1
|
Cai J, Chen Y, She Y, He X, Feng H, Sun H, Yin M, Gao J, Sheng C, Li Q, Xiao M. Aerobic exercise improves astrocyte mitochondrial quality and transfer to neurons in a mouse model of Alzheimer's disease. Brain Pathol 2024:e13316. [PMID: 39462160 DOI: 10.1111/bpa.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction is a well-established hallmark of Alzheimer's disease (AD). Despite recent documentation of transcellular mitochondrial transfer, its role in the pathogenesis of AD remains unclear. In this study, we report an impairment of mitochondrial quality within the astrocytes and neurons of adult 5 × FAD mice. Following treatment with mitochondria isolated from aged astrocytes induced by exposure to amyloid protein or extended cultivation, cultured neurons exhibited an excessive generation of reactive oxygen species and underwent neurite atrophy. Notably, aerobic exercise enhanced mitochondrial quality by upregulating CD38 within hippocampal astrocytes of 5 × FAD mice. Conversely, the knockdown of CD38 diminished astrocytic-neuronal mitochondrial transfer, thereby abolishing the ameliorative effects of aerobic exercise on neuronal oxidative stress, β-amyloid plaque deposition, and cognitive dysfunction in 5 × FAD mice. These findings unveil an unexpected mechanism through which aerobic exercise facilitates the transference of healthy mitochondria from astrocytes to neurons, thus countering the AD-like progression.
Collapse
Affiliation(s)
- Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuzhu She
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaoxin He
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hu Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Huaiqing Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengmei Yin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Haag FB, Resende E Silva DT, Antunes CS, Waclawovsky G, Lucchese-Lobato F. Effects of circuit training and Yoga on biochemical and psychological responses to stress and cardiovascular markers: A randomized clinical trial with nursing and medical students in Southern Brazil. Psychoneuroendocrinology 2024; 167:107110. [PMID: 38954979 DOI: 10.1016/j.psyneuen.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
A Randomized Controlled Trial involving 158 Brazilian medical and nursing students assessed one of three conditions over an 8-week period: 1) a circuit training protocol (CTG); 2) a yoga protocol (YG); or 3) no intervention (CG). The objective was to evaluate the effectiveness of circuit training and yoga protocols in reducing perceived mental stress and examining their effects on serum cortisol levels, as well as on traditional cardiovascular risk factors (CRFs), during an academic semester. Mental stress was measured using self-reported stress questionnaires. For the CTG, comparisons of pre- vs. post-intervention data indicated a reduction in self-reported stress levels on a Brazilian scale (p < 0.001) and an international scale (p < 0.05). Regarding CRFs, there was a reduction in waist circumference (WC) (p < 0.05), systolic blood pressure (SBP) (p < 0.05), and heart rate (HR) (p < 0.001). No changes were observed in diastolic blood pressure (DBP) (p = 0.211) and serum cortisol (SC) (p = 0.423). In the YG, pre- vs. post-intervention data indicated a reduction in self-reported stress levels on the ISSL (p < 0.001), in both resistance and exhaustion stress levels on the PSS scale (p < 0.001), and in SC levels (p < 0.001), WC (p < 0.05), and SBP (p < 0.05); however, HR and DBP did not change (p = 0.168 and p = 0.07, respectively) in this group. No changes were noted in any measures in the CG. The intervention protocols demonstrated that both CTG and YG can positively impact mental or biochemical stress responses, as well as CRFs.
Collapse
Affiliation(s)
- Fabiana Brum Haag
- Nursing Department, Federal University of Fronteira Sul (UFFS), Chapecó, Santa Catarina, Brazil
| | - Débora Tavares Resende E Silva
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó, Santa Catarina, Brazil
| | | | - Gustavo Waclawovsky
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Brazil
| | - Fernanda Lucchese-Lobato
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Brazil; Columbia University Irving Medical Center, Division of Child and Adolescent Psychiatry, New York, NY, USA; Santo Antônio Children's Hospital, Sr. Santa Casa de Misericórdia, Porto Alegre, Brazil, New York, NY, USA.
| |
Collapse
|
3
|
Zhang JY, Xiang XN, Yu X, Liu Y, Jiang HY, Peng JL, He CQ, He HC. Mechanisms and applications of the regenerative capacity of platelets-based therapy in knee osteoarthritis. Biomed Pharmacother 2024; 178:117226. [PMID: 39079262 DOI: 10.1016/j.biopha.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in the elderly population and its substantial morbidity and disability impose a heavy economic burden on patients and society. Knee osteoarthritis (KOA) is the most common subtype of OA, which is characterized by damage to progressive articular cartilage, synovitis, and subchondral bone sclerosis. Most current treatments for OA are palliative, primarily aim at symptom management, and do not prevent the progression of the disease or restore degraded cartilage. The activation of α-granules in platelets releases various growth factors that are involved in multiple stages of tissue repair, suggesting potential for disease modification. In recent years, platelet-based therapies, such as platelet-rich plasma, platelet-rich fibrin, and platelet lysates, have emerged as promising regenerative treatments for KOA, but their related effects and mechanisms are still unclear. Therefore, this review aims to summarize the biological characteristics and functions of platelets, classify the products of platelet-based therapy and related preparation methods. Moreover, we summarize the basic research of platelet-based regeneration strategies for KOA and discuss the cellular effects and molecular mechanisms. Further, we describe the general clinical application of platelet-based therapy in the treatment of KOA and the results of the meta-analysis of randomized controlled trials.
Collapse
Affiliation(s)
- Jiang-Yin Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Ying Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia-Lei Peng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Chen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Tian Z, Li Z. Protective function of albiflorin against ferroptosis in exhaustive exerciseinduced myocardial injury via the AKT/Nrf2/HO-1 signaling. Acta Cir Bras 2024; 39:e393524. [PMID: 39140524 PMCID: PMC11321502 DOI: 10.1590/acb393524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/10/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE It has been reported that exhaustive exercise (EE) causes myocyte injury, and eventually damages the function of the myocardia. Albiflorin (AF) has anti-inflammatory, antioxidant, and anti-apoptosis effects. In this study, we determined whether AF could mitigate the EE-induced myocardial injury and research the potential mechanisms. METHODS The rat model of EE was built by forced treadmill running method. Rats were intraperitoneally injected with AF before EE once daily for one week. The relative factors levels were examined by commercial kits. The apoptosis was appraised using a TdT-mediated dUTP nick end labeling assay kit. The ACSL4, GPX4, Nrf2, pAKT/AKT, and HO-1 contents were assessed by western blot. RESULTS AF lessened EE-induced cardiac myocytes ischemic/hypoxic injury and reduced the contents of myocardial injury biomarkers in the serum. AF lessened EE-induced cardiac myocyte apoptosis, inflammatory response, oxidative stress, and ferroptosis in myocardial tissues. However, the influences of AF were overturned by the co-treatment of AF and LY294002. AF activated the AKT/Nrf2/HO-1 signaling pathway in myocardial tissues in vivo. CONCLUSIONS AF could curb cardiac myocytes ferroptosis, thus diminishing the EE-induced myocardial injury through activating the AKT/Nrf2/HO-1 cascade.
Collapse
Affiliation(s)
- Zhuang Tian
- Zhengzhou University – College of Physical Education – Zhengzhou, Henan Province, China
- Jeonbuk National University – College of Natural Science – Department of Sport Science – Jeonju, South Korea
| | - Zhenyu Li
- Jeonbuk National University – College of Natural Science – Department of Sport Science – Jeonju, South Korea
- Sias University – Xinzheng, Henan Province, China
| |
Collapse
|
5
|
Zhu W, Zhao X, Xu Q, Xue Y. Associations of cognitive impairment and functional limitation with all-cause mortality risk in older adults: A population-based study from the National Health and Nutrition Examination Survey. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-10. [PMID: 38803116 DOI: 10.1080/23279095.2024.2353867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cognitive impairment and functional limitation are commonly observed in older adults. They have a complex correlation, and both are risk factors for mortality. This prospective cohort study aimed to explore the independent and joint impact of cognitive impairment and functional limitations on all-cause mortality in older adults. A total of 3,759 participants aged ≥ 60 years who had available information on mortality data, cognitive function, physical function, and covariates were enrolled. Cox proportional hazards regression models were employed to assess the independent and joint impacts of cognitive impairment and functional limitation on all-cause mortality. Smoothing curve fitting was used to show the nonlinear relationship between the Digit Symbol Coding (DSC) score and all-cause mortality. An interaction between cognitive impairment and functional limitation was identified when examining their associations with all-cause mortality. Cognitive impairment and functional limitation independently correlated with all-cause mortality risk even after adjusting for covariates and performing mutual adjustments (HR for cognitive impairment: 1.34, 95% CI 1.15-1.56; HR for functional limitation: 1.50, 95% CI 1.32-1.70). When the DSC score was > 18, as the score increased, the risk of death significantly decreased (HR 0.99, 95% CI 0.98-0.99). Participants with both cognitive impairment and functional limitation had the highest hazard ratio for all-cause mortality (HR 1.98, 95%CI 1.63-2.40). In summary, cognitive impairment and functional limitation independently correlated with increased all-cause mortality risk. A higher DSC score was a protective factor reducing the premature mortality risk. Older adults with cognitive impairment and functional limitation demonstrated the highest all-cause mortality risk.
Collapse
Affiliation(s)
- Wenxiu Zhu
- Chongqing General Hospital, Chongqing, China
| | - Xuyan Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqin Xu
- Chongqing General Hospital, Chongqing, China
| | - Yun Xue
- Chongqing General Hospital, Chongqing, China
| |
Collapse
|
6
|
Biernat K, Kuciel N, Mazurek J, Hap K. Is It Possible to Train the Endothelium?-A Narrative Literature Review. Life (Basel) 2024; 14:616. [PMID: 38792637 PMCID: PMC11121998 DOI: 10.3390/life14050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review provides an overview of current knowledge regarding the adaptive effects of physical training on the endothelium. The endothelium plays a crucial role in maintaining the health of vessel walls and regulating vascular tone, structure, and homeostasis. Regular exercise, known for its promotion of cardiovascular health, can enhance endothelial function through various mechanisms. The specific health benefits derived from exercise are contingent upon the type and intensity of physical training. The review examines current clinical evidence supporting exercise's protective effects on the vascular endothelium and identifies potential therapeutic targets for endothelial dysfunction. There is an urgent need to develop preventive strategies and gain a deeper understanding of the distinct impacts of exercise on the endothelium.
Collapse
Affiliation(s)
| | - Natalia Kuciel
- University Rehabilitation Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.B.); (J.M.); (K.H.)
| | | | | |
Collapse
|
7
|
Srivastava S, Tamrakar S, Nallathambi N, Vrindavanam SA, Prasad R, Kothari R. Assessment of Maximal Oxygen Uptake (VO2 Max) in Athletes and Nonathletes Assessed in Sports Physiology Laboratory. Cureus 2024; 16:e61124. [PMID: 38919211 PMCID: PMC11197041 DOI: 10.7759/cureus.61124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Athletes' physical prowess plays a crucial role in their ability to succeed in any sporting endeavor. Each athlete on the field must have an exceptional aerobic capacity to withstand fierce competition and stringent regulatory guidelines. Maximal oxygen uptake (VO2 max) is a quantitative measure of aerobic capacity and is regarded as one of the most reliable indicators of cardiorespiratory and overall physical fitness of an individual by sports physiologists. The study aims to evaluate the VO2 max of athletes in comparison with nonathletes during treadmill and lower limb cycle ergometry exercises as assessed in the Sports Physiology Laboratory of a rural medical college. Treadmill exercise and bicycle ergometer exercise are the most common to perform as indoor aerobic exercises to assess one's physical fitness. Both these tests are equally useful in eliciting cardiac and vascular responses, so both these modalities were used to assess aerobic fitness. METHODS This cross-sectional study, which examined participants aged 17-25, included 30 athletes (cases) and 120 age- and sex-matched controls. The VO2 max was evaluated using the Metabolic Module of Lab Chart Software, which was investigated through the PowerLab data acquisition system, AD Instruments (Bella Vista, NSW, Australia). RESULTS The mean age of male athletes was 20.51 ± 2.69 years and of female athletes was 20.53 ± 1.62 years. The mean and standard deviation of VO2 max on the treadmill for male cases was 52.37 ± 8.78 mL/kg/min and for female cases was 40.96 ± 4.06 mL/kg/min, and on a cycle ergometer for male cases was 45.21 ± 9.43 mL/kg/min and for female cases was 34.32 ± 5.12 mL/kg/min. For the control group, the mean age of control males was 21.2 ± 2.62 years and of control females was 20.36 ± 1.5 years. The mean and standard deviation of VO2 max on the treadmill for control males was 33.35 ± 3.77 mL/kg/min and for control females was 25.09 ± 7.07 mL/kg/min, and on the cycle ergometer for control males was 34.17 ± 2.75 mL/kg/min and for control females was 24.15 ± 5.35 mL/kg/min. CONCLUSION This study showed significantly (p < 0.001) higher VO2 max levels in athletes of both genders compared to their age- and sex-matched controls upon exercise on the treadmill and cycle ergometer. This study underscores the significance of better cardiorespiratory fitness in athletes than nonathletes, giving pertinent insights about their aerobic capacity, which is precisely measured and expressed in terms of VO2.
Collapse
Affiliation(s)
- Sujay Srivastava
- Physiology, Mahatma Gandhi Institute of Medical Sciences, Wardha, IND
| | | | | | | | - Roshan Prasad
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ruchi Kothari
- Physiology, Mahatma Gandhi Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
8
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
9
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Park J, Jang J, So B, Lee K, Yeom D, Zhang Z, Shin WS, Kang C. Effects of Particulate Matter Inhalation during Exercise on Oxidative Stress and Mitochondrial Function in Mouse Skeletal Muscle. Antioxidants (Basel) 2024; 13:113. [PMID: 38247536 PMCID: PMC10812725 DOI: 10.3390/antiox13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Particulate matter (PM) has deleterious consequences not only on the respiratory system but also on essential human organs, such as the heart, blood vessels, kidneys, and liver. However, the effects of PM inhalation on skeletal muscles have yet to be sufficiently elucidated. Female C57BL/6 or mt-Keima transgenic mice were randomly assigned to one of the following four groups: control (CON), PM exposure alone (PM), treadmill exercise (EX), or PM exposure and exercise (PME). Mice in the three-treatment group were subjected to treadmill running (20 m/min, 90 min/day for 1 week) and/or exposure to PM (100 μg/m3). The PM was found to exacerbate oxidative stress and inflammation, both at rest and during exercise, as assessed by the levels of proinflammatory cytokines, manganese-superoxide dismutase activity, and the glutathione/oxidized glutathione ratio. Furthermore, we detected significant increases in the levels of in vivo mitophagy, particularly in the PM group. Compared with the EX group, a significant reduction in the level of mitochondrial DNA was recorded in the PME group. Moreover, PM resulted in a reduction in cytochrome c oxidase activity and an increase in hydrogen peroxide generation. However, exposure to PM had no significant effect on mitochondrial respiration. Collectively, our findings in this study indicate that PM has adverse effects concerning both oxidative stress and inflammatory responses in skeletal muscle and mitochondria, both at rest and during exercise.
Collapse
Affiliation(s)
- Jinhan Park
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Junho Jang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Byunghun So
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Kanggyu Lee
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Dongjin Yeom
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Chounghun Kang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Furuta DT, Tebar WR, Beretta VS, Tebar FG, de Carvalho AC, Leoci IC, Delfino LD, Ferrari G, Silva CCM, Christofaro DGD. Analysis of the association between high workload and musculoskeletal pain in public school teachers according to physical activity level. Work 2024; 78:111-117. [PMID: 38393875 DOI: 10.3233/wor-230474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND A high workload has been associated with musculoskeletal pain in public school teachers. However, the hypothesis of the present study was that physical activity (PA) practice is able to attenuate this association. OBJECTIVE To analyze the associations between high workload with musculoskeletal pain according to PA levels in public school teachers. METHODS Teachers (n = 239) from 13 public schools were evaluated. Workload was assessed using a Likert scale in which teachers reported their perception of their work routine as: very low, low, regular, high, and very high. Musculoskeletal pain and PA were assessed using questionnaires. Multivariate logistic regression models were used to investigate the association of high workload with PA levels and musculoskeletal pain in different body regions, compared to participants with normal workload, adjusted by sex, age, and socioeconomic status. RESULTS A high workload was associated with higher chances of reporting pain in the wrists and hands (OR = 3.55; 95% CI = 1.27-9.89), knee (OR = 3.09; 95CI% = 1.09-8.82), and feet and ankles (OR = 3.16; 95% CI = 1.03-9.76) in less active teachers. However, these associations were not observed in teachers considered more active. CONCLUSION PA practice is able to act as a good protector against musculoskeletal pain in teachers, even in individuals with a high workload.
Collapse
Affiliation(s)
- Debora T Furuta
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - William R Tebar
- Centre of Clinical and Epidemiological Research, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Victor S Beretta
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
- Graduate Program in Movement Sciences, Physical Education Department, School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Fernanda Gil Tebar
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Augusto C de Carvalho
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Isabella C Leoci
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Leandro D Delfino
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Gerson Ferrari
- Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile
| | - Claudiele C M Silva
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| | - Diego G D Christofaro
- School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
- Graduate Program in Movement Sciences, Physical Education Department, School of Technology and Sciences, São Paulo State University (Unesp), Sao Paulo, Brazil
| |
Collapse
|
12
|
Chen Y, Zhao J, Ye H, Ceylan-Isik AF, Zhang B, Liu Q, Yang Y, Dong M, Luo B, Ren J. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci 2024; 336:122291. [PMID: 38030060 DOI: 10.1016/j.lfs.2023.122291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
AIMS Sepsis represents a profound proinflammatory response with a major contribution from oxidative injury. Here we evaluated possible impact of heavy metal scavenger metallothionein (MT) on endotoxin lipopolysaccharide (LPS)-induced oxidative stress, endoplasmic reticulum (ER) stress, autophagy, and ferroptosis enroute to myocardial injury along with interplay among these stress domains. MATERIALS AND METHODS Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ responses were monitored in myocardia from WT and transgenic mice with cardiac-selective MT overexpression challenged with LPS. Oxidative stress, stress signaling (p38, ERK, JNK), ER stress, autophagy, and ferroptosis were scrutinized. KEY FINDINGS RNAseq analysis revealed discrepant patterns in ferroptosis between LPS-exposed and normal murine hearts. LPS insult enlarged LV end systolic dimension, suppressed fractional shortening, ejection fraction, maximal velocity of shortening/relengthening and peak shortening, as well as elongated relengthening along with dampened intracellular Ca2+ release and reuptake. In addition, LPS triggered oxidative stress (lowered glutathione/glutathione disulfide ratio and O2- production), activation of stress cascades (p38, ERK, JNK), ER stress (GRP78, PERK, Gadd153, and IRE1α), inflammation (TNFα and iNOS), unchecked autophagy (LCB3, Beclin-1 and Atg7), ferroptosis (GPx4 and SLC7A11) and interstitial fibrosis. Although MT overexpression itself did not reveal response on cardiac function, it attenuated or mitigated LPS-evoked alterations in echocardiographic, cardiomyocyte contractile and intracellular Ca2+ characteristics, O2- production, TNFα level, ER stress and ferroptosis (without affecting autophagy, elevated AMP/ATP ratio, and iNOS). In vitro evidence revealed beneficial effects of suppression of oxidative stress, ER stress and ferroptosis against LPS-elicited myocardial anomalies. SIGNIFICANCE These data strongly support the therapeutic promises of MT and ferroptosis in septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jian Zhao
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Asli F Ceylan-Isik
- Ankara Yildirim Beyazit University, Faculty of Medicine, Department of Medical Pharmacology, Bilkent, Ankara, Turkey
| | - Bingfang Zhang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bijun Luo
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
13
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Kumari A, Sinha S, Kumari A, Dhanvijay AKD, Singh SK, Mondal H. Comparison of Cardiovascular Response to Lower Body and Whole Body Exercise Among Sedentary Young Adults. Cureus 2023; 15:e45880. [PMID: 37885499 PMCID: PMC10599171 DOI: 10.7759/cureus.45880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cardiovascular responses to exercise are essential indicators of cardiovascular health and fitness. Understanding how different types of exercise, such as lower-body and whole-body exercises, impact these responses is crucial for designing effective fitness programs and assessing cardiovascular function. Aim This study aimed to compare the cardiovascular response of young adults during lower-body exercise using a bicycle ergometer and whole-body exercise on a treadmill. Methods Thirty-two healthy young adults participated in this study. Each participant completed two exercise sessions on separate days: lower-body exercise on a bicycle ergometer with a fixed cadence of 60 rpm with a breaking resistance of 1.75 kg and whole-body exercise on a treadmill with a speed of 1.7 mph and a 10% grade. Heart rate (HR), systolic blood pressure (BP), and diastolic BP were measured at rest and immediately after a three-minute exercise. Data were analyzed using paired t-tests to compare the cardiovascular responses between the two exercise modalities. Results A total of 17 male and 15 female young adults with a mean age of 20.87±1.43 years participated in the study. The male and female participants had similar ages (p =0.56) and body mass indexes (p = 0.1). There was a higher HR (129.16±2.67 versus 150.87±3.23, p<0.0001) and systolic BP (127.29±2.34 versus 144.9±4.16, p<0.0001) and lower diastolic BP (68.97±2.41 versus 62.97±2.31, p<0.0001) in whole body exercise on treadmill compared to lower body exercise in bicycle ergometer. The effect size was large enough as Cohen's d was 7.33, 5.13, and 2.54 for HR, systolic BP, and diastolic BP, respectively. Conclusion In sedentary young adults, treadmill exercise led to higher HR, systolic BP, and lower diastolic BP than bicycle ergometer exercise. Increased muscle recruitment might result in higher energy expenditure, increasing the HR and systolic BP to deliver oxygen and nutrients to the working muscles. Further research is needed to understand the mechanisms and long-term implications for precise exercise recommendations and better cardiovascular health management.
Collapse
Affiliation(s)
- Anita Kumari
- Physiology, All India Institute of Medical Sciences, Deoghar, IND
| | - Swati Sinha
- Physiology, Bhagwan Mahavir Institute of Medical Sciences, Pawapuri, IND
| | - Amita Kumari
- Physiology, All India Institute of Medical Sciences, Deoghar, IND
| | | | | | - Himel Mondal
- Physiology, All India Institute of Medical Sciences, Deoghar, IND
| |
Collapse
|
15
|
Zhang L, Wang Y, Sun Y, Zhang X. Intermittent Fasting and Physical Exercise for Preventing Metabolic Disorders through Interaction with Gut Microbiota: A Review. Nutrients 2023; 15:2277. [PMID: 37242160 PMCID: PMC10224556 DOI: 10.3390/nu15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic disorders entail both health risks and economic burdens to our society. A considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut microbial structure and function are susceptible to dietary patterns and host physiological activities. A sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites, which impair the intestinal barrier, thereby triggering a constant change in the immune system and biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled with regular physical exercise can improve several metabolic and inflammatory parameters, resulting in stronger beneficial actions for metabolic health. In this review, the current progress on how gut microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also highlight the independent and synergistic effects of fasting and exercise interventions on metabolic health and provide perspectives for preventing metabolic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Yuanshang Wang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
16
|
Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells 2023; 12:cells12050753. [PMID: 36899889 PMCID: PMC10001353 DOI: 10.3390/cells12050753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The world population is aging rapidly, and increasing lifespan exacerbates the burden of age-related health issues. On the other hand, premature aging has begun to be a problem, with increasing numbers of younger people suffering aging-related symptoms. Advanced aging is caused by a combination of factors: lifestyle, diet, external and internal factors, as well as oxidative stress (OS). Although OS is the most researched aging factor, it is also the least understood. OS is important not only in relation to aging but also due to its strong impact on neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Parkinson's disease (PD). In this review, we will discuss the aging process in relation to OS, the function of OS in neurodegenerative disorders, and prospective therapeutics capable of relieving neurodegenerative symptoms associated with the pro-oxidative condition.
Collapse
|
17
|
Yuan J, Xu B, Ma J, Pang X, Fu Y, Liang M, Wang M, Pan Y, Duan Y, Tang M, Zhu B, Laher I, Li S. MOTS-c and aerobic exercise induce cardiac physiological adaptation via NRG1/ErbB4/CEBPβ modification in rats. Life Sci 2023; 315:121330. [PMID: 36584915 DOI: 10.1016/j.lfs.2022.121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
AIMS To determine the effects of the mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) and aerobic exercise on cardiac structure and function and explore the role of neuregulin-1 (NRG1)- ErbB2 receptor tyrosine kinase 4(ErbB4)- CCAAT-enhancer binding protein β (C/EBPβ) in cardiac physiological adaptation induced by MOTS-c and aerobic training. MAIN METHODS We used Hematoxylin-Eosin staining(HE)and Transmission Electron Microscope (TEM) to observe the cardiac myocardial structure, carotid artery catheterization to test cardiac function, and real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting to describe the changes of NRG1, ErbB4, C/EBPβ, and Gata in cardiac physiological adaptation. KEY FINDINGS MOTS-c and aerobic training significantly increased heart weight and heart weight index (HWI) (all p < 0.05). Aerobic exercise and MOTS-c treatment thickened myocardial fibers, with a tendency of hypertrophy. Heart rate (HR) (p < 0.001, p = 0.010, p = 0.011), the isovolumic diastolic time constant (Tau) (p < 0.001, p < 0.001, p < 0.001) in exercised (E), MOST-c treated (M) and their combination (ME) decreased significantly, while the dP/dtmax (p < 0.001, p < 0.001, p = 0.039) and dP/dtmin (p < 0.001, p < 0.001, p = 0.001) in groups E, M and ME were significantly higher than those in group C, but EDP (p = 0.903, p = 0.708, p = 0.744) remained unchanged. Moreover, C/EBPβ gene levels were significantly decreased in the differential gene expression between groups C and M transcriptomics sequencing. The levels of ErbB4 mRNA (p < 0.001, p < 0.001, p < 0.001) and Gata4 mRNA (p < 0.001, p < 0.001, p = 0.001) in groups E, M and ME increased significantly, while C/EBPβ mRNA expression decreased significantly (p < 0.001, p = 0.002, p = 0.001), which was consistent with the results of transcriptome sequencing. NRG1 mRNA in group E was significantly higher than that in group C (p = 0.003), but there was no significant difference between groups M and ME (p = 0.804, p = 0.320). The protein expression of NRG1 (p = 0.026, p < 0.001, p < 0.001), ErbB4 (p < 0.001, p < 0.001, p < 0.001) and Gata4 (p = 0.014, p < 0.001, p = 0.006) in groups E, M and ME increased significantly, while C/EBPβ decreased significantly (p < 0.001, p = 0.001, p = 0.002). SIGNIFICANCE Our findings suggest that MOTS-c and aerobic exercise had similar effects, improving myocardial morphology and structure and enhancing cardiac function through activation of the NRG1-ErbB4-C/EBPβ pathway.
Collapse
Affiliation(s)
- Jinghan Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bowen Xu
- Faculty of Science and Engineering, University of Nottingham, Ningbo 315000, China
| | - Jiacheng Ma
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Xiaoli Pang
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yu Fu
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Min Liang
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Manda Wang
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yanrong Pan
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yimei Duan
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Mi Tang
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shunchang Li
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
| |
Collapse
|
18
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Tao X, Chen Y, Zhen K, Ren S, Lv Y, Yu L. Effect of continuous aerobic exercise on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Front Physiol 2023; 14:1043108. [PMID: 36846339 PMCID: PMC9950521 DOI: 10.3389/fphys.2023.1043108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Current research suggests that continuous aerobic exercise can be effective in improving vascular endothelial function, while the effect between different intensities and durations of exercise is unclear. The aim of this study was to explore the effect of different durations and intensities of aerobic exercise on vascular endothelial function in different populations. Methods: Searches were performed in PubMed, Web of Science, and EBSCO databases. We included studies that satisfied the following criteria: 1) randomized controlled trials (RCTs); 2) including both an intervention and control group; 3) using flow-mediated dilation (FMD) as the outcome measure; and 4) testing FMD on the brachial artery. Results: From 3,368 search records initially identified, 41 studies were eligible for meta-analysis. There was a significant effect of continuous aerobic exercise on improving flow-mediated dilation (FMD) [weighted mean difference (WMD), 2.55, (95% CI, 1.93-3.16), p < 0.001]. Specifically, moderate-intensity [2.92 (2.02-3.825), p < 0.001] and vigorous-intensity exercise [2.58 (1.64-3.53), p < 0.001] significantly increased FMD. In addition, a longer duration [<12 weeks, 2.25 (1.54-2.95), p < 0.001; ≥12 weeks, 2.74 (1.95-3.54), p < 0.001], an older age [age <45, 2.09 (0.78-3.40), p = 0.002; 45 ≤ age <60, 2.25 (1.49-3.01), p < 0.001; age ≥60, 2.62 (1.31-3.94), p < 0.001], a larger basal body mass index (BMI) [20 < BMI < 25, 1.43 (0.98-1.88), p < 0.001; 25 ≤ BMI < 30, 2.49 (1.07-3.90), p < 0.001; BMI ≥ 30, 3.05 (1.69-4.42), p < 0.001], and a worse basal FMD [FMD < 4, 2.71 (0.92-4.49), p = 0.003; 4 ≤ FMD < 7, 2.63 (2.03-3.23), p < 0.001] were associated with larger improvements in FMD. Conclusion: Continuous aerobic exercise, especially moderate-intensity and vigorous-intensity aerobic exercise, contributed to improving FMD. The effect of continuous aerobic exercise on improving FMD was associated with duration and participant's characteristics. Specifically, a longer duration, an older age, a larger basal BMI, and a worse basal FMD contributed to more significant improvements in FMD. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=341442], identifier [CRD42022341442].
Collapse
Affiliation(s)
- Xifeng Tao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China,Department of Sports Performance, Beijing Sport University, Beijing, China
| | - Yiyan Chen
- Department of Sports Performance, Beijing Sport University, Beijing, China
| | - Kai Zhen
- Department of Sports Performance, Beijing Sport University, Beijing, China
| | - Shiqi Ren
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China,China Institute of Sport and Health Science, Beijing Sport University, Beijing, China,*Correspondence: Yuanyuan Lv, ; Laikang Yu,
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China,Department of Sports Performance, Beijing Sport University, Beijing, China,*Correspondence: Yuanyuan Lv, ; Laikang Yu,
| |
Collapse
|
20
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Rojo‐García AV, Vanmunster M, Pacolet A, Suhr F. Physical inactivity by tail suspension alters markers of metabolism, structure, and autophagy of the mouse heart. Physiol Rep 2023; 11:e15574. [PMID: 36695670 PMCID: PMC9875748 DOI: 10.14814/phy2.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023] Open
Abstract
Sedentary behavior has become ingrained in our society and has been linked to cardiovascular diseases. Physical inactivity is the main characteristic of sedentary behavior. However, its impact on cardiovascular disease is not clear. Therefore, we investigated the effect of physical inactivity in an established mouse model on gene clusters associated with cardiac fibrosis, electrophysiology, cell regeneration, and tissue degradation/turnover. We investigated a sedentary group (CTR, n = 10) versus a tail suspension group (TS, n = 11) that caused hindlimb unloading and consequently physical inactivity. Through histological, protein content, and transcript analysis approaches, we found that cardiac fibrosis-related genes partly change, with significant TS-associated increases in Tgfb1, but without changes in Col1a1 and Fn1. These changes are not translated into fibrosis at tissue level. We further detected TS-mediated increases in protein degradation- (Trim63, p < 0.001; Fbxo32, p = 0.0947 as well as in biosynthesis-related [P70s6kb1, p < 0.01]). Corroborating these results, we found increased expression of autophagy markers such as Atg7 (p < 0.01) and ULK1 (p < 0.05). Two cardiomyocyte regeneration- and sarcomerogenesis-related genes, Yap (p = 0.0535) and Srf (p < 0.001), increased upon TS compared to CTR conditions. Finally, we found significant upregulation of Gja1 (p < 0.05) and a significant downregulation of Aqp1 (p < 0.05). Our data demonstrate that merely 2 weeks of reduced physical activity induce changes in genes associated with cardiac structure and electrophysiology. Hence, these data should find the basis for novel research directed to evaluate the interplay of cardiac functioning and physical inactivity.
Collapse
Affiliation(s)
| | - Mathias Vanmunster
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Alexander Pacolet
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Frank Suhr
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| |
Collapse
|
22
|
Franklin BA, Eijsvogels TM, Pandey A, Quindry J, Toth PP. Physical activity, cardiorespiratory fitness, and cardiovascular health: A clinical practice statement of the ASPC Part I: Bioenergetics, contemporary physical activity recommendations, benefits, risks, extreme exercise regimens, potential maladaptations. Am J Prev Cardiol 2022; 12:100424. [PMID: 36281324 PMCID: PMC9586848 DOI: 10.1016/j.ajpc.2022.100424] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Regular moderate-to-vigorous physical activity (PA) and increased levels of cardiorespiratory fitness (CRF) or aerobic capacity are widely promoted as cardioprotective measures in the primary and secondary prevention of atherosclerotic cardiovascular (CV) disease (CVD). Nevertheless, physical inactivity and sedentary behaviors remain a worldwide concern. The continuing coronavirus (COVID-19) pandemic has been especially devastating to patients with known or occult CVD since sitting time and recreational PA have been reported to increase and decrease by 28% and 33%, respectively. Herein, in this first of a 2-part series, we discuss foundational factors in exercise programming, with specific reference to energy metabolism, contemporary PA recommendations, the dose-response relationship of exercise as medicine, the benefits of regular exercise training, including the exercise preconditioning cardioprotective phenotype, as well as the CV risks of PA. Finally, we discuss the 'extreme exercise hypothesis,' specifically the potential maladaptations resulting from high-volume, high-intensity training programs, including accelerated coronary artery calcification and incident atrial fibrillation. The latter is commonly depicted by a reverse J-shaped or U-shaped curve. On the other hand, longevity data argue against this relationship, as elite endurance athletes live 3-6 years longer than the general population.
Collapse
Affiliation(s)
- Barry A. Franklin
- Preventive Cardiology and Cardiac Rehabilitation, Beaumont Health, Royal Oak, Michigan, USA
- Professor, Internal Medicine, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Thijs M.H. Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ambarish Pandey
- Department of Internal Medicine at UT Southwestern Medical Center, Dallas, TX, Michigan, USA
| | - John Quindry
- Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana and International Heart Institute – St. Patrick's Hospital, Providence Medical Center, Missoula, Montana, USA
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Zhang L, Liu Y, Sun Y, Zhang X. Combined Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat of Metabolic Disease: A Review. Nutrients 2022; 14:nu14224774. [PMID: 36432462 PMCID: PMC9699229 DOI: 10.3390/nu14224774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Unhealthy diet and sedentary lifestyle have contributed to the rising incidence of metabolic diseases, which is also accompanied by the shifts of gut microbiota architecture. The gut microbiota is a complicated and volatile ecosystem and can be regulated by diet and physical exercise. Extensive research suggests that diet alongside physical exercise interventions exert beneficial effects on metabolic diseases by regulating gut microbiota, involving in the changes of the energy metabolism, immune regulation, and the microbial-derived metabolites. OBJECTIVE In this review, we present the latest evidence in the modulating role of diet and physical exercise in the gut microbiota and its relevance to metabolic diseases. We also summarize the research from animal and human studies on improving metabolic diseases through diet-plus-exercise interventions, and new targeted therapies that might provide a better understanding of the potential mechanisms. METHODS A systematic and comprehensive literature search was performed in PubMed/Medline and Web of Science in October 2022. The key terms used in the searches included "combined physical exercise and diet", "physical exercise, diet and gut microbiota", "physical exercise, diet and metabolic diseases" and "physical exercise, diet, gut microbiota and metabolic diseases". CONCLUSIONS Combined physical exercise and diet offer a more efficient approach for preventing metabolic diseases via the modification of gut microbiota, abating the burden related to longevity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Yuan Liu
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
24
|
Dai M, Hillmeister P. Exercise-mediated autophagy in cardiovascular diseases. Acta Physiol (Oxf) 2022; 236:e13890. [PMID: 36177522 DOI: 10.1111/apha.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Mengjun Dai
- Center for Internal Medicine 1, Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Brandenburg/Havel, Germany.,Corporate member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Hillmeister
- Center for Internal Medicine 1, Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Brandenburg/Havel, Germany
| |
Collapse
|
25
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
26
|
FAT10 Combined with Miltefosine Inhibits Mitochondrial Apoptosis and Energy Metabolism in Hypoxia-Induced H9C2 Cells by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4388919. [PMID: 36034957 PMCID: PMC9410791 DOI: 10.1155/2022/4388919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is the main contributor to heart diseases. Human leukocyte antigen F-associated transcript 10 (FAT10), the small ubiquitin-like protein family subtype involved in apoptosis, is expressed in the heart and exhibits cardioprotective functions. This study explored the impact of FAT10 on hypoxia-induced cardiomyocyte apoptosis and the involved mechanisms. The cardiomyocyte cell line H9C2 was cultivated in hypoxia-inducing conditions (94% N2, 5% CO2, and 1% O2) and the expression of FAT10 in hypoxia-stimulated H9C2 cells was identified. For this, FAT10 overexpression/interference vectors were exposed to transfection into H9C2 cells with/without the PI3K/AKT inhibitor, miltefosine. The results indicated that hypoxia exposure decreased the FAT10 expression, suppressed H9C2 cell growth, disrupted mitochondrial metabolism, and promoted H9C2 cell apoptosis and oxidative stress. However, these impacts were reversed by the FAT10 overexpression. In addition, the inhibition of PI3K/AKT in FAT10-overexpressing cells suppressed cell proliferation, impaired mitochondrial metabolism, and promoted apoptosis and oxidative stress response. The findings demonstrated that FAT10 inhibited mitochondrial apoptosis and energy metabolism in hypoxia-stimulated H9C2 cells through the PI3K/AKT pathway. This finding can be utilized for developing therapeutic targets for treating heart disorders associated with hypoxia-induced apoptosis.
Collapse
|
27
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Liu W, Liu X, Liu T, Xie Y, He X, Zuo H, Zeng H. The Value of Cardiopulmonary Exercise Testing in Predicting the Severity of Coronary Artery Disease. J Clin Med 2022; 11:jcm11144170. [PMID: 35887933 PMCID: PMC9320309 DOI: 10.3390/jcm11144170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Background: There have been a limited number of quantitative studies on the relationship between coronary artery disease (CAD) and cardiorespiratory fitness (CRF), as measured by cardiopulmonary exercise testing (CPET). Thus, we aimed to investigate the association between CRF and the severity of coronary artery disease from the most comprehensive perspective possible, and to affirm the predictive value of CPET in the severity assessment of CAD. Methods: Our study included 280 patients with coronary angiography, who had undergone CPET in Tongji Hospital. The patients’ CRF was measured through their peak oxygen uptake (VO2@peak), their oxygen uptake at the anaerobic threshold (VO2@AT) and through other parameters of CPET on a bicycle ergometer. The severity of the coronary artery disease was assessed in the following three layers: functionally significant lesions (quantitative flow ratio [QFR] ≤ 0.8), the number of stenotic coronary arteries (SCA, stenosis ≥ 50%) and the Gensini score. The correlation analyses were carried out between the CRF and the severity of the coronary artery disease. A ROC curve was plotted, and the AUC was calculated to distinguish the severe CAD and the non-severe CAD patients, as measured by the QFR, the number of SCA, and the Gensini score. Results: The VO2@AT and VO2@peak were inversely associated with the QFR. The VO2@AT, VO2@peak and VO2/kg@peak were associated with the number of SCA. Meanwhile, the VO2@AT, VO2/kg@AT, VO2@peak and VO2/kg@peak were associated with the Gensini score. An ROC analysis proved that a combination of traditional clinical risk factors and the VO2@peak/VO2prediction is valuable in predicting CAD severity. Conclusions: Our study demonstrated a strong and inverse association between CRF and the severity of CAD. A combination of traditional clinical risk factors and CRF is valuable in predicting CAD severity.
Collapse
Affiliation(s)
- Wanjun Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaolei Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Tao Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
| | - Yang Xie
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xingwei He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Houjuan Zuo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Correspondence: (H.Z.); (H.Z.); Tel.: +86-27-8366-3788 (H.Z. & H.Z.); Fax: +86-27-8366-3186 (H.Z. & H.Z.)
| | - Hesong Zeng
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.L.); (X.L.); (T.L.); (Y.X.); (X.H.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Correspondence: (H.Z.); (H.Z.); Tel.: +86-27-8366-3788 (H.Z. & H.Z.); Fax: +86-27-8366-3186 (H.Z. & H.Z.)
| |
Collapse
|
29
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
30
|
Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury. Cells 2022; 11:cells11101706. [PMID: 35626742 PMCID: PMC9139679 DOI: 10.3390/cells11101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catabolism in exercise-afforded cardiac benefits remains unknown. Here, we show that exercise improves BCAA catabolism and thus reduce cardiac vulnerability to myocardial ischemic injury. Exercise increased circulating BCAA levels in both humans (male adolescent athletes) and mice (following an 8-week swimming intervention). It increased the expression of mitochondrial localized 2C-type serine-threonine protein phosphatase (PP2Cm), a key enzyme in regulating BCAA catabolism, and decreased BCAA accumulation in mouse hearts, indicating an increase in BCAA catabolism. Pharmacological promotion of BCAA catabolism protected the mouse heart against myocardial infarction (MI) induced by permanent ligation of the left descending coronary artery. Although cardiac-specific PP2Cm knockout showed no significant effects on cardiac structural and functional adaptations to exercise, it blunted the cardioprotective effects of exercise against MI. Mechanistically, exercise alleviated BCAA accumulation and subsequently inactivated the mammalian target of rapamycin in MI hearts. These results showed that exercise elevated BCAA catabolism and protected the heart against myocardial ischemic injury, reinforcing the role of exercise in the promotion of cardiac health.
Collapse
|
31
|
Li X, Flynn ER, do Carmo JM, Wang Z, da Silva AA, Mouton AJ, Omoto ACM, Hall ME, Hall JE. Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Front Cardiovasc Med 2022; 9:859253. [PMID: 35647080 PMCID: PMC9135142 DOI: 10.3389/fcvm.2022.859253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical trials showed that sodium-glucose cotransporter 2 (SGLT2) inhibitors, a class of drugs developed for treating diabetes mellitus, improve prognosis of patients with heart failure (HF). However, the mechanisms for cardioprotection by SGLT2 inhibitors are still unclear. Mitochondrial dysfunction and oxidative stress play important roles in progression of HF. This study tested the hypothesis that empagliflozin (EMPA), a highly selective SGLT2 inhibitor, improves mitochondrial function and reduces reactive oxygen species (ROS) while enhancing cardiac performance through direct effects on the heart in a non-diabetic mouse model of HF induced by transverse aortic constriction (TAC). EMPA or vehicle was administered orally for 4 weeks starting 2 weeks post-TAC. EMPA treatment did not alter blood glucose or body weight but significantly attenuated TAC-induced cardiac dysfunction and ventricular remodeling. Impaired mitochondrial oxidative phosphorylation (OXPHOS) in failing hearts was significantly improved by EMPA. EMPA treatment also enhanced mitochondrial biogenesis and restored normal mitochondria morphology. Although TAC increased mitochondrial ROS and decreased endogenous antioxidants, EMPA markedly inhibited cardiac ROS production and upregulated expression of endogenous antioxidants. In addition, EMPA enhanced autophagy and decreased cardiac apoptosis in TAC-induced HF. Importantly, mitochondrial respiration significantly increased in ex vivo cardiac fibers after direct treatment with EMPA. Our results indicate that EMPA has direct effects on the heart, independently of reductions in blood glucose, to enhance mitochondrial function by upregulating mitochondrial biogenesis, enhancing OXPHOS, reducing ROS production, attenuating apoptosis, and increasing autophagy to improve overall cardiac function in a non-diabetic model of pressure overload-induced HF.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guo C, Chen MJ, Zhao JR, Wu RY, Zhang Y, Li QQ, Zhao H, Dou JH, Song SF, Wei J. Exercise training differently improve cardiac function and regulate myocardial mitophagy in ischemic and pressure-overloaded heart failure mice. Exp Physiol 2022; 107:562-574. [PMID: 35365954 DOI: 10.1113/ep090374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The cardioprotective effects of different aerobic exercises on chronic heart failure with different etiologies and whether mitophagy is involved remain elusive. What is the main finding and its importance? Moderate-intensity continuous training may be the "optimum" modality for improving cardiac structure and function in ischemic heart failure, while both moderate-intensity continuous training and high-intensity interval training were suitable for pressure-overloaded heart failure. Various mitophagy pathways especially PRKN-dependent pathways participated in the protective effects of exercise on heart failure. ABSTRACT The cardioprotective effects of different aerobic exercises on chronic heart failure with different etiologies and whether mitophagy is involved remain elusive. In the current research, left anterior descending ligation and transverse aortic constriction surgeries were used to establish mice models of heart failure, followed by 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). The results showed that MICT significantly improved ejection fraction (P < 0.05) and fractional shortening (P < 0.05), mitigated left ventricular end-systolic dimension (P < 0.01), brain natriuretic peptide (P < 0.0001), and fibrosis (P < 0.0001), while HIIT only decreased brain natriuretic peptide (P < 0.0001) and fibrosis (P < 0.0001) for ischemic heart failure. Both MICT and HIIT significantly increased ejection fraction (P < 0.0001) and fractional shortening (MICT: P < 0.001, HIIT: P < 0.0001), reduced left ventricular end-diastolic and end-systolic dimension, brain natriuretic peptide (P < 0.0001), and fibrosis (MICT: P < 0.01, HIIT: P < 0.0001), even HIIT was better in reducing brain natriuretic peptide on pressure-overloaded heart failure. Myocardial autophagy and mitophagy were compromised in heart failure, exercises improved myocardial autophagic flux and mitophagy inconsistently in heart failure with different etiologies. Significant correlations were found between multiple mitophagy pathways and cardioprotection of exercises. Collectively, MICT may be the "optimum" modality for ischemic heart failure, both MICT and HIIT (especially HIIT) were suitable for pressure-overloaded heart failure. Exercises differently improved myocardial autophagy/mitophagy and multiple mitophagy-related pathways were closely implicated in cardioprotection of exercises for chronic heart failure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Guo
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Meng-Jie Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jin-Rui Zhao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Rui-Yun Wu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yue Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Qiang-Qiang Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Hong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jia-Hao Dou
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Shou-Fang Song
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, Shaanxi, China.,Key Laboratory of Trace Elements and Endemic Disease of Ministry of Health, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
33
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
34
|
Nijholt KT, Sánchez-Aguilera PI, Voorrips SN, de Boer RA, Westenbrink BD. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 2021; 24:287-298. [PMID: 34957643 PMCID: PMC9302125 DOI: 10.1002/ejhf.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise‐induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne N Voorrips
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
36
|
Liu D, Fan YB, Tao XH, Pan WL, Wu YX, Wang XH, He YQ, Xiao WF, Li YS. Mitochondrial Quality Control in Sarcopenia: Updated Overview of Mechanisms and Interventions. Aging Dis 2021; 12:2016-2030. [PMID: 34881083 PMCID: PMC8612607 DOI: 10.14336/ad.2021.0427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is a common geriatric disorder characterized by decreased muscle strength, low muscle mass and poor physical performance. This aging-related skeletal muscle deterioration leads to adverse outcomes and severely impairs the quality of life of patients. The accumulation of dysfunctional mitochondria with aging is an important factor in the occurrence and progression of sarcopenia. Mitochondrial quality control (MQC) fundamentally ensures the normal mitochondrial functions and is comprised of four main parts: proteostasis, biogenesis, dynamics and autophagy. Therefore, any pathophysiologic factors compromising the quality control of homeostasis in the skeletal muscle may lead to sarcopenia. However, the specific theoretical aspects of these processes have not been fully elucidated. Current therapeutic interventions using nutritional and pharmaceutical treatments show a modest therapeutic efficacy; however, only physical exercise is recommended as the first-line therapy for sarcopenia, which can ameliorate skeletal muscle deficiency by maintaining the homeostatic MQC. In this review, we summarized the known mechanisms that contribute to the pathogenesis of sarcopenia by impairing normal mitochondrial functions and described potential interventions that mitigate sarcopenia through improving MQC.
Collapse
Affiliation(s)
- Di Liu
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi-Bin Fan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Hua Tao
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Wei-Li Pan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Xiang Wu
- 3School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Xiu-Hua Wang
- 4Xiang Ya Nursing School, The Central South University, Changsha 410013, China
| | - Yu-Qiong He
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu-Sheng Li
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
37
|
Quercetin Improves Mitochondrial Function and Inflammation in H 2O 2-Induced Oxidative Stress Damage in the Gastric Mucosal Epithelial Cell by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1386078. [PMID: 34873406 PMCID: PMC8643250 DOI: 10.1155/2021/1386078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 01/04/2023]
Abstract
Functional dyspepsia (FD) is one of the most common functional gastrointestinal disorders, the therapeutic strategy of which it is limited due to its complex pathogenesis. Oxidative stress-induced damage in gastric mucosal epithelial cells is related to the pathogenesis and development of FD. Quercetin (Que) is one of the active ingredients of Zhishi that showed antioxidant, antiapoptotic, and anti-inflammatory effects. The aim of this study is to investigate the effect of Que on oxidative stress-induced gastric mucosal epithelial cells damage and its underlying molecular mechanism. The gastric mucosal epithelial cell line GES-1 was treated with 200 μM of H2O2 to construct an oxidative stress-induced damage model. The H2O2 cells were then administrated with different concentrations of Que. The results indicated that high concentration of Que (100 μM) showed cytotoxicity in H2O2-induced GES-1 cells. However, appropriate concentration of Que (25 and 50 μM) alleviated the oxidative stress damage induced by H2O2, as demonstrated by the increase of proliferation, decrease of ROS generation, apoptosis, inflammation, and alleviation of mitochondrial function and cell barrier. In addition, Que increased the activation of phosphorylation of PI3K and AKT decreased by H2O2. To investigate whether Que alleviated the oxidative stress damage in GES-1 cells by the PI3K/AKT signaling pathway, the GES-1 cells were treated with Que (25 μM) combined with and without LY294002, the PI3K inhibitor. The results showed that LY294002 suppressed the alleviation effect on Que in H2O2-induced GES-1 cells. In conclusion, the current study demonstrates that Que alleviates oxidative stress damage in GES-1 cells by improving mitochondrial function and mucosal barrier and suppressing inflammation through regulating the PI3K/AKT signaling pathway, indicating the potential therapeutic effects of Que on FD.
Collapse
|
38
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
The Influence of Endurance Training on the Lipid Profile, Body Mass Composition and Cardiovascular Efficiency in Middle-Aged Cross-Country Skiers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010928. [PMID: 34682674 PMCID: PMC8535879 DOI: 10.3390/ijerph182010928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Monitoring the training of amateur long-distance cross-country skiers (XCS) can help athletes’ achieve a higher exercise capacity and protect their health. The aim of this study was to assess body composition changes and lipid profiles in middle-aged amateur long-distance XCS after four months of training, including specialized roller ski training. The results of the time-to-exhaustion (TTE) test and blood tests and changes in body composition were analyzed with basic descriptive statistics: the paired Wilcoxon test was used to compare the results (initial and final). Spearman’s rank correlation coefficient (R) was used to assess the influence of various variables on maximum oxygen uptake (VO2max). The findings show that training of amateur long-distance XCS improved maximal oxygen uptake (p = 0.008) and had a positive effect on fat reduction, measured in percentages (p = 0.038) and in kilograms (p = 0.023), but did not change blood lipids or other parameters. Further research could focus on other aspects of the annual training cycle: the competition period, and women in a larger group of athletes. Training with roller skis and a cross-country skiing training machine (a specialized machine for strengthening the arms and upper body) can support health and prevent obesity, overweight, and cardiovascular disease.
Collapse
|
40
|
Cai L, Huang J, Gao D, Zeng S, Tang S, Chang Z, Wen C, Zhang M, Hu M, Wei GX. Effects of mind-body practice on arterial stiffness, central hemodynamic parameters and cardiac autonomic function of college students. Complement Ther Clin Pract 2021; 45:101492. [PMID: 34638054 DOI: 10.1016/j.ctcp.2021.101492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
A substantial number of studies have shown the beneficial effects of mind-body practice on physical fitness among both the healthy middle-aged and elderly adults and patients with chronic diseases. However, its positive effects on college students remain poorly understood. This study aimed to systematically investigate the potential efficiency of the Baduanjin exercise on the maintenance of the homeostasis of body composition and the improvement of the cardiovascular function of the college students. The study revealed a promising efficacy of the Baduanjin exercise in the prevention of the loss of water, inorganic salts, protein, and muscle contents and the accumulation of body fat. Furthermore, the present study also demonstrated the positive efficacy of Baduanjin exercise in decreasing of peripheral and central arterial blood pressure and carotid and femoral artery pulse wave velocity (cfPWV) of the college students. Moreover, the heart rate variability (HRV) analysis was also performed using the assessment of time and frequency domain indices. The data showed that all of the time-domain indices and the high-frequency (HF) band of the HRV relatively increased, whereas the low-frequency (LF) band of the HRV relatively decreased after the long-term Baduanjin exercise. Collectively, the present study suggested that a 12-week Baduanjin exercise could maintain the body composition in a relatively healthy and stable range and improve blood pressure, central hemodynamics, and the arterial stiffness of the college students. The underlying mechanism might be due to the improvement of parasympathetic activity and the suppression of sympathetic activity of college students via Baduanjin exercise.
Collapse
Affiliation(s)
- Li Cai
- School of Wushu, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Dongdong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Shujuan Zeng
- School of Wushu, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Songxin Tang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Zhengxiao Chang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Caosheng Wen
- School of Wushu, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Meina Zhang
- School of Wushu, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China.
| | - Gao-Xia Wei
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, Duan Y, Ajoolabady A, Sowers JR, Fang Y, Cao F, Xu H, Bi Y, Wang S, Ren J. FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 2021; 122:154840. [PMID: 34331963 DOI: 10.1016/j.metabol.2021.154840] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ferroptosis is indicated in cardiovascular diseases. Given the prominent role of mitophagy in the governance of ferroptosis and our recent finding for FUN14 domain containing 1 (FUNDC1) in obesity anomalies, this study evaluated the impact of FUNDC1 deficiency in high fat diet (HFD)-induced cardiac anomalies. METHODS AND MATERIALS WT and FUNDC1-/- mice were fed HFD (45% calorie from fat) or low fat diet (LFD, 10% calorie from fat) for 10 weeks in the presence of the ferroptosis inhibitor liproxstatin-1 (LIP-1, 10 mg/kg, i.p.). RESULTS RNAseq analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis and mitophagy in obese rat hearts, which was validated in obese rodent and human hearts. Although 10-week HFD intake did not alter global metabolism, cardiac geometry and function, ablation of FUNDC1 unmasked metabolic derangement, pronounced cardiac remodeling, contractile, intracellular Ca2+ and mitochondrial anomalies upon HFD challenge, the effects of which with exception of global metabolism were attenuated or mitigated by LIP-1. FUNDC1 ablation unmasked HFD-evoked rises in fatty acid synthase ACSL4, necroptosis, inflammation, ferroptosis, mitochondrial O2- production, and mitochondrial injury as well as dampened autophagy and DNA repair enzyme 8-oxoG DNA glycosylase 1 (OGG1) but not apoptosis, the effect of which except ACSL4 and its regulator SP1 was reversed by LIP-1. In vitro data noted that arachidonic acid, an ACSL4 substrate, provoked cytochrome C release, cardiomyocyte defect, and lipid peroxidation under FUNDC1 deficiency, the effects were interrupted by inhibitors of SP1, ACSL4 and ferroptosis. CONCLUSIONS These data suggest that FUNDC1 deficiency sensitized cardiac remodeling and dysfunction with short-term HFD exposure, likely through ACSL4-mediated regulation of ferroptosis.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China.
| | - Yandong Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Suqin Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China; Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Jin
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Yuanfei Luo
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Mingming Sun
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yan Fang
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Haixia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai University School of Medicine, Shanghai 200044, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Quercetin Protects H9c2 Cardiomyocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Oxidative Stress and Mitochondrial Apoptosis by Regulating the ERK1/2/DRP1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7522175. [PMID: 34457029 PMCID: PMC8390138 DOI: 10.1155/2021/7522175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023]
Abstract
Reperfusion of blood flow during ischemic myocardium resuscitation induces ischemia/reperfusion (I/R) injury. Oxidative stress has been identified as a major cause in this process. Quercetin (QCT) is a member of the flavonoid family that exerts antioxidant effects. The aim of this study was to investigate the preventive effects of QCT on I/R injury and its underlying mechanism. To this end, H9c2 cardiomyocytes were treated with different concentrations of QCT (10, 20, and 40 μM) and subsequently subjected to oxygen-glucose deprivation/reperfusion (OGD/R) administration. The results indicated that OGD/R-induced oxidative stress, apoptosis, and mitochondrial dysfunction in H9c2 cardiomyocytes were aggravated following 40 μM QCT treatment and alleviated following the administration of 10 and 20 μM QCT prior to OGD/R treatment. In addition, OGD/R treatment inactivated ERK1/2 signaling activation. The effect was mitigated using 10 and 20 μM QCT prior to OGD/R treatment. In conclusion, these results suggested that low concentrations of QCT might alleviate I/R injury by suppressing oxidative stress and improving mitochondrial function through the regulation of ERK1/2-DRP1 signaling, providing a potential candidate for I/R injury prevention.
Collapse
|
44
|
Ueno M, Maeshige N, Hirayama Y, Yamaguchi A, Ma X, Uemura M, Kondo H, Fujino H. Pulsed ultrasound prevents lipopolysaccharide-induced muscle atrophy through inhibiting p38 MAPK phosphorylation in C2C12 myotubes. Biochem Biophys Res Commun 2021; 570:184-190. [PMID: 34293592 DOI: 10.1016/j.bbrc.2021.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Inflammation contributes to skeletal muscle atrophy via protein degradation induced by p38 mitogen-activated protein kinase (MAPK) phosphorylation. Meanwhile, pulsed ultrasound irradiation provides the mechanical stimulation to the target tissue, and has been reported to show anti-inflammatory effects. This study investigated the preventive effects of pulsed ultrasound irradiation on muscle atrophy induced by lipopolysaccharide (LPS) in C2C12 myotubes. METHODS C2C12 myotubes were used in this research. The pulsed ultrasound (a frequency of 3 MHz, duty cycle of 20%, intensity of 0.5 W/cm2) was irradiated to myotube before LPS administration. RESULTS The LPS increased phosphorylation of p38 MAPK and decreased the myofibril and myosin heavy chain protein (P < 0.05), followed by atrophy in C2C12 myotubes. The pulsed ultrasound irradiation attenuated p38 MAPK phosphorylation and myotube atrophy induced by LPS (P < 0.05). CONCLUSIONS Pulsed ultrasound irradiation has the preventive effects on inflammation-induced muscle atrophy through inhibiting phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Mizuki Ueno
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Hirayama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
45
|
Ding M, Zheng L, Li QF, Wang WL, Peng WD, Zhou M. Exercise-Training Regulates Apolipoprotein B in Drosophila to Improve HFD-Mediated Cardiac Function Damage and Low Exercise Capacity. Front Physiol 2021; 12:650959. [PMID: 34305631 PMCID: PMC8294119 DOI: 10.3389/fphys.2021.650959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Apolipoprotein B plays an essential role in systemic lipid metabolism, and it is closely related to cardiovascular diseases. Exercise-training can regulate systemic lipid metabolism, improve heart function, and improve exercise capacity, but the molecular mechanisms involved are poorly understood. We used a Drosophila model to demonstrate that exercise-training regulates the expression of apoLpp (a homolog of apolipoprotein B) in cardiomyocytes, thereby resisting heart insufficiency and low exercise capacity caused by obesity. The apoLpp is an essential lipid carrier produced in the heart and fat body of Drosophila. In a Drosophila genetic screen, low expression of apoLpp reduced obesity and cardiac dysfunction induced by a high-fat diet (HFD). Cardiac-specific inhibition indicated that reducing apoLpp in the heart during HFD reduced the triglyceride content of the whole-body and reduced heart function damage caused by HFD. In exercise-trained flies, the result was similar to the knockdown effect of apoLpp. Therefore, the inhibition of apoLpp plays an important role in HFD-induced cardiac function impairment and low exercise capacity. Although the apoLpp knockdown of cardiomyocytes alleviated damage to heart function, it did not reduce the arrhythmia and low exercise capacity caused by HFD. Exercise-training can improve this condition more effectively, and the possible reason for this difference is that exercise-training regulates climbing ability in ways to promote metabolism. Exercise-training during HFD feeding can down-regulate the expression of apoLpp, reduce the whole-body TG levels, improve cardiac recovery, and improve exercise capacity. Exercise-training can downregulate the expression of apoLpp in cardiomyocytes to resist cardiac function damage and low exercise capacity caused by HFD. The results revealed the relationship between exercise-training and apoLpp and their essential roles in regulating heart function and climbing ability.
Collapse
Affiliation(s)
- Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiu Fang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Wan Li Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Wan Da Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
46
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
47
|
Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med 2021; 25:7110-7121. [PMID: 34160885 PMCID: PMC8335700 DOI: 10.1111/jcmm.16744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important organelles in eukaryotic cells. Normal mitochondrial homeostasis is subject to a strict mitochondrial quality control system, including the strict regulation of mitochondrial production, fission/fusion and mitophagy. The strict and accurate modulation of the mitochondrial quality control system, comprising the mitochondrial fission/fusion, mitophagy and other processes, can ameliorate the myocardial injury of myocardial ischaemia and ischaemia-reperfusion after myocardial infarction, which plays an important role in myocardial protection after myocardial infarction. Further research into the mechanism will help identify new therapeutic targets and drugs for the treatment of myocardial infarction. This article aims to summarize the recent research regarding the mitochondrial quality control system and its molecular mechanism involved in myocardial infarction, as well as the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Zhou Y, Feng Y, Zhang W, Li H, Zhang K, Wu Z. Physical Exercise in Managing Takayasu Arteritis Patients Complicated With Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:603354. [PMID: 34055922 PMCID: PMC8149735 DOI: 10.3389/fcvm.2021.603354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Takayasu arteritis (TA) is a kind of large-vessel vasculitis that mainly affects the aorta and its branches, and the patients are usually women at a relatively young age. The chronic inflammation of arteries in TA patients leads to stenosis, occlusion, dilatation, or aneurysm formation. Patients with TA thereby have a high risk of cardiovascular disease (CVD) complications, which are the most common cause of mortality. This review summarizes the main cardiovascular complications and the risk factors of cardiovascular complications in patients with TA. Here, we discuss the benefits and potential risks of physical exercise in patients with TA and give recommendations about exercise prescription for TA patients to decrease the risks of CVD and facilitate rehabilitation of cardiovascular complications, which might maximally improve the outcomes.
Collapse
Affiliation(s)
- Yaxin Zhou
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yuan Feng
- Department of Rheumatology and Immunology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Wei Zhang
- Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, China
| | - Hongxia Li
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Department of Rheumatology and Immunology, Air Force Medical Center, Air Force Medical University (Fourth Military Medical University), Beijing, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
49
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
50
|
ROS and metabolomics-mediated autophagy in rat's testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes. Life Sci 2021; 277:119585. [PMID: 33957169 DOI: 10.1016/j.lfs.2021.119585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
AIMS Oxidative damage and altered metabolic reactions are suspected to initiate the autophagy. The exercise training significantly impacts testicular antioxidant and metabolic potentials. However, the underlying mechanism(s) that the exercise-induced alterations can affect the autophagy markers remained unknown. This study explored the effect of exercise training on antioxidant and metabolic statuses of testicular tissue and uncovered the possible cross-link between these statuses and autophagy-inducers expression. MAIN METHODS Wistar rats were divided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous training groups. Following 8 weeks of training, the testicular total antioxidant capacity (TAC), total oxidant status (TOS), glutathione (GSH), and NADP+/NADPH as oxidative biomarkers along with intracytoplasmic carbohydrate and lipid droplet patterns, lactate dehydrogenase (LDH) activity, and lactate as metabolic elements were assessed. Finally, the autophagy-inducers expression and sperm count were examined. KEY FINDINGS With no significant impact on the oxidative biomarkers and metabolic elements, the LICT and MICT groups exhibited statistically unremarkable (p < 0.05) impacts on spermatogenesis differentiation, spermiogenesis ratio, and sperm count while increased the autophagy-inducers expression. Reversely, the HICT group, simultaneous with suppressing the antioxidant biomarkers (TAC↓, GSH↓, TOS↑, NADP+/NADPH↑), significantly (p < 0.05) reduced the testicular LDH activity and lactate level, changed the intracytoplasmic carbohydrate and lipid droplet's pattern, and amplified the classical autophagy-inducers p62, Beclin-1, autophagy-related gene (ATG)-7, and light chain 3 (LC3)-II/I expression. SIGNIFICANCE The autophagy-inducers overexpression has occurred after HICT induction, most probably to eliminate the oxidative damage cargoes, while increased to maintain the metabolic homeostasis in the LICT and MICT groups.
Collapse
|