1
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
2
|
Ding S, Liu Y, Tao H, Zhao Y, Zeng H, Han Y, Wang S, Chen Z, Tang Y, Guo W. Chronic intranasal oxytocin alleviates cognitive impairment and reverses oxytocin signaling upregulation in MK801-induced mice. Psychoneuroendocrinology 2024; 168:107138. [PMID: 39068687 DOI: 10.1016/j.psyneuen.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Cognitive impairment, especially impaired social cognition, is largely responsible for the deterioration of the social life of patients with schizophrenia (SZ). Oxytocin (OT) is a neuropeptide that offers promising therapy for SZ. This study aimed to explore whether OT could affect dizocilpine (MK801)-induced cognitive impairment and to investigate the effect of exogenous OT on the endogenous OT system in the hippocampus. METHODS The SZ mouse model was established by repeated administration of dizocilpine [MK801, 0.6 mg/kg, intraperitoneal (i.p.)], and then OT (6-60 μg/kg, intranasal) or risperidone (0.3 mg/kg, i.p.) was administered to explore the effect of OT on cognitive impairment. RESULTS OT at a dose of 6 μg/kg alleviated MK801-induced hyperactivity, sociability impairment, and spatial memory impairment. OT at a dose of 20 or 60 μg/kg attenuated the hyperactivity and social novelty impairment. In MK801-injected mice, the compensatory upregulation of OT mRNA in the hippocampus was reversed by three OT doses, whereas 60 μg/kg OT reversed the compensatory upregulation of CD38 protein expression. CONCLUSION OT alleviated cognitive impairment in the SZ mouse model to varying degrees, reversing the compensatory upregulation of OT signaling in the hippocampus.
Collapse
Affiliation(s)
- Shan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongtao Zeng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shichen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Higashida H, Oshima Y, Yamamoto Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 2024; 178:171230. [PMID: 38677620 DOI: 10.1016/j.peptides.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
4
|
Camerini L, Zurchimitten G, Bock B, Xavier J, Bastos CR, Martins E, Ardais AP, Dos Santos Motta JV, Pires AJ, de Matos MB, de Ávila Quevedo L, Pinheiro RT, Ghisleni G. Genetic Variations in Elements of the Oxytocinergic Pathway are Associated with Attention/Hyperactivity Problems and Anxiety Problems in Childhood. Child Psychiatry Hum Dev 2024; 55:552-563. [PMID: 36087156 DOI: 10.1007/s10578-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic alterations related to oxytocin system seem to influence the neurobiology of attention-deficit hyperactivity disorder and anxiety problems leading to greater functional, social and emotional impairment. Here, we analyzed the association of OXTR rs2254298 and CD38 rs6449182 variants with attention/hyperactivity problems and anxiety problems in children. The study enrolled 292 children and adjusted regression model revealed OXTR rs2254298 AA genotype as a risk factor for attention deficit/hyperactivity problems (PR: 2.37; PadjFDR = 0.006), attention problems (PR: 2.71; PadjFDR = 0.003) and anxiety problems (PR: 1.92; PadjFDR = 0.018). CD38 rs6449182 G allele showed as a risk factor for attention deficit/hyperactivity problems (PR: 1.56; PadjFDR = 0.028). Moreover, in silico approach for regulatory roles found markers that influence chromatin accessibility and transcription capacity. Together, these data provide genetic information of oxytocin in developmental and behavioral disorders opening a range of opportunities for future studies that clarify their neurobiology in childhood.
Collapse
Affiliation(s)
- Laísa Camerini
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Zurchimitten
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bertha Bock
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaína Xavier
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Department of Neurosciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Evânia Martins
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Andressa Jacondino Pires
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Bonati de Matos
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana de Ávila Quevedo
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Post-Graduation Program of Health and Behavior, Laboratory of Clinical Neuroscience, Catholic University of Pelotas - UCPel, Center of Health Science, Rua Gonçalves Chaves 373, sala 324, CEP 96010-280, Pelotas, RS, Brasil.
| |
Collapse
|
5
|
Liu S, Zhang W. NAD + metabolism and eye diseases: current status and future directions. Mol Biol Rep 2023; 50:8653-8663. [PMID: 37540459 DOI: 10.1007/s11033-023-08692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients' quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, 730030, Lanzhou, VA, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 730030, Lanzhou, VA, China.
| |
Collapse
|
6
|
Petrocelli G, Abruzzo PM, Pampanella L, Tassinari R, Marini S, Zamagni E, Ventura C, Facchin F, Canaider S. Oxytocin Modulates Osteogenic Commitment in Human Adipose-Derived Stem Cells. Int J Mol Sci 2023; 24:10813. [PMID: 37445991 DOI: 10.3390/ijms241310813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly harvested in minimally invasive contexts with few ethical concerns, and exhibit self-renewal, multi-lineage differentiation, and trophic signaling that make them attractive candidates for cell therapy approaches. The identification of natural molecules that can modulate their biological properties is a challenge for many researchers. Oxytocin (OXT) is a neurohypophyseal hormone that plays a pivotal role in the regulation of mammalian behavior, and is involved in health and well-being processes. Here, we investigated the role of OXT on hASC proliferation, migratory ability, senescence, and autophagy after a treatment of 72 h; OXT did not affect hASC proliferation and migratory ability. Moreover, we observed an increase in SA-β-galactosidase activity, probably related to the promotion of the autophagic process. In addition, the effects of OXT were evaluated on the hASC differentiation ability; OXT promoted osteogenic differentiation in a dose-dependent manner, as demonstrated by Alizarin red staining and gene/protein expression analysis, while it did not affect or reduce adipogenic differentiation. We also observed an increase in the expression of autophagy marker genes at the beginning of the osteogenic process in OXT-treated hASCs, leading us to hypothesize that OXT could promote osteogenesis in hASCs by modulating the autophagic process.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Serena Marini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Elena Zamagni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
7
|
Funaro A, Nakagawa T, Ishihara K. Editorial: Revisiting immunological roles for bone marrow stromal cell antigen-1; an entero-neuro-immune regulator. Front Immunol 2023; 14:1239546. [PMID: 37441068 PMCID: PMC10335351 DOI: 10.3389/fimmu.2023.1239546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Ada Funaro
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Katsuhiko Ishihara
- Department of Design for Medical and Health Care, Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare, Okayama, Japan
| |
Collapse
|
8
|
Yokoyama S. Genetic polymorphisms of bone marrow stromal cell antigen-1 (BST-1/CD157): implications for immune/inflammatory dysfunction in neuropsychiatric disorders. Front Immunol 2023; 14:1197265. [PMID: 37313401 PMCID: PMC10258321 DOI: 10.3389/fimmu.2023.1197265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Bone marrow stromal cell antigen-1 (BST-1/CD157) is an immune/inflammatory regulator that functions as both nicotinamide adenine dinucleotide-metabolizing ectoenzyme and cell-surface signaling receptor. BST-1/CD157 is expressed not only in peripheral tissues, but in the central nervous system (CNS). Although its pathophysiological significance in the CNS is still unclear, clinical genetic studies over a decade have begun revealing relationships between BST-1/CD157 and neuropsychiatric diseases including Parkinson's disease, autism spectrum disorders, sleep disorders, depressive disorders and restless leg syndrome. This review summarizes the accumulating evidence for the involvement of BST-1/CD157 in these disorders.
Collapse
Affiliation(s)
- Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| |
Collapse
|
9
|
Gerasimenko M, Higashida H. Remission of social behavior impairment by oral administration of a precursor of NAD in CD157, but not in CD38, knockout mice. Front Immunol 2023; 14:1166609. [PMID: 37215105 PMCID: PMC10192747 DOI: 10.3389/fimmu.2023.1166609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Shadrina MI, Slominsky PA. Genetic Architecture of Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:417-433. [PMID: 37076287 DOI: 10.1134/s0006297923030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 03/28/2023]
Abstract
Year 2022 marks 25 years since the first mutation in familial autosomal dominant Parkinson's disease was identified. Over the years, our understanding of the role of genetic factors in the pathogenesis of familial and idiopathic forms of Parkinson's disease has expanded significantly - a number of genes for the familial form of the disease have been identified, and DNA markers for an increased risk of developing its sporadic form have been found. But, despite all the success achieved, we are far from an accurate assessment of the contribution of genetic and, even more so, epigenetic factors to the disease development. The review summarizes the information accumulated to date on the genetic architecture of Parkinson's disease and formulates issues that need to be addressed, which are primarily related to the assessment of epigenetic factors in the disease pathogenesis.
Collapse
Affiliation(s)
- Maria I Shadrina
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
| | - Petr A Slominsky
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia
| |
Collapse
|
11
|
Cherepanov SM, Yuhi T, Iizuka T, Hosono T, Ono M, Fujiwara H, Yokoyama S, Shuto S, Higashida H. Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PLoS One 2023; 18:e0281363. [PMID: 36758056 PMCID: PMC9910740 DOI: 10.1371/journal.pone.0281363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.
Collapse
Affiliation(s)
- Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigeru Yokoyama
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Khani P, Ansari Dezfouli M, Nasri F, Rahemi M, Ahmadloo S, Afkhami H, Saeidi F, Tereshchenko S, Bigdeli MR, Modarressi MH. Genetic and epigenetic effects on couple adjustment in context of romantic relationship: A scoping systematic review. Front Genet 2023; 14:1002048. [PMID: 36816018 PMCID: PMC9937082 DOI: 10.3389/fgene.2023.1002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahemi
- Department of stem cell technology and tissue regeneration, Faculty of Science, Tehran University, Tehran, Iran
| | - Salma Ahmadloo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russia,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| |
Collapse
|
13
|
Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin. Brain Sci 2022; 12:brainsci12091246. [PMID: 36138982 PMCID: PMC9497188 DOI: 10.3390/brainsci12091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Oxytocin (OT) is a neuropeptide involved in human social behaviors and reproduction. Non-invasive OT levels in saliva have recently roused interest as it does not require a specialized medical setting. Here, we observed one woman’s basal serum and saliva OT from pregnancy to 1 year postpartum to track OT concentration changes over this period. We examined the changes in salivary OT levels over time in response to maternal physiological and behavioral responses. The fluctuation of saliva OT levels is well correlated with serum OT during pregnancy and breastfeeding. However, while salivary OT increased rapidly during direct interaction (social interaction tests) with the infant and/or when the mother was watching her own infant’s video (video tests), no increase was observed in serum. We used social interaction and video tests on a group of mothers (nine mothers for social interaction and six for the video test) to clarify these single-subject results. In both tests, the mothers had increased OT in their saliva but not serum. Our study may suggest that salivary samples reflect not only the physical but also the emotional state and that saliva samples may be useful for monitoring women’s OT levels during pre- and postpartum periods. Further studies with larger sample numbers are necessary to confirm the rapid changes in salivary OT levels in response to maternal physiological and behavioral responses.
Collapse
|
14
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
15
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
16
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
17
|
Cheng B, Yang X, Cheng S, Li C, Zhang H, Liu L, Meng P, Jia Y, Wen Y, Zhang F. A large-scale polygenic risk score analysis identified candidate proteins associated with anxiety, depression and neuroticism. Mol Brain 2022; 15:66. [PMID: 35870967 PMCID: PMC9308259 DOI: 10.1186/s13041-022-00954-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
Psychiatric disorders and neuroticism are closely associated with central nervous system, whose proper functioning depends on efficient protein renewal. This study aims to systematically analyze the association between anxiety / depression / neuroticism and each of the 439 proteins. 47,536 pQTLs of 439 proteins in brain, plasma and cerebrospinal fluid (CSF) were collected from recent genome-wide association study. Polygenic risk scores (PRS) of the 439 proteins were then calculated using the UK Biobank cohort, including 120,729 subjects of neuroticism, 255,354 subjects of anxiety and 316,513 subjects of depression. Pearson correlation analyses were performed to evaluate the correlation between each protein and each of the mental traits by using calculated PRSs as the instrumental variables of protein. In general population, six correlations were identified in plasma and CSF such as plasma protease C1 inhibitor (C1-INH) with neuroticism score (r = - 0.011, P = 2.56 × 10- 9) in plasma, C1-INH with neuroticism score (r = -0.010, P = 3.09 × 10- 8) in CSF, and ERBB1 with self-reported depression (r = - 0.012, P = 4.65 × 10- 5) in CSF. C1-INH and ERBB1 may induce neuroticism and depression by affecting brain function and synaptic development. Gender subgroup analyses found that BST1 was correlated with neuroticism score in male CSF (r = - 0.011, P = 1.80 × 10- 5), while CNTN2 was correlated with depression score in female brain (r = - 0.013, P = 6.43 × 10- 4). BST1 and CNTN2 may be involved in nervous system metabolism and brain health. Six common candidate proteins were associated with all three traits (P < 0.05) and were confirmed in relevant proteomic studies, such as C1-INH in plasma, CNTN2 and MSP in the brain. Our results provide novel clues for revealing the roles of proteins in the development of anxiety, depression and neuroticism.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 76 Yan Ta West Road, 710061, Xi'an, People's Republic of China. .,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, People's Republic of China.
| |
Collapse
|
18
|
Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T, Hayashi Y, Cherepanov SM, Shabalova AA, Salmina AB, Minami K, Yuhi T, Tsuji C, Fu P, Liu Z, Luo S, Zhang A, Yokoyama S, Shuto S, Watanabe M, Fujiwara K, Munesue SI, Harashima A, Yamamoto Y. Oxytocin Dynamics in the Body and Brain Regulated by the Receptor for Advanced Glycation End-Products, CD38, CD157, and Nicotinamide Riboside. Front Neurosci 2022; 16:858070. [PMID: 35873827 PMCID: PMC9301327 DOI: 10.3389/fnins.2022.858070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother’s milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- *Correspondence: Haruhiro Higashida,
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Kanazawa, Japan
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anna A. Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B. Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Kana Minami
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - PinYue Fu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Zhongyu Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shuxin Luo
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anpei Zhang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Sei-ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
19
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
21
|
Tsuji T, Furuhara K, Gerasimenko M, Shabalova A, Cherepanov SM, Minami K, Higashida H, Tsuji C. Oral Supplementation with L-Carnosine Attenuates Social Recognition Deficits in CD157KO Mice via Oxytocin Release. Nutrients 2022; 14:nu14040803. [PMID: 35215455 PMCID: PMC8879915 DOI: 10.3390/nu14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
The outcomes of supplementation with L-carnosine have been investigated in clinical trials in children with autism spectrum disorder (ASD). However, reports on the effects of L-carnosine in humans have been inconsistent, and the efficacy of L-carnosine supplementation for improving ASD symptoms has yet to be investigated in animal studies. Here, we examined the effects of oral supplementation with L-carnosine on social deficits in CD157KO mice, a murine model of ASD. Social deficits in CD157KO mice were assessed using a three-chamber social approach test. Oral supplementation with L-carnosine attenuated social behavioral deficits. The number of c-Fos-positive oxytocin neurons in the supraoptic nucleus and paraventricular nucleus was increased with L-carnosine supplementation in CD157KO mice after the three-chamber social approach test. We observed an increase in the number of c-Fos-positive neurons in the basolateral amygdala, a brain region involved in social behavior. Although the expression of oxytocin and oxytocin receptors in the hypothalamus was not altered by L-carnosine supplementation, the concentration of oxytocin in cerebrospinal fluid was increased in CD157KO mice by L-carnosine supplementation. These results suggest that L-carnosine supplementation restores social recognition impairments by augmenting the level of released oxytocin. Thus, we could imply the possibility of a safe nutritional intervention for at least some types of ASD in the human population.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: (T.T.); (C.T.)
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Maria Gerasimenko
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Anna Shabalova
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Stanislav M Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0934, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita 565-0871, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Correspondence: (T.T.); (C.T.)
| |
Collapse
|
22
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
23
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
24
|
Tereshchenko S, Azanova A, Shubina M, Gorbacheva N. Oxytocin genetic pathway (CD38) and SDQ psychosocial characteristics in adolescent schoolchildren. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:117-123. [DOI: 10.17116/jnevro2022122111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yamamoto Y, Harashima A, Munesue SI, Higashida H. Use of Cocultures to Measure the Blood-Brain Barrier Permeability of Oxytocin. Methods Mol Biol 2022; 2384:247-255. [PMID: 34550579 DOI: 10.1007/978-1-0716-1759-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Primary monkey brain capillary endothelial cell cultures, with rat pericytes and astrocytes, provide an assay system for predicting the ability of oxytocin (OT) to cross the blood-brain barrier (BBB), using a commercially available in vitro BBB kit. The integrity of the in vitro "BBB," which has a high transendothelial electrical resistance (TEER), can be established approximately 4 days after preparations for experiments. Dominant endothelial transport of OT is from the upper (luminal blood side) to lower (abluminal brain side) chambers, dose-dependently. OT is transported by the receptor for advanced glycation end-products (RAGE) in endothelial cells, which is evidenced using the RAGE knockdown system with short hairpin RNA (shRNA) treatment. This in vitro assay system is useful for further assessment of OT transport across the BBB.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
26
|
Abstract
Humans are an unusually prosocial species, who engage in social behaviors that include altruism-whereby an individual engages in costly or risky acts to improve the welfare of another person-care, and cooperation. Current perspectives on the neurobiology of human prosociality suggest that it is deeply rooted in the neuroendocrine architecture of the social brain and emphasize the modulatory role of the neuropeptide hormone oxytocin. In this review, we provide a conceptual overview of the neurobiology of prosocial behavior with a focus on oxytocin's modulatory role in human prosociality. Specifically, we aim to encourage a better understanding of the peptide's susceptibility to diverse factors that produce heterogeneity in outcomes and the resulting methodological implications for measuring the behavioral effects of oxytocin in humans. After providing an overview of the state-of-the-art research on oxytocin's exogenous use, we elaborate on the peptide's modulatory role in the context of care-based altruism, cooperation, and conflict and discuss its potential for therapeutic interventions in psychiatric disorders characterized by social dysfunction.
Collapse
Affiliation(s)
- Nina Marsh
- Department of Psychiatry, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Abigail A. Marsh
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, USA
| | - René Hurlemann
- Department of Psychiatry, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
27
|
Cherepanov SM, Gerasimenko M, Yuhi T, Shabalova A, Zhu H, Yokoyama S, Salmina AB, Munesue SI, Harashima A, Yamamoto Y, Higashida H. An improved sample extraction method reveals that plasma receptor for advanced glycation end-products (RAGE) modulates circulating free oxytocin in mice. Peptides 2021; 146:170649. [PMID: 34543678 DOI: 10.1016/j.peptides.2021.170649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) binds oxytocin (OT) and transports it from the blood to the brain. As RAGE's OT-binding capacity was lost in RAGE knockout (KO) mice, we predicted that circulating concentrations of unbound (free) OT should be elevated compared to wild-type (WT) mice. However, this hypothesis has not yet been investigated. Unfortunately, the evaluation of the dynamics of circulating free and bound plasma OT is unclear in immunoassays, in part because of interference from plasma proteins. A radioimmunoassay (RIA) is considered the gold standard method for overcoming this issue, but is more challenging to implement; thus, commercially available enzyme-linked immunosorbent assays (ELISAs) are more commonly used. Here, we developed a pre-treatment method to remove the interference-causing components from plasma before performing ELISA. The acetonitrile protein precipitation (PPT) approach was reliable, with fewer steps needed to measure free OT concentrations than by solid-phase extraction of plasma samples. PPT-extracted plasma samples yielded higher concentrations of OT in RAGE KO mice than in WT mice using ELISA. After peripheral OT injection, free OT plasma levels spiked immediately then rapidly declined in WT mice, but remained high in KO mice. These results suggest that plasma samples with PPT pre-treatment appear to be superior and that circulating soluble RAGE can most likely serve as a buffer for plasma OT, which indicates a novel physiological function of RAGE.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Anna Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hong Zhu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Alla B Salmina
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, 660022, Russia
| | - Shei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|
28
|
Stocker M, Prosl J, Vanhooland LC, Horn L, Bugnyar T, Canoine V, Massen JJM. Measuring salivary mesotocin in birds - Seasonal differences in ravens' peripheral mesotocin levels. Horm Behav 2021; 134:105015. [PMID: 34144393 DOI: 10.1016/j.yhbeh.2021.105015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Oxytocin is involved in a broad array of social behaviours. While saliva has been used regularly to investigate the role of oxytocin in social behaviour of mammal species, so far, to our knowledge, no-one has tried to measure its homolog, mesotocin, in birds' saliva. Therefore, in this study we measured salivary mesotocin in common ravens (Corvus corax), and subsequently explored its link to three aspects of raven sociality. We trained ravens (n = 13) to voluntarily provide saliva samples and analysed salivary mesotocin with a commercial oxytocin enzyme-immunoassay kit, also suitable for mesotocin. After testing parallelism and recovery, we investigated the effect of bonding status, sex and season on mesotocin levels. We found that mesotocin was significantly more likely to be detected in samples taken during the breeding season (spring) than during the mating season (winter). In those samples in which mesotocin was detected, concentrations were also significantly higher during the breeding than during the mating season. In contrast, bonding status and sex were not found to relate to mesotocin detectability and concentrations. The seasonal differences in mesotocin correspond to behavioral patterns known to be associated with mesotocin/oxytocin, with ravens showing much more aggression during the mating season while being more tolerant of conspecifics in the breeding season. We show for the first time that saliva samples can be useful for the non-invasive determination of hormone levels in birds. However, the rate of successfully analysed samples was very low, and collection and analysis methods will benefit from further improvements.
Collapse
Affiliation(s)
- Martina Stocker
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria; Animal Science Department, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| | - Jonathan Prosl
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | | | - Lisa Horn
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria; Haidlhof Research Station, University of Vienna and University of Veterinary Medicine Vienna, Bad Vöslau, Austria
| | - Virginie Canoine
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jorg J M Massen
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria; Animal Behaviour and Cognition, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
29
|
Increased Serum Concentrations of High Mobility Group Box 1 (HMGB1) Protein in Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8060478. [PMID: 34198762 PMCID: PMC8228126 DOI: 10.3390/children8060478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 protein (HMGB1) has been suggested to be involved in the immune dysfunction and inflammation reported in autism spectrum disorder (ASD). We aimed to assess HMGB1 serum concentrations (SCs) in high-functioning ASD children compared to typically developing (TD) controls and to explore their associations with the autism spectrum quotient (AQ), the empathy quotient (EQ), and the systemizing quotient (SQ). The study involved 42 ASD children and 38 TD children, all-male, aged between 6.1 and 13.3 years old. HMGB1 SCs were measured by enzyme-linked immunosorbent assay (ELISA). Groups were comparable regarding age, general IQ, birth weight, and maternal age at birth. ASD children showed significantly higher HMGB1 SCs compared to TD children (1.25 ± 0.84 ng/mL versus 1.13 ± 0.79 ng/mL, respectively, p = 0.039). The Spearman’s rho revealed that HMGB1 SCs were positively correlated with the AQ attention to detail subscale (rs = 0.46, p = 0.045) and with the SQ total score (rs = 0.42, p = 0.04) in the ASD group. These results show that HMGB1 serum concentrations are altered in ASD children, and suggest that inflammatory processes mediated by HMGB1 may be associated with specific cognitive features observed in ASD.
Collapse
|
30
|
Oxytocin ameliorates impaired social behavior in a Chd8 haploinsufficiency mouse model of autism. BMC Neurosci 2021; 22:32. [PMID: 33933000 PMCID: PMC8088024 DOI: 10.1186/s12868-021-00631-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by the core symptoms of impaired social interactions. Increasing evidence suggests that ASD has a strong genetic link with mutations in chromodomain helicase DNA binding protein 8 (CHD8), a gene encoding a chromatin remodeler. It has previously been shown that Chd8 haplodeficient male mice manifest ASD-like behavioral characteristics such as anxiety and altered social behavior. Along with that, oxytocin (OT) is one of the main neuropeptides involved in social behavior. Administration of OT has shown improvement of social behavior in genetic animal models of ASD. The present study was undertaken to further explore behavioral abnormalities of Chd8 haplodeficient mice of both sexes, their link with OT, and possible effects of OT administration. First, we performed a battery of behavioral tests on wild-type and Chd8+/∆SL female and male mice. Next, we measured plasma OT levels and finally studied the effects of intraperitoneal OT injection on observed behavioral deficits. Results We showed general anxiety phenotype in Chd8+/∆SL mice regardless of sex, the depressive phenotype in Chd8+/∆SL female mice only and bidirectional social deficit in female and male mice. We observed decreased level of OT in Chd+/∆SL mice, possibly driven by males. Mice injected by OT demonstrated recovery of social behavior, while reduced anxiety was observed only in male mice. Conclusions Here, we demonstrated that abnormal social behaviors were observed in both male and female Chd8+/∆SL mice. The ability of peripheral OT administration to affect such behaviors along with altered plasma OT levels indicated a possible link between Chd8 + /∆SL and OT in the pathogenesis of ASD as well as the possible usefulness of OT as a therapeutic tool for ASD patients with CHD8 mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00631-6.
Collapse
|
31
|
Gerasimenko M, Lopatina O, Munesue S, Harashima A, Yokoyama S, Yamamoto Y, Higashida H. Receptor for advanced glycation end-products (RAGE) plays a critical role in retrieval behavior of mother mice at early postpartum. Physiol Behav 2021; 235:113395. [PMID: 33757778 DOI: 10.1016/j.physbeh.2021.113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a pattern recognition molecule belonging to the immunoglobulin superfamily, and it plays a role in the remodeling of endothelial cells under pathological conditions. Recently, it was shown that RAGE is a binding protein for oxytocin (OT) and a transporter of OT to the brain on neurovascular endothelial cells via blood circulation. Deletion of the mouse RAGE gene, Ager (RAGE KO), induces hyperactivity in male mice. Impairment of pup care by mother RAGE KO mice after stress exposure results in the death of neonates 1-2 days after pup birth. Therefore, to understand the role of RAGE during the postpartum period, this study aims to examine parental behavior in female RAGE KO mice and ultrasonic vocalizations in pups. RAGE KO mothers without stress before delivery raised their pups and displayed hyperactivity at postpartum day (PPD) 3. KO dams showed impaired retrieval or interaction behavior after additional stress, such as body restraint stress or exposure to a novel environment, but such impaired behavior disappeared at PPD 7. Postnatal day 3 pups emitted ultrasonic vocalizations at >60 kHz as a part of the mother-pup relationship, but the number and category of calls by RAGE KO pups were significantly lower than wild-type pups. The results indicate that RAGE is important in the manifestation of normal parental behavior in dams and for receiving maternal care by mouse pups; moreover, brain OT recruited by RAGE plays a role in damping of signals of additional external stress and endogenous stress during the early postpartum period. Thus, RAGE-dependent OT may be critical for initiating and maintaining the normal mother-child relationship.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russian Federation
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russian Federation.
| |
Collapse
|
32
|
Munesue SI, Liang M, Harashima A, Zhong J, Furuhara K, Boitsova EB, Cherepanov SM, Gerasimenko M, Yuhi T, Yamamoto Y, Higashida H. Transport of oxytocin to the brain after peripheral administration by membrane-bound or soluble forms of receptors for advanced glycation end-products. J Neuroendocrinol 2021; 33:e12963. [PMID: 33733541 DOI: 10.1111/jne.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.
Collapse
Affiliation(s)
- Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - MingKun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Elizabeta B Boitsova
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| |
Collapse
|
33
|
Association of BST1 polymorphism with idiopathic restless legs syndrome in Chinese population. Sleep Breath 2021; 25:1987-1993. [PMID: 33625657 DOI: 10.1007/s11325-021-02326-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and restless legs syndrome/Willis-Ekbom disease (RLS/WED) are both common movement disorders. Based on their clinical overlap, association studies of PD and RLS/WED have been conducted for many years. OBJECTIVE To investigate whether or not the genetic risk factor of PD was also associated with RLS/WED. SUBJECTS AND METHODS We included 102 idiopathic RLS/WED patients and 189 matched controls from southeast China. The clinical data included the International Restless Legs Syndrome Study Group Rating Scale, the subtypes of RLS/WED symptoms (painful or other discomfort), the comorbidities, the pregnancy history of female patients, the Hamilton Depression Scale (HAMD), and the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Risk gene analysis between RLS/WED and control groups including 21 SNPs (single nucleotide polymorphisms) was conducted. Genotyping was done by Sanger sequencing. RESULTS We found that rs4273468 polymorphism of BST1 gene increased the risk of idiopathic RLS/WED patients in southeastern Chinese population (P = <0.001, OR = 2.85, p = 0.019 after Bonferroni correction). Moreover, the haplotype of G-G (rs4698412-rs4273468) was significantly associated with Chinese RLS/WED patients (p = <0.001). CONCLUSION BST1 may contribute to the development of RLS/WED. Further studies on larger cohorts are needed to confirm these findings.
Collapse
|
34
|
Komleva Y, Chernykh A, Lopatina O, Gorina Y, Lokteva I, Salmina A, Gollasch M. Inflamm-Aging and Brain Insulin Resistance: New Insights and Role of Life-style Strategies on Cognitive and Social Determinants in Aging and Neurodegeneration. Front Neurosci 2021; 14:618395. [PMID: 33519369 PMCID: PMC7841337 DOI: 10.3389/fnins.2020.618395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, the human life span has dramatically increased, and therefore, a steady increase in diseases associated with age (such as Alzheimer's disease and Parkinson's disease) is expected. In these neurodegenerative diseases, there is a cognitive decline and memory loss, which accompany increased systemic inflammation, the inflamm-aging, and the insulin resistance. Despite numerous studies of age-related pathologies, data on the contribution of brain insulin resistance and innate immunity components to aging are insufficient. Recently, much research has been focused on the consequences of nutrients and adiposity- and nutrient-related signals in brain aging and cognitive decline. Moreover, given the role of metainflammation in neurodegeneration, lifestyle interventions such as calorie restriction may be an effective way to break the vicious cycle of metainflammation and have a role in social behavior. The various effects of calorie restriction on metainflammation, insulin resistance, and neurodegeneration have been described. Less attention has been paid to the social determinants of aging and the possible mechanism by which calorie restriction might influence social behavior. The purpose of this review is to discuss current knowledge in the interdisciplinary field of geroscience-immunosenescence, inflamm-aging, and metainflammation-which makes a significant contribution to aging. A substantial part of the review is devoted to frontiers in the brain insulin resistance in relation to neuroinflammation. In addition, we summarize new data on potential mechanisms of calorie restriction that influence as a lifestyle intervention on the social brain. This knowledge can be used to initiate successful aging and slow the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yulia Komleva
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Olga Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Yana Gorina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Irina Lokteva
- Medical Center “Private Practice”, Krasnoyarsk, Russia
| | - Alla Salmina
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Greifswald Medical School, University of Greifswald, Greifswald, Germany
- Geriatric Medicine Center, Wolgast Hospital, Wolgast, Germany
| |
Collapse
|
35
|
Tereshchenko S, Kasparov E, Zobova S, Smolnikova M, Evert L, Semenova N, Zaitseva O, Shubina M, Gorbacheva N, Lapteva L. Oxytocin Pathway Gene ( CD38, OXTR) Variants Are Not Related to Psychosocial Characteristics Defined by Strengths and Difficulties Questionnaire in Adolescents: A Field School-Based Study. Front Psychiatry 2021; 12:714093. [PMID: 34434131 PMCID: PMC8380924 DOI: 10.3389/fpsyt.2021.714093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023] Open
Abstract
Background: CD38 is a transmembrane glycoprotein that regulates oxytocin (OT) production and influences social interactions. The oxytocin receptor (OXTR) has been studied intensively regarding its association with human psychosocial functions. Many studies have demonstrated a link between CD38 rs3796863 and OXTR rs53576 polymorphic regions and psychosocial characteristics as well as various psychiatric disorders in adolescents. Some studies, however, have reported null findings. Methods: The Strengths and Difficulties Questionnaire (SDQ) is a brief psychopathologic screening tool recommended for detecting psychosocial problems and psychiatric disorders in adolescents. The current field school-based study, conducted among urban Siberian adolescents (n = 298 aged 12-18), explored the SDQ scales in relation to polymorphisms of the CD38 and the OXTR genes (rs3796863 and rs53576, respectively). Results: None of the studied genotypes were associated with the SDQ results for the complete sample with presumed statistical power as 0.80 to detect a medium-size effect (Cramer's V = 0.3) at α = 0.0083. Post-hoc analysis in subgroups showed that OT pathway high activity may cause some negative consequences, such as emotional instability in older (aged 15-18) adolescent boys who are carriers of the rs53576 GG variant. Conclusion: Variations at the CD38 rs3796863 and OXTR rs53576 loci were not associated with psychosocial characteristics of adolescents assessed with the SDQ. In studies with a similar design, we recommend replication with larger samples and greater power to detect small effects, especially in age-sex subgroups of adolescents.
Collapse
Affiliation(s)
- Sergey Tereshchenko
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Edward Kasparov
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Svetlana Zobova
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia.,Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Marina Smolnikova
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Lidia Evert
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Nadezhda Semenova
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Olga Zaitseva
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Margarita Shubina
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Nina Gorbacheva
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Ludmila Lapteva
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| |
Collapse
|
36
|
Distinct physical condition and social behavior phenotypes of CD157 and CD38 knockout mice during aging. PLoS One 2020; 15:e0244022. [PMID: 33326496 PMCID: PMC7743928 DOI: 10.1371/journal.pone.0244022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The ability of CD38 and CD157 to utilize nicotinamide adenine dinucleotide (NAD) has received much attention because the aging-induced elevation of CD38 expression plays a role in the senescence-related decline in NAD levels. Therefore, it is of interest to examine and compare the effects of age-associated changes on the general health and brain function impairment of Cd157 and Cd38 knockout (CD157 KO and CD38 KO) mice. The body weight and behaviors were measured in 8-week-old (young adult) or 12-month-old (middle-aged) male mice of both KO strains. The locomotor activity, anxiety-like behavior, and social behavior of the mice were measured in the open field and three-chamber tests. The middle-aged CD157 KO male mice gained more body weight than young adult KO mice, while little or no body weight gain was observed in the middle-aged CD38 KO mice. Middle-aged CD157 KO mice displayed increased anxiety-like behavior and decreased sociability and interaction compared with young adult KO mice. Middle-aged CD38 KO mice showed less anxiety and hyperactivity than CD157 KO mice, similar to young adult CD38 KO mice. The results reveal marked age-dependent changes in male CD157 KO mice but not in male CD38 KO mice. We discuss the distinct differences in aging effects from the perspective of inhibition of NAD metabolism in CD157 and CD38 KO mice, which may contribute to differential behavioral changes during aging.
Collapse
|
37
|
Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 2020; 68:1-8. [PMID: 33260106 DOI: 10.1016/j.conb.2020.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The recent advancements of social behavioral neuroscience are unprecedented. Through manipulations targeting neural circuits, complex behaviors can be switched on and off, social bonds can be induced, and false memories can be 'incepted.' Psychiatry, however, remains tethered to concepts and techniques developed over half a century ago, including purely behavioral definitions of psychopathology and chronic, brain-wide pharmacological interventions. Drawing on recent animal and human research, we outline a circuit-level approach to the social brain and highlight studies demonstrating the translational potential of this approach. We conclude by suggesting ways both clinical practice and translational research can apply circuit-level neuroscientific knowledge to advance psychiatry, including adopting neuroscience-based nomenclature, stratifying patients into diagnostic subgroups based on neurobiological phenotypes, and pharmacologically enhancing psychotherapy.
Collapse
|
38
|
Abramova O, Zorkina Y, Ushakova V, Zubkov E, Morozova A, Chekhonin V. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders. Neuropeptides 2020; 83:102079. [PMID: 32839007 DOI: 10.1016/j.npep.2020.102079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
39
|
Yamamoto Y, Higashida H. RAGE regulates oxytocin transport into the brain. Commun Biol 2020; 3:70. [PMID: 32054984 PMCID: PMC7018824 DOI: 10.1038/s42003-020-0799-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Oxytocin, a nonapeptide hormone, has a key role in female reproductive functions as well as in social memory in the brain. In our recent Communications Biology article, we reported that oxytocin is transported from the peripheral blood into the brain by the receptor for advanced glycation end-products (RAGE) in endothelial cells at the blood−brain barrier. Additionally, we found that oral oxytocin is absorbed by RAGE on intestinal epithelial cells at the blood−intestinal barrier. From a physiological perspective, we herein outline the continuing research regarding oxytocin and social behaviour. Yamamoto and Higashido discuss the possible routes of the hormone oxytocin in the body, and highlight their recent study in Communications Biology where they showed that the RAGE receptor is a transporter for oxytocin across the blood−brain barrier.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|