structural Biology Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Malia S Morioka
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Lindsay Shopland
- Jackson Laboratory, 1650 Santa Ana Ave, Sacramento, CA 95835, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Goldman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Ye He
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate Program in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
16
|
Pujadas EM, Wei X, Acosta N, Carter L, Yang J, Almassalha L, Daneshkhah A, Rao SSP, Agrawal V, Seker-Polat F, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 alters chromatin mobility and induces differential gene expression by a mesoscale-motion dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546573. [PMID: 37425796 PMCID: PMC10326988 DOI: 10.1101/2023.06.26.546573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.
Collapse
|
17
|
Kou M, Li X, Shao X, Grundberg E, Wang X, Ma H, Heianza Y, Martinez JA, Bray GA, Sacks FM, Qi L. DNA Methylation of Birthweight-Blood Pressure Genes and Changes of Blood Pressure in Response to Weight-Loss Diets in the POUNDS Lost Trial. Hypertension 2023; 80:1223-1230. [PMID: 37039021 PMCID: PMC10192077 DOI: 10.1161/hypertensionaha.123.20864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND DNA methylation (DNAm) may play a critical role in bridging prenatal adverse events and cardiometabolic disorders including hypertension in later life. METHODS We included 672 adult participants with overweight or obesity, who participated in a 2-year randomized weight-loss dietary intervention study. We defined the regional DNAm levels as the average methylation level of 5'-cytosine-phosphate-guanine-3' within 500 bp of LINC00319 (cg01820192), ATP2B1 (cg00508575), and LMNA (cg12593793), respectively. Generalized linear regression models were used to assess the association between the regional DNAm and 2-year blood pressure changes. Trajectory analysis was used to identify subgroups that shared a similar underlying trajectory of 2-year blood pressure changes. RESULTS The regional DNAm at LINC00319, showed significantly different associations with 2-year changes in systolic blood pressure and diastolic blood pressure among participants assigned to low- or high-fat diets (P for interaction<0.05 for all). In response to the low-fat diet, per SD higher regional DNAm at LINC00319 was associated with greater reductions in both 2-year changes in systolic blood pressure (β, -1.481; P=0.020) and diastolic blood pressure (β, -1.096; P=0.009). Three trajectories of changes in systolic blood pressure or diastolic blood pressure were identified, and participants with higher regional DNAm at LINC00319 were more likely to experience and maintain decreased systolic blood pressure and diastolic blood pressure (odds ratio of being in decrease-stable versus stable [95% CI], 1.542 [1.146-2.076] and 1.463 [1.125-1.902]). CONCLUSIONS Our findings suggest that DNAm could be a metabolic memory bridging early and later life, and an indicator of more benefits from eating a low-fat weight-loss diet.
Collapse
Affiliation(s)
- Minghao Kou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO, United States
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - J. Alfredo Martinez
- Madrid Institute of Advance Studies (IMDEA), Research Institute on Food & Health Sciences, Precision Nutrition Program, Madrid, Spain
| | - George A. Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
18
|
Tolokh IS, Kinney NA, Sharakhov IV, Onufriev AV. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin. Epigenetics Chromatin 2023; 16:21. [PMID: 37254161 PMCID: PMC10228000 DOI: 10.1186/s13072-023-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Interactions among topologically associating domains (TADs), and between the nuclear envelope (NE) and lamina-associated domains (LADs) are expected to shape various aspects of three-dimensional (3D) chromatin structure and dynamics; however, relevant genome-wide experiments that may provide statistically significant conclusions remain difficult. RESULTS We have developed a coarse-grained dynamical model of D. melanogaster nuclei at TAD resolution that explicitly accounts for four distinct epigenetic classes of TADs and LAD-NE interactions. The model is parameterized to reproduce the experimental Hi-C map of the wild type (WT) nuclei; it describes time evolution of the chromatin over the G1 phase of the interphase. The simulations include an ensemble of nuclei, corresponding to the experimentally observed set of several possible mutual arrangements of chromosomal arms. The model is validated against multiple structural features of chromatin from several different experiments not used in model development. Predicted positioning of all LADs at the NE is highly dynamic-the same LAD can attach, detach and move far away from the NE multiple times during interphase. The probabilities of LADs to be in contact with the NE vary by an order of magnitude, despite all having the same affinity to the NE in the model. These probabilities are mostly determined by a highly variable local linear density of LADs along the genome, which also has the same strong effect on the predicted positioning of individual TADs -- higher probability of a TAD to be near NE is largely determined by a higher linear density of LADs surrounding this TAD. The distribution of LADs along the chromosome chains plays a notable role in maintaining a non-random average global structure of chromatin. Relatively high affinity of LADs to the NE in the WT nuclei substantially reduces sensitivity of the global radial chromatin distribution to variations in the strength of TAD-TAD interactions compared to the lamin depleted nuclei, where a small (0.5 kT) increase of cross-type TAD-TAD interactions doubles the chromatin density in the central nucleus region. CONCLUSIONS A dynamical model of the entire fruit fly genome makes multiple genome-wide predictions of biological interest. The distribution of LADs along the chromatin chains affects their probabilities to be in contact with the NE and radial positioning of highly mobile TADs, playing a notable role in creating a non-random average global structure of the chromatin. We conjecture that an important role of attractive LAD-NE interactions is to stabilize global chromatin structure against inevitable cell-to-cell variations in TAD-TAD interactions.
Collapse
Affiliation(s)
- Igor S. Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Nicholas Allen Kinney
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061 USA
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060 USA
| | | | - Alexey V. Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Physics, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
19
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
20
|
Shah PP, Santini GT, Shen KM, Jain R. InterLINCing Chromatin Organization and Mechanobiology in Laminopathies. Curr Cardiol Rep 2023; 25:307-314. [PMID: 37052760 PMCID: PMC10185580 DOI: 10.1007/s11886-023-01853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.
Collapse
Affiliation(s)
- Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Smilow Center for Translational Research, 09-184, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| | - Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kaitlyn M. Shen
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Smilow Center for Translational Research, 09-101, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| |
Collapse
|
21
|
Balasooriya GI, Spector DL. Allele pairing at Sun1-enriched domains at the nuclear periphery via T1A3 tandem DNA repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536031. [PMID: 37066204 PMCID: PMC10104147 DOI: 10.1101/2023.04.07.536031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Spatiotemporal gene regulation is fundamental to the biology of diploid cells. Therefore, effective communication between two alleles and their geometry in the nucleus is important. However, the mechanism that fine-tunes the expression from each of the two alleles of an autosome is enigmatic. Establishing an allele-specific gene expression visualization system in living cells, we show that alleles of biallelically expressed Cth and Ttc4 genes are paired prior to acquiring monoallelic expression. We found that active alleles of monoallelic genes are preferentially localized at Sun1-enriched domains at the nuclear periphery. These peripherally localized active DNA loci are enriched with adenine-thymidine-rich tandem repeats that interact with Hnrnpd and reside in a Hi-C-defined A compartment within the B compartment. Our results demonstrate the biological significance of T 1 A 3 tandem repeat sequences in genome organization and how the regulation of gene expression, at the level of individual alleles, relates to their spatial arrangement.
Collapse
|
22
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
24
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
25
|
Distinct Impairments Characterizing Different ADNP Mutants Reveal Aberrant Cytoplasmic-Nuclear Crosstalk. Cells 2022; 11:cells11192994. [PMID: 36230962 PMCID: PMC9563912 DOI: 10.3390/cells11192994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Activity-dependent neuroprotective protein (ADNP) is essential for neuronal structure and function. Multiple de novo pathological mutations in ADNP cause the autistic ADNP syndrome, and they have been further suggested to affect Alzheimer’s disease progression in a somatic form. Here, we asked if different ADNP mutations produce specific neuronal-like phenotypes toward better understanding and personalized medicine. (2) Methods: We employed CRISPR/Cas9 genome editing in N1E-115 neuroblastoma cells to form neuron-like cell lines expressing ADNP mutant proteins conjugated to GFP. These new cell lines were characterized by quantitative morphology, immunocytochemistry and live cell imaging. (3) Results: Our novel cell lines, constitutively expressing GFP-ADNP p.Pro403 (p.Ser404* human orthologue) and GFP-ADNP p.Tyr718* (p.Tyr719* human orthologue), revealed new and distinct phenotypes. Increased neurite numbers (day 1, in culture) and increased neurite lengths upon differentiation (day 7, in culture) were linked with p.Pro403*. In contrast, p.Tyr718* decreased cell numbers (day 1). These discrete phenotypes were associated with an increased expression of both mutant proteins in the cytoplasm. Reduced nuclear/cytoplasmic boundaries were observed in the p.Tyr718* ADNP-mutant line, with this malformation being corrected by the ADNP-derived fragment drug candidate NAP. (4) Conclusions: Distinct impairments characterize different ADNP mutants and reveal aberrant cytoplasmic-nuclear crosstalk.
Collapse
|
26
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Knockdown of Lamin B1 and the Corresponding Lamin B Receptor Leads to Changes in Heterochromatin State and Senescence Induction in Malignant Melanoma. Cells 2022; 11:cells11142154. [PMID: 35883595 PMCID: PMC9321645 DOI: 10.3390/cells11142154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.
Collapse
|
28
|
Lazarte J, Jurgens SJ, Choi SH, Khurshid S, Morrill VN, Weng LC, Nauffal V, Pirruccello JP, Halford JL, Hegele RA, Ellinor PT, Lunetta KL, Lubitz SA. LMNA Variants and Risk of Adult-Onset Cardiac Disease. J Am Coll Cardiol 2022; 80:50-59. [PMID: 35772917 PMCID: PMC11071053 DOI: 10.1016/j.jacc.2022.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Genetic variants in LMNA may cause cardiac disease, but population-level contributions of variants to cardiac disease burden are not well-characterized. OBJECTIVES We sought to determine the frequency and contribution of rare LMNA variants to cardiomyopathy and arrhythmia risk among ambulatory adults. METHODS We included 185,990 UK Biobank participants with whole-exome sequencing. We annotated rare loss-of-function and missense LMNA variants for functional effect using 30 in silico prediction tools. We assigned a predicted functional effect weight to each variant and calculated a score for each carrier. We tested associations between the LMNA score and arrhythmia (atrial fibrillation, bradyarrhythmia, ventricular arrhythmia) or cardiomyopathy outcomes (dilated cardiomyopathy and heart failure). We also examined associations for variants located upstream vs downstream of the nuclear localization signal. RESULTS Overall, 1,167 (0.63%) participants carried an LMNA variant and 15,079 (8.11%) had an arrhythmia or cardiomyopathy event during a median follow-up of 10.9 years. The LMNA score was associated with arrhythmia or cardiomyopathy (OR: 2.21; P < 0.001) and the association was more significant when restricted to variants upstream of the nuclear localization signal (OR: 5.05; P < 0.001). The incidence rate of arrhythmia or cardiomyopathy was 8.43 per 1,000 person-years (95% CI: 6.73-10.12 per 1,000 person-years) among LMNA variant carriers and 6.38 per 1,000 person-years (95% CI: 6.27-6.50 per 1,000 person-years) among noncarriers. Only 3 (1.2%) of the variants were reported as pathogenic in ClinVar. CONCLUSIONS Middle-aged adult carriers of rare missense or loss-of-function LMNA variants are at increased risk for arrhythmia and cardiomyopathy.
Collapse
Affiliation(s)
- Julieta Lazarte
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada. https://twitter.com/Juliet_Lazarte
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shaan Khurshid
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valerie N Morrill
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennifer L Halford
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn L Lunetta
- National Heart, Lung, and Blood Institute and Boston University's Framingham Heart Study, Framingham, Massachusetts, USA; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Liu ML, Lyu X, Werth VP. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J 2022; 289:3954-3966. [PMID: 34042290 PMCID: PMC9107956 DOI: 10.1111/febs.16036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Neutrophils are the most abundant circulating white blood cells and one of the major cell types of the innate immune system. Neutrophil extracellular traps (NETs) are a result of the extracellular release of nuclear chromatin from the ruptured nuclear envelope and plasma membrane. The externalized chromatin is an ancient defense weapon for animals to entrap and kill microorganisms in the extracellular milieu, thus protecting animals ranging from lower invertebrates to higher vertebrates. Although the externalized chromatin has the advantage of acting as anti-infective to protect against infections, extracellular chromatin might be problematic in higher vertebrate animals as they have an adaptive immune system that can trigger further immune or autoimmune responses. NETs and their associated nuclear and/or cytoplasmic components may induce sterile inflammation, immune, and autoimmune responses, leading to various human diseases. Though important in human pathophysiology, the cellular and molecular mechanisms of NET formation (also called NETosis) are not well understood. Given that nuclear chromatin forms the backbone of NETs, the nucleus is the root of the nuclear DNA extracellular traps. Thus, nuclear chromatin decondensation, along with the rupture of nuclear envelope and plasma membrane, is required for nuclear chromatin extracellular release and NET formation. So far, most of the literature focuses on certain signaling pathways, which are involved in NET formation but without explanation of cellular events and morphological changes described above. Here, we have summarized emerging evidence and discuss new mechanistic understanding, with our perspectives, in NET formation in neutrophils.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Lyu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
30
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
31
|
Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro. Commun Biol 2022; 5:358. [PMID: 35418705 PMCID: PMC9008043 DOI: 10.1038/s42003-022-03312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer's disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy.
Collapse
|
32
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng 2022; 6:011503. [PMID: 35146235 PMCID: PMC8810204 DOI: 10.1063/5.0082656] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
34
|
Kitzman SC, Duan T, Pufall MA, Geyer PK. Checkpoint activation drives global gene expression changes in Drosophila nuclear lamina mutants. G3 (BETHESDA, MD.) 2022; 12:6459172. [PMID: 34893833 PMCID: PMC9210273 DOI: 10.1093/g3journal/jkab408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
The nuclear lamina (NL) lines the inner nuclear membrane. This extensive protein network organizes chromatin and contributes to the regulation of transcription, DNA replication, and repair. Lap2-emerin-MAN1 domain (LEM-D) proteins are key members of the NL, representing proteins that connect the NL to the genome through shared interactions with the chromatin-binding protein Barrier-to-Autointegration Factor (BAF). Functions of the LEM-D protein emerin and BAF are essential during Drosophila melanogaster oogenesis. Indeed, loss of either emerin or BAF blocks germ cell development and causes loss of germline stem cells, defects linked to the deformation of NL structure, and non-canonical activation of Checkpoint kinase 2 (Chk2). Here, we investigate the contributions of emerin and BAF to gene expression in the ovary. Profiling RNAs from emerin and baf mutant ovaries revealed that nearly all baf misregulated genes were shared with emerin mutants, defining a set of NL-regulated genes. Strikingly, loss of Chk2 restored the expression of most NL-regulated genes, identifying a large class of Chk2-dependent genes (CDGs). Nonetheless, some genes remained misexpressed upon Chk2 loss, identifying a smaller class of emerin-dependent genes (EDGs). Properties of EDGs suggest a shared role for emerin and BAF in the repression of developmental genes. Properties of CDGs demonstrate that Chk2 activation drives global misexpression of genes in the emerin and baf mutant backgrounds. Notably, CDGs were found upregulated in lamin-B mutant backgrounds. These observations predict that Chk2 activation might have a general role in gene expression changes found in NL-associated diseases, such as laminopathies.
Collapse
Affiliation(s)
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
36
|
Ilyin AA, Kononkova AD, Golova AV, Shloma VV, Olenkina O, Nenasheva V, Abramov Y, Kotov AA, Maksimov D, Laktionov P, Pindyurin A, Galitsyna A, Ulianov S, Khrameeva E, Gelfand M, Belyakin S, Razin S, Shevelyov Y. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3203-3225. [PMID: 35166842 PMCID: PMC8989536 DOI: 10.1093/nar/gkac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis – in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters’ detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.
Collapse
Affiliation(s)
| | | | | | | | | | - Valentina V Nenasheva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Yuri A Abramov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina E Khrameeva
- Correspondence may also be addressed to Ekaterina Khrameeva. Tel: +7 495 2801481; Fax: +7 495 2801481;
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Yuri Y Shevelyov
- To whom correspondence should be addressed. Tel: +7 499 1960809; Fax: +7 499 1960221;
| |
Collapse
|
37
|
Maillard F, Elie N, Villain-Naud N, Lepoittevin M, Martinez AS, Lelong C. Male triploid oysters of Crassostrea gigas exhibit defects in mitosis and meiosis during early spermatogenesis. FEBS Open Bio 2021; 12:1438-1452. [PMID: 34935310 PMCID: PMC9340784 DOI: 10.1002/2211-5463.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas is a successive irregular hermaphrodite mollusc which has an annual breeding cycle. Oysters are naturally diploid organisms, but triploid oysters have been developed for use in shellfish aquaculture, with the aim of obtaining sterile animals with commercial value. However, studies have shown that some triploid oysters are partially able to undergo gametogenesis, with numerous proliferating cells closed to diploids (3n alpha) or a partial one with an accumulation of locked germ cells (3n beta). The aim of our study therefore was to understand the regulation of spermatogenesis in both groups of triploid oysters (alpha and beta) from the beginning of spermatogenesis, during mitosis and meiosis events. Our results demonstrate that the reduced spermatogenesis in triploids results from a deregulation of the development of the germinal lineage and the establishment of the gonadal tract led by a lower number of tubules. Morphological cellular investigation also revealed an abnormal condensation of germ cell nuclei and the presence of clear patches in the nucleoplasm of triploid cells, which were more pronounced in beta oysters. Furthermore, studies of molecular and cellular regulation showed a downregulation of mitotic spindle checkpoint in beta oysters, resulting in disturbance of chromosomal segregation, notably on Spindle Assembly Checkpoint involved in the binding of microtubules to chromosomes. Taken together, our results suggest that the lower reproductive ability of triploid oysters may be due to cellular and molecular events such as impairment of spermatogenesis and disruptions of mitosis and meiosis, occurring early and at various stages of the gametogenetic cycle.
Collapse
Affiliation(s)
- Floriane Maillard
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), FRE2030, Museum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris CEDEX, France
| | - Nicolas Elie
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Microscopie Appliquée à la Biologie, SF4206 Interaction Cellule-Organisme-Environnement (ICORE), Université de Caen Normandie, Esplanade de la paix, 14032, Caen CEDEX, France
| | - Nadège Villain-Naud
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), FRE2030, Museum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris CEDEX, France
| | - Mélanie Lepoittevin
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), FRE2030, Museum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris CEDEX, France
| | - Anne-Sophie Martinez
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), FRE2030, Museum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris CEDEX, France
| | - Christophe Lelong
- Unité de Formation et de Recherches (UFR) des sciences, Université de Caen Normandie, 14032, Caen CEDEX, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), FRE2030, Museum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris CEDEX, France.,Oestrogènes et Reproduction (OeReCa), EA2608, Université de Caen Normandie, Esplanade de la paix, 14032, Caen CEDEX, France
| |
Collapse
|
38
|
Lamin A/C missense variants: from discovery to functional validation. NPJ Genom Med 2021; 6:102. [PMID: 34862397 PMCID: PMC8642461 DOI: 10.1038/s41525-021-00266-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rare variants in the LMNA gene encoding nuclear lamin A/C are causal for more than a dozen diverse mendelian disorders. Defining the functional consequences of LMNA variants has been challenging given the pleiotropy of gene functions and potential pathogenic mechanisms. It is essential to develop trustworthy, scalable and rapidly deployable in vitro assays of function to enable timely assessment of missense variants that are being uncovered by high throughout next-generation sequencing.
Collapse
|
39
|
Malashicheva A, Perepelina K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front Cell Dev Biol 2021; 9:761469. [PMID: 34722546 PMCID: PMC8548693 DOI: 10.3389/fcell.2021.761469] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.
Collapse
Affiliation(s)
- Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kseniya Perepelina
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
40
|
Ulianov SV, Velichko A, Magnitov MD, Luzhin A, Golov AK, Ovsyannikova N, Kireev II, Gavrikov A, Mishin A, Garaev AK, Tyakht AV, Gavrilov A, Kantidze OL, Razin SV. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res 2021; 49:10524-10541. [PMID: 33836078 PMCID: PMC8501969 DOI: 10.1093/nar/gkab249] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arkadiy K Golov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Alexey S Gavrikov
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S Mishin
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Azat K Garaev
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Omar L Kantidze
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
41
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
42
|
Llorens-Giralt P, Camilleri-Robles C, Corominas M, Climent-Cantó P. Chromatin Organization and Function in Drosophila. Cells 2021; 10:cells10092362. [PMID: 34572010 PMCID: PMC8465611 DOI: 10.3390/cells10092362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.
Collapse
|
43
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
44
|
Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum Mol Genet 2021; 29:R248-R254. [PMID: 32821941 DOI: 10.1093/hmg/ddaa189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Changes of polarity in somatic stem cells upon aging or disease lead to a functional deterioration of stem cells and consequently loss of tissue homeostasis, likely due to changes in the mode (symmetry versus asymmetry) of stem cell divisions. Changes in polarity of epigenetic markers (or 'epi-polarity') in stem cells, which are linked to alterations in chromatin architecture, might explain how a decline in the frequency of epipolar stem cells can have a long-lasting impact on the function of especially aging stem cells. The drift in epipolarity might represent a novel therapeutic target to improve stem cell function upon aging or disease. Here we review basic biological principles of epigenetic polarity, with a special focus on epipolarity and aging of hematopoietic stem cells.
Collapse
Affiliation(s)
- Eva Mejia-Ramirez
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| | - M Carolina Florian
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| |
Collapse
|
45
|
Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1. Genes (Basel) 2021; 12:genes12071081. [PMID: 34356097 PMCID: PMC8304062 DOI: 10.3390/genes12071081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
Acquisition of cellular fate during development is initiated and maintained by well-coordinated patterns of gene expression that are dictated by the epigenetic landscape and genome organization in the nucleus. While the epigenetic marks that mediate developmental gene expression patterns during organogenesis have been well studied, less is known about how epigenetic marks influence nuclear organization during development. This study examines the relationship between nuclear structure, chromatin accessibility, DNA methylation, and gene expression during hepatic outgrowth in zebrafish larvae. We investigate the relationship between these features using mutants that lack DNA methylation. Hepatocyte nuclear morphology was established coincident with hepatocyte differentiation at 80 h post-fertilization (hpf), and nuclear shape and size continued to change until the conclusion of outgrowth and morphogenesis at 120 hpf. Integrating ATAC-Seq analysis with DNA methylation profiling of zebrafish livers at 120 hpf showed that closed and highly methylated chromatin occupies most transposable elements and that open chromatin correlated with gene expression. DNA hypomethylation, due to mutation of genes encoding ubiquitin-like, containing PHD and RING Finger Domains 1 (uhrf1) and DNA methyltransferase (dnmt1), did not block hepatocyte differentiation, but had dramatic effects on nuclear organization. Hepatocytes in uhrf1 mutants have large, deformed nuclei with multiple nucleoli, downregulation of nucleolar genes, and a complete lack of the nuclear lamina. Loss of lamin B2 staining was phenocopied by dnmt1 mutation. Together, these data show that hepatocyte nuclear morphogenesis coincides with organ morphogenesis and outgrowth, and that DNA methylation directs chromatin organization, and, in turn, hepatocyte nuclear shape and size during liver development.
Collapse
|
46
|
Gauthier BR, Comaills V. Nuclear Envelope Integrity in Health and Disease: Consequences on Genome Instability and Inflammation. Int J Mol Sci 2021; 22:ijms22147281. [PMID: 34298904 PMCID: PMC8307504 DOI: 10.3390/ijms22147281] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (B.R.G.); (V.C.)
| | - Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Correspondence: (B.R.G.); (V.C.)
| |
Collapse
|
47
|
Zhou M, Liu Y, Ma C. Distinct Nuclear Architecture of Photoreceptors and Light-Induced Behaviors in Different Strains of Mice. Transl Vis Sci Technol 2021; 10:37. [PMID: 34003922 PMCID: PMC7910638 DOI: 10.1167/tvst.10.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The mouse retina is considered a remarkable model for studying gene functions. However, variations in genetic background influence phenotypes in the mammalian retina. Therefore this study aimed to investigate the effects of the genetic background on the nuclear architecture of photoreceptor cells and the light-induced behavior in C57BL/6, 129 × 1/svj, and ICR mice. Methods The nuclear architecture of photoreceptor cells was investigated using various staining methods on postnatal day 21 (P21). Murine behavior was observed using a light-dark compartment test. Results The outer nuclear layer and retina were significantly thicker in C57BL/6 mice than in 129 × 1/svj mice. The percentage of photoreceptors with one chromocenter was significantly higher in C57BL/6 mice than in 129 × 1/svj and ICR mice on P21. The numbers of photoreceptor cells in C57BL/6 and ICR mice were significantly higher than those in 129 × 1/svj mice. The behavior test revealed that the walking distance and velocity in the light compartment were increased in C57BL/6 and ICR mice compared to 129 × 1/svj mice. Conclusions Different mouse strains had a distinct nuclear architecture of photoreceptors on P21, and C57BL/6 and ICR mice were more active than 129 × 1/svj mice in response to light-induced stress. Translational Relevance This study demonstrates a technique for assessing retinal structures and nuclear architecture in various strains of mice, which are often used to model human retinal disease. Hence, this study may help to elucidate the effect of genetic or disease-induced variance in retinal architecture and the organization of photoreceptor nuclear content on visual function in humans.
Collapse
Affiliation(s)
- Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yutong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Ma
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Erenpreisa J, Krigerts J, Salmina K, Gerashchenko BI, Freivalds T, Kurg R, Winter R, Krufczik M, Zayakin P, Hausmann M, Giuliani A. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis). Cells 2021; 10:1582. [PMID: 34201566 PMCID: PMC8304199 DOI: 10.3390/cells10071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Jekabs Krigerts
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine;
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia;
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Ruth Winter
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Matthias Krufczik
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Pawel Zayakin
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| |
Collapse
|
49
|
Rogerson C, Wotherspoon DJ, Tommasi C, Button RW, O'Shaughnessy RFL. Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation. Cell Death Differ 2021; 28:1849-1864. [PMID: 33462407 PMCID: PMC8184862 DOI: 10.1038/s41418-020-00712-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Duncan J Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Great Ormond Street Institute of Child Health, London, UK
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Robert W Button
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
50
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|