1
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2024. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Sezen S, Karadayi M, Yesilyurt F, Burul F, Gulsahin Y, Ozkaraca M, Okkay U, Gulluce M. Acyclovir provides protection against 6-OHDA-induced neurotoxicity in SH-SY5Y cells through the kynurenine pathway. Neurotoxicology 2024; 106:1-9. [PMID: 39617346 DOI: 10.1016/j.neuro.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Parkinson's disease is one of the most prevalent neurodegenerative disorders worldwide. The kynurenine pathway associated with oxidative stress and neuroinflammation is recognized to contribute to its pathophysiology, although the exact mechanism is not fully elucidated. In neuroinflammation, IDO-1 catalyzes the conversion of tryptophan to neurotoxic QUIN through the kynurenine pathway. Consequently, QUIN increases oxidative stress via nNOS and NMDA, which causes neurodegeneration. Few studies have reported on the effect of different antiviral drugs in Parkinson's disease; the exact mechanism is still unknown. The antiviral acyclovir has been shown to have neuroprotective properties and can cross the blood-brain barrier. We examined acyclovir's effects and potential mechanisms in the 6-OHDA-induced in vitro model of Parkinson's disease in SH-SY5Y cells using biochemical, immunocytochemical, and in silico methods. MTT assay demonstrated that acyclovir significantly decreased cell mortality induced by the neurotoxic 6-OHDA at dosages of 3.2 µM, 6.4 µM, 12.8 µM, 25.6 µM, and 51.2 µM. In immunocytochemical analysis, acyclovir treatment decreased α-synuclein and TNF-α expressions in cells. In biochemical analyses, while IL-17A and TOS levels decreased depending on varying doses (1.6 µM, 3.2 µM, 6.4 µM, 12.8 µM), TAC levels increased. Using in silico analyses to investigate the mechanism showed that acyclovir docked with TNF-α, IL-17A, IDO-1, nNOS, α-synuclein, and NMDA. The findings demonstrated that acyclovir had neuroprotective effects by modulating the kynurenine pathway and decreasing neurodegeneration via QUIN inhibition in an in vitro Parkinson's disease model. Although the mechanisms of acyclovir's effects in Parkinson's disease are unclear, the results obtained from the experiments are encouraging.
Collapse
Affiliation(s)
- Selma Sezen
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Mehmet Karadayi
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Feyza Burul
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Yusuf Gulsahin
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey.
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Medine Gulluce
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| |
Collapse
|
3
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
4
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
5
|
Manoharan A, Ballambattu VB, Palani R. Genetic architecture of preeclampsia. Clin Chim Acta 2024; 558:119656. [PMID: 38583550 DOI: 10.1016/j.cca.2024.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Aarthi Manoharan
- Department of Medical Biotechnology, Kirumampakkam, Puducherry 607403, India.
| | | | - Ramya Palani
- Department of Obstetrics and Gynecology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607403, India
| |
Collapse
|
6
|
Xing L, Wang Z, Hao Z, Pan P, Yang A, Wang J. Cuproptosis in stroke: focusing on pathogenesis and treatment. Front Mol Neurosci 2024; 17:1349123. [PMID: 38605864 PMCID: PMC11007218 DOI: 10.3389/fnmol.2024.1349123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Annually, more than 15 million people worldwide suffer from stroke, a condition linked to high mortality and disability rates. This disease significantly affects daily life, impairing everyday functioning, executive function, and cognition. Moreover, stroke severely restricts patients' ability to perform daily activities, diminishing their overall quality of life. Recent scientific studies have identified cuproptosis, a newly discovered form of cell death, as a key factor in stroke development. However, the role of cuproptosis in stroke remains unclear to researchers. Therefore, it is crucial to investigate the mechanisms of cuproptosis in stroke's pathogenesis. This review examines the physiological role of copper, the characteristics and mechanisms of cuproptosis, the differences and similarities between cuproptosis and other cell death types, and the pathophysiology of cuproptosis in stroke, focusing on mitochondrial dysfunction and immune infiltration. Further research is necessary to understand the relationship between previous strokes and cuproptosis and to clarify the mechanisms behind these associations.
Collapse
Affiliation(s)
- Liwei Xing
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Zhifeng Wang
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Zhihui Hao
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pan Pan
- College of Acupuncture and Massage, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Aiming Yang
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
7
|
Boiko DI, Chopra H, Bilal M, Kydon PV, Herasymenko LO, Rud VO, Bodnar LA, Vasylyeva GY, Isakov RI, Zhyvotovska LV, Mehta A, Skrypnikov AM. Schizophrenia and disruption of circadian rhythms: An overview of genetic, metabolic and clinical signs. Schizophr Res 2024; 264:58-70. [PMID: 38101179 DOI: 10.1016/j.schres.2023.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
A molecular clock in the suprachiasmatic nucleus of the anterior hypothalamus, which is entrained by the dark-light cycle and controls the sleep-wake cycle, regulates circadian rhythms. The risk of developing mental disorders, such as schizophrenia, has long been linked to sleep abnormalities. Additionally, a common aspect of mental disorders is sleep disturbance, which has a direct impact on the intensity of the symptoms and the quality of life of the patient. This relationship can be explained by gene alterations such as CLOCK in schizophrenia which are also important components of the physiological circadian rhythm. The function of dopamine and adenosine in circadian rhythm should also be noted, as these hypotheses are considered to be the most popular theories explaining schizophrenia pathogenesis. Therefore, determining the presence of a causal link between the two can be key to identifying new potential targets in schizophrenia therapy, which can open new avenues for clinical research as well as psychiatric care. We review circadian disruption in schizophrenia at the genetic, metabolic, and clinical levels. We summarize data about clock and clock-controlled genes' alterations, neurotransmitter systems' impairments, and association with chronotype in schizophrenia patients. Our findings demonstrate that in schizophrenia either homeostatic or circadian processes of sleep regulation are disturbed. Also, we found an insufficient number of studies aimed at studying the relationship between known biological phenomena of circadian disorders and clinical signs of schizophrenia.
Collapse
Affiliation(s)
- Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, Tamil Nadu, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Pavlo V Kydon
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Larysa O Herasymenko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vadym O Rud
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Lesia A Bodnar
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Ganna Yu Vasylyeva
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Rustam I Isakov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Liliia V Zhyvotovska
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Aashna Mehta
- University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Andrii M Skrypnikov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
8
|
Li X, Wang S, Duan S, Long L, Zhuo L, Peng Y, Xiong Y, Li S, Peng X, Yan Y, Wang Z, Jiang W. Exploring the Therapeutic Effects of Multifunctional N-Salicylic Acid Tryptamine Derivative against Parkinson's Disease. ACS OMEGA 2023; 8:28910-28923. [PMID: 37576637 PMCID: PMC10413456 DOI: 10.1021/acsomega.3c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Neuroinflammation and oxidative stress play an important role in the whole course of PD, which have been the focus of PD drug development. In our previous research, a series of N-salicylic acid tryptamine derivatives were synthesized, and the biological evaluation showed that the compound LZWL02003 has good anti-neuroinflammatory activity and displayed great therapeutic potency for neurodegenerative disease models. In this work, the neuroprotective efficiency of LZWL02003 against PD in vitro and in vivo has been explored. It was found that LZWL02003 could protect human neuron cells SH-SY5Y from MPP+-induced neuronal damage by inhibiting ROS generation, mitochondrial dysfunction, and cellular apoptosis. Moreover, LZWL02003 could improve cognition, memory, learning, and athletic ability in a rotenone-induced PD rat model. In general, our study has demonstrated that LZWL02003 has good activity against PD in in vitro and in vivo experiments, which can potentially be developed into a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xuelin Li
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuzhi Wang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shan Duan
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lin Long
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Linsheng Zhuo
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yan Peng
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xue Peng
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yiguo Yan
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
9
|
Lotti S, Dinu M, Colombini B, Amedei A, Sofi F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr Metab Cardiovasc Dis 2023; 33:1490-1500. [PMID: 37246076 DOI: 10.1016/j.numecd.2023.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
AIMS Over the past years, interest in chrono-nutrition has grown enormously as the fundamental role of circadian rhythms in regulating most physiological and metabolic processes has become clearer. Recently, the influence of circadian rhythms on the gut microbiota (GM) composition has also emerged, as more than half of the total microbial composition fluctuates rhythmically throughout the day. At the same time, other studies have observed that the GM itself synchronises the host's circadian biological clock through signals of a different nature. Therefore, it has been hypothesised that there is a two-way communication between the circadian rhythms of the host and the GM, but researchers have only just begun to identify some of its action mechanisms. The manuscript aim is, therefore, to gather and combine the latest evidence in the field of chrono-nutrition with the more recent research on the GM, in order to investigate their relationship and their potential impact on human health. DATA SYNTHESIS Considering current evidence, a desynchronization of circadian rhythms is closely associated with an alteration in the abundance and functionality of the gut microbiota with consequent deleterious effects on health, such as increased risk of numerous pathologies, including cardiovascular disease, cancer, irritable bowel disease, and depression. A key role in maintaining the balance between circadian rhythms and GM seems to be attributed to meal-timing and diet quality, as well as to certain microbial metabolites, in particular short-chain fatty acids. CONCLUSIONS Future studies are needed to decipher the link between the circadian rhythms and specific microbial patterns in relation to different disease frameworks.
Collapse
Affiliation(s)
- Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
10
|
Zhang M, Meng W, Liu C, Wang H, Li R, Wang Q, Gao Y, Zhou S, Du T, Yuan T, Shi L, Han C, Meng F. Identification of Cuproptosis Clusters and Integrative Analyses in Parkinson's Disease. Brain Sci 2023; 13:1015. [PMID: 37508947 PMCID: PMC10377639 DOI: 10.3390/brainsci13071015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease; it mainly occurs in the elderly population. Cuproptosis is a newly discovered form of regulated cell death involved in the progression of various diseases. Combining multiple GEO datasets, we analyzed the expression profile and immunity of cuproptosis-related genes (CRGs) in PD. Dysregulated CRGs and differential immune responses were identified between PD and non-PD substantia nigra. Two CRG clusters were defined in PD. Immune analysis suggested that CRG cluster 1 was characterized by a high immune response. The enrichment analysis showed that CRG cluster 1 was significantly enriched in immune activation pathways, such as the Notch pathway and the JAK-STAT pathway. KIAA0319, AGTR1, and SLC18A2 were selected as core genes based on the LASSO analysis. We built a nomogram that can predict the occurrence of PD based on the core genes. Further analysis found that the core genes were significantly correlated with tyrosine hydroxylase activity. This study systematically evaluated the relationship between cuproptosis and PD and established a predictive model for assessing the risk of cuproptosis subtypes and the outcome of PD patients. This study provides a new understanding of PD-related molecular mechanisms and provides new insights into the treatment of PD.
Collapse
Affiliation(s)
- Moxuan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Wenjia Meng
- Clinical School, Tianjin Medical University, Tianjin 300270, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Huizhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Renpeng Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Yuan Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Siyu Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Tingting Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Tianshuo Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
11
|
Xiang Y, Huang J, Wang Y, Huang X, Zeng Q, Li L, Zhao Y, Pan H, Xu Q, Liu Z, Sun Q, Wang J, Tan J, Shen L, Jiang H, Yan X, Li J, Tang B, Guo J. Evaluating the Genetic Role of Circadian Clock Genes in Parkinson's Disease. Mol Neurobiol 2023; 60:2729-2736. [PMID: 36717479 DOI: 10.1007/s12035-023-03243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Increasing evidence suggests that circadian dysfunction is related to Parkinson's disease (PD). However, the role of circadian clock genes in PD is still poorly understood. This study aimed to illustrate the association between genetic variants of circadian clock genes and PD in a large Chinese population cohort. Ten circadian clock genes were included in this study. Whole-exome sequencing (WES) was conducted in 1997 early-onset or familial PD patients and 1652 controls (WES cohort), and whole-genome sequencing (WGS) was conducted in 1962 sporadic late-onset PD patients and 1279 controls (WGS cohort). Analyses were completed using the optimized sequence kernel association test and regression analyses. In the burden analysis of the circadian clock gene set, we found suggestive significant associations between the circadian clock genes and PD in the WES cohort when considering missense, damaging missense (Dmis), and deleterious variants. Moreover, the burden analysis of single genes revealed suggestive significant associations between PD and the loss-of-function variants of the CRY1 gene, missense, Dmis, and deleterious variants of the PER1 gene, and Dmis and deleterious variants of the PER2 gene in the WES cohort. Rare variants in the WGS cohort and all common variants in the WGS and WES cohorts were unrelated to PD. Phenotypic analysis indicated that deleterious variants of the PER1 gene were associated with dyskinesia in the WES cohort. Our study provides evidence of a potential link between circadian clock genes and PD from a genetic perspective.
Collapse
Affiliation(s)
- Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - JuanJuan Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XiuRong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
12
|
Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol 2023; 14:1106515. [PMID: 36814920 PMCID: PMC9939898 DOI: 10.3389/fimmu.2023.1106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.
Collapse
Affiliation(s)
- Iswarya Muthukumarasamy
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sharleen M. Buel
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jennifer M. Hurley
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
13
|
Hu X, Li J, Wang X, Liu H, Wang T, Lin Z, Xiong N. Neuroprotective Effect of Melatonin on Sleep Disorders Associated with Parkinson's Disease. Antioxidants (Basel) 2023; 12:396. [PMID: 36829955 PMCID: PMC9952101 DOI: 10.3390/antiox12020396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder with both neurologic and systemic manifestations, which is usually associated with non-motor symptoms, including sleep disorders. Such associated sleep disorders are commonly observed as REM sleep behavior disorder, insomnia, sleep-related breathing disorders, excessive daytime sleepiness, restless legs syndrome and periodic limb movements. Melatonin has a wide range of regulatory effects, such as synchronizing circadian rhythm, and is expected to be a potential new circadian treatment of sleep disorders in PD patients. In fact, ongoing clinical trials with melatonin in PD highlight melatonin's therapeutic effects in this disease. Mechanistically, melatonin plays its antioxidant, anti-inflammatory, anti-excitotoxity, anti-synaptic dysfunction and anti-apoptotic activities. In addition, melatonin attenuates the effects of genetic variation in the clock genes of Baml1 and Per1 to restore the circadian rhythm. Together, melatonin exerts various therapeutic effects in PD but their specific mechanisms require further investigations.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
15
|
Du YH, Ma J, Hu JY, Zhu L, Wang LY, Yang RY, Liang LC, Jiang M, Cai M, Pu J. Effects of dual-task training on gait and motor ability in patients with Parkinson's disease: A systematic review and meta-analysis. Clin Rehabil 2022; 37:942-953. [PMID: 36537108 DOI: 10.1177/02692155221146085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Parkinson's disease is one of the most common neurodegenerative diseases in the world, which seriously damages motor and balance ability. Dual-task training is discussed as an appropriate intervention. The aim of this review was to synthesize the existing research findings on the efficacy of dual-task training for people with Parkinson's disease. DATA RESOURCES A systematic search on PubMed, CENTRAL, Embase, Web of Science, and PEDro, randomized-controlled trials (RCTs) of dual-task training for individuals with Parkinson's disease. METHODS Articles published until 1 November 2022 were included. Our search identified 7 RCTs with a total of 406 subjects. Review Manager 5.4 software was used for bias evaluation and to process the results of the outcome measures collected from the investigations. RESULTS Dual-task training was associated with significant improvement in most motor and balance outcomes including gait velocity (standard mean difference (SMD) = 0.62; 95% CI, 0.37-0.87; I2 = 31%; P = 0.21), cadence (SMD = 0.29; 95% CI, 0.05-0.53; I2 = 0%; P = 0.71), timed-up-and-go test (mean difference (MD) = -2.38; 95% CI, -3.93 to -0.84; I2 = 32%; P = 0.22) and mini-balance evaluation systems test (MD = 2.04; 95% CI, 1.05-3.03; I2 = 0%; P = 0.92). CONCLUSION Evidence from meta-analyses suggests that dual-task training may improve motor and balance abilities in Parkinson's disease patients. Future research should focus on finding the most appropriate dual-task treatment model for patients with different degrees, in order to further improve the rehabilitation treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yi-Hong Du
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ma
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yun Hu
- Central Lab, 596680Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Lei Zhu
- College of Sport Sciences, 56650Qufu Normal University, Qufu, Shandong Province, China
| | - Li-Yan Wang
- College of Rehabilitation Science, 191610Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ruo-Yu Yang
- College of Rehabilitation Science, 191610Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lei-Chao Liang
- College of Rehabilitation Science, 191610Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Men Jiang
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Cai
- College of Rehabilitation Science, 191610Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Muñoz EM. Microglia in Circumventricular Organs: The Pineal Gland Example. ASN Neuro 2022; 14:17590914221135697. [PMID: 36317305 PMCID: PMC9629557 DOI: 10.1177/17590914221135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The circumventricular organs (CVOs) are unique areas within the central nervous system. They serve as a portal for the rest of the body and, as such, lack a blood-brain barrier. Microglia are the primary resident immune cells of the brain parenchyma. Within the CVOs, microglial cells find themselves continuously challenged and stimulated by local and systemic stimuli, even under steady-state conditions. Therefore, CVO microglia in their typical state often resemble the activated microglial forms found elsewhere in the brain as they are responding to pathological conditions or other stressors. In this review, I focus on the dynamics of CVO microglia, using the pineal gland as a specific CVO example. Data related to microglia heterogeneity in both homeostatic and unhealthy environments are presented and discussed, including those recently generated by using advanced single-cell and single-nucleus technology. Finally, perspectives in the CVO microglia field are also included.Summary StatementMicroglia in circumventricular organs (CVOs) continuously adapt to react differentially to the diverse challenges they face. Herein, I discuss microglia heterogeneity in CVOs, including pineal gland. Further studies are needed to better understand microglia dynamics in these unique brain areas. .
Collapse
Affiliation(s)
- Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina,Estela M. Muñoz, IHEM-UNCuyo-CONICET, Parque General San Martin, Ciudad de Mendoza, M5502JMA, Mendoza, Argentina.
or
| |
Collapse
|
17
|
Beydoun HA, Chen JC, Saquib N, Naughton MJ, Beydoun MA, Shadyab AH, Hale L, Zonderman AB. Sleep and affective disorders in relation to Parkinson's disease risk among older women from the Women's Health Initiative. J Affect Disord 2022; 312:177-187. [PMID: 35752216 PMCID: PMC9302785 DOI: 10.1016/j.jad.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate sleep and affective (mood/anxiety) disorders as clinical predictors of incident Parkinson's disease (PD) among women ≥65 years of age. METHODS We performed secondary analyses with available data from the Women's Health Initiative Clinical Trials and Observational Study linked to Medicare claims. Sleep, mood and anxiety disorders at baseline were defined using diagnostic codes. Incident PD was defined using self-reported PD, first PD diagnosis, use of PD medications, and/or deaths attributed to PD. Cox regression was applied to estimate hazard ratios (HR) with 95 % confidence intervals (CI), controlling for socio-demographic/lifestyle/health characteristics. Time-to-event was calculated from baseline (1993-1998) to year of PD event, loss to follow-up, death, or December 31, 2018, whichever came first. RESULTS A total of 53,996 study-eligible WHI participants yielded 1756 (3.25 %) PD cases over ~14.39 (±6.18) years of follow-up. The relative risk for PD doubled among women with affective disorders (HR = 2.05, 95 % CI: 1.84, 2.27), mood disorders (HR = 2.18, 95 % CI: 1.97, 2.42) and anxiety disorders (HR = 1.97, 95 % CI: 1.75, 2.22). Sleep disorders alone (without affective) were not significantly associated with PD risk (HR = 0.85, 95 % CI: 0.69, 1.04), whereas affective disorders alone (without sleep) (HR = 1.93, 95 % CI: 1.72, 2.17) or in combination with sleep disorders (HR = 2.18, 95 % CI: 1.85, 2.56) were associated with twice the PD risk relative to no sleep/affective disorders. LIMITATIONS Observational design; Selection bias; Information bias; Generalizability. CONCLUSIONS Among older women, joint sleep/affective disorders and affective disorders alone are strong clinical predictors of incident PD over 14 years.
Collapse
Affiliation(s)
- Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA 22060.
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nazmus Saquib
- Department of Research, College of Medicine, Sulaiman AlRajhi University, Al Bukayriah, Saudi Arabia
| | - Michelle J Naughton
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43201, USA
| | - May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21225, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Hale
- Program in Public Health, Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21225, USA
| |
Collapse
|
18
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|
19
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
20
|
Beydoun HA, Saquib N, Wallace RB, Chen J, Coday M, Naughton MJ, Beydoun MA, Shadyab AH, Zonderman AB, Brunner RL. Psychotropic medication use and Parkinson's disease risk amongst older women. Ann Clin Transl Neurol 2022; 9:1163-1176. [PMID: 35748105 PMCID: PMC9380147 DOI: 10.1002/acn3.51614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To examine associations of antidepressant, anxiolytic and hypnotic use amongst older women (≥65 years) with incident Parkinson's Disease (PD), using data from Women's Health Initiative linked to Medicare claims. METHODS PD was defined using self-report, first diagnosis, medications and/or death certificates and psychotropic medications were ascertained at baseline and 3-year follow-up. Cox regression models were constructed to calculate adjusted hazard ratios (aHR) with 95% confidence intervals (CI), controlling for socio-demographic, lifestyle and health characteristics, overall and amongst women diagnosed with depression, anxiety and/or sleep disorders (DASD). RESULTS A total of 53,996 WHI participants (1,756 PD cases)-including 27,631 women diagnosed with DASD (1,137 PD cases)-were followed up for ~14 years. Use of hypnotics was not significantly associated with PD risk (aHR = 0.98, 95% CI: 0.82, 1.16), whereas PD risk was increased amongst users of antidepressants (aHR = 1.75, 95% CI: 1.56, 1.96) and anxiolytics (aHR = 1.48, 95% CI: 1.25, 1.73). Compared to non-users of psychotropic medications, those who used 1 type had ~50% higher PD risk, whereas those who used ≥2 types had ~150% higher PD risk. Women who experienced transitions in psychotropic medication use ('use to non-use' or 'non-use to use') between baseline and 3-year follow-up had higher PD risk than those who did not. We obtained similar results with propensity scoring and amongst DASD-diagnosed women. INTERPRETATION The use of antidepressants, anxiolytics or multiple psychotropic medication types and transitions in psychotropic medication use was associated with increased PD risk, whereas the use of hypnotics was not associated with PD risk amongst older women.
Collapse
Affiliation(s)
- Hind A. Beydoun
- Department of Research ProgramsFort Belvoir Community HospitalFort BelvoirVirginia22060USA
| | - Nazmus Saquib
- Department of Research, College of MedicineSulaiman AlRajhi UniversityAl BukayriahKingdom of Saudi Arabia
| | - Robert B. Wallace
- Department of Epidemiology and Internal MedicineUniversity of IowaIowa CityIowa52242USA
| | - Jiu‐Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA90089
| | - Mace Coday
- Department of Preventive MedicineUniversity of Tennessee Health Science CenterMemphisTennessee38163USA
| | - Michelle J. Naughton
- Department of Internal Medicine, College of MedicineOhio State UniversityColumbusOhio43201USA
| | - May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMaryland21225USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California, San DiegoLa JollaCalifornia92093USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMaryland21225USA
| | - Robert L. Brunner
- Department of Family and Community Medicine (Emeritus), School of MedicineUniversity of Nevada (Reno)AuburnCalifornia95602USA
| |
Collapse
|
21
|
Neuroprotective Effects of Resveratrol in In vivo and In vitro Experimental Models of Parkinson's Disease: a Systematic Review. Neurotox Res 2022; 40:319-345. [PMID: 35013904 DOI: 10.1007/s12640-021-00450-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is currently the second most common neurodegenerative disease, being characterized by motor and non-motor symptoms. The therapeutic options available for its treatment are limited, do not slow the progression of the disease, and have serious side effects. For this reason, many studies have sought to find compounds with neuroprotective properties that bring additional benefits to current therapy. In this context, resveratrol is a phenolic compound, found in many plant species, capable of crossing the blood-brain barrier and having multiple biological properties. Experimental studies in vitro and in vivo have shown that it can prevent or slow the progression of a variety of diseases, including PD. In this systematic review, we summarize the effects of resveratrol in experimental in vivo and in vitro models of PD and discuss the molecular mechanisms involved in its action. The bibliographic search was performed in the databases of PubMed, Web of Science, SciELO, and Google Scholar, and based on the inclusion criteria, 41 articles were selected and discussed. Most of the included studies have demonstrated neuroprotective effects of resveratrol. In general, resveratrol prevented behavioral and/or neurological disorders, improved antioxidant defenses, reduced neuroinflammatory processes, and inhibited apoptosis. In summary, this systematic review offers important scientific evidence of neuroprotective effects of resveratrol in PD and also provide valuable information about its mechanism of action that can support future clinical studies.
Collapse
|
22
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
23
|
Berberine Attenuates MPP +-Induced Neuronal Injury by Regulating LINC00943/miR-142-5p/KPNA4/NF-κB Pathway in SK-N-SH Cells. Neurochem Res 2021; 46:3286-3300. [PMID: 34427876 DOI: 10.1007/s11064-021-03431-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Berberine plays a neuro-protective role in neurodegenerative diseases, including Parkinson's disease (PD). Long non-coding RNAs (lncRNAs) play critical roles in PD pathogenesis. The purpose of this study was to investigate whether LINC00943 was involved in the role of berberine in PD. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) or 1-methyl-4-phenyl pyridine (MPP+) were used to construct PD mouse and cell models, respectively. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (Edu) assays. Inflammation and cell apoptosis were assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. Quantitative real-time PCR (qRT-PCR) was employed to test the expression of LINC00943, microRNA (miR)-142-5p, and karyopherin subunit alpha 4 (KPNA4) mRNA. The protein levels of NF-κB pathway-related markers and KPNA4 were measured by western blot. Oxidative stress level was assessed by corresponding kits. The interaction between miR-142-5p and LINC00943 or KPNA4 was determined via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Berberine inhibited MPP+-induced injury in SK-N-SH cells by promoting cell proliferation and suppressing inflammation, apoptosis, and oxidative injury. LINC00943 and KPNA4 were upregulated and miR-142-5p was downregulated in PD mouse and cell models. LINC00943 (or KPNA4) overexpression or miR-142-5p inhibition abated the neuro-protective role of berberine in PD cell model. Moreover, miR-142-5p was a target of LINC00943, and KPNA4 could specially bind to miR-142-5p. Additionally, berberine inhibited NF-κB pathway by regulating LINC00943/miR-142-5p/KPNA4 axis. Berberine protected SK-N-SH cell from MPP+-induced neuronal damage via regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway, highlighting novel evidence for the neuro-protective role of berberine in PD.
Collapse
|
24
|
Zhou G, Duong TV, Kasten EP, Hoffmann HM. Low CLOCK and CRY2 in 2nd trimester human maternal blood and risk of preterm birth: A nested case-control study. Biol Reprod 2021; 105:827-836. [PMID: 34142702 DOI: 10.1093/biolre/ioab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have observed an association between maternal circadian rhythm disruption and preterm birth (PTB). However, the underlying molecular mechanisms and the potential of circadian clock genes to serve as predictors of PTB remain unexplored. We examined the association of 10 core circadian transcripts in maternal blood with spontaneous PTB (sPTB) vs term births using a nested case-control study design. We used a public gene expression dataset (GSE59491), which was nested within the All Our Babies (AOB) study cohort in Canada. Maternal blood was sampled in trimesters 2-3 from women with sPTB (n = 51) and term births (n = 106), matched for 5 demographic variables. In 2nd trimester maternal blood, only CLOCK and CRY2 transcripts were significantly lower in sPTB vs term (p = 0.02 ~ 0.03, FDR < 0.20). A change of PER3 mRNA from trimesters 2 to 3 was significantly associated with sPTB (decline in sPTB, p = 0.02, FDR < 0.20). When CLOCK and CRY2 were modeled together in 2nd trimester blood, the odds ratio of being in the low level of both circadian gene transcripts was greater in sPTB vs term (OR = 4.86, 95%CI = (1.75,13.51), p < 0.01). Using GSVA and Pearson correlation, we identified 98 common pathways that were negatively or positively correlated with CLOCK and CRY2 expression (all p < 0.05, FDR < 0.10). The top three identified pathways were amyotrophic lateral sclerosis, degradation of extracellular matrix, and inwardly rectifying potassium channels. These three processes have previously been shown to be involved in neuron death, parturition, and uterine excitability during pregnancy, respectively.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical & Translational Sciences Institute, Michigan State University, USA
| | - Thu V Duong
- Department of Animal Science, The Reproductive and Developmental Sciences Program, College of Agriculture and Natural Resources, Michigan State University, USA
| | - Eric P Kasten
- Clinical & Translational Sciences Institute, Michigan State University, USA.,Department of Radiology, Michigan State University, USA
| | - Hanne M Hoffmann
- Department of Animal Science, The Reproductive and Developmental Sciences Program, College of Agriculture and Natural Resources, Michigan State University, USA
| |
Collapse
|
25
|
Deng A, Ma L, Zhou X, Wang X, Wang S, Chen X. FoxO3 transcription factor promotes autophagy after oxidative stress injury in HT22 cells. Can J Physiol Pharmacol 2021; 99:627-634. [PMID: 33237807 DOI: 10.1139/cjpp-2020-0448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy has been implicated in neurodegenerative diseases. Forkhead box O3 (FoxO3) transcription factors promote autophagy in heart and inhibit oxidative damage. Here we investigate the role of FoxO3 transcription factors in regulating autophagy after oxidative stress injury in immortalized mouse hippocampal cell line (HT22). The present study confirms that hydrogen peroxide (H2O2) injury could induce autophagy and FoxO3 activation in HT22 cells. In addition, overexpression of FoxO3 enhanced H2O2-induced autophagy activation and suppressed neuronal cell damage, while knockdown of FoxO3 reduced H2O2-induced autophagy activation and exacerbated neuronal cell injury. Inhibition of autophagy by 3-methyladenine (3-MA) resulted in reduced cell viability, increased production of reactive oxygen species (ROS), promoted nuclear condensation, and decreased expression of antiapoptotic and autophagy-related proteins, indicating that autophagy may have protective effects on H2O2-induced injury in HT22 cells. Moreover, overexpression of FoxO3 prevented exacerbation of brain damage induced by 3-MA. Taken together, these results show that activation of FoxO3 could induce autophagy and inhibit H2O2-induced damage in HT22 cells. Our study demonstrates the critical role of FoxO3 in regulating autophagy in brain.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Nantong University, 20th Xisi Road, 226001 Nantong, People's Republic of China
| | - Limin Ma
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xueli Zhou
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xin Wang
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical College, Nantong University, 19th Qixiu Road, 226001 Nantong, People's Republic of China
| |
Collapse
|
26
|
Lymphaticovenous Anastomosis Supermicrosurgery Decreases Oxidative Stress and Increases Antioxidant Capacity in the Serum of Lymphedema Patients. J Clin Med 2021; 10:jcm10071540. [PMID: 33917571 PMCID: PMC8038828 DOI: 10.3390/jcm10071540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Excess lymphedematous tissue causes excessive oxidative stress in lymphedema. Lymphaticovenous anastomosis (LVA) supermicrosurgery is currently emerging as the first-line surgical intervention for lymphedema. No data are available regarding the changes in serum proteins correlating to oxidative stress and antioxidant capacity before and after LVA. METHODS A total of 26 patients with unilateral lower limb lymphedema confirmed by lymphoscintigraphy were recruited, and venous serum samples were collected before (pre-LVA) and after LVA (post-LVA). In 16 patients, the serum proteins were identified by isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis with subsequent validation of protein expression by enzyme-linked immunosorbent assay. An Oxidative Stress Panel Kit was used on an additional 10 patients. Magnetic resonance (MR) volumetry was used to measure t limb volume six months after LVA. RESULTS This study identified that catalase (CAT) was significantly downregulated after LVA (pre-LVA vs. post-LVA, 2651 ± 2101 vs. 1448 ± 593 ng/mL, respectively, p = 0.033). There were significantly higher levels of post-LVA serum total antioxidant capacity (pre-LVA vs. post-LVA, 441 ± 81 vs. 488 ± 59 µmole/L, respectively, p = 0.031) and glutathione peroxidase (pre-LVA vs. post-LVA, 73 ± 20 vs. 92 ± 29 U/g, respectively, p = 0.018) than pre-LVA serum. In addition, after LVA, there were significantly more differences between post-LVA and pre-LVA serum levels of CAT (good outcome vs. fair outcome, -2593 ± 2363 vs. 178 ± 603 ng/mL, respectively, p = 0.021) and peroxiredoxin-2 (PRDX2) (good outcome vs. fair outcome, -7782 ± 7347 vs. -397 ± 1235 pg/mL, respectively, p = 0.037) in those patients with good outcomes (≥40% volume reduction in MR volumetry) than those with fair outcomes (<40% volume reduction in MR volumetry). CONCLUSIONS The study revealed that following LVA, differences in some specific oxidative stress markers and antioxidant capacity can be found in the serum of patients with lymphedema.
Collapse
|
27
|
Gut Microbiota at the Intersection of Alcohol, Brain, and the Liver. J Clin Med 2021; 10:jcm10030541. [PMID: 33540624 PMCID: PMC7867253 DOI: 10.3390/jcm10030541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, increased research into the cognizance of the gut-liver-brain axis in medicine has yielded powerful evidence suggesting a strong association between alcoholic liver diseases (ALD) and the brain, including hepatic encephalopathy or other similar brain disorders. In the gut-brain axis, chronic, alcohol-drinking-induced, low-grade systemic inflammation is suggested to be the main pathophysiology of cognitive dysfunctions in patients with ALD. However, the role of gut microbiota and its metabolites have remained unclear. Eubiosis of the gut microbiome is crucial as dysbiosis between autochthonous bacteria and pathobionts leads to intestinal insult, liver injury, and neuroinflammation. Restoring dysbiosis using modulating factors such as alcohol abstinence, promoting commensal bacterial abundance, maintaining short-chain fatty acids in the gut, or vagus nerve stimulation could be beneficial in alleviating disease progression. In this review, we summarize the pathogenic mechanisms linked with the gut-liver-brain axis in the development and progression of brain disorders associated with ALD in both experimental models and humans. Further, we discuss the therapeutic potential and future research directions as they relate to the gut-liver-brain axis.
Collapse
|
28
|
Velvet Antler Methanol Extracts Ameliorate Parkinson's Disease by Inhibiting Oxidative Stress and Neuroinflammation: From C. elegans to Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8864395. [PMID: 33505591 PMCID: PMC7811427 DOI: 10.1155/2021/8864395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023]
Abstract
Velvet antler is the traditional tonic food or medicine used in East Asia for treating aging-related diseases. Herein, we try to dissect the pharmacology of methanol extracts (MEs) of velvet antler on Parkinson's disease (PD). Caenorhabditis elegans studies showed that MEs decreased the aggregation of α-synuclein and protected oxidative stress-induced DAergic neuron degeneration. In vitro cellular data indicated that MEs suppressed the LPS-induced MAPKs and NF-κB activation, therefore inhibiting overproduction of reactive oxygen species, nitric oxide, tumor necrosis factor-α, and interleukin-6; blocking microglia activation; and protecting DAergic neurons from the microglia-mediated neurotoxicity. In vivo MPTP-induced PD mouse investigations found that MEs prevented MPTP-induced neuron loss in the substantia nigra and improved the behavioral rotating rod performance in MPTP-treated mice by increasing the expression level of tyrosine hydroxylase (TH) and downregulating α-synuclein protein expression. In all, these results demonstrate that MEs ameliorate PD by inhibiting oxidative stress and neuroinflammation.
Collapse
|
29
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:949-970. [PMID: 34120916 PMCID: PMC8461657 DOI: 10.3233/jpd-212671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Collapse
Affiliation(s)
- Anaıs Marie
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Morgane Darricau
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Katia Touyarot
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand (Center of Research Excellence), Dunedin, New Zealand
| | | |
Collapse
|
31
|
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153320. [PMID: 32920285 DOI: 10.1016/j.phymed.2020.153320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are primarily characterized by selective neuronal loss in the brain. Alzheimer's disease as the most common NDDs and the most prevalent cause of dementia is characterized by Amyloid-beta deposition, which leads to cognitive and memory impairment. Parkinson's disease is a progressive neurodegenerative disease characterized by the dramatic death of dopaminergic neuronal cells, especially in the SNc and caused alpha-synuclein accumulation in the neurons. Silymarin, an extract from seeds of Silybum marianum, administered mostly for liver disorders and also had anti-oxidant and anti-carcinogenic activities. PURPOSE The present comprehensive review summarizes the beneficial effects of Silymarin in-vivo and in-vitro and even in animal models for these NDDs. METHODS A diagram model for systematic review is utilized for this search. The research is conducted in the following databases: PubMed, Web of Science, Scopus, and Science Direct. RESULTS Based on the inclusion criteria, 83 studies were selected and discussed in this review. CONCLUSION Lastly, we review the latest experimental evidences supporting the potential effects of Silymarin, as a neuroprotective agent in NDDs.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
| | - Zahra Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
32
|
Meng C, Gao J, Ma Q, Sun Q, Qiao T. LINC00943 knockdown attenuates MPP +-induced neuronal damage via miR-15b-5p/RAB3IP axis in SK-N-SH cells. Neurol Res 2020; 43:181-190. [PMID: 33208053 DOI: 10.1080/01616412.2020.1834290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurodegenerative problem correlated with neuronal damage. Long noncoding RNAs (lncRNAs) are implicated in neuronal damage in PD development. This research aims to analyze the function and mechanism of LINC00943 in 1-methyl-4-phenylpyridinium (MPP+)-caused neuronal injury. METHODS MPP+-challenged SK-N-SH cells served as a PD-like model of neuronal damage. LINC00943, microRNA-15b-5p (miR-15b-5p) and RAB3A interacting protein (RAB3IP) abundances were examined via quantitative reverse transcription polymerase chain reaction or western blot. MPP+-caused neuronal damage was assessed via cell viability, apoptosis, inflammatory injury and oxidative injury. The association between miR-15b-5p and LINC00943 or RAB3IP was determined via dual-luciferase reporter analysis and RNA immunoprecipitation. RESULTS LINC00943 abundance was up-regulated in MPP+-challenged SK-N-SH cells. LINC00943 silence alleviated MPP+-caused decrease of cell viability and elevation of apoptosis, inflammatory injury and oxidative injury. miR-15b-5p was inhibited via LINC00943, and miR-15b-5p inhibition reversed knockdown of LINC00943-mediated suppression of MPP+-induced neuronal damage. RAB3IP was targeted via miR-15b-5p, and LINC00943 could regulate RAB3IP via miR-15b-5p. miR-15b-5p addition mitigated MPP+-induced neuronal damage through decreasing RAB3IP. CONCLUSION LINC00943 inhibition alleviated MPP+-induced neuronal injury via miR-15b-5p/RAB3IP axis, indicating a potential target for treatment of PD.
Collapse
Affiliation(s)
- Chunming Meng
- Department of Geriatrics, The First People's Hospital of Lianyungang , Lianyungan City, Jiangsu Province, China
| | - Jing Gao
- Department of Geriatrics, The First People's Hospital of Lianyungang , Lianyungan City, Jiangsu Province, China
| | - Qingyuan Ma
- Department of Geriatrics, The First People's Hospital of Lianyungang , Lianyungan City, Jiangsu Province, China
| | - Qian Sun
- Department of Geriatrics, The First People's Hospital of Lianyungang , Lianyungan City, Jiangsu Province, China
| | - Tiantian Qiao
- Department of Geriatrics, The First People's Hospital of Lianyungang , Lianyungan City, Jiangsu Province, China
| |
Collapse
|
33
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep 2020; 22:50. [PMID: 32661611 PMCID: PMC7359176 DOI: 10.1007/s11906-020-01063-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Blood pressure (BP) follows a circadian rhythm (CR) in normotensive subjects. BP increases in the morning and decreases at night. This review aims at providing an up-to-date overview regarding the molecular mechanisms underlying the circadian regulation of BP. RECENT FINDINGS The suprachiasmatic nucleus (SCN) is the regulatory center for CRs. In SCN astrocytes, the phosphorylated glycogen synthase kinase-3β (pGSK-3β) also follows a CR and its expression reaches a maximum in the morning and decreases at night. pGSK-3β induces the β-catenin migration to the nucleus. During the daytime, the nuclear β-catenin increases the expression of the glutamate excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). In SCN, EAAT2 removes glutamate from the synaptic cleft of glutamatergic neurons and transfers it to the astrocyte cytoplasm where GS converts glutamate into glutamine. Thus, glutamate decreases in the synaptic cleft. This decreases the stimulation of the glutamate receptors AMPA-R and NMDA-R located on glutamatergic post-synaptic neurons. Consequently, activation of NTS is decreased and BP increases. The opposite occurs at night. Despite several studies resulting from animal studies, the circadian regulation of BP appears largely controlled in normotensive subjects by the canonical WNT/β-catenin pathway involving the SCN, astrocytes, and glutamatergic neurons.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, 77104, Meaux, France.
| | - Olivier Schussler
- Department of Thoracic surgery, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Louis Hébert
- Cardiology Institute, Pitié-Salpétrière Hospital, AP-HP, Paris, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| |
Collapse
|