1
|
Sharma S, Chawla S, Kumar P, Ahmad R, Kumar Verma P. The chronic unpredictable mild stress (CUMS) Paradigm: Bridging the gap in depression research from bench to bedside. Brain Res 2024; 1843:149123. [PMID: 39025397 DOI: 10.1016/j.brainres.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Chawla
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, Haryana 124001, India
| | - Praveen Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rizwan Ahmad
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| |
Collapse
|
2
|
Alexander L, Anderson D, Baxter L, Claydon M, Rucker J, Robinson ESJ. Preclinical models for evaluating psychedelics in the treatment of major depressive disorder. Br J Pharmacol 2024. [PMID: 39467003 DOI: 10.1111/bph.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Psychedelic drugs have seen a resurgence in interest as a next generation of psychiatric medicines with potential as rapid-acting antidepressants (RAADs). Despite promising early clinical trials, the mechanisms which underlie the effects of psychedelics are poorly understood. For example, key questions such as whether antidepressant and psychedelic effects involve related or independent mechanisms are unresolved. Preclinical studies in relevant animal models are key to understanding the pharmacology of psychedelics and translating these findings to explain efficacy and safety in patients. Understanding the mechanisms of action associated with the behavioural effects of psychedelic drugs can also support the identification of novel drug targets and more effective treatments. Here we review the behavioural approaches currently used to quantify the psychedelic and antidepressant effects of psychedelic drugs. We discuss conceptual and methodological issues, the importance of using clinically relevant doses and the need to consider possible sex differences in preclinical psychedelic studies.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Dasha Anderson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Luke Baxter
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Matthew Claydon
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - James Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Kupferberg A, Hasler G. From antidepressants and psychotherapy to oxytocin, vagus nerve stimulation, ketamine and psychedelics: how established and novel treatments can improve social functioning in major depression. Front Psychiatry 2024; 15:1372650. [PMID: 39469469 PMCID: PMC11513289 DOI: 10.3389/fpsyt.2024.1372650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
Social cognitive deficits and social behavior impairments are common in major depressive disorder (MDD) and affect the quality of life and recovery of patients. This review summarizes the impact of standard and novel treatments on social functioning in MDD and highlights the potential of combining different approaches to enhance their effectiveness. Standard treatments, such as antidepressants, psychotherapies, and brain stimulation, have shown mixed results in improving social functioning, with some limitations and side effects. Newer treatments, such as intranasal oxytocin, mindfulness-based cognitive therapy, and psychedelic-assisted psychotherapy, have demonstrated positive effects on social cognition and behavior by modulating self-referential processing, empathy, and emotion regulation and through enhancement of neuroplasticity. Animal models have provided insights into the neurobiological mechanisms underlying these treatments, such as the role of neuroplasticity. Future research should explore the synergistic effects of combining different treatments and investigate the long-term outcomes and individual differences in response to these promising interventions.
Collapse
Affiliation(s)
- Aleksandra Kupferberg
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
- University Psychiatry Research Unit, Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Department of Neuropsychology, Lake Lucerne Institute, Vitznau, Switzerland
| |
Collapse
|
4
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
5
|
Fouad MA, Tadros MG, Michel HE. Etanercept ameliorates chronic mild stress-induced depressive-like behavior in rats: Crosstalk between MAPK and STAT3 pathways and norepinephrine and serotonin transporters. Eur J Pharmacol 2024; 978:176801. [PMID: 38945285 DOI: 10.1016/j.ejphar.2024.176801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Depression is a serious medical illness characterized by persistent feelings of sadness, hopelessness, and lack of interest in daily activities. It can interfere with daily functioning and quality of life. Despite decades of research, the pathophysiology of depression remains incompletely understood. The correlation between depression and inflammation has recently attracted considerable attention. This study investigated the potential antidepressant effect of etanercept, a tumor necrosis factor-alpha (TNF-α) inhibitor, utilizing a chronic mild stress (CMS) model in rats. Male Wistar rats were divided into two groups; one following a non-stressed protocol and the other a stressed protocol for 5 weeks. From the beginning of the third week, rats were treated either with saline daily or with etanercept twice a week (0.3 mg/kg, i.p.) or with fluoxetine daily (10 mg/kg, i.p) as a reference. Etanercept exhibited comparable effects to those of fluoxetine in counteracting CMS-induced behavioral manifestation in the forced swimming and splash tests. Etanercept also restored serotonin and norepinephrine levels to control values in the prefrontal cortex (PFC). Moreover, the current study verified the antioxidant and anti-inflammatory effects of etanercept. Interestingly, etanercept halted the expression of both norepinephrine and serotonin transporters in stressed rats. This could be attributed to abrogation of the p38 mitogen-activated protein kinase (p38 MAPK) and signal transducer and activator of transcription 3 (STAT-3) pathways in the PFC. The findings of the present study contribute to the understanding of the potential of etanercept as an antidepressant and provide insights into the neurobiological mechanisms underlying its therapeutic effects.
Collapse
Affiliation(s)
- Mariam A Fouad
- Laboratory Evaluation Administration, CA of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
7
|
Cao Z, Yung WH, Ke Y. Distinct populations of lateral preoptic nucleus neurons jointly contribute to depressive-like behaviors through divergent projections in male mice. Neurobiol Stress 2024; 32:100667. [PMID: 39233784 PMCID: PMC11372801 DOI: 10.1016/j.ynstr.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
The lateral preoptic area (LPO) is a component of the hypothalamus involved in various physiological functions including sleep-wakefulness transition, thermoregulation, and water-salt balance. In this study, we discovered that distinct LPO excitatory neurons project separately to the aversive processing center lateral habenula (LHb) and the reward processing hub ventral tegmental area (VTA). Following chronic restraint stress (CRS), the LHb-projecting and VTA-projecting LPO neurons exhibited increased and decreased neuronal activities, respectively. Optogenetic activation of LHb-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within LHb evoked aversion and avoidance behaviors, while activation of VTA-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within VTA produced preference and exploratory behaviors in mice. Furthermore, either optogenetic inhibition of LHb-projecting LPO excitatory neurons or activation of VTA-projecting LPO excitatory neurons during CRS effectively prevented the development of depressive-like behaviors. Our study unveils, for the first-time, divergent pathways originating from LPO that regulate opposite affective states in mice and implicates that an imbalance of their activities could lead to depressive-like behaviors. These circuitries represent promising therapeutic targets to relieve emotional dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| | - Wing-Ho Yung
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| |
Collapse
|
8
|
Ratajczak P, Martyński J, Zięba JK, Świło K, Kopciuch D, Paczkowska A, Zaprutko T, Kus K. Comparative Efficacy of Animal Depression Models and Antidepressant Treatment: A Systematic Review and Meta-Analysis. Pharmaceutics 2024; 16:1144. [PMID: 39339181 PMCID: PMC11435171 DOI: 10.3390/pharmaceutics16091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Animal models are critical tools in the study of psychiatric disorders; however, none of the current models fully reflect human stress-related disorders, even though most of the knowledge about the mechanisms of depression comes from animal studies. Animal studies are useful in pharmacological research, whereby we can obtain results that translate into patient treatment by controlling environmental factors, especially in behavioural research. The authors systematically reviewed this issue since medical databases provide access to many primary studies. METHODS A systematic review and meta-analysis were conducted based on 25 primary studies. The studies were identified in databases such as PubMed, Embase, and Web of Science (December 2022) according to the inclusion and exclusion criteria established at the beginning of the research and published in the form of a protocol, following the PRISMA and Cochrane Collaboration methodology for secondary studies and CAMARADES (CAMARADES Berlin, QUEST-BIH Charité) for secondary studies on animals. Forest plot analyses were performed (data presented as Mean Difference, Random Model, Inverse Variance), Risk of Bias assessment (Systematic Review Center for Laboratory animal Experimentation (SYRCLE) evaluation), quality assessment of included studies (Animal research: Reporting of In Vivo Experiments (ARRIVE)), and a range of data from source publications were compiled in tabular form. The study analysed the popularity of both animal depression models (ADM) and rat strains used in pharmacological research to test the efficacy of antidepressant drugs based on the immobility time (IT) factor (Forced Swimming Test). The study examined selective serotonin reuptake inhibitors, namely fluoxetine, sertraline, paroxetine, citalopram, and escitalopram. Additionally, the study addressed issues concerning the "data availability statement" because precise IT data analysis was impossible in the case of 212 papers. RESULTS Our data confirm that the Chronic Unpredictable Mild Stress (CUMS) model is the most popular and versatile model used in preclinical depression research, while the two most popular rat strains were Wistar and Sprague-Dawley. The quality of included papers based on the ARRIVE assessment showed a ratio value equal to 0.63, meaning that studies were of intermediate overall quality. The Risk of Bias assessment based on the SYRCLE tool revealed a high risk related to the blinding and the random outcome assessment. In the meta-analysis, the results indicate that all analysed drugs demonstrated efficacy in reducing IT, and the most analysed drug was fluoxetine (confirmed based on 17 studies (19 models)). The analysis of the efficacy of ADMs showed that the most effective models were CUMS, Flinders Sensitive Line (genetic model), Social Isolation, Restraint Stress, and Low-dose Lipopolysaccharide (pharmacological model). Only 2.35% (5 out of 212) of corresponding authors responded to our data request. CONCLUSIONS The study highlights the dominance of the CUMS model and the Wistar and Sprague-Dawley rat strains in preclinical depression research, affirming the efficacy of SSRIs, particularly fluoxetine, in reducing IT. The findings underscore the need for better data availability and methodological improvements despite intermediate overall study quality and notable bias risks. Enhanced transparency and rigorous assessment standards are essential for advancing the reliability of animal models in depression research.
Collapse
Affiliation(s)
- Piotr Ratajczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Jakub Martyński
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Jan Kazimierz Zięba
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznan, Poland
| | - Katarzyna Świło
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dorota Kopciuch
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Anna Paczkowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Tomasz Zaprutko
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Krzysztof Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
9
|
Sheng JA, Tobet SA. Maternal immune activation with toll-like receptor 7 agonist during mid-gestation alters juvenile and adult developmental milestones and behavior. J Neuroendocrinol 2024; 36:e13417. [PMID: 38822791 PMCID: PMC11296912 DOI: 10.1111/jne.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Infections during pregnancy are associated with increased risk for adult neuropsychiatric disease, such as major depressive disorder, schizophrenia, and autism spectrum disorder. In mouse models of maternal immune activation (MIA), different toll-like receptors (TLRs) are stimulated to initiate inflammatory responses in mother and fetus. The goal of this study was to determine sex-dependent aspects of MIA using a TLR7/8 agonist, Resiquimod (RQ), on neurodevelopment. RQ was administered to timed-pregnant mice on embryonic day (E) 12.5. At E15, maternal/fetal plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Maternal cytokines interleukin (IL)-6 and IL-10 were higher while tumor necrosis factor (TNF)-α and IL-17 were lower in pregnant dams exposed to RQ. Fetal cytokines (E15) were altered at the same timepoint with fetal plasma IL-6 and IL-17 greater after RQ compared to vehicle, while IL-10 and TNF-α were higher in male fetuses but not female. Other timed-pregnant dams were allowed to give birth. MIA with RQ did not alter the female to male ratio of offspring born per litter. Body weights were reduced significantly in both sexes at birth, and over the next 5 weeks. Offspring from RQ-injected mothers opened their eyes 5 days later than controls. Similarly, female offspring from RQ-injected mothers exhibited pubertal delay based on vaginal opening 2-3 days later than control females. On the behavioral side, juvenile and adult male and female MIA offspring exhibited less social-like behavior in a social interaction test. Anhedonia-like behavior was greater in MIA adult female mice. This study provides support for sex-dependent influences of fetal antecedents for altered brain development and behavioral outputs that could be indicative of increased susceptibility for adult disorders through immune mechanisms. Future studies are needed to determine neural cellular and molecular mechanisms for such programming effects.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO
- Innovation Center on Sex Differences in Medicine, Mass General Hospital
| |
Collapse
|
10
|
Dhureja M, Deshmukh R. Impact of alogliptin on lipopolysaccharide-induced experimental Parkinson's disease: Unrevealing neurochemical and histopathological alterations in rodents. Eur J Pharmacol 2024; 975:176635. [PMID: 38734296 DOI: 10.1016/j.ejphar.2024.176635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH LPS (5μg/5 μl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmaceutical Sciences & Technology, MRSPTU, Bathinda, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences & Technology, MRSPTU, Bathinda, India; Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
11
|
Zoicas I, Licht C, Mühle C, Kornhuber J. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models. Neurosci Biobehav Rev 2024; 162:105726. [PMID: 38762128 DOI: 10.1016/j.neubiorev.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.
Collapse
Affiliation(s)
- Iulia Zoicas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany.
| | - Christiane Licht
- Paracelsus Medical University, Department of Psychiatry and Psychotherapy, Prof.-Ernst-Nathan-Str. 1, Nürnberg 90419, Germany
| | - Christiane Mühle
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| | - Johannes Kornhuber
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
12
|
Khan YS, Alsrhani A, Kaneez S, Fatima M, Iqbal K, Alruwaili M, Farhana A. Synergy between psychological impact and biochemical manifestation of stress among the COVID-19 pandemic-affected population. Int J Health Sci (Qassim) 2024; 18:46-57. [PMID: 38974651 PMCID: PMC11226940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objective Due to the COVID-19 pandemic, many countries around the world experienced an unprecedented increase in stress in the general population. Even after normal life has been reestablished, the new normal is punctuated by severely impacted vulnerable groups. Stress-associated symptoms display an intricate relationship with biochemical modulations, which coordinate the stress response. Identifying these biochemical factors is inherent to deciphering the mode of treatment needed to diminish the health-care gap resulting from the pandemic. Methods We applied psychological measures using the perceived stress (PS) and COVID-19 anxiety (CA) scales and preventive health behavior (PHB) to evaluate stress in the general population. Biochemical markers of stress, that is, total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), cortisol, and C-reactive protein (CRP) were tested in the serum samples of the participants. Statistical analysis was carried out using SPSS version 22.0. Results Stress scores for PS, CA, and PHB indicate the prevalence of moderate-to-high stress among participants, and a correlation between psychological stress and biochemical correlates, TAC, TBARS, cortisol, and CRP. Serum concentrations of TBARS, Cortisol, and CRP were found to be significantly increased, while the TAC was decreased across all stress types and levels. Our findings demonstrate a positive correlation between PS, CA, PHB TBARS, cortisol, and CRP and a strong negative correlation with TAC. Conclusion The results of this study will help in tailoring targeted interventions and preventive regimes to mitigate COVID-19-associated anxiety and stress disorders prevailing even after the actual pandemic has subsided.
Collapse
Affiliation(s)
- Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Jouf, Saudi Arabia
| | - Salma Kaneez
- Department of Psychology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mahvish Fatima
- Department of Psychology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khalid Iqbal
- Department of Surgery, Era’s Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Jouf, Saudi Arabia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Jouf, Saudi Arabia
| |
Collapse
|
13
|
Singh P, Vasundhara B, Das N, Sharma R, Kumar A, Datusalia AK. Metabolomics in Depression: What We Learn from Preclinical and Clinical Evidences. Mol Neurobiol 2024:10.1007/s12035-024-04302-5. [PMID: 38898199 DOI: 10.1007/s12035-024-04302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Boosani Vasundhara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Nabanita Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Centre, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
| |
Collapse
|
14
|
Pańczyszyn-Trzewik P, Stachowicz K, Misztak P, Nowak G, Sowa-Kućma M. Repeated Sulforaphane Treatment Reverses Depressive-like Behavior and Exerts Antioxidant Effects in the Olfactory Bulbectomy Model in Mice. Pharmaceuticals (Basel) 2024; 17:762. [PMID: 38931429 PMCID: PMC11206991 DOI: 10.3390/ph17060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Growing evidence suggests that activators of nuclear factor erythroid-derived 2-like 2 (Nrf2), such as sulforaphane, may represent promising novel pharmacological targets for conditions related to oxidative stress, including depressive disorder. Therefore, we conducted a study to explore the behavioral and biochemical effects of repeated (14 days) sulforaphane (SFN) treatment in the olfactory bulbectomy (OB) animal model of depression. An open field test (OFT), splash test (ST), and spontaneous locomotor activity test (LA) were used to assess changes in depressive-like behavior and the potential antidepressant-like activity of SFN. The OB model induced hyperactivity in mice during the OFT and LA as well as a temporary loss of self-care and motivation in the ST. The repeated administration of SFN (10 mg/kg) effectively reversed these behavioral changes in OB mice across all tests. Additionally, a biochemical analysis revealed that SFN (10 mg/kg) increased the total antioxidant capacity in the frontal cortex and serum of the OB model. Furthermore, SFN (10 mg/kg) significantly enhanced superoxide dismutase activity in the serum of OB mice. Overall, the present study is the first to demonstrate the antidepressant-like effects of repeated SFN (10 mg/kg) treatment in the OB model and indicates that these benefits may be linked to improved oxidative status.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Department of Medicine and Surgery, University of Milano-Bicocca, 20-900 Monza, Italy
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1A, 35-310 Rzeszow, Poland
| |
Collapse
|
15
|
Elfakharany SA, Eskaros SS, Azhary NME, Abdelmonsif DA, Zeitoun TM, Ammar GAG, Hatem YA. Neuroprotective Role of Selenium Nanoparticles Against Behavioral, Neurobiochemical and Histological Alterations in Rats Subjected to Chronic Restraint Stress. Mol Neurobiol 2024:10.1007/s12035-024-04196-3. [PMID: 38703343 DOI: 10.1007/s12035-024-04196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Chronic stress induces changes in the prefrontal cortex and hippocampus. Selenium nanoparticles (SeNPs) showed promising results in several neurological animal models. The implementation of SeNPs in chronic restraint stress (CRS) remains to be elucidated. This study was done to determine the possible protective effects of selenium nanoparticles on behavioral changes and brain oxidative stress markers in a rat model of CRS. 50 rats were divided into three groups; control group (n = 10), untreated CRS group (n = 10) and CRS-SeNPs treated group (n = 30). Restraint stress was performed 6 h./day for 21 days. Rats of CRS-SeNPs treated group received 1, 2.5 or 5 mg/kg SeNPs (10 rats each) by oral gavage for 21 days. Rats were subjected to behavioral assessments and then sacrificed for biochemical and histological analysis of the prefrontal cortex and hippocampus. Prefrontal cortical and hippocampal serotonin levels, oxidative stress markers including malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx), tumor necrosis factor alpha (TNF-α) and caspase-3 were assessed. Accordingly, different doses of SeNPs showed variable effectiveness in ameliorating disease parameters, with 2.5 mg/kg dose of SeNPs showing the best improving results in all studied parameters. The present study exhibited the neuroprotective role of SeNPs in rats subjected to CRS and proposed their antioxidant, anti-inflammatory and anti-apoptotic effects as the possible mechanism for increased prefrontal cortical and hippocampal serotonin level, ameliorated anxiety-like and depressive-like behaviors and improved prefrontal cortical and hippocampal histological architecture.
Collapse
Affiliation(s)
- Sarah A Elfakharany
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Al-Mouassat Medical Campus, El Hadara, Alexandria, Egypt.
| | - Samir S Eskaros
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Al-Mouassat Medical Campus, El Hadara, Alexandria, Egypt
| | - Nesrine M El Azhary
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Al-Mouassat Medical Campus, El Hadara, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Al- Moussat Medical Campus, El Hadara, Alexandria, Egypt
| | - Teshreen M Zeitoun
- Department of Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Al-Moussat Medical Campus, El Hadara, Alexandria, Egypt
| | - Gamal A G Ammar
- Biotechnology Unit, Plant Production Department (PPD), Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, Egypt
| | - Youssef A Hatem
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Al-Mouassat Medical Campus, El Hadara, Alexandria, Egypt
| |
Collapse
|
16
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
18
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. Sci Rep 2024; 14:6646. [PMID: 38503831 PMCID: PMC10951409 DOI: 10.1038/s41598-024-56766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
Affiliation(s)
- Laura B Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Christine L Faunce
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Luis A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
19
|
Bécam J, Ropars G, Dwiri FA, Brunaud C, Toutain J, Chazalviel L, Naveau M, Valable S, Bernaudin M, Touzani O, Pérès EA. Physical Activity Attenuates Brain Irradiation-Associated Skeletal Muscle Damage in the Rat. Int J Radiat Oncol Biol Phys 2024; 118:1081-1093. [PMID: 37866760 DOI: 10.1016/j.ijrobp.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described. Our hypothesis is that the abscopal effects of radiation therapy on skeletal muscle may be involved in fatigue. The present study aims to assess the effect of brain irradiation on skeletal muscles and its relationship with fatigue and to analyze whether physical activity could counteract brain radiation-induced side effects. METHODS AND MATERIALS Adult Wistar rats were randomly distributed between 4 groups: control (CTL), irradiated (IR), nonirradiated with physical activity (PA), and irradiated with physical activity (IR+PA). IR rats were exposed to a whole-brain irradiation (WBI) of 30 Gy (3 × 10 Gy). Rats subjected to PA underwent sessions of running on a treadmill, 3 times/week for 6 months. The effects of WBI on muscles were evaluated by complementary approaches: behavioral tests (fatigue, locomotion activity), magnetic resonance imaging, and histologic analyses. RESULTS IR rats displayed a significant fatigue and a reduced locomotor activity at short term compared with the CTL group, which were attenuated with PA at 6 months after WBI. The IR rat's gastrocnemius mass decreased compared with CTL rats, which was reversed by physical activity at 14 days after WBI. Multiparametric magnetic resonance imaging of the skeletal muscle highlighted an alteration of the fiber organization in IR rats as demonstrated by a significant decrease of the mean diffusivity in the gastrocnemius at short term. Alteration of fibers was confirmed by histologic analyses: the number of type I fibers was decreased, whereas that of type IIa fibers was increased in IR animals but not in the IR+PA group. CONCLUSIONS The data show that WBI induces skeletal muscle damage, which is attenuated by PA. This muscle damage may explain, at least in part, the fatigue of patients treated with radiation therapy.
Collapse
Affiliation(s)
- Julie Bécam
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Gwenn Ropars
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Fatima-Azzahra Dwiri
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Laurent Chazalviel
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Mikaël Naveau
- Université de Caen Normandie, CNRS, INSERM, CEA, Normandie Université, UAR3408/US50, Cyceron, GIP Cyceron, F-14000 Caen, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Omar Touzani
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Elodie Anne Pérès
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP Cyceron, F-14000 Caen, France.
| |
Collapse
|
20
|
Li S, Shao H, Sun T, Guo X, Zhang X, Zeng Q, Fang S, Liu X, Wang F, Liu F, Ling P. Anti-neuroinflammatory effect of hydroxytyrosol: a potential strategy for anti-depressant development. Front Pharmacol 2024; 15:1366683. [PMID: 38495098 PMCID: PMC10940523 DOI: 10.3389/fphar.2024.1366683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Depression is a complex psychiatric disorder with substantial societal impact. While current antidepressants offer moderate efficacy, their adverse effects and limited understanding of depression's pathophysiology hinder the development of more effective treatments. Amidst this complexity, the role of neuroinflammation, a recognized but poorly understood associate of depression, has gained increasing attention. This study investigates hydroxytyrosol (HT), an olive-derived phenolic antioxidant, for its antidepressant and anti-neuroinflammatory properties based on mitochondrial protection. Methods: In vitro studies on neuronal injury models, the protective effect of HT on mitochondrial ultrastructure from inflammatory damage was investigated in combination with high-resolution imaging of mitochondrial substructures. In animal models, depressive-like behaviors of chronic restraint stress (CRS) mice and chronic unpredictable mild stress (CUMS) rats were examined to investigate the alleviating effects of HT. Targeted metabolomics and RNA-Seq in CUMS rats were used to analyze the potential antidepressant pathways of HT. Results: HT protected mitochondrial ultrastructure from inflammatory damage, thus exerting neuroprotective effects in neuronal injury models. Moreover, HT reduced depressive-like behaviors in mice and rats exposed to CRS and CUMS, respectively. HT's influence in the CRS model included alleviating hippocampal neuronal damage and modulating cytokine production, mitochondrial dysfunction, and brain-derived neurotrophic factor (BDNF) signaling. Targeted metabolomics in CUMS rats revealed HT's effect on neurotransmitter levels and tryptophan-kynurenine metabolism. RNA-Seq data underscored HT's antidepressant mechanism through the BDNF/TrkB signaling pathways, key in nerve fiber functions, myelin formation, microglial differentiation, and neural regeneration. Discussion: The findings underscore HT's potential as an anti-neuroinflammatory treatment for depression, shedding light on its antidepressant effects and its relevance in nutritional psychiatry. Further investigations are warranted to comprehensively delineate its mechanisms and optimize its clinical application in depression treatment.
Collapse
Affiliation(s)
- Shuaiguang Li
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Huarong Shao
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Ting Sun
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xinyan Guo
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xiaoyuan Zhang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Qingkai Zeng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Shaoying Fang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xiaoyu Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Fan Wang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
21
|
Gliozzi M, Coppoletta AR, Cardamone A, Musolino V, Carresi C, Nucera S, Ruga S, Scarano F, Bosco F, Guarnieri L, Macrì R, Mollace R, Belzung C, Mollace V. The dangerous "West Coast Swing" by hyperglycaemia and chronic stress in the mouse hippocampus: Role of kynurenine catabolism. Pharmacol Res 2024; 201:107087. [PMID: 38301816 DOI: 10.1016/j.phrs.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Sykes DJ, Solanki S, Chukkapalli S, Williams K, Newman EA, Resnicow K, Shah YM. Structural enrichment attenuates colitis-associated colon cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580099. [PMID: 38405737 PMCID: PMC10888747 DOI: 10.1101/2024.02.13.580099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Colorectal cancer (CRC) is a major public health concern and disproportionately impacts racial/ethnic minority populations in the US. Animal models are helpful in examining human health disparities because many stress-induced human health conditions can be recapitulated using mouse models. Azoxymethane (AOM)/ dextran sodium sulfate (DSS) treatment can be used to model colitis-associated cancers. While colitis-associated cancers account for only 2% of colon cancers, the AOM/DSS model is useful for examining links between inflammation, immunity, and colon cancer. Mice were housed in enriched and impoverished environments for 1-month prior to behavioral testing. Following behavioral testing the mice were subjected to the AOM/DSS model. While our analysis revealed no significant behavioral variances between the impoverished and enriched housing conditions, we found significant effects in tumorigenesis. Enriched mice had fewer tumors and smaller tumor volumes compared to impoverished mice. African Americans are at higher risk for early onset colorectal cancers in part due to social economic status. Furthermore, housing conditions and environment may reflect social economic status. Research aimed at understanding links between social economic status and colorectal cancer progression is important for eliminating disparities in health outcomes.
Collapse
|
23
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. RESEARCH SQUARE 2024:rs.3.rs-3892315. [PMID: 38352503 PMCID: PMC10862982 DOI: 10.21203/rs.3.rs-3892315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
|
24
|
Nocheva H, Stoynev N, Vodenicharov V, Krastev D, Krastev N, Mileva M. Cannabinoid and Serotonergic Systems: Unraveling the Pathogenetic Mechanisms of Stress-Induced Analgesia. Biomedicines 2024; 12:235. [PMID: 38275406 PMCID: PMC10813752 DOI: 10.3390/biomedicines12010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The perception of "stress" triggers many physiological and behavioral responses, collectively called the stress response. Such a complex process allows for coping with stress and also triggers severe pathology. Because of the multidirectional effect of stress on the body, multiple systems participate in its pathogenesis, with the endogenous cannabinoid and the serotoninergic ones among them. These two systems also take part in the pain perception decrease, known as stress-induced analgesia (SIA), which can then be taken as an indirect indicator of the stress response. The aim of our study was to study the changes in cold SIA (c-SIA) resulting from the exogenous activation of cannabinoid receptor type 1 (CB1) and 5-hydroxytryptamine (5-HT, serotonin) receptor type 1A (5-HT1A). Various combinations of agonists and/or antagonists of CB1 and 5-HT1A, before or after 1 h of cold exposure, were applied, since we presumed that the exogenous activation of the receptors before the cold exposure would influence the pathogenesis of the stress response, while their activation after the stressful trigger would influence the later development. Our results show that the serotonergic system "maintained" c-SIA in the pre-stress treatment, while the cannabinoids' modulative effect was more prominent in the post-stress treatment. Here, we show the interactions of the two systems in the stress response. The interpretation and understanding of the mechanisms of interaction between CB1 and 5-HT1A may provide information for the prevention and control of adverse stress effects, as well as suggest interesting directions for the development of targeted interventions for the control of specific body responses.
Collapse
Affiliation(s)
- Hristina Nocheva
- Department of Physiology and Pathophysiology, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria; (H.N.); (N.S.)
| | - Nikolay Stoynev
- Department of Physiology and Pathophysiology, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria; (H.N.); (N.S.)
| | - Vlayko Vodenicharov
- Department of Epidemiology and Hygiene, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Dimo Krastev
- Department of Anatomy and Physiology, South-West University “Neofit Rilski”, Blagoevgrad, 66, Ivan Mihaylov Str., 2700 Blagoevgrad, Bulgaria;
| | - Nikolay Krastev
- Department of Anatomy, Faculty of Medicine, Medical University, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Milka Mileva
- Institute of Microbiology “Stephan Angeloff”, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
25
|
Buchenauer L, Haange SB, Bauer M, Rolle-Kampczyk UE, Wagner M, Stucke J, Elter E, Fink B, Vass M, von Bergen M, Schulz A, Zenclussen AC, Junge KM, Stangl GI, Polte T. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167034. [PMID: 37709081 DOI: 10.1016/j.scitotenv.2023.167034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
Collapse
Affiliation(s)
- Lisa Buchenauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Mario Bauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Marita Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Johanna Stucke
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Elena Elter
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Beate Fink
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Maren Vass
- University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Angela Schulz
- University of Leipzig, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Ana C Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Kristin M Junge
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; AKAD University Stuttgart, School of Health and Social Sciences, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany.
| |
Collapse
|
26
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
27
|
Ahmed S, Abir AH, Sharmin O, Khurshid N, Akter A, Nakshy NT, Hasan MM, Yesmine S, Rahman M. Modulation of PI3K/Akt/GSK3β signaling cascade through G protein-coupled receptor 55 (GPR55) activation: Prenatal lysophosphatidylinositol attenuates valproic acid-induced synaptic abnormalities and mitochondrial dysfunction. Life Sci 2023; 334:122195. [PMID: 37866808 DOI: 10.1016/j.lfs.2023.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
AIMS Dysregulation of PI3K/Akt/GSK3β signaling has been implicated in various neurological disorders, including autism spectrum disorder (ASD). G protein-coupled receptor 55 (GPR55) has recently emerged as a potential regulator of this signaling cascade. This study explores the intricate modulation of the PI3K/Akt/GSK3β signaling cascade via GPR55 activation and its potential therapeutic implications in the context of autism-associated neuronal impairments. MAIN METHODS Valproic acid (VPA) was administered on embryonic day 12 (E12) to induce ASD, and lysophosphatidylinositol (LPI), a GPR55 agonist, was used prenatally to modulate the receptor activity. Golgi-cox staining was performed to observe neuronal morphology, and Hematoxylin and eosin (H and E) staining was carried out to quantify damaged neurons. Enzyme-linked immunosorbent assay (ELISA) was implemented to identify molecular mediators involved in neuroprotection. KEY FINDINGS Prenatal VPA exposure resulted in significant abnormalities in synaptic development, which were further evidenced by impairments in social interaction and cognitive function. When LPI was administered, most of the synaptic abnormalities were alleviated, as reflected by higher neuron and dendritic spine count. LPI treatment also reduced cytoplasmic cytochrome c concentration and related neuronal cell death. Mechanistically, GPR55 activation by LPI increases the expression of phospho-Akt and phospho-GSK3β, leading to the activation of this signaling in the process of rescuing synaptic abnormalities and mitochondria-mediated neuronal apoptosis. SIGNIFICANCE The observed therapeutic effects of GPR55 activation shed light on its significance as a prospective target for ameliorating mitochondrial dysfunction and dendritic spine loss, offering novel prospects for developing targeted interventions to alleviate the neuropathological causes of ASD.
Collapse
Affiliation(s)
- Shamim Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Ariful Haque Abir
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh; Division of Molecular Immunology, Department of Internal Medicine 3, Universität Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Center, Glückstraße 6, 91054 Erlangen, Germany
| | - Ozayra Sharmin
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh; Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Neda Khurshid
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Amana Akter
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Nafisa Tajneen Nakshy
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh; Department of Pharmacy, University of Information Technology and Sciences, Baridhara, Dhaka 1212, Bangladesh
| | - Md Mahmudul Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Saquiba Yesmine
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| |
Collapse
|
28
|
Marangoni C, Tam M, Robinson ESJ, Jackson MG. Pharmacological characterisation of the effort for reward task as a measure of motivation for reward in male mice. Psychopharmacology (Berl) 2023; 240:2271-2284. [PMID: 37474757 PMCID: PMC10593616 DOI: 10.1007/s00213-023-06420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
RATIONALE Motivational deficits are a common symptom shared across multiple psychiatric and neurodegenerative disorders. Effort-based decision-making tasks are a translatable method for assessing motivational state. Much of the preclinical validation of the task derives from acute pharmacological manipulations in rats. However, mice currently offer a greater genetic toolkit to study risk genes and phenotypic models. Despite this, there is limited characterisation of their behaviour in this type of motivation task. OBJECTIVES Here, we investigate the effort for reward (EfR) task as a measure of motivational state in mice using drugs previously shown to modulate effort-based decision-making in rats and humans. METHOD Using male C57bl/6j mice, we test the effects of drugs which modulate DA transmission. We also test the effects of CP101-606 which does not act directly via DA modulation but has been shown to exert beneficial effects on motivational state. Finally, we test the sensitivity of the task to a chronic corticosterone (CORT) treatment. RESULTS Amphetamine, methylphenidate, and CP101606 in mice increased high-effort responses for high-value reward, while administration of haloperidol decreased high-effort responses. Surprisingly, tetrabenazine had no effect at the doses tested. Chronic, low-dose CORT consumption did not alter task performance. CONCLUSION These data suggest that the EfR task is sensitive to acute dopaminergic modulation and NR2B selective antagonism in mice. However, it may lack sensitivity to non-acute phenotypic models. Further work is required to demonstrate the utility of the task in this context.
Collapse
Affiliation(s)
- Caterina Marangoni
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Melissa Tam
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Megan G Jackson
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
29
|
Letenneur V, Monnoye M, Philippe C, Holowacz S, Rabot S, Lepage P, Jacouton E, Naudon L. Effects of a Lacticaseibacillus Mix on Behavioural, Biochemical, and Gut Microbial Outcomes of Male Mice following Chronic Restraint Stress. Nutrients 2023; 15:4635. [PMID: 37960288 PMCID: PMC10648220 DOI: 10.3390/nu15214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of supplementation with Lactobacillus strains to prevent the consequences of chronic stress on anxiety in mouse strains sensitive to stress and the consequences on gut microbiota have been relatively unexplored. Thus, we administered a Lacticaseibacillus casei LA205 and Lacticaseibacillus paracasei LA903 mix to male BALB/cByJrj mice two weeks before and during 21-day chronic restraint stress (CRS) (non-stressed/solvent (NS-PBS), non-stressed/probiotics (NS-Probio), CRS/solvent (S-PBS), CRS/probiotics (S-Probio)). CRS resulted in lower body weight and coat state alteration, which were attenuated by the probiotic mix. S-Probio mice showed less stress-associated anxiety-like behaviours than their NS counterpart, while no difference was seen in PBS mice. Serum corticosterone levels were significantly higher in the S-Probio group than in other groups. In the hippocampus, mRNA expression of dopamine and serotonin transporters was lower in S-Probio than in S-PBS mice. Few differences in bacterial genera proportions were detected, with a lower relative abundance of Alistipes in S-Probio vs. S-PBS. CRS was accompanied by a decrease in the proportion of caecal acetate in S-PBS mice vs. NS-PBS, but not in the intervention groups. These data show that the probiotic mix could contribute to better coping with chronic stress, although the precise bacterial mechanism is still under investigation.
Collapse
Affiliation(s)
- Vivien Letenneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Sophie Holowacz
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Elsa Jacouton
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
30
|
Guitart-Masip M, Walsh A, Dayan P, Olsson A. Anxiety associated with perceived uncontrollable stress enhances expectations of environmental volatility and impairs reward learning. Sci Rep 2023; 13:18451. [PMID: 37891204 PMCID: PMC10611750 DOI: 10.1038/s41598-023-45179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Unavoidable stress can lead to perceived lack of control and learned helplessness, a risk factor for depression. Avoiding punishment and gaining rewards involve updating the values of actions based on experience. Such updating is however useful only if action values are sufficiently stable, something that a lack of control may impair. We examined whether self-reported stress uncontrollability during the first wave of the COVID-19 pandemic predicted impaired reward-learning. In a preregistered study during the first-wave of the COVID-19 pandemic, we used self-reported measures of depression, anxiety, uncontrollable stress, and COVID-19 risk from 427 online participants to predict performance in a three-armed-bandit probabilistic reward learning task. As hypothesised, uncontrollable stress predicted impaired learning, and a greater proportion of probabilistic errors following negative feedback for correct choices, an effect mediated by state anxiety. A parameter from the best-fitting hidden Markov model that estimates expected beliefs that the identity of the optimal choice will shift across images, mediated effects of state anxiety on probabilistic errors and learning deficits. Our findings show that following uncontrollable stress, anxiety promotes an overly volatile representation of the reward-structure of uncertain environments, impairing reward attainment, which is a potential path to anhedonia in depression.
Collapse
Affiliation(s)
- Marc Guitart-Masip
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Aging Research Centre, Stockholm, Sweden.
- Center for Psychiatry Research, Region Stockholm, Stockholm, Sweden.
- Karolinska Institutet, Center for Cognitive and Computational Neuropsychiatry (CCNP), Stockholm, Sweden.
| | - Amy Walsh
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Aging Research Centre, Stockholm, Sweden
- Karolinska Institutet, Center for Cognitive and Computational Neuropsychiatry (CCNP), Stockholm, Sweden
- Emotion Lab, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Andreas Olsson
- Center for Psychiatry Research, Region Stockholm, Stockholm, Sweden
- Karolinska Institutet, Center for Cognitive and Computational Neuropsychiatry (CCNP), Stockholm, Sweden
- Emotion Lab, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Wang Y, Chen X, Chen Z, Yu H, Tian Y, He Y, Cheng K, Xie P. Disturbances of phosphatidylcholines metabolism in major depressive disorder. CNS Spectr 2023; 28:637-645. [PMID: 36647611 DOI: 10.1017/s1092852923000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a common neuropsychiatry disorder with high prevalence and recurrence rate, but the misdiagnosis rate is inevitable due to the shortage of objective laboratory-based diagnostic criteria. This study is focused on the disturbance of lipid metabolism, providing potential biomarkers for diagnosing. METHODS Lipid metabolism-related molecules in plasma of 42 drug-naïve MDD patients and 49 healthy people were measured by liquid chromatography-mass spectrometry. Further to evaluate the diagnostic values of changed metabolites, these molecules were evaluated by the receiver operating characteristic curve. Based on the significant role of phosphatidylcholine (PC) disturbance in depression, oxidization of PCs, oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC), IL-8 and caspase-3 in hippocampus, and serum of chronic lipopolysaccharide (cLPS) depression mice were detected by ELISA. RESULTS Compared with healthy control, MDD patients expressed higher 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0-16:0 PC, DPPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (16:0-20:4 PC, PAPC), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (16:0-18:0 PC), glycocholic acid, taurocholic acid, glycoursodeoxycholic acid, and chenodeoxycholic acid glycine conjugate, and lower 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 20:0). The 16:0-20:4 PC showed the great diagnostic value for MDD with an area under the curve (AUC) of 0.9519, and combination of 16:0 PC, 16:0-18:0 PC, and 16:0-20:4 PC exhibited the highest diagnostic value with AUC of 0.9602. OxPAPC was certified increase in hippocampus and serum of cLPS depression mice, which further supported PCs disorder participated in depression. CONCLUSION This research offers 16:0-20:4 PC as the latent diagnostic indicator for MDD and hints the important role of PCs in depression.
Collapse
Affiliation(s)
- Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Holvoet H, Long DM, Yang L, Choi J, Marney L, Poeck B, Maier CS, Soumyanath A, Kretzschmar D, Strauss R. Chlorogenic Acids, Acting via Calcineurin, Are the Main Compounds in Centella asiatica Extracts That Mediate Resilience to Chronic Stress in Drosophila melanogaster. Nutrients 2023; 15:4016. [PMID: 37764799 PMCID: PMC10537055 DOI: 10.3390/nu15184016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Common symptoms of depressive disorders include anhedonia, sleep problems, and reduced physical activity. Drugs used to treat depression mostly aim to increase serotonin signaling but these can have unwanted side effects. Depression has also been treated by traditional medicine using plants like Centella asiatica (CA) and this has been found to be well tolerated. However, very few controlled studies have addressed CA's protective role in depression, nor have the active compounds or mechanisms that mediate this function been identified. To address this issue, we used Drosophila melanogaster to investigate whether CA can improve depression-associated symptoms like anhedonia and decreased climbing activity. We found that a water extract of CA provides resilience to stress induced phenotypes and that this effect is primarily due to mono-caffeoylquinic acids found in CA. Furthermore, we describe that the protective function of CA is due to a synergy between chlorogenic acid and one of its isomers also present in CA. However, increasing the concentration of chlorogenic acid can overcome the requirement for the second isomer. Lastly, we found that chlorogenic acid acts via calcineurin, a multifunctional phosphatase that can regulate synaptic transmission and plasticity and is also involved in neuronal maintenance.
Collapse
Affiliation(s)
- Helen Holvoet
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Dani M. Long
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| |
Collapse
|
33
|
Xue B, Ma YY, Zhu JY, Mu Y, Li YH, Shen F, Liang J, Zhang JJ. Chronic social comparison elicits depression- and anxiety-like behaviors and alterations in brain-derived neurotrophic factor expression in male rats. Anim Cogn 2023; 26:1505-1519. [PMID: 37302101 DOI: 10.1007/s10071-023-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Social comparison is a fundamental human characteristic; however, long-term social comparison may induce psychological stress and can lead to depression and anxiety. Recent studies have shown that nonhuman primates compare themselves with others; however, no studies have investigated whether social comparisons exist among rodents. In the present study, we established a rat model of social comparison. This model was subsequently used to examine the effects of the differential environment of a partner on depression- and anxiety-like behaviors in male rats, as well as to assess the changes in serum, medial prefrontal cortex (mPFC), and dorsal hippocampus brain-derived neurotrophic factor (BDNF) levels induced by long-term social comparison. Compared to rats whose partners were exposed to the same environment, rats whose partners were exposed to two combined enriched environmental stimuli for 14 days showed significantly decreased social novelty preference and sucrose consumption. No anxiety-like behaviors were observed. Rats whose partners were exposed to one enriched environment for 31 days showed significantly increased immobility time in the forced swimming test, and significantly decreased time spent in the center area in the open-field test. Further, rats whose partners were exposed to one enriched environment for 31 days showed lower BDNF levels in the mPFC and dorsal hippocampus, but not following partner exposure for 14 days. These results suggest that social comparisons exist in rats and can induce psychosocial stress and other negative affect. This model will not only provide the possibility to reveal the neurobiological basis of the emotional impact of social comparison, but could also be used to confirm the conservative evolutionary characteristics of social comparison as a behavioral attribute.
Collapse
Affiliation(s)
- Bing Xue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Yan Ma
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Ying Zhu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Mu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Cattabriga G, Giordani G, Gargiulo G, Cavaliere V. Effect of aminergic signaling on the humoral innate immunity response of Drosophila. Front Physiol 2023; 14:1249205. [PMID: 37693001 PMCID: PMC10483126 DOI: 10.3389/fphys.2023.1249205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Biogenic amines are crucial signaling molecules that modulate various physiological life functions both in vertebrates and invertebrates. In humans, these neurotransmitters influence the innate and adaptive immunity systems. In this work, we analyzed whether the aminergic neurotransmission of dopamine, serotonin, and octopamine could have an impact on the humoral innate immune response of Drosophila melanogaster. This is a powerful model system widely used to uncover the insect innate immunity mechanisms which are also conserved in mammals. We found that the neurotransmission of all these amines positively modulates the Toll-responsive antimicrobial peptide (AMP) drosomycin (drs) gene in adult flies infected with the Micrococcus luteus bacterium. Indeed, we showed that either blocking the neurotransmission in their specific aminergic neurons by expressing shibirets (Shits) or silencing the vesicular monoamine transporter gene (dVMAT) by RNAi caused a significantly reduced expression of the Toll-responsive drs gene. However, upon M. luteus infection, the block of aminergic transmission did not alter the expression of AMP attacin genes responding to the immune deficiency (Imd) and Toll pathways. Overall, our results not only reveal a neuroimmune function for biogenic amines in humoral immunity but also further highlight the complexity of the network controlling AMP gene regulation.
Collapse
Affiliation(s)
- Giulia Cattabriga
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giorgia Giordani
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli “Federico II”, Naples, Italy
| |
Collapse
|
35
|
Rai AR, Joy T, Poojari M, Pai MM, Massand A, Murlimanju BV. Role of Acorus calamus in preventing depression, anxiety, and oxidative stress in long-term socially isolated rats. Vet World 2023; 16:1755-1764. [PMID: 37766700 PMCID: PMC10521175 DOI: 10.14202/vetworld.2023.1755-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Social isolation stress (SIS) and individual housing have been shown to cause abnormal cognitive insufficiencies, altered anxiety levels, and signs of psychiatric diseases. Acorus calamus (AC), commonly known as Sweet Flag, has been widely used in India to treat neurological, metabolic, and respiratory disorders, indicating its potential therapeutic value. This study aimed to determine the antidepressant and antioxidative effects of AC on rats subjected to long-term, social isolation-induced stress. Materials and Methods This study involved 2-month-old male rats (24) weighing approximately 180-200 g bred in-house. The rats were divided into four groups (n = 6): Group 1 received saline, Group 2 received SIS, Group 3 received only 50 mg/kg AC, and Group 4 received 50 mg/kg AC and SIS for 6 weeks. After this, behavioral, biochemical, and neuronal assays were conducted. Results Behavioral experiments showed significantly higher activity levels (p < 0.001) in AC-treated rats than in the SIS group. In addition, rats subjected to SIS with AC treatment exhibited enhanced total antioxidants, superoxide dismutase, and neuronal assays compared to rats subjected to SIS alone. Conclusion Acorus calamus treatment improved the antidepressant and antioxidant potential against SIS in rat brain tissue. Moreover, we proved that AC can effectively reverse the neurotoxicity induced by SIS in animal models. As we battle against the coronavirus disease 2019 pandemic and social isolation, AC could be considered a supplementary treatment to alleviate depressive-like symptoms in our present-day lifestyle.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, St. John’s, Antigua, West Indies
| | - Meghana Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, Chitradurga, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Amit Massand
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
36
|
Zhang Q, Wang X, Lin Y, Lv Z, Miao S, Lu Y, Fan Y, Li X, Fang Y, Pan X, Chen Z, Wang H, Li J, Wang Y, Sun J. Virgin coconut oil attenuates lipopolysaccharide-induced depression-like behaviors: Integrating network pharmacology analysis and molecular mechanism evaluation. Neurosci Lett 2023; 810:137350. [PMID: 37327854 DOI: 10.1016/j.neulet.2023.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Depression is a mental disease that seriously affects the quality of life. Its pathophysiology is complex and includes neuroinflammation and apoptosis. Virgin coconut oil (VCO) is a natural food that has been found to have remarkable anti-inflammatory and antiapoptotic properties. We assessed the effects of VCO on depression and the related mechanisms by performing network pharmacology analysis and evaluating depressive-like behaviors in rat model and found that VCO-treatment alleviated the depressive-like behaviors, inhibited microglial and astrocytic activation and reduced neuronal loss in the hippocampus, possibly by decreasing neuronal apoptosis. In addition, network pharmacology analysis and western blotting showed that VCO might exert neuroprotective effects by activating Protein Kinase B (AKT)-related pathway. Taken together, our results revealed the previously unrecognized effects of VCO on depression, and further explored the underlying mechanism of depression.
Collapse
Affiliation(s)
- Qun Zhang
- School of Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiwu Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, and Department of Neurosurgery of Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Lin
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhaoting Lv
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuangda Miao
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiren Fan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiuchun Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuanyuan Fang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuyi Pan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zirun Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| | - Jianliang Sun
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; School of Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
37
|
Ren J, Xiao H. Exercise for Mental Well-Being: Exploring Neurobiological Advances and Intervention Effects in Depression. Life (Basel) 2023; 13:1505. [PMID: 37511879 PMCID: PMC10381534 DOI: 10.3390/life13071505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Depression is a common mental disorder in which patients often experience feelings of sadness, fatigue, loss of interest, and pleasure. Exercise is a widely used intervention for managing depression, but the specific molecular mechanisms underlying its antidepressant effect are unclear. In this narrative review, we aim to synthesize current knowledge on the molecular, neural, and physiological mechanisms through which exercise exerts its antidepressant effect and discuss the various exercise interventions used for managing depression. We conducted a narrative review of the literature on the topic of exercise and depression. Our review suggests that exercise impacts peripheral tryptophan metabolism, central inflammation, and brain-derived neurotrophic factors through the peroxisome proliferator-activated receptor γ activating factor 1α (PGC-1α) in skeletal muscles. The uncarboxylated osteocalcin facilitates "bone-brain crosstalk", and exercise corrects atypical expression of brain-gut peptides, modulates cytokine production and neurotransmitter release, and regulates inflammatory pathways and microRNA expression. Aerobic exercise is recommended at frequencies of 3 to 5 times per week with medium to high intensity. Here we highlight the significant potential of exercise therapy in managing depression, supported by the molecular, neural, and physiological mechanisms underlying its antidepressant effect. Understanding the molecular pathways and neural mechanisms involved in exercise's antidepressant effect opens new avenues for developing novel therapies for managing depression.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang 524037, China;
| | | |
Collapse
|
38
|
Presa MH, Rocha MJD, Pires CS, Ledebuhr KNB, Costa GPD, Alves D, Bortolatto CF, Brüning CA. Antidepressant-like Effect of 1-(2-(4-(4-Ethylphenyl)-1 H-1,2,3-triazol-1-yl)phenyl)ethan-1-one in Mice: Evidence of the Contribution of the Serotonergic System. ACS Chem Neurosci 2023. [PMID: 37294690 DOI: 10.1021/acschemneuro.3c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder that affects a large portion of the population, with dysregulation of the serotonergic system, which is deeply involved in both the pathophysiology of MDD and mechanism of action of many antidepressants. Current pharmacological therapies do not meet the neurobiological needs of all depressed individuals, making the development of new antidepressants necessary. In recent decades, compounds containing triazoles have become promising due to their range of biological activities, including antidepressant activity. In this study, we evaluated the antidepressant-like effect of a hybrid containing triazole and acetophenone, 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (ETAP) (0.5-5 mg/kg), in the forced swimming test (FST) and tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in this effect. Our findings demonstrated that ETAP exhibited an antidepressant-like effect from the dose of 1 mg/kg and that this effect is modulated by 5-HT2A/2C and 5-HT4 receptors. We also demonstrated that this effect may be related to inhibition of monoamine oxidase A activity in the hippocampus. Additionally, we evaluated the in silico pharmacokinetic profile of ETAP, which predicted its penetration into the central nervous system. ETAP exhibited a low potential for toxicity at a high dose, making this molecule interesting for the development of a new therapeutic strategy for MDD.
Collapse
Affiliation(s)
- Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Pereira da Costa
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Tseng YT, Zhao B, Ding H, Liang L, Schaefke B, Wang L. Systematic evaluation of a predator stress model of depression in mice using a hierarchical 3D-motion learning framework. Transl Psychiatry 2023; 13:178. [PMID: 37231005 DOI: 10.1038/s41398-023-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Investigation of the neurobiology of depression in humans depends on animal models that attempt to mimic specific features of the human disorder. However, frequently-used paradigms based on social stress cannot be easily applied to female mice which has led to a large sex bias in preclinical studies of depression. Furthermore, most studies focus on one or only a few behavioral assessments, with time and practical considerations prohibiting a comprehensive evaluation. In this study, we demonstrate that predator stress effectively induced depression-like behaviors in both male and female mice. By comparing predator stress and social defeat models, we observed that the former elicited a higher level of behavioral despair and the latter elicited more robust social avoidance. Furthermore, the use of machine learning (ML)-based spontaneous behavioral classification can distinguish mice subjected to one type of stress from another, and from non-stressed mice. We show that related patterns of spontaneous behaviors correspond to depression status as measured by canonical depression-like behaviors, which illustrates that depression-like symptoms can be predicted by ML-classified behavior patterns. Overall, our study confirms that the predator stress induced phenotype in mice is a good reflection of several important aspects of depression in humans and illustrates that ML-supported analysis can simultaneously evaluate multiple behavioral alterations in different animal models of depression, providing a more unbiased and holistic approach for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Ding
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Dai T, Seewoo BJ, Hennessy LA, Bolland SJ, Rosenow T, Rodger J. Identifying reproducible resting state networks and functional connectivity alterations following chronic restraint stress in anaesthetized rats. Front Neurosci 2023; 17:1151525. [PMID: 37284657 PMCID: PMC10239969 DOI: 10.3389/fnins.2023.1151525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background Resting-state functional MRI (rs-fMRI) in rodent models have the potential to bridge invasive experiments and observational human studies, increasing our understanding of functional alterations in the brains of patients with depression. A major limitation in current rodent rs-fMRI studies is that there has been no consensus on healthy baseline resting-state networks (RSNs) that are reproducible in rodents. Therefore, the present study aimed to construct reproducible RSNs in a large dataset of healthy rats and then evaluate functional connectivity changes within and between these RSNs following a chronic restraint stress (CRS) model within the same animals. Methods A combined MRI dataset of 109 Sprague Dawley rats at baseline and after two weeks of CRS, collected during four separate experiments conducted by our lab in 2019 and 2020, was re-analysed. The mICA and gRAICAR toolbox were first applied to detect optimal and reproducible ICA components and then a hierarchical clustering algorithm (FSLNets) was applied to construct reproducible RSNs. Ridge-regularized partial correlation (FSLNets) was used to evaluate the changes in the direct connection between and within identified networks in the same animals following CRS. Results Four large-scale networks in anesthetised rats were identified: the DMN-like, spatial attention-limbic, corpus striatum, and autonomic network, which are homologous across species. CRS decreased the anticorrelation between DMN-like and autonomic network. CRS decreased the correlation between amygdala and a functional complex (nucleus accumbens and ventral pallidum) in the right hemisphere within the corpus striatum network. However, a high individual variability in the functional connectivity before and after CRS within RSNs was observed. Conclusion The functional connectivity changes detected in rodents following CRS differ from reported functional connectivity alterations in patients with depression. A simple interpretation of this difference is that the rodent response to CRS does not reflect the complexity of depression as it is experienced by humans. Nonetheless, the high inter-subject variability of functional connectivity within networks suggests that rats demonstrate different neural phenotypes, like humans. Therefore, future efforts in classifying neural phenotypes in rodents might improve the sensitivity and translational impact of models used to address aetiology and treatment of psychiatric conditions including depression.
Collapse
Affiliation(s)
- Twain Dai
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Bhedita J. Seewoo
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Minderoo Foundation, Perth, WA, Australia
| | - Lauren A. Hennessy
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Samuel J. Bolland
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Tim Rosenow
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
41
|
Tzanoulinou S, Passecker J, Stamatakis A, Diamantopoulou A. Editorial: Translational behavioral approaches in animal models of psychiatry. Front Behav Neurosci 2023; 17:1200691. [PMID: 37261226 PMCID: PMC10227612 DOI: 10.3389/fnbeh.2023.1200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Stamatina Tzanoulinou
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Passecker
- Center for Chemistry and Biomedicine, Innsbruck Medical University, Innsbruck, Tyrol, Austria
| | - Antonios Stamatakis
- Department of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Diamantopoulou
- Institute of Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Mota-Ramírez LD, Escobar C. Postweaning cafeteria diet induces a short-term metabolic disfunction and a differential vulnerability to develop anxiety-like and depressive-like behaviors in male but not female rats. Dev Psychobiol 2023; 65:e22392. [PMID: 37073591 DOI: 10.1002/dev.22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
Children and adolescents are high consumers of Western diets (rich in fat and sugars), which is a risk factor for overweight and obesity. Moreover, the presence of anxiety and depression among this population has increased significantly. This study explores in young postweaning rats the association between Western diet consumption and the development of metabolic and behavioral disturbances. At postnatal day (PN) 24, Wistar rats of both sexes were weaned and assigned to a control or cafeteria diet (CAF) group. After short-term exposure, a group of rats was euthanized at PN31 to obtain abdominal fat pads and blood samples. Another group of rats was tested in the open-field test, splash test, anhedonia test, and social play across 11 days (PN32-42). The CAF groups exhibited a significantly high level of body fat, serum glucose, triglycerides, leptin, and HOMA index when compared to the control groups. Only CAF males exhibited anxiety-like and depression-like behavior. Present results indicate that postweaning short-term exposure to a CAF diet has immediate detrimental effects on metabolism in both sexes. However, only CAF males showed mood disturbances. This study provides evidence that a CAF diet exerts immediate effects on behavior and metabolism in the postweaning period and that sexes present differential vulnerability.
Collapse
Affiliation(s)
- Luz D Mota-Ramírez
- Departamento de Anatomía, Facultad de Medicina UNAM, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina UNAM, Mexico City, Mexico
| |
Collapse
|
43
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
44
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
45
|
Vasiliu O. Efficacy, Tolerability, and Safety of Toludesvenlafaxine for the Treatment of Major Depressive Disorder-A Narrative Review. Pharmaceuticals (Basel) 2023; 16:411. [PMID: 36986510 PMCID: PMC10051807 DOI: 10.3390/ph16030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The estimated rate of treatment-resistant major depressive disorder (TRD) remains higher than 30%, even after the discovery of multiple classes of antidepressants in the last 7 decades. Toludesvenlafaxine (ansofaxine, LY03005, or LPM570065) is a first-in-class triple monoaminergic reuptake inhibitor (TRI) that has reached clinical use. The objective of this narrative review was to summarize clinical and preclinical evidence about the efficacy, tolerability, and safety of toludesvenlafaxine. Based on the results of 17 reports retrieved in the literature, the safety and tolerability profiles of toludesvenlafaxine were good in all clinical trials, and the pharmacokinetic parameters were well described in the phase 1 trials. The efficacy of toludesvenlafaxine was demonstrated in one phase 2 and one phase 3 trial, both on primary and secondary outcomes. In conclusion, this review highlights the favorable clinical results of toludesvenlafaxine in only two short-term trials that enrolled patients with major depressive disorder (MDD) (efficacy and tolerability were good for up to eight weeks), indicating the need for more good quality, larger-sample, and longer-term trials. Exploring new antidepressants, such as TRI, can be considered a priority for clinical research due to the high rates of TRD, but also due to the significant percentages of relapse in patients with MDD.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila University Emergency Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
46
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Shemesh Y, Chen A. A paradigm shift in translational psychiatry through rodent neuroethology. Mol Psychiatry 2023; 28:993-1003. [PMID: 36635579 PMCID: PMC10005947 DOI: 10.1038/s41380-022-01913-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
Mental disorders are a significant cause of disability worldwide. They profoundly affect individuals' well-being and impose a substantial financial burden on societies and governments. However, despite decades of extensive research, the effectiveness of current therapeutics for mental disorders is often not satisfactory or well tolerated by the patient. Moreover, most novel therapeutic candidates fail in clinical testing during the most expensive phases (II and III), which results in the withdrawal of pharma companies from investing in the field. It also brings into question the effectiveness of using animal models in preclinical studies to discover new therapeutic agents and predict their potential for treating mental illnesses in humans. Here, we focus on rodents as animal models and propose that they are essential for preclinical investigations of candidate therapeutic agents' mechanisms of action and for testing their safety and efficiency. Nevertheless, we argue that there is a need for a paradigm shift in the methodologies used to measure animal behavior in laboratory settings. Specifically, behavioral readouts obtained from short, highly controlled tests in impoverished environments and social contexts as proxies for complex human behavioral disorders might be of limited face validity. Conversely, animal models that are monitored in more naturalistic environments over long periods display complex and ethologically relevant behaviors that reflect evolutionarily conserved endophenotypes of translational value. We present how semi-natural setups in which groups of mice are individually tagged, and video recorded continuously can be attainable and affordable. Moreover, novel open-source machine-learning techniques for pose estimation enable continuous and automatic tracking of individual body parts in groups of rodents over long periods. The trajectories of each individual animal can further be subjected to supervised machine learning algorithms for automatic detection of specific behaviors (e.g., chasing, biting, or fleeing) or unsupervised automatic detection of behavioral motifs (e.g., stereotypical movements that might be harder to name or label manually). Compared to studies of animals in the wild, semi-natural environments are more compatible with neural and genetic manipulation techniques. As such, they can be used to study the neurobiological mechanisms underlying naturalistic behavior. Hence, we suggest that such a paradigm possesses the best out of classical ethology and the reductive behaviorist approach and may provide a breakthrough in discovering new efficient therapies for mental illnesses.
Collapse
Affiliation(s)
- Yair Shemesh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Chen
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
48
|
Pangemanan L, Irwanto I, Maramis MM. Psychological dominant stressor modification to an animal model of depression with chronic unpredictable mild stress. Vet World 2023; 16:595-600. [PMID: 37041835 PMCID: PMC10082728 DOI: 10.14202/vetworld.2023.595-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Chronic unpredictable mild stress (CUMS) is a protocol widely used to create an animal model of depression with food deprivation, water deprivation, and physical-dominant stressors as routine procedures. However, human depression mainly involves psychological stressors and does not always involve a lack of food and water; thus, CUMS procedures should be modified accordingly. Therefore, this study aimed to create an animal model of depression, mainly focusing on a psychologically dominant stressor without food and water deprivation. Materials and Methods The CUMS and control groups, respectively, received CUMS modification (psychologically dominant stressors without food and water deprivation) for 21 days. A 24-h sucrose preference test (SPT) was used to assess the successful creation of an animal model of depression. Daily food intake measurements, weekly weight monitoring, and weight gain calculations were performed. Either an independent sample t-test or the Mann-Whitney test was used. Results Of the 42 rats included, 39 completed the study. Chronic unpredictable mild stress procedures for 21 days significantly reduced the SPT (p < 0.05), mean body weight (p < 0.05), and weekly weight gain (p < 0.05) in the CUMS group compared to the control group. However, the weekly average food intake did not statistically differ between the two groups. Conclusion Psychological dominant CUMS modification to an animal model of depression resulted in lower SPT, body weight, and weekly weight gain in the CUMS group than in the control group.
Collapse
Affiliation(s)
- Lisa Pangemanan
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Irwanto Irwanto
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author: Irwanto Irwanto, e-mail: Co-authors: LP: , MMM:
| | - Margarita M. Maramis
- Department of Psychiatry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
49
|
Sato S, Yu Z, Sakai M, Motoike IN, Saigusa D, Hirayama R, Kikuchi Y, Abe T, Kinoshita K, Koshiba S, Tomita H. Decreased β-hydroxybutyrate and ketogenic amino acid levels in depressed human adults. Eur J Neurosci 2023; 57:1018-1032. [PMID: 36750311 DOI: 10.1111/ejn.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023]
Abstract
β-hydroxybutyrate (BHB) is a major ketone body synthesized mainly in the liver mitochondria and is associated with stress and severity of depression in humans. It is known to alleviate depressive-like behaviors in mouse models of depression. In this study, plasma BHB, ketogenic and glucogenic amino acids selected from the Tohoku Medical Megabank Project Community-Based Cohort Study were analysed and measured using nuclear magnetic resonance spectroscopy. The Center for Epidemiologic Studies Depression Scale (CES-D) was utilized to select adult participants with depressive symptoms (CES-D ≥ 16; n = 5722) and control participants (CES-D < 16; n = 18,150). We observed significantly reduced plasma BHB, leucine, and tryptophan levels in participants with depressive symptoms. Using social defeat stress (SDS) mice models, we found that BHB levels in mice sera increased after acute SDS, but showed no change after chronic SDS, which differed from human plasma results. Furthermore, acute SDS increased mitochondrial BHB levels in the prefrontal cortex at 6 h. In contrast, chronic SDS significantly increased the amount of food intake but reduced hepatic mitochondrial BHB levels in mice. Moreover, gene transcriptions of voltage-dependent anion-selective channel 1 (Vdac1) and monocarboxylic acid transporter 1 (Mct1), major molecules relevant to mitochondrial biogenesis and BHB transporter, significantly decreased in the liver and PFC after chronic SDS exposure. These results provide evidence that hepatic and prefrontal mitochondrial biogenesis plays an important role in BHB synthesis under chronic stress and in humans with depressive symptoms.
Collapse
Affiliation(s)
- Shiho Sato
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Health Science, Tohoku University, Sendai, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Hirayama
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Biomedical Engineering Regenerative and Biomedical Engineering Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Preventive Medicine and Epidemiology, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
50
|
Moura MS, Lozano AFQ, Tavares BM, Figueiredo TM, Franco de Barros JW, Valencise L, de Grava Kempinas W. Prenatal exposure to sertraline, associated or not with stress, can negatively program somatic and neurobehavioral development of female rats, and dysregulate reproductive function in adulthood. Reprod Toxicol 2023; 116:108336. [PMID: 36669626 DOI: 10.1016/j.reprotox.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are prescribed to pregnant women for treating mental illnesses. Among the drugs of this class, sertraline (ST) is the antidepressant therapy recommended most frequently. Therefore, this study aimed to evaluate the impact of gestational ST treatment on reproductive parameters and toxicological target organs of rat female offspring, as well as on somatic, reflex and neurobehavioral development, in a model of maternal adversity. Pregnant Wistar rats received vehicle (filtered water) or ST hydrochloride (20 mg/Kg/day diluted in vehicle) by oral gavage, associated or not with restraint stress for 1 h/day from gestational days 13-20. F1 female offspring was evaluated on reproductive parameters, body weight and somatic and reflex milestones from postnatal day (PND) 1. On PNDs 25 and 72, the elevated-plus-maze test was performed, while toxicological target organs were evaluated on PNDs 42 and 80. In utero exposure to ST, regardless of exposure to stress, reduced body weight at birth and affected the somatic development and estrous cycle. The absolute and relative thyroid weights were increased in Stress/ST group during puberty and adulthood, while the percentage of ovarian structures and the absolute uterine weight were altered in this group on PND 80. Prenatal exposure only to ST reduced initial body weight gain, delayed fur development and increased anxiety-like behavior on PND 25. Thus, this experimental study suggests that intrauterine exposure to ST disrupts the fetal environment and can negatively program serotonin-regulated processes. Furthermore, it impacts thyroid weight when associated with stress.
Collapse
Affiliation(s)
- Mayara Silva Moura
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Ana Flávia Quiarato Lozano
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Bruna Marques Tavares
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Thamíris Moreira Figueiredo
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Willian Franco de Barros
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lethicia Valencise
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wilma de Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|