1
|
Serrano-García I, Martakos IC, Olmo-García L, León L, de la Rosa R, Gómez-Caravaca AM, Belaj A, Serrano A, Dasenaki ME, Thomaidis NS, Carrasco-Pancorbo A. Application of Liquid Chromatography-Ion Mobility Spectrometry-Mass Spectrometry-Based Metabolomics to Investigate the Basal Chemical Profile of Olive Cultivars Differing in Verticillium dahliae Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27561-27574. [PMID: 39578263 PMCID: PMC11638956 DOI: 10.1021/acs.jafc.4c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
The limited effectiveness of current strategies to control Verticillium wilt of olive (VWO) prompts the need for innovative approaches. This study explores the basal metabolome of 43 olive cultivars with varying resistance levels to Verticillium dahliae, offering alternative insights for olive crossbreeding programmes. The use of an innovative UHPLC-ESI-TimsTOF MS/MS platform enabled the annotation of more than 70 compounds across different olive organs (root, stem, and leaf) and the creation of a preliminary compilation of TIMSCCSN2 experimental data for more reliable metabolite annotation. Moreover, it allowed the documentation of numerous isomeric species in the studied olive organs by resolving hidden compounds. Multivariate statistical analyses revealed significant metabolome variability between highly resistant and susceptible cultivars, which was further investigated through supervised PLS-DA. Key markers indicative of VWO susceptibility were annotated and characteristic compositional patterns were established. Stem tissue exhibited the highest discriminative capability, while root and leaf tissues also showed significant predictive potential.
Collapse
Affiliation(s)
- Irene Serrano-García
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, Granada 18071, Spain
| | - Ioannis C. Martakos
- Analytical
Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, Athens 15771, Greece
- Food Chemistry
Laboratory, Department of Chemistry, National
and Kapodistrian University of Athens, Panepistimiopolis Zographou, Athens 15771, Greece
| | - Lucía Olmo-García
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, Granada 18071, Spain
| | - Lorenzo León
- IFAPA Centro
Alameda del Obispo, Av.
Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Raúl de la Rosa
- IFAPA Centro
Alameda del Obispo, Av.
Menéndez Pidal s/n, Córdoba 14004, Spain
- Instituto
de Agricultura Sostenible, Consejo Superior
de Investigaciones Científicas, Av. Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Ana M. Gómez-Caravaca
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, Granada 18071, Spain
| | - Angjelina Belaj
- IFAPA Centro
Alameda del Obispo, Av.
Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Alicia Serrano
- The University
Institute of Research into Olives and Olive Oils (INUO), University of Jaén, Campus Las Lagunillas s/n, Jaén 23071, Spain
| | - Marilena E. Dasenaki
- Food Chemistry
Laboratory, Department of Chemistry, National
and Kapodistrian University of Athens, Panepistimiopolis Zographou, Athens 15771, Greece
| | - Nikolaos S. Thomaidis
- Analytical
Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, Athens 15771, Greece
| | - Alegría Carrasco-Pancorbo
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
2
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
3
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
4
|
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Olive tree leaves as a great source of phenolic compounds: Comprehensive profiling of NaDES extracts. Food Chem 2024; 456:140042. [PMID: 38876070 DOI: 10.1016/j.foodchem.2024.140042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Waste from the olive industry is a noticeable source of antioxidant compounds that can be extracted and reused to produce raw materials related to the chemical, cosmetic, food and pharmaceutical sectors. This work studies the phenolic composition of olive leaf samples using liquid chromatography with ultraviolet detection coupled to mass spectrometry (LC-UV-MS). Olive leaf waste samples have been crushed, homogenized, and subjected to a solid-liquid extraction treatment with mechanical shaking at 80 °C for 2 h using Natural Deep Eutectic Solvents (NaDES). The phenolic compound identification in the resulting extracts has been carried out by high-resolution mass spectrometry (HRMS) using data-dependent acquisition mode using an Orbitrap HRMS instrument. >60 different phenolic compounds have been annotated tentatively, of which about 20 have been confirmed from the corresponding standards. Some of the most noticeable compounds are oleuropein and its aglycone and glucoside form, luteolin-7-O-glucoside, 3-hydroxytyrosol, and verbascoside.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain.; Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, E08003 Barcelona, Spain..
| |
Collapse
|
5
|
Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW. HPTLC-guided flash chromatographic isolation and spectroscopic identification of bioactive compounds from olive flowers. J Chromatogr A 2024; 1735:465310. [PMID: 39232418 DOI: 10.1016/j.chroma.2024.465310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
The goal of preparative chromatography is to isolate suitable amounts of compound(s) at the required purity in the most cost-effective way. This study analyses the power of High-performance thin-layer chromatography (HPTLC) guided preparative flash chromatography to separate and isolate bioactive compounds from an olive flower extract for their further characterisation via spectroscopy. The structure and purity of isolated bioactive compounds were assessed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Flash chromatography of the olive flower extract successfully isolated pure oleanolic and maslinic acids. Moreover, the flash chromatography of the extract allowed isolation and phytochemical analysis of the most lipophilic fraction of the extract, which was found to contain n-eicosane and n-(Z)-eicos-5-ene, that has not been isolated previously with preparative TLC.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Sheryn Wong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| |
Collapse
|
6
|
Viteri G, Aranda A, Díaz de Mera Y, Rodríguez A, Rodríguez D, Rodríguez-Fariñas N, Valiente N, Seseña S. Effects of massive desiccation of olive waste residues on air quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124542. [PMID: 39002752 DOI: 10.1016/j.envpol.2024.124542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
New industries are proliferating in the recovery of agri-food wastes, such as those involved in the revaluation of alperujo, generated in the production of olive oil. Despite the potential environmental benefits, their activity is not exempt from new forms of emissions, aggravated by the massification of waste treatments. This work reports a six-month field campaign carried out in an alperujo desiccation plant which can serve as a proxy for these emerging industries in the Mediterranean countries. The study focused on air quality parameters, covering criteria pollutants, metals and microbiological load of particulate matter and the characterization of volatile organic compounds (VOCs). The results show a slight contribution of the factory to the NOx levels in the surroundings (3.0-12.5 μg/m3). Statistically significant effects were not observed for ozone, CO, SO2, or PM10. Concerning the levels of metals, concentrations were low and calculated health risk indexes indicated safe conditions in the area. The most abundant elements were Na (6.5 × 102 ng/m3), K (4.0 × 102 ng/m3), Al (2.7 × 102 ng/m3), Zn (2.1 × 102 ng/m3), Ca (2.16 × 102 ng/m3), Fe (3.6 × 101 ng/m3) and Mg (3.2 × 101 ng/m3). Bacterial counts, with a mean value of 15.9 CFU/m3, showed a seasonal shift, mainly explained by weather (air moisture and temperature) and PM2.5 concentration. The genomic analysis showed Cutibacterium as the dominant genus during the cold months while Bacillus predominated in the warm season. The VOCs with higher average concentrations were acetic acid (130 μg/m3), nonanoic acid (124 μg/m3), benzoic acid (29.7 μg/m3), octanoic acid (19.9 μg/m3) and nonanal (4.70 μg/m3), with the rest of compounds in concentrations below 4 μg/m3. Odorant pollutants with the greatest contribution to olfactory nuisance were aldehydes (from pentanaldehyde to decanaldehyde), acetic acid and phenol. Although the observable effects of the waste treatments were low, several parameters showed an influence on the environment which should be assessed to foresee and prevent long-term consequences.
Collapse
Affiliation(s)
- Gabriela Viteri
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Alfonso Aranda
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Yolanda Díaz de Mera
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Ana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Diana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| | | | - Nicolás Valiente
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Campus Universitario s/n, 02071, Albacete, Spain
| | - Susana Seseña
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| |
Collapse
|
7
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
8
|
Almeida A, Martins C, Dias RCS, Costa MRFN. Competitive Adsorption of Phenolic Acids, Secoiridoids, and Flavonoids in Quercetin Molecularly Imprinted Polymers and Application for Fractionation of Olive Leaf Extracts. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:3629-3644. [PMID: 39411181 PMCID: PMC11472317 DOI: 10.1021/acs.jced.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 10/19/2024]
Abstract
The competitive adsorption of phenolic acids, secoiridoids, and flavonoids in a molecularly imprinted polymer (MIP) functionalized with 4-vinylpiridine (4VP) moieties is analyzed here considering vanillic acid, oleuropein, and quercetin as reference molecules. Measured adsorption isotherms highlight a much stronger binding capacity of the quercetin-MIP particles toward quercetin as compared with vanillic acid and oleuropein. The acquired data were used to design and scale-up sorption/desorption processes aiming at the fractionation of olive leaf extracts. We show that a simple adsorption process, avoiding many pre-preparation steps, is possible when working at a high extract concentration due to the strong binding capacity of the MIP for flavonoids, even when using aqueous mixtures with a large alcoholic content. Solvent-gradient/temperature-swing desorption led to a sequence of fractions with enrichment of non-flavonoids at low alcoholic content while glycosylated flavonoids were enriched in fractions with 40% < alcohol content < 80%. Enrichment factors of 13 and 12 were measured for luteolin-7-O-glucoside and apigenin-7-O-glucoside, respectively. Flavonoid aglycones were enriched in fractions with alcohol content >80% (enrichment factors >20 for luteolin and quercetin). The findings reported here demonstrate the usefulness of the developed materials and sorption/desorption conditions for agricultural residue valorization and circular bioeconomy.
Collapse
Affiliation(s)
- Ayssata Almeida
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Cláudia Martins
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Rolando C. S. Dias
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Mário Rui
P. F. N. Costa
- LSRE,
Faculdade de Engenharia da Universidade do Porto, Rua Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Pessoa HR, Zago L, Difonzo G, Pasqualone A, Caponio F, Ferraz da Costa DC. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules 2024; 29:4249. [PMID: 39275097 PMCID: PMC11397062 DOI: 10.3390/molecules29174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.
Collapse
Affiliation(s)
- Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Lilia Zago
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Danielly C Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| |
Collapse
|
10
|
Borghini F, Tamasi G, Loiselle SA, Baglioni M, Ferrari S, Bisozzi F, Costantini S, Tozzi C, Riccaboni A, Rossi C. Phenolic Profiles in Olive Leaves from Different Cultivars in Tuscany and Their Use as a Marker of Varietal and Geographical Origin on a Small Scale. Molecules 2024; 29:3617. [PMID: 39125022 PMCID: PMC11314593 DOI: 10.3390/molecules29153617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations. Apigenin and caffeoyl-secologanoside showed significant differences between cultivars. DFA showed that ligstroside, apigenin and luteolin have the most influence in determining the differences between sites, whereas total polyphenols, olacein and hydroxytyrosol acetate allowed for separation between leaves from the same province. The results of the present study indicate that concentrations of phenolic compounds, measured through high-resolution mass spectrometry, can be used as a marker for both the cultivar and of geographical origin of olive leaves, and possibly of olive-related products, as well as across small geographic scales (less than 50 km distance between sites).
Collapse
Affiliation(s)
- Francesca Borghini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Steven Arthur Loiselle
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Stefano Ferrari
- ISVEA, Istituto per Lo Sviluppo Viticolo Enologico ed Agroindustriale, Via Basilicata 1-5, Località Fosci, 53036 Poggibonsi, Italy;
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Costantini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Cristiana Tozzi
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Angelo Riccaboni
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
- Department of Business and Law, University of Siena, Piazza San Francesco 8, 53100 Siena, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Refai H, Derwiche F, Grigorakis S, Makris DP. Simultaneous High-Performance Recovery and Extended Acid-Catalyzed Hydrolysis of Oleuropein and Flavonoid Glycosides of Olive ( Olea europaea) Leaves: Hydrothermal versus Ethanol Organosolv Treatment. Int J Mol Sci 2024; 25:7820. [PMID: 39063062 PMCID: PMC11277424 DOI: 10.3390/ijms25147820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Olive leaves (OLLs) are an exceptional bioresource of natural polyphenols with proven antioxidant activity, yet the applicability of OLL extracts is constrained by the relatively high polarity of the major polyphenols, which occur as glycosides. To overcome this limitation, OLLs were subjected to both hydrothermal and ethanol organosolv treatments, fostered by acid catalysis to solicit in parallel increased polyphenol recovery and polyphenol modification into simpler, lower-polarity substances. After an initial screening of natural organic acids, oxalic acid (OxAc) was found to be the highest-performing catalyst. The extraction behavior using OxAc-catalyzed hydrothermal and ethanol organosolv treatments was appraised using kinetics, while treatment optimization was accomplished by deploying response-surface methodology. The comparative assessment of the composition extracts produced under optimal conditions of residence time and temperature was performed with liquid chromatography-tandem mass spectrometry and revealed that OLLs treated with 50% ethanol/1.5% HCl suffered extensive oleuropein and flavone glycoside hydrolysis, affording almost 23.4 mg hydroxytyrosol and 2 mg luteolin per g dry weight. On the other hand, hydrothermal treatment with 5% OxAc provided 20.2 and 0.12 mg of hydroxytyrosol and luteolin, respectively. Apigenin was in all cases a minor extract constituent. The study presented herein demonstrated for the first time the usefulness of using a natural, food-grade organic acid to perform such a task, yet further investigation is needed to maximize the desired effect.
Collapse
Affiliation(s)
- Hela Refai
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), P.O. Box 85, 73100 Chania, Greece; (H.R.); (F.D.); (S.G.)
| | - Feyrouz Derwiche
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), P.O. Box 85, 73100 Chania, Greece; (H.R.); (F.D.); (S.G.)
| | - Spyros Grigorakis
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), P.O. Box 85, 73100 Chania, Greece; (H.R.); (F.D.); (S.G.)
| | - Dimitris P. Makris
- Green Processes & Biorefinery Group, Department of Food Science & Nutrition, School of Agricultural Sciences, University of Thessaly, N. Temponera Street, 43100 Karditsa, Greece
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
13
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
14
|
Laveriano-Santos EP, Vallverdú-Queralt A, Bhat R, Tresserra-Rimbau A, Gutiérrez-Alcalde E, Campins-Machado FM, Lamuela-Raventós RM, Pérez M. Unlocking the potential of olive residues for functional purposes: update on human intervention trials with health and cosmetic products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3816-3822. [PMID: 38456790 DOI: 10.1002/jsfa.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Olive mill waste (OMW) is a promising source of valuable compounds such as polyphenols, terpenes, sterols, and other bioactive compounds, which are of interest to the pharmaceuticals and cosmeceutical industries. This review examines the potential of OMW extracts for health and beauty applications based on evidence reports from human clinical trials. The results achieved to date indicate health-enhancing properties, but little is known about the underlying mechanisms of action, dose-response relationships, and long-term impacts. Therefore, while olive by-products, extracted using eco-friendly methods, present opportunities for the development of high-value health and cosmetic products, further studies are necessary to determine the full range of their effects and establish specific therapeutic strategies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Emily P Laveriano-Santos
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Rajeev Bhat
- ERA-Chair for Food (By-)Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Anna Tresserra-Rimbau
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Eulàlia Gutiérrez-Alcalde
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Francesc M Campins-Machado
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Ronca CL, Duque-Soto C, Samaniego-Sánchez C, Morales-Hernández ME, Olalla-Herrera M, Lozano-Sánchez J, Giménez Martínez R. Exploring the Nutritional and Bioactive Potential of Olive Leaf Residues: A Focus on Minerals and Polyphenols in the Context of Spain's Olive Oil Production. Foods 2024; 13:1036. [PMID: 38611342 PMCID: PMC11012209 DOI: 10.3390/foods13071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Lyophilized plant-origin extracts are rich in highly potent antioxidant polyphenols. In order to incorporate them into food products, it is necessary to protect these phytochemicals from atmospheric factors such as heat, light, moisture, or pH, and to enhance their bioavailability due to their low solubility. To address these challenges, recent studies have focused on the development of encapsulation techniques for antioxidant compounds within polymeric structures. In this study, lyophilized olive leaf extracts were microencapsulated with the aim of overcoming the aforementioned challenges. The method used for the preparation of the studied microparticles involves external ionic gelation carried out within a water-oil (W/O) emulsion at room temperature. HPLC analysis demonstrates a high content of polyphenols, with 90% of the bioactive compounds encapsulated. Meanwhile, quantification by inductively coupled plasma optical emission spectroscopy (ICP-OES) reveals that the dried leaves, lyophilized extract, and microencapsulated form contain satisfactory levels of macro- and micro-minerals (calcium, potassium, sodium). The microencapsulation technique could be a novel strategy to harness the polyphenols and minerals of olive leaves, thus enriching food products and leveraging the antioxidant properties of the polyphenolic compounds found in the lyophilized extract.
Collapse
Affiliation(s)
- Carolina L. Ronca
- Department of Pharmacy, University of Federico II of Naples, 80138 Naples, Italy;
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Carmen Duque-Soto
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | | | - Manuel Olalla-Herrera
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Rafael Giménez Martínez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| |
Collapse
|
16
|
Ronca CL, Marques SS, Ritieni A, Giménez-Martínez R, Barreiros L, Segundo MA. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024; 13:189. [PMID: 38254490 PMCID: PMC10814828 DOI: 10.3390/foods13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin-Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.
Collapse
Affiliation(s)
- Carolina L. Ronca
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Sara S. Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
| | - Rafael Giménez-Martínez
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Luisa Barreiros
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| |
Collapse
|
17
|
Serrano-García I, Olmo-García L, Monago-Maraña O, de Alba IMC, León L, de la Rosa R, Serrano A, Gómez-Caravaca AM, Carrasco-Pancorbo A. Characterization of the Metabolic Profile of Olive Tissues (Roots, Stems and Leaves): Relationship with Cultivars' Resistance/Susceptibility to the Soil Fungus Verticillium dahliae. Antioxidants (Basel) 2023; 12:2120. [PMID: 38136239 PMCID: PMC10741231 DOI: 10.3390/antiox12122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Verticillium wilt of olive (VWO) is one of the most widespread and devastating olive diseases in the world. Harnessing host resistance to the causative agent is considered one of the most important measures within an integrated control strategy of the disease. Aiming to understand the mechanisms underlying olive resistance to VWO, the metabolic profiles of olive leaves, stems and roots from 10 different cultivars with varying levels of susceptibility to this disease were investigated by liquid chromatography coupled to mass spectrometry (LC-MS). The distribution of 56 metabolites among the three olive tissues was quantitatively assessed and the possible relationship between the tissues' metabolic profiles and resistance to VWO was evaluated by applying unsupervised and supervised multivariate analysis. Principal component analysis (PCA) was used to explore the data, and separate clustering of highly resistant and extremely susceptible cultivars was observed. Moreover, partial least squares discriminant analysis (PLS-DA) models were built to differentiate samples of highly resistant, intermediate susceptible/resistant, and extremely susceptible cultivars. Root models showed the lowest classification capability, but metabolites from leaf and stem were able to satisfactorily discriminate samples according to the level of susceptibility. Some typical compositional patterns of highly resistant and extremely susceptible cultivars were described, and some potential resistance/susceptibility metabolic markers were pointed out.
Collapse
Affiliation(s)
- Irene Serrano-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Olga Monago-Maraña
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Avda. Esparta s/n, Crta. de Las Rozas-Madrid, E-28232 Madrid, Spain;
| | - Iván Muñoz Cabello de Alba
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lorenzo León
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Raúl de la Rosa
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Alicia Serrano
- Department of Experimental Biology, The University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaén, Spain;
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| |
Collapse
|
18
|
de Aguiar Sobral P, Miyahira RF, Zago L. Health Outcomes Related to the Consumption of Olive Products: A Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:643-653. [PMID: 37932611 DOI: 10.1007/s11130-023-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Olive oil, as well as by-products and waste that are left after production, particularly olive pomace and olive leaf, have been extensively researched as sources of phenolic compounds. These compounds are known for their biological properties and have been associated with the prevention of chronic non-communicable diseases. Metabolomics has been used as a methodological tool to elucidate the molecular mechanisms underlying these properties. The present review explores the health outcomes and changes in endogenous metabolite profiles induced by olive derivatives. A literature search was conducted using the scientific databases Scopus, Web of Science and PubMed, and the selected articles were published between the years 2012 and 2023. The reviewed studies have reported several health benefits of olive derivatives and their phenolic components, including appetite regulation, fewer cardiovascular disorders, and antiproliferative properties. This review also addressed the bioavailability of these compounds, their impact on the microbiota, and described biomarkers of their intake. Therefore, there should be further research using this methodology for a better understanding of the performance and therapeutic potential of olive derivatives.
Collapse
Affiliation(s)
- Pamela de Aguiar Sobral
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Roberta Fontanive Miyahira
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Lilia Zago
- Graduate Program in Food, Nutrition and Health, Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12◦ andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
19
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
21
|
Carrapiso AI, Pimienta M, Martín L, Cardenia V, Andrés AI. Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers. Foods 2023; 12:3757. [PMID: 37893650 PMCID: PMC10606866 DOI: 10.3390/foods12203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chitosan coatings have been investigated for improving food shelf-life. The addition of an olive leaf extract could enhance its beneficial effect. The aim of this study was to evaluate the effectiveness of an olive leaf extract added to a chitosan coating in delaying deterioration in refrigerated pork burgers without additives packaged under a 40% oxygen and 60% carbon dioxide modified atmosphere. Some general parameters (microbial counts, instrumental color and texture, and lipid and protein oxidation) were measured over the storage of pork burgers without coating (Control), with a chitosan-based coating (Chitosan) and with a chitosan-based coating enriched with an olive leaf extract (Chitoex). The coating impacted the effect of the storage time on most parameters. Both coatings were especially effective at limiting the changes that occur over time in the headspace gases, some texture parameters (hardness, gumminess, and chewiness) and lipid oxidation, although the effect on the microbial counts was weak. Chitoex was more effective than Chitosan at preventing changes in the headspace gases on day 11 and in lipid oxidation on all the sampling days. In conclusion, the Chitoex coating could be useful for prolonging the storage of pork burgers by preventing changes in texture and reducing lipid oxidation.
Collapse
Affiliation(s)
- Ana Isabel Carrapiso
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Manuel Pimienta
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Lourdes Martín
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Ana Isabel Andrés
- Tecnología de Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra de Cáceres s/n, 06007 Badajoz, Spain; (M.P.); (L.M.); (A.I.A.)
| |
Collapse
|
22
|
Cuffaro D, Bertolini A, Bertini S, Ricci C, Cascone MG, Danti S, Saba A, Macchia M, Digiacomo M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023; 15:3746. [PMID: 37686778 PMCID: PMC10489820 DOI: 10.3390/nu15173746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 μg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
23
|
Ventura G, Mesto D, Blasi D, Cataldi TRI, Calvano CD. The Effect of Milling on the Ethanolic Extract Composition of Dried Walnut ( Juglans regia L.) Shells. Int J Mol Sci 2023; 24:13059. [PMID: 37685864 PMCID: PMC10487924 DOI: 10.3390/ijms241713059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigates the ethanolic extract of dried walnut (Juglans regia L.) shells upon hammer milling (HM) and ball milling (BM) grinding processes. Marked differences were observed in the attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra. The two extracts were investigated by reversed-phase liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (RPLC-ESI-HRMS). Following enzymatic digestion, the fatty acids (FAs) were examined, and tandem MS of epoxidized species was applied to establish the C-C double bond position; the most abundant species were FA 18:2 Δ9,12, FA 18:1 Δ9, and FA 18:3 Δ9,12,15. However, no significant qualitative differences were observed between FAs in the two samples. Thus, the presence of potential active secondary metabolites was explored, and more than 30 phenolic compounds, including phenols, ellagic acid derivatives, and flavonoids, were found. Interestingly, the HM samples showed a high concentration of ellagitannins and hydrolyzable tannins, which were absent in the BM sample. These findings corroborate the greater phenolic content in the HM sample, as evaluated by the Folin-Ciocalteu test. Among the others, the occurrence of lanceoloside A at m/z 391.1037 [C19H20O9-H]-, and a closely related benzoyl derivate at m/z 405.1190 (C20H22O9-H]-), was ascertained. The study provides valuable information that highlights the significance of physical pre-treatments, such as mill grinding, in shaping the composition of extracts, with potential applications in the biorefinery or pharmaceutical industries.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Davide Mesto
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
| | - Davide Blasi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
| | - Tommaso R. I. Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
24
|
Assar DH, Ragab AE, Abdelsatar E, Salah AS, Salem SMR, Hendam BM, Al Jaouni S, Al Wakeel RA, AbdEl-Kader MF, Elbialy ZI. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp ( Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals (Basel) 2023; 13:2229. [PMID: 37444027 DOI: 10.3390/ani13132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 32527, Egypt
| | - Essam Abdelsatar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa F AbdEl-Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
25
|
Mansour HMM, Zeitoun AA, Abd-Rabou HS, El Enshasy HA, Dailin DJ, Zeitoun MAA, El-Sohaimy SA. Antioxidant and Anti-Diabetic Properties of Olive ( Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants (Basel) 2023; 12:1275. [PMID: 37372005 PMCID: PMC10295535 DOI: 10.3390/antiox12061275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Objective: The main objective of the current study was to evaluate in vitro and in vivo an antioxidant property of three genotypes of olive leaf extract (OLE) (picual, tofahi and shemlali), and furthermore to assess potential activity in the treatment and/or prevention of diabetes mellitus type II and related implications. (2) Methodology: Antioxidant activity was determined by using three different methods (DDPH assay, reducing power and nitric acid scavenging activity). In vitro α-glucosidase inhibitory activity and hemolytic protective activity were assessed for the OLE. Five groups of male rats were used in in vivo experiment for evaluating the antidiabetic potential of OLE. (3) Results: The genotypes of the extracts of the three olive leaves exhibited meaningful phenolic and flavonoids content with superiority for picual extract (114.79 ± 4.19 µg GAE/g and 58.69 ± 1.03 µg CE/g, respectively). All three genotypes of olive leaves demonstrated significant antioxidant activity when using DPPH, reducing power and nitric oxide scavenging activity with IC50 ranging from 55.82 ± 0.13 to 19.03 ± 0.13 μg/mL. OLE showed a significant α-glucosidase inhibition activity and dose-dependent protection from hemolysis. In vivo experimentation revealed that the administration of OLE alone and the combination of OLE+ metformin clearly restored the blood glucose and glycated hemoglobin, lipid parameters and liver enzymes to the normal level. The histological examination revealed that the OLE and its combination with metformin successfully repaired the liver, kidneys and pancreatic tissues to bring them close to the normal status and maintain their functionality. (4) Conclusion: Finally, it can be concluded that the OLE and its combination with metformin is a promising treatment for diabetes mellitus type 2 due to their antioxidant activity, which emphasizes the potential use of OLE alone or as an adjuvant agent in the treatment protocol of diabetes mellitus type II.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
| | - Ashraf A. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21934, Egypt; (A.A.Z.)
| | - Hagar S. Abd-Rabou
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; (H.A.E.E.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- Genertic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia; (H.A.E.E.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
| | - Mohamed A. A. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21934, Egypt; (A.A.Z.)
| | - Sobhy A. El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (H.M.M.M.)
- Department of Technology and Organization of Public Catering, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
26
|
Brugnoli M, La China S, Lasagni F, Romeo FV, Pulvirenti A, Gullo M. Acetic acid bacteria in agro-wastes: from cheese whey and olive mill wastewater to cellulose. Appl Microbiol Biotechnol 2023; 107:3729-3744. [PMID: 37115254 DOI: 10.1007/s00253-023-12539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Federico Lasagni
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora Valeria Romeo
- Research Centre for Olive, Fruit and Citrus Crops (CREA), Acireale, 95024, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
27
|
Rivero-Pino F, Millan-Linares MC, Villanueva-Lazo A, Fernandez-Prior Á, Montserrat-de-la-Paz S. In vivo evidences of the health-promoting properties of bioactive compounds obtained from olive by-products and their use as food ingredient. Crit Rev Food Sci Nutr 2023; 64:8728-8740. [PMID: 37096486 DOI: 10.1080/10408398.2023.2203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Olea europaea L. is the source of virgin olive oil (VOO). During its extraction, a high amount of by-products (pomace, mill wastewaters, leaves, stones, and seeds) is originated, which possess an environmental problem. If the generation of waste cannot be prevented, its economic value must be recovered and its effects on the environment and climate change must be avoided or minimized. The bioactive compounds (e.g., phenols, pectins, peptides) of these by-product fractions are being investigated as nutraceutical due to the beneficial properties it might have. In this review, the aim is to summarize the in vivo studies carried out in animals and humans with bioactive compounds exclusively obtained from olive by-products, aiming to demonstrate the potential health benefits these products can exert, as well as to describe its use in the food industry as bioactive ingredient. Several food matrices have been fortified with olive by-products fractions, leading to an improvement of properties. Animal and human studies suggest the benefits of ingesting olive-derived products to promote health. However, the investigation until now is scarce and consequently, well-designed human studies are required in order to fully address and confirm the safety and health-promoting properties of olive oil by-products.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Alvaro Villanueva-Lazo
- Department of Food & Health, Instituto de la Grasa, Spanish National Research Council (IG-CSIC), Seville, Spain
| | - África Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Sergio Montserrat-de-la-Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
28
|
Leopold J, Prabutzki P, Engel KM, Schiller J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules 2023; 13:biom13030546. [PMID: 36979481 PMCID: PMC10046246 DOI: 10.3390/biom13030546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Matrix-assisted laser desorption and ionization (MALDI) is a widely used soft-ionization technique of modern mass spectrometry (MS). MALDI enables the analysis of nearly all chemical compounds—including polar and apolar (phospho)lipids—with a minimum extent of fragmentation. MALDI has some particular advantages (such as the possibility to acquire spatially-resolved spectra) and is competitive with the simultaneously developed ESI (electrospray ionization) MS. Although there are still some methodological aspects that need to be elucidated in more detail, it is obvious that the careful selection of an appropriate matrix plays the most important role in (lipid) analysis. Some lipid classes can be detected exclusively if the optimum matrix is used, and the matrix determines the sensitivity by which a particular lipid is detected within a mixture. Since the matrix is, thus, crucial for optimum results, we provide here an update on the progress in the field since our original review in this journal in 2018. Thus, only the development during the last five years is considered, and lipids are sorted according to increasing complexity, starting with free fatty acids and ending with cardiolipins and phosphoinositides.
Collapse
|
29
|
Difonzo G, Antonino C, Squeo G, Caponio F, Faccia M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants (Basel) 2023; 12:antiox12030660. [PMID: 36978908 PMCID: PMC10045188 DOI: 10.3390/antiox12030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Agri-food companies produce large quantities of plant by-products that in many instances contain functional bioactive compounds. This review summarizes the main applications of agro-industrial by-products in cheesemaking, considering their bioactivities and functional properties. Polyphenol-rich by-products increase antioxidant and antimicrobial activity in cheeses, positively impacting their shelf life. Contrasting results have been obtained regarding the color and sensory properties of enriched cheeses depending on the selected by-products and on the technology adopted for the extract preparation. Furthermore, functional compounds in cheeses perform a prebiotic function and their bioavailability improves human health. Overall, the use of agri-food by-products in cheese formulation can offer benefits for agri-food chain sustainability and consumer health.
Collapse
|
30
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan,The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan,Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh,Corresponding author. Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
31
|
Nenadis N, Pyrka I, Tsimidou MZ. The Contribution of Theoretical Prediction Studies to the Antioxidant Activity Assessment of the Bioactive Secoiridoids Encountered in Olive Tree Products and By-Products. Molecules 2023; 28:2267. [PMID: 36903511 PMCID: PMC10005156 DOI: 10.3390/molecules28052267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Assessment of the antioxidant activity of different types of natural compounds is a complex research area that encompasses various in vitro tests and in vivo studies. Sophisticated modern analytical tools permit the unambiguous characterization of the compounds present in a matrix. The contemporary researcher, knowing the chemical structure of the compounds present, can carry out quantum chemical calculations that provide important physicochemical information assisting the prediction of antioxidant potential and the mechanism behind the activity of target compounds before further experimentation. The efficiency of calculations is steadily improved due to the rapid evolution of both hardware and software. It is possible, consequently, to study compounds of medium or even larger size, incorporating also models that simulate the liquid phase (solution). This review contributes to the establishment of theoretical calculations as an inherent part of the antioxidant activity assessment process, having as a case study the complex mixtures of olive bioactive secoiridoids (oleuropein, ligstroside, and related compounds). The literature indicates great variability in theoretical approaches and models used so far for only a limited number of this group of phenolic compounds. Proposals are made for standardization of methodology (reference compounds, DFT functional, basis set size, and solvation model) to facilitate comparisons and communication of findings.
Collapse
Affiliation(s)
| | | | - Maria Z. Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023; 28:342. [PMID: 36615534 PMCID: PMC9823944 DOI: 10.3390/molecules28010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.
Collapse
Affiliation(s)
- Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Terenzio Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
33
|
Mercatante D, Ansorena D, Taticchi A, Astiasarán I, Servili M, Rodriguez-Estrada MT. Effects of In Vitro Digestion on the Antioxidant Activity of Three Phenolic Extracts from Olive Mill Wastewaters. Antioxidants (Basel) 2022; 12:antiox12010022. [PMID: 36670884 PMCID: PMC9854611 DOI: 10.3390/antiox12010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the impact of in vitro digestion on the antioxidant activity of three extracts rich in phenols (two purified organic extracts (A20, A21) and one powdered extract stabilized with maltodextrins (SP)) obtained from olive mill wastewaters (OMWW). The content and composition of phenols and antioxidant activity was determined before and after in vitro digestion. The phenol content of the A20 and A21 samples were higher (>75%) than that of the SP sample before in vitro digestion. After the entire in vitro digestion, 89.3, 76.9, and 50% loss of phenols was found in A20, A21 and SP, respectively. ABTS•+ and ORAC values decreased during in vitro digestion of A20 and A21 samples, while they remained almost constant in SP. IC50 increased during digestion of A20 and A21, evidencing a loss of antioxidant capacity after the intestinal phase; an opposite IC50 trend was noted in SP, confirming the protective role of maltodextrins. For these reasons, SP represents a promising formulation to be used in the food field.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (D.A.); (M.T.R.-E.); Tel.: +34-9-4842-5600 (ext. 806263) (D.A.); +39-05-1209-6011 (M.T.R.-E.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—University of Bologna, 47521 Cesena, Italy
- Correspondence: (D.A.); (M.T.R.-E.); Tel.: +34-9-4842-5600 (ext. 806263) (D.A.); +39-05-1209-6011 (M.T.R.-E.)
| |
Collapse
|
34
|
Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-d-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or "Alperujo". MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238380. [PMID: 36500472 PMCID: PMC9738503 DOI: 10.3390/molecules27238380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
The main by-product generated from the olive oil two-phase extraction system, or alperujo, is undoubtedly a rich source of bioactive components, among which phenolics are one of the most important. The evolution of four of its main phenolics: hydroxytyrosol (HT), hydroxytyrosol 4-β-d-glucoside (Glu-HT), 3,4-dihydroxyphenylglycol (DHPG) and tyrosol (Ty) was studied over two seasons and in ten oil mills under similar climatological and agronomic conditions, for the first time using organic extraction and high-performance liquid chromatography (HPLC-DAD) determination. The results show that HT (200-1600 mg/kg of fresh alperujo) and Ty (10-570 mg/kg) increase, while DHPG (10-370 mg/kg) decreases only in the last month of the season and Glu-HT (1400-0 mg/kg) decreases drastically from the beginning. This evolution is similar between different seasons, with a high correlation between Glu-HT, HT, and Ty. On the other hand, it has been verified that a mixture of alperujos from all the oil mills, which is what the pomace extractor receives, is a viable source of a liquid fraction which is rich in the phenolics studied through organic extractions and especially after the application of a thermal treatment, obtaining values of 4.2 g/L of HT, 0.36 g/L of DHPG, and 0.49 g/L of Ty in the final concentrated liquid fraction.
Collapse
|
35
|
Solid State Fermentation of Olive Leaves as a Promising Technology to Obtain Hydroxytyrosol and Elenolic Acid Derivatives Enriched Extracts. Antioxidants (Basel) 2022; 11:antiox11091693. [PMID: 36139767 PMCID: PMC9496001 DOI: 10.3390/antiox11091693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Extraction of valuable bioactive compounds from olive leaves is a hot topic and the use of sustainable and green technologies is mandatory in terms of circular economy. In this way, the use of fermentation technologies showed very interesting results in terms of phenolic compound recovery. Because of that in this work the use of solid state fermentations, as valuable tool to improve the phenolic extraction has been checked. Aspergillus oryzae (in mycelium and spore form), Aspergillus awamori and Aspergillus niger were used as fermentation microrganisms. Phenolic compounds were determined by HPLC-ESI-TOF-MS and, to our knowledge, new compounds have been tentatively identified in olive leaves. Fermentation using mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae were effective to increase both hydroxytyrosol and elenolic acid derivatives whereas the use of spores of Aspergillus oryzae caused a loss of hydroxytyrosoyl derivatives, contrary the content of elenolic derivatives are comparable with the other fermentation treatments and higher than control. The proposed fermentation processes using the mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae lead to an increase the hydroxytyrosyl and elenolic acid derivatives and could be used at industrial scale to obtain enriched extracts.
Collapse
|
36
|
Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We " AMES"? Antioxidants (Basel) 2022; 11:antiox11061197. [PMID: 35740094 PMCID: PMC9230180 DOI: 10.3390/antiox11061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Several pharmaceutical companies are nowadays considering the use of agri-food waste as alternative raw material for the extraction of bioactive compounds to include in nutraceuticals and food supplements. This recycling activity is encountering the support of authorities, which are alarmed by air, soil and water pollution generated by agricultural waste disposal. Waste reuse has several economic advantages: (i) its low cost; (ii) its abundance; (iii) the high content of bioactive molecule (antioxidants, minerals, fibers, fatty acids); as well as (iv) the financial support received by governments eager to promote eco-compatible and pollution-reducing practices. While nutraceuticals produced from biowaste are becoming popular, products that have been risk-assessed in terms of safety are quite rare. This despite waste biomass, in virtue of its chemical complexity, could, in many cases, mine the overall safety of the final nutraceutical product. In this review, we summarize the scientific results published on genotoxicity risk-assessment of bioactive compounds extracted from agricultural waste. The review depicts a scenario where the risk-assessment of biowaste derived products is still scarcely diffuse, but when available, it confirms the safety of these products, and lets us envisage their future inclusion in the list of botanicals allowed for formulation intended for human consumption.
Collapse
|
37
|
Paulo F, Tavares L, Santos L. Extraction and encapsulation of bioactive compounds from olive mill pomace: influence of loading content on the physicochemical and structural properties of microparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01408-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
39
|
Calvano CD, Tamborrino A. Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization. Foods 2022; 11:foods11060768. [PMID: 35327197 PMCID: PMC8947182 DOI: 10.3390/foods11060768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Cosima D. Calvano
- Inter-Department Center SMART, Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| | - Antonia Tamborrino
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| |
Collapse
|
40
|
Mendes A, Azevedo-Silva J, Fernandes JC. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals (Basel) 2022; 15:265. [PMID: 35337064 PMCID: PMC8951290 DOI: 10.3390/ph15030265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Squalene is a natural linear triterpene that can be found in high amounts in certain fish liver oils, especially from deep-sea sharks, and to a lesser extent in a wide variety of vegeTable oils. It is currently used for numerous vaccine and drug delivery emulsions due to its stability-enhancing properties and biocompatibility. Squalene-based vaccine adjuvants, such as MF59 (Novartis), AS03 (GlaxoSmithKline Biologicals), or AF03 (Sanofi) are included in seasonal vaccines against influenza viruses and are presently being considered for inclusion in several vaccines against SARS-CoV-2 and future pandemic threats. However, harvesting sharks for this purpose raises serious ecological concerns that the exceptional demand of the pandemic has exacerbated. In this line, the use of plants to obtain phytosqualene has been seen as a more sustainable alternative, yet the lower yields and the need for huge investments in infrastructures and equipment makes this solution economically ineffective. More recently, the enormous advances in the field of synthetic biology provided innovative approaches to make squalene production more sustainable, flexible, and cheaper by using genetically modified microbes to produce pharmaceutical-grade squalene. Here, we review the biological mechanisms by which squalene-based vaccine adjuvants boost the immune response, and further compare the existing sources of squalene and their environmental impact. We propose that genetically engineered microbes are a sustainable alternative to produce squalene at industrial scale, which are likely to become the sole source of pharmaceutical-grade squalene in the foreseeable future.
Collapse
Affiliation(s)
- Adélia Mendes
- Centro de Biotecnologia e Química Fina (CBQF), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Amyris Bio Products Portugal, 4169-005 Porto, Portugal; (J.A.-S.); (J.C.F.)
| | | | | |
Collapse
|
41
|
Contreras MDM, Gómez-Cruz I, Feriani A, Alwasel S, Harrath AH, Romero I, Castro E, Tlili N. Hepatopreventive properties of hydroxytyrosol and mannitol-rich extracts obtained from exhausted olive pomace using green extraction methods. Food Funct 2022; 13:11915-11928. [DOI: 10.1039/d2fo00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxytyrosol and mannitol rich extracts from exhausted olive pomace were obtained by green extraction methodologies. Supplementation of these extracts alleviated CCl4-induced hepatic damage and protected DNA.
Collapse
Affiliation(s)
- María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems. Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| |
Collapse
|
42
|
Peeters K, Miklavčič Višnjevec A, Esakkimuthu ES, Schwarzkopf M, Tavzes Č. The Valorisation of Olive Mill Wastewater from Slovenian Istria by Fe 3O 4 Particles to Recover Polyphenolic Compounds for the Chemical Specialties Sector. Molecules 2021; 26:6946. [PMID: 34834035 PMCID: PMC8622678 DOI: 10.3390/molecules26226946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Olive oil production using three-phase decanter systems creates olive oil and two by-products: olive mill wastewater (OMWW) and pomace. These by-products contain the highest share of polyphenolic compounds that are known to be associated with beneficial effects on human health. Therefore, they are an attractive source of phenolic compounds for further industrial use in the cosmetic, pharmaceutical and food industries. The use of these phenolics is limited due to difficulties in recovery, high reactivity, complexity of the OMWW matrix and different physiochemical properties of phenolic compounds. This research, focused on OMWW, was performed in two phases. First, different polyphenol extraction methods were compared to obtain the method that yields the highest polyphenol concentration. Twenty-five phenolic compounds and their isomers were determined. Acidifying OMWW, followed by five minutes of ultrasonication, resulted in the highest measured polyphenol content of 27 mg/L. Second, the collection of polyphenolic compounds from OMWW via adsorption on unmodified iron (II, III) oxide particles was investigated. Although low yields were obtained for removed polyphenolic compounds in one removal cycle, the process has a high capability to be repeated.
Collapse
Affiliation(s)
- Kelly Peeters
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, University of Primorska, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia;
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Črtomir Tavzes
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|