1
|
Khalil RKS, ElLeithy AE, Ayoup MS, Abu-Saied MA, Sharaby MR. Zein-based nisin-loaded electrospun nanofibers as active packaging mats for control of Listeria monocytogenes on peach. Food Chem 2024; 459:140441. [PMID: 39032364 DOI: 10.1016/j.foodchem.2024.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Zein-based nanofibers (NFs) functionalized with nisin (NS), reinforced with montmorillonite nanoclay (nMMT) were fabricated by uniaxial electrospinning (ES) for the first time to preserve yellow peach. Spinnability/viscosity/conductivity optimizations generated porous (95.09%), bead-free, ultrathin (119 nm) NFs of low hydrophobicity (26.05°). Glutaraldehyde (GTA) crosslinking fostered positive outcomes of tensile strength (1.23 MPa), elongation (5.0%), hydrophobicity (99.46°), surface area (201.38 m2.g-1), pore size (2.88 nm), thermal stability (Tmax = 342 °C), antioxidant/cytotoxic activities in optimized NFs that released NS sustainably according to Korsmeyer-Peppas model indicating a Fickian diffusion mechanism with R2 = 0.9587. The novel NFs inhibited growth of Listeria monocytogenes/aerobic mesophilic populations in peach after 4 days of abusive storage, evincing their robustness in food contact applications. Simultaneously, quality parameters (moisture/texture/browning/total soluble solids/pH) and peach physical appearance were maintained for up to 8 days, endorsing the practical value of zein-based NFs as a non-thermal postharvest intervention for prolonging fruits storage life.
Collapse
Affiliation(s)
- Rowaida K S Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ahmed E ElLeithy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mohammed S Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Muhammed R Sharaby
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
2
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
3
|
Kuswandi B, Seftyani M, Pratoko DK. Edible colorimetric label based on immobilized purple sweet potato anthocyanins onto edible film for packaged mushrooms freshness monitoring. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1811-1822. [PMID: 39049922 PMCID: PMC11263321 DOI: 10.1007/s13197-024-05960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2023] [Accepted: 02/21/2024] [Indexed: 07/27/2024]
Abstract
An edible colorimetric label has been developed to determine the freshness level of mushrooms, i.e. white oyster mushrooms (Pleurotus ostreatus). The edible indicator label has been fabricated based on purple sweet potato (Ipomoea batatas L.) anthocyanins (PSPA) immobilized onto an edible film made of chitosan and cornstarch with added PVA. The freshness parameters of the mushrooms were pH, weight loss, texture, and sensory evaluation. The results showed that the colorimetric label was dark purple when the mushroom was fresh, and turn to light purple when the mushroom was still fresh, and finally green when the mushroom was no longer fresh. The color value (mean Red) of the label was measured using the ImageJ program, where its color value (mean Red) increased with decreasing freshness level of the mushrooms. The edible label can distinguish fresh mushrooms from spoilage, making it suitable to be used in a packaged mushroom as a freshness indicator.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Mita Seftyani
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Dwi Koko Pratoko
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| |
Collapse
|
4
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Nath B, Chen G, O’Sullivan CM, Zare D. Research and Technologies to Reduce Grain Postharvest Losses: A Review. Foods 2024; 13:1875. [PMID: 38928816 PMCID: PMC11202419 DOI: 10.3390/foods13121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Reducing postharvest losses offers a significant opportunity to enhance food availability without requiring extra production resources. A substantial portion of cereal grain goes to waste annually due to a lack of science-based knowledge, unconscious handling practices, suboptimal technical efficiency, and inadequate infrastructure. This article extensively reviews losses occurring during postharvest operations across various crops, examining diverse postharvest operations in different countries. Recent advancements in postharvest technology research are thoroughly discussed. The primary obstacles and challenges hindering the adoption and implementation of postharvest technologies are also explored. The appropriate postharvest technology relies on specific factors, including the kind of crops, production locales, seasons, and existing environmental and socioeconomic conditions.
Collapse
Affiliation(s)
- Bidhan Nath
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
| | - Cherie M. O’Sullivan
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Dariush Zare
- Senior Research Fellow, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia;
| |
Collapse
|
6
|
Cheng R, Niu B, Fang X, Chen H, Chen H, Wu W, Gao H. Preparation and characterization of water vapor-responsive methylcellulose-polyethylene glycol-400 composite membranes and an indication of freshness of shiitake mushrooms. Int J Biol Macromol 2024; 270:132189. [PMID: 38723812 DOI: 10.1016/j.ijbiomac.2024.132189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Intelligent packaging with freshness indication capability can help consumers purchase fresh food. However, current research primarily focuses on carbon dioxide-sensitive intelligent packaging, with limited research on water vapor-sensitive indication packaging. In this study, the water vapor-sensitive indicator membrane was prepared and used to determine the freshness of mushrooms. The results of this study showed that the water permeability of the indicator membrane decreased from 33.17 % to 21.59 % with the increase of Polyethylene glycol-400(PEG-400) content in methylcellulose(MC) membrane, and the contact angle of the indicator membrane increased from 87 % to 98 % with the addition of PEG-400. The addition of plasticizer PEG-400 increased the hydrophobicity of the indicator film, which could be attributed to the improvement of the molecular arrangement and crystallinity of the indicator film by the addition of PEG-400. After encountering water, the transparency of the indicator membrane changes from completely opaque (white) to transparent. Addition of PEG-400 reduces the rate of change in the transparency of the indicator membrane. The indicator membrane was successfully used to indicate the freshness of mushrooms and effectively reflected the freshness of mushrooms during storage. This technology could be applied to measure the freshness of other foods.
Collapse
Affiliation(s)
- Rong Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Lurie-Luke E. Alternative protein sources: science powered startups to fuel food innovation. Nat Commun 2024; 15:4425. [PMID: 38806477 PMCID: PMC11133469 DOI: 10.1038/s41467-024-47091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Harnessing the potential of considerable food security efforts requires the ability to translate them into commercial applications. This is particularly true for alternative protein sources and startups being on the forefront of innovation represent the latest advancements in this field.
Collapse
Affiliation(s)
- Elena Lurie-Luke
- Department of Biosciences, Durham University, DH1 3LE, Durham, UK.
| |
Collapse
|
8
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
9
|
Francis DV, Dahiya D, Gokhale T, Nigam PS. Sustainable packaging materials for fermented probiotic dairy or non-dairy food and beverage products: challenges and innovations. AIMS Microbiol 2024; 10:320-339. [PMID: 38919715 PMCID: PMC11194616 DOI: 10.3934/microbiol.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
The food and beverage packaging industry has experienced remarkable growth in recent years. Particularly the requirement for appropriate packaging materials used for the sale of fermented products is boosted due to the rising acceptance of economical functional foods available to consumers on the shelves of their local supermarkets. The most popular nutraceutical foods with increased sales include natural yogurts, probiotic-rich milk, kefir, and other fermented food and beverage products. These items have mainly been produced from dairy-based or non-dairy raw materials to provide several product options for most consumers, including vegan and lactose-intolerant populations. Therefore, there is a need for an evaluation of the potential developments and prospects that characterize the growth of the food packaging industry in the global market. The article is based on a review of information from published research, encompassing current trends, emerging technologies, challenges, innovations, and sustainability initiatives for food industry packaging.
Collapse
Affiliation(s)
- Dali Vilma Francis
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, UK
- Current address: Haematology and Blood Transfusion, Basingstoke & North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Trupti Gokhale
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
10
|
Spada E, De Cianni R, Di Vita G, Mancuso T. Balancing Freshness and Sustainability: Charting a Course for Meat Industry Innovation and Consumer Acceptance. Foods 2024; 13:1092. [PMID: 38611396 PMCID: PMC11011882 DOI: 10.3390/foods13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The agribusiness sector is constantly seeking solutions to enhance food security, sustainability, and resilience. Recent estimates indicate that one-third of the total food production remains unused due to waste or limited shelf life, resulting in negative environmental and ethical consequences. Consequently, exploring technological solutions to extend the shelf life of food products could be a crucial option to address this issue. However, the success of these technological solutions is closely linked to the perception of the end-consumers, particularly in the short term. Based on these considerations, this paper presents a systematic literature review of the main technological innovations in the fresh meat industry and of consumers' perceptions of such innovations. Regarding innovative technologies, this review focused on active and smart packaging. Amidst various technological innovations, including the utilization of fundamental matrices and natural additives, a noticeable gap exists in consumer perception studies. This study represents the first comprehensive compilation of research on consumers' perceptions and acceptance of innovations designed to extend the shelf life of fresh meat. Moreover, it sheds light on the existing barriers that hinder the complete embrace of these innovations.
Collapse
Affiliation(s)
- Emanuele Spada
- Department of Agriculture (AGRARIA), University Mediterranea of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy;
| | - Rachele De Cianni
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (R.D.C.); (T.M.)
| | - Giuseppe Di Vita
- Department of Agriculture Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Teresina Mancuso
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (R.D.C.); (T.M.)
| |
Collapse
|
11
|
Taheri-Yeganeh A, Ahari H, Mashak Z, Jafari SM. Monitor the freshness of shrimp by smart halochromic films based on gelatin/pectin loaded with pistachio peel anthocyanin nanoemulsion. Food Chem X 2024; 21:101217. [PMID: 38426072 PMCID: PMC10901912 DOI: 10.1016/j.fochx.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
This paper focuses on the combination of gelatin (Gel), pectin (Pec), and Pistachio peel anthocyanins (PSAs) to develop a halochromic film for food applications (shrimp). The results of spectroscopic properties showed that the film components had proper interaction and compatibility. Furthermore, the addition of PSAs and Pec improved the thermal stability of films. The addition of Pec and PSAs significantly improved the physical properties and mechanical resistance of the films. So that, the permeability to water vapor and oxygen reduced from 2.81 to 2.74 (g‧s-1‧Pa-1‧m-1) and 5.25 to 4.70 (meq/kgO2), respectively. In addition, the strength and flexibility of halochromic film reached 0.7 MPa and 56 % compared to Gel film (0.62 MPa, and 46.96 %). Most importantly, the color changes of the smart film from cherry/pink to yellow/brown, which were proportional to the color changes of the anthocyanin solution at different pHs, were able to monitor the shrimp freshness and spoilage at room (20 °C) and refrigerated (4 °C) temperature for 14 days.
Collapse
Affiliation(s)
- Alireza Taheri-Yeganeh
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mashak
- Department of Food Hygiene, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
de Oliveira Filho JG, Bertolo MRV, Fernandes SS, Lemes AC, da Cruz Silva G, Junior SB, de Azeredo HMC, Mattoso LHC, Egea MB. Intelligent and active biodegradable biopolymeric films containing carotenoids. Food Chem 2024; 434:137454. [PMID: 37716153 DOI: 10.1016/j.foodchem.2023.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration. This review summarizes the current research on the application of carotenoids as novel intelligent and active biodegradable food packaging materials. Carotenoids recovered from food processing by-products can be used in the development of active food packaging materials due to their antioxidant properties. They help maintain the stability of lipid-rich foods, such as vegetable oils. Additionally, when incorporated into films, carotenoids can monitor food oxidation, providing intelligent functionalities.
Collapse
Affiliation(s)
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
13
|
Olawore O, Ogunmola M, Desai S. Engineered Nanomaterial Coatings for Food Packaging: Design, Manufacturing, Regulatory, and Sustainability Implications. MICROMACHINES 2024; 15:245. [PMID: 38398974 PMCID: PMC10893406 DOI: 10.3390/mi15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
The food industry is one of the most regulated businesses in the world and follows strict internal and regulated requirements to ensure product reliability and safety. In particular, the industry must ensure that biological, chemical, and physical hazards are controlled from the production and distribution of raw materials to the consumption of the finished product. In the United States, the FDA regulates the efficacy and safety of food ingredients and packaging. Traditional packaging materials such as paper, aluminum, plastic, and biodegradable compostable materials have gradually evolved. Coatings made with nanotechnology promise to radically improve the performance of food packaging materials, as their excellent properties improve the appearance, taste, texture, and shelf life of food. This review article highlights the role of nanomaterials in designing and manufacturing anti-fouling and antimicrobial coatings for the food packaging industry. The use of nanotechnology coatings as protective films and sensors to indicate food quality levels is discussed. In addition, their assessment of regulatory and environmental sustainability is developed. This review provides a comprehensive perspective on nanotechnology coatings that can ensure high-quality nutrition at all stages of the food chain, including food packaging systems for humanitarian purposes.
Collapse
Affiliation(s)
- Oluwafemi Olawore
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
| | - Motunrayo Ogunmola
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
14
|
Galanakis CM. The Future of Food. Foods 2024; 13:506. [PMID: 38397483 PMCID: PMC10887894 DOI: 10.3390/foods13040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The global food systems face significant challenges driven by population growth, climate change, geopolitical conflicts, crises, and evolving consumer preferences. Intending to address these challenges, optimizing food production, adopting sustainable practices, and developing technological advancements are essential while ensuring the safety and public acceptance of innovations. This review explores the complex aspects of the future of food, encompassing sustainable food production, food security, climate-resilient and digitalized food supply chain, alternative protein sources, food processing, and food technology, the impact of biotechnology, cultural diversity and culinary trends, consumer health and personalized nutrition, and food production within the circular bioeconomy. The article offers a holistic perspective on the evolving food industry characterized by innovation, adaptability, and a shared commitment to global food system resilience. Achieving sustainable, nutritious, and environmentally friendly food production in the future involves comprehensive changes in various aspects of the food supply chain, including innovative farming practices, evolving food processing technologies, and Industry 4.0 applications, as well as approaches that redefine how we consume food.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece;
- College of Science, Taif University, Taif 26571, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|
15
|
Bakeshlouy Afshar M, Poursattar Marjani A, Gozali Balkanloo P. Introducing graphene quantum dots in decomposable wheat starch-gelatin based nano-biofilms. Sci Rep 2024; 14:2069. [PMID: 38267510 PMCID: PMC10808199 DOI: 10.1038/s41598-024-52560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
This research aims to discover a viable substitute for the common harmful plastic packaging utilized in food products. Citric acid was employed as an accessible and risk-free precursor in synthesizing graphene quantum dots (GQDs). Using the efficient carbonization technique, GQDs were obtained and subsequently transferred to nano-biofilms in varying percentages relative to natural polymers. FT-IR, XRD, FE-SEM, EDX, and AFM analyses were conducted to examine the formation of the nano-biofilms. GQDs demonstrated optimal performance in the disk diffusion method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical approach. Adding GQDs to starch and gelatin composite improved the physical properties of nano-biofilms such as moisture contact, swelling index, and solubility. The transparency of the films was reduced by GQDs, which reduces the transmission of visible light and plays an important role in food protection. The packaging films' weight loss due to decomposition was examined after being buried in soil for 50 days, which relieved the eco-concerns of these packaging films. To evaluate the performance of the films in inhibiting food spoilage, cherries, and cucumbers were packed with a control film and the fabricated film containing 14 wt% of GQD. After 14 days, the modified nano-biofilm was able to maintain the freshness of the samples.
Collapse
|
16
|
Puebla-Duarte AL, Santos-Sauceda I, Rodríguez-Félix F, Iturralde-García RD, Fernández-Quiroz D, Pérez-Cabral ID, Del-Toro-Sánchez CL. Active and Intelligent Packaging: A Review of the Possible Application of Cyclodextrins in Food Storage and Safety Indicators. Polymers (Basel) 2023; 15:4317. [PMID: 37959997 PMCID: PMC10648989 DOI: 10.3390/polym15214317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Natural cyclodextrins (CDs) can be formed by 6, 7, or 8 glucose molecules (α-, β-, and γ-, respectively) linked in a ring, creating a cone shape. Its interior has an affinity for hydrophobic molecules, while the exterior is hydrophilic and can interact with water molecules. This feature has been used to develop active packaging applied to food, interacting with the product or its environment to improve one or more aspects of its quality or safety. It also provides monitoring information when food is optimal for consumption, as intelligent packaging is essential for the consumer and the merchant. Therefore, this review will focus on discerning which packaging is most appropriate for each situation, solubility and toxicological considerations, characterization techniques, effect on the guest properties, and other aspects related to forming the inclusion complex with bioactive molecules applied to packaging.
Collapse
Affiliation(s)
- Andrés Leobardo Puebla-Duarte
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Irela Santos-Sauceda
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Rey David Iturralde-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Daniel Fernández-Quiroz
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ingrid Daniela Pérez-Cabral
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| |
Collapse
|
17
|
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, Rangasamy G. Recent advances in edible coatings and their application in food packaging. Food Res Int 2023; 173:113366. [PMID: 37803705 DOI: 10.1016/j.foodres.2023.113366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
18
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
19
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
20
|
Bhat SA, Rizwan D, Mir SA, Wani SM, Masoodi FA. Advances in apple packaging: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1847-1859. [PMID: 37206415 PMCID: PMC10188779 DOI: 10.1007/s13197-022-05447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 05/21/2023]
Abstract
Apple (Malus domestica) belongs to the family Rosaceae. It is one of the most commonly cultivated fruit in all temperate zones of the world and holds an equally important place in the global economy. Apple is a climacteric fruit and undergoes metabolic changes even after the harvest and thus prone to post-harvest losses. The packaging of apples plays an important role in extending the shelf life of the apples and also maintains the quality during distribution and transport. The prime role of packaging is to contain the food commodity and protect the enclosed product from external damage. But other functions such as traceability, convenience and temper evidence are of secondary importance. Different packaging techniques are employed for the packaging of apples which include both conventional (wooden boxes, corrugated fiber boxes, crates) and non-conventional packaging like modified atmosphere packaging (MAP), active packaging, edible coatings, etc.
Collapse
Affiliation(s)
- Saiqa Aziz Bhat
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Danish Rizwan
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Sajad Ahmad Mir
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Shoib Mohmad Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - F. A. Masoodi
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
21
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
22
|
Mohd Hatta FA, Mat Ali QA, Mohd Kashim MIA, Othman R, Abd Mutalib S, Mohd Nor NH. Recent Advances in Halal Bioactive Materials for Intelligent Food Packaging Indicator. Foods 2023; 12:2387. [PMID: 37372598 DOI: 10.3390/foods12122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Food safety and security are top priorities for consumers and the food industry alike. Despite strict standards and criteria for food production processes, the potential for food-borne diseases due to improper handling and processing is always present. This has led to an urgent need for solutions that can ensure the safety of packaged foods. Therefore, this paper reviews intelligent packaging, which employs non-toxic and environmentally friendly packaging with superior bioactive materials that has emerged as a promising solution. This review was prepared based on several online libraries and databases from 2008 to 2022. By incorporating halal bioactive materials into the packaging system, it becomes possible to interact with the contents and surrounding environment of halal food products, helping preserve them for longer periods. One particularly promising avenue of research is the use of natural colourants as halal bioactive materials. These colourants possess excellent chemical, thermal, and physical stabilities, along with antioxidant and antimicrobial properties, making them ideal candidates for use in intelligent indicators that can detect food blemishes and prevent pathogenic spoilage. However, despite the potential of this technology, further research and development are needed to promote commercial applications and market development. With continued efforts to explore the full potential of natural colourants as halal bioactive materials, we can meet the increasing demand for food safety and security, helping to ensure that consumers have access to high-quality, safe, and nutritious foods.
Collapse
Affiliation(s)
- Farah Ayuni Mohd Hatta
- Institute of Islam Hadhari, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Qurratu Aini Mat Ali
- Institute of Islam Hadhari, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Izhar Ariff Mohd Kashim
- Institute of Islam Hadhari, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Research Centre of Shariah, Faculty of Islamic Studies, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Rashidi Othman
- Department of Landscape Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, Gombak 53100, Kuala Lumpur, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Science, Faculty of Science and Technology, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Nurul Hafizah Mohd Nor
- Institute of Islam Hadhari, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
23
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
24
|
Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Solution roadmap to reduce food loss along your postharvest supply chain from farm to retail. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
26
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
27
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
28
|
Abedi-Firoozjah R, Salim SA, Hasanvand S, Assadpour E, Azizi-Lalabadi M, Prieto MA, Jafari SM. Application of smart packaging for seafood: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1438-1461. [PMID: 36717376 DOI: 10.1111/1541-4337.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Nowadays, due to the changes in lifestyle and great interest of consumers in a healthy life, people have started increasing their seafood consumption. But due to their short shelf life, experts are looking for a new packaging called smart packaging (SMP) for seafood. There are different indicators/sensors in SMP; one of the effective indices is time-temperature, which can show consumers the best time of using seafood based on their shelf life and experienced temperature. Another one is radio-frequency identification (RFID) that is a transmission device that represents a separate form of the electronic information-based SMP systems. RFID does not belong to any of the categories of markers or sensors; it is an auto recognition system that applies cordless sensors to indicate segments and collect real-time information without manual interposition. This review covers the use of SMP in all marine foods, including fish, due to its high consumption and high content of polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3), which are the considerable factors of n-3 polyunsaturated fatty acids for human.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamimeh Azimi Salim
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
29
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
30
|
Grande R, Räisänen R, Dou J, Rajala S, Malinen K, Nousiainen PA, Österberg M. In Situ Adsorption of Red Onion ( Allium cepa) Natural Dye on Cellulose Model Films and Fabrics Exploiting Chitosan as a Natural Mordant. ACS OMEGA 2023; 8:5451-5463. [PMID: 36816685 PMCID: PMC9933475 DOI: 10.1021/acsomega.2c06650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Synthetic dyes and chemicals create an enormous impact on environmental pollution both in textile manufacturing and after the product's lifetime. Biobased plant-derived colorants and mordants have great potential for the development of more sustainable textile dyeing processes. Colorants isolated from biomass residues are renewable, biodegradable, and usually less harmful than their synthetic counterparts. Interestingly, they may also bring additional functions to the materials. However, the extraction and purification of the biocolorants from biomass as well as their dyeing efficiency and color fastness properties require a more thorough examination. Here, we extracted red onion (Allium cepa) skins to obtain polyphenolic flavonoids and anthocyanins as biocolorants, characterized the chemical composition of the mixture, and used a quartz crystal microbalance and thin films of cellulose nanofibrils to study the adsorption kinetics of dyes onto cellulose substrates in situ. The effect of different mordants on the adsorption behavior was also investigated. Comparison of these results with conventional dyeing experiments of textiles enabled us to determine the interaction mechanism of the dyes with substrates and mordants. Chitosan showed high potential as a biobased mordant based both on its ability to facilitate fast adsorption of polyphenols to cellulose and its ability to retain the purple color of the red onion dye (ROD) in comparison to the metal mordants FeSO4 and alum. The ROD also showed excellent UV-shielding efficiency at low concentrations, suggesting that biocolorants, due to their more complex composition compared to synthetic ones, can have multiple actions in addition to providing aesthetics.
Collapse
Affiliation(s)
- Rafael Grande
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Riikka Räisänen
- Craft
Science, University of Helsinki, Siltavuorenpenger 10, 00014Helsinki, Finland
| | - Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Satu Rajala
- Craft
Science, University of Helsinki, Siltavuorenpenger 10, 00014Helsinki, Finland
| | - Kiia Malinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Paula A. Nousiainen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
31
|
Fernandez CM, Alves J, Gaspar PD, Lima TM, Silva PD. Innovative processes in smart packaging. A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:986-1003. [PMID: 35279845 DOI: 10.1002/jsfa.11863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/13/2022] [Indexed: 05/15/2023]
Abstract
Smart packaging provides one possible solution that could reduce greenhouse gas emissions. In comparison with traditional packaging, which aims to extend the product's useful life and to facilitate transport and marketing, smart packaging allows increased efficiency, for example by ensuring authenticity and traceability from the product's origin, preventing fraud and theft, and improving security. Consequently, it may help to reduce pollution, food losses, and waste associated with the food supply chain. However, some questions must be answered to fully understand the advantages and limitations of its use. What are the most suitable smart packaging technologies for use in agro-industrial subsectors such as meat, dairy, fruits, and vegetables, bakery, and pastry? What are the opportunities from a perspective of life extension, process optimization, traceability, product quality, and safety? What are the future challenges? An up-to-date, systematic review was conducted of literature relevant to the application of indicator technologies, sensors, and data carriers in smart packaging, to answer these questions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos M Fernandez
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro Dinis Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| |
Collapse
|
32
|
Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1004-1020. [PMID: 35303759 DOI: 10.1002/jsfa.11880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the strong increase in products consumption, the purchase of products on online platforms as well as the requirements for greater safety and food protection are a concern for food and packaging industries. Active packaging brings huge advances in the extension of product shelf-life and food degradation and losses reduction. This systematic work aims to collect and evaluate all existing strategies and technologies of active packaging that can be applied in food products, with a global view of new possibilities for food preservation. Oxygen scavengers, carbon dioxide emitters/absorbers, ethylene scavengers, antimicrobial and antioxidant active packaging, and other active systems and technologies are summarized including the products commercially available and the respective mechanisms of action. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
33
|
Rai P, Verma S, Mehrotra S, Priya S, Sharma SK. Sensor-integrated biocomposite membrane for food quality assessment. Food Chem 2023; 401:134180. [DOI: 10.1016/j.foodchem.2022.134180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
34
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
35
|
Osmólska E, Stoma M, Starek-Wójcicka A. Application of Biosensors, Sensors, and Tags in Intelligent Packaging Used for Food Products-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249956. [PMID: 36560325 PMCID: PMC9783027 DOI: 10.3390/s22249956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
The current development of science and the contemporary market, combined with high demands from consumers, force manufacturers and scientists to implement new solutions in various industries, including the packaging industry. The emergence of new solutions in the field of intelligent packaging has provided an opportunity to extend the quality of food products and ensures that food will not cause any harm to the consumer's health. Due to physical, chemical, or biological factors, the state of food may be subject to degradation. The degradation may occur because the packaging, i.e., the protective element of food products, may be damaged during storage, transport, or other logistic and sales activities. This is especially important since most food products are highly perishable, and the maintenance of the quality of a food product is the most critical issue in the entire supply chain. Given the importance of the topic, the main purpose of this article was to provide a general overview of the application of biosensors, sensors, and tags in intelligent packaging used for food products. A short history and the genesis of intelligent packaging are presented, and the individual possibilities of application of sensors, biosensors, gas sensors, and RFID tags, as well as nanotechnology, in the area of the packaging of food products are characterized.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
36
|
Larder RR, Hatton FL. Enabling the Polymer Circular Economy: Innovations in Photoluminescent Labeling of Plastic Waste for Enhanced Sorting. ACS POLYMERS AU 2022; 3:182-201. [PMID: 37065718 PMCID: PMC10103190 DOI: 10.1021/acspolymersau.2c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
It is widely accepted that moving from a linear to circular economy for plastics will be beneficial to reduce plastic pollution in our environment and to prevent loss of material value. However, challenges within the sorting of plastic waste often lead to contaminated waste streams that can devalue recyclates and hinder reprocessing. Therefore, the improvement of the sorting of plastic waste can lead to dramatic improvements in recyclate quality and enable circularity for plastics. Here, we discuss current sorting methods for plastic waste and review labeling techniques to enable enhanced sorting of plastic recyclates. Photoluminescent-based labeling is discussed in detail, including UV-vis organic and inorganic photoluminescent markers, infrared up-conversion, and X-ray fluorescent markers. Methods of incorporating labels within packaging, such as extrusion, surface coatings, and incorporation within external labels are also discussed. Additionally, we highlight some practical models for implementing some of the sorting techniques and provide an outlook for this growing field of research.
Collapse
Affiliation(s)
- Ryan R. Larder
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Fiona L. Hatton
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
37
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
38
|
Designing antimicrobial polypropylene films with grape pomace extract for food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Jesser E, Castillo L, Alonso Y, Urrutia R, Murray A, Domini C, Werdin-González J. Development of active biodegradable films based on chitosan and essential oil to prevent infestation of Plodia interpunctella (Lepidoptera: Pyralidae). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ehsani N, Rostamabadi H, Dadashi S, Ghanbarzadeh B, Kharazmi MS, Jafari SM. Electrospun nanofibers fabricated by natural biopolymers for intelligent food packaging. Crit Rev Food Sci Nutr 2022; 64:5016-5038. [PMID: 36419371 DOI: 10.1080/10408398.2022.2147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An "intelligent" or smart packaging is able to continuously monitor physicochemical and/or biological variations of packaged food materials, providing real-time information concerning their quality, maturity, and safety. Electrospun nanofiber (ENF) structures, nowadays, reckon as versatile biomaterial platforms in designing intelligent packaging (IP) systems. Natural biopolymer-based ENF traits, for example, surface chemistry, rate of degradation, fiber diameter, and degree of alignment, facilitate the development of unique, tunable IP, enhancing food quality, and safety. In this review, after a brief overview of the electrospinning process, we review food IP systems, which can be utilized to detect variations in food features, for example, those based on alterations in temperature, O2 level, time, humidity, pH, or microbial contamination. Different intelligent approaches that are applicable in engineering IP materials are then highlighted, that is, indicators, data carriers, and sensors. The latest research on the application of ENFs made with natural biopolymers in food IP and their performance on different packaged food types (i.e. meat, fruits and vegetables, dairy products, etc.) are underlined. Finally, the challenges and outlook of these systems in the food industry are discussed.
Collapse
Affiliation(s)
- Niloufar Ehsani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Dadashi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
41
|
Dhalsamant K, Singh CB, Lankapalli R. A Review on Greening and Glycoalkaloids in Potato Tubers: Potential Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13819-13831. [PMID: 36260761 DOI: 10.1021/acs.jafc.2c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Greening is an undesirable trait that develops in potatoes upon light exposure. This condition lowers market value, increases tuber waste in retail stores, and consequently influences the price of product in the long run. When potatoes are subjected to artificial light, the amyloplast converts into chloroplast. Although the development of total glycoalkaloids (TGA) is independent of light, the greening induced by exposure of potato to artificial light is an indication of probable TGA acceleration, which could be present in a low amount initially. Several research studies on optimum postharvest factors (temperature, lighting condition, relative humidity, pretreatment, storage air composition, and packaging) have been carried out to avoid greening and TGA development. This current review highlights major postharvest factors and summarizes past research regarding cause of greening and TGA development in potatoes in retail stores. Additionally, it also portrays the potential solutions that could help mitigate this problem, ultimately reducing wastage and achieving food security.
Collapse
Affiliation(s)
- Kshanaprava Dhalsamant
- Centre for Applied Research, Innovation, and Entrepreneurship (CARIE), Lethbridge College, Lethbridge, Alberta T1K 1L6, Canada
| | - Chandra B Singh
- Centre for Applied Research, Innovation, and Entrepreneurship (CARIE), Lethbridge College, Lethbridge, Alberta T1K 1L6, Canada
| | | |
Collapse
|
42
|
Microfluidics in smart packaging of foods. Food Res Int 2022; 161:111873. [DOI: 10.1016/j.foodres.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
43
|
Biswas R, Alam M, Sarkar A, Haque MI, Hasan MM, Hoque M. Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon 2022; 8:e11795. [PMID: 36444247 PMCID: PMC9699984 DOI: 10.1016/j.heliyon.2022.e11795] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Even though nanotechnology is extensively applied in agriculture, biochemistry, medicine and many other sectors, it is a developing field that conforms to new and more complex applications in food systems as compared to other technologies. It offers a viable strategy for integrating cutting-edge technology into a wide range of operations related to the production, development, fabrication, packaging, storage and distribution of food. The most fundamentally sophisticated technology in nano-based food science, nanoparticles deal with a wide range of nanostructured materials and nano methods, including nanofood, nanotubes, nanocomposites, nano packaging, nanocapsules, nanosensors, liposomes, nanoemulsions, polymeric nanoparticles and nanoencapsulation. This method is developed to increase food solubility and shelf life, availability of bioactive chemical, the protection of food constituents, nutritional supplementation, fortification and food or constituent delivery. Additionally, it serves as an antibacterial agent by generating reactive oxygen species (ROS) which cause bacterial DNA damage, protein denaturation and cell damage. Although the use of nanotechnology in food applications is advancing, there are certain negative or dangerous effects on health related to the toxicity and dangers of ingesting nanoparticles in food. The use of nanotechnology in the food industry, notably in processing, preservation and packaging, with its promising future, was addressed in this study. The toxicity of nanoparticles in food as well as its development in food safety assessments with certain areas of concern were also reviewed.
Collapse
Affiliation(s)
- Rahul Biswas
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahabub Alam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Animesh Sarkar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Ismail Haque
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Moinul Hasan
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mominul Hoque
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
44
|
Barandun G, Gonzalez-Macia L, Lee HS, Dincer C, Güder F. Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sens 2022; 7:2804-2822. [PMID: 36131601 PMCID: PMC9623589 DOI: 10.1021/acssensors.2c01086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Printed electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases. We further describe the challenges and future opportunities for this emerging technology.
Collapse
Affiliation(s)
- Giandrin Barandun
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
- BlakBear,
Ltd, 7-8 Child’s
Place, SW5 9RX London, United Kingdom
| | - Laura Gonzalez-Macia
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Hong Seok Lee
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Can Dincer
- FIT
Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg 79110, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Freiburg 79110, Germany
| | - Firat Güder
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| |
Collapse
|
45
|
Development of an Indicator Film Based on Cassava Starch-Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14194142. [PMID: 36236090 PMCID: PMC9573306 DOI: 10.3390/polym14194142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The increase in new technology and consumer demand for healthy and safe food has led to the development of smart packaging to help consumers understand food conditions in real time. The incorporation of red dragon fruit peel anthocyanin into cassava starch and chitosan films was used in this study as a color indicator to monitor food conditions. This indicator film was generated using the solvent-casting method. The mechanical, morphological, and physicochemical characterizations of the film were studied, and food freshness monitoring was carried out. The results showed that adding red dragon fruit peel anthocyanin increased up to 94.44% of the antioxidant activity. It also improved its flexibility, indicated by the lowest tensile strength (3.89 ± 0.15 MPa) and Young's modulus (0.14 ± 0.01 MPa) and the highest elongation at break (27.62 ± 0.57%). The indicator film was sensitive to pH, which was indicated by its color change from red to yellow as pH increased. The color of the film also changed when it was used to test the freshness of packaged shrimp at both room and chiller temperatures. According to the results, the indicator film based on cassava starch-chitosan incorporated with red dragon fruit peel anthocyanin showed its potential as a smart packaging material.
Collapse
|
46
|
Pascall MA, DeAngelo K, Richards J, Arensberg MB. Role and Importance of Functional Food Packaging in Specialized Products for Vulnerable Populations: Implications for Innovation and Policy Development for Sustainability. Foods 2022; 11:foods11193043. [PMID: 36230119 PMCID: PMC9564204 DOI: 10.3390/foods11193043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Specialized products can be needed to help meet the nutrition requirements of vulnerable populations, including infants and young children, those who are ill, and older adults. Laws and regulations delineate distinct categories for such products including medical foods or formulated liquid diets, foods for special dietary use (FSDUs), infant formulas, and natural health products (NHPs). Yet, the literature is limited regarding the role and importance of functional and sustainable packaging for specialized products. This perspective review describes these unique product categories and the role of packaging as well as regulatory considerations. Furthermore, reviewed are how waste reduction strategies and emerging legislative/regulatory policies in the United States and Canada may not adequately address the functional packaging requirements for specialized products. The paper concludes by offering perspectives for emerging innovations and policy development for sustainability.
Collapse
Affiliation(s)
- Melvin A. Pascall
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Kris DeAngelo
- Institute for Food Laws and Regulations, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- College of Law, Michigan State University, East Lansing, MI 48824, USA
| | - Julie Richards
- Abbott Nutrition Division of Abbott, Columbus, OH 43219, USA
- Correspondence:
| | | |
Collapse
|
47
|
Aman Mohammadi M, Dakhili S, Mirza Alizadeh A, Kooki S, Hassanzadazar H, Alizadeh-Sani M, McClements DJ. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2601-2617. [PMID: 36123813 DOI: 10.1080/10408398.2022.2124506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging plays a critical role in determining the quality, safety, and shelf-life of many food products. There have been several innovations in the development of more effective food packaging materials recently. Polymer nanofibers are finding increasing attention as additives in packaging materials because of their ability to control their pore size, surface energy, barrier properties, antimicrobial activity, and mechanical strength. Electrospinning is a widely used processing method for fabricating nanofibers from food grade polymers. This review describes recent advances in the development of electrospun nanofibers for application in active and smart packaging materials. Moreover, it highlights the impact of these nanofibers on the physicochemical properties of packaging materials, as well as the application of nanofiber-loaded packaging materials to foods, such as dairy, meat, fruit, and vegetable products.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food safety and hygiene, Department of Environmental Health Engineering, School of public health, Tehran University of medical sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Amorim LFA, Gomes AP, Gouveia IC. Design and Preparation of a Biobased Colorimetric pH Indicator from Cellulose and Pigments of Bacterial Origin, for Potential Application as Smart Food Packaging. Polymers (Basel) 2022; 14:polym14183869. [PMID: 36146013 PMCID: PMC9506293 DOI: 10.3390/polym14183869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Nowadays, worldwide challenges such as global warming, pollution, unsustainable consumption patterns, and scarcity of natural resources are key drivers toward future-oriented bioeconomy strategies, which rely on renewable biobased resources, such as bacterial pigments and bacterial cellulose (BC), for materials production. Therefore, the purpose of this study was to functionalize bacterial cellulose with violacein, flexirubin-type pigment, and prodigiosin and test their suitability as pH indicators, due to the pigments’ sensitivity to pH alterations. The screening of the most suitable conditions to obtain the BC-pigment indicators was achieved using a full factorial design, for a more sustainable functionalization process. Then, the pH response of functionalized BC to buffer solutions was assessed, with color changes at acidic pH (BC-violacein indicator) and at alkaline pH (BC-violacein, BC-prodigiosin, and BC-flexirubin-type pigment indicators). Moreover, the indicators also revealed sensitivity to acid and base vapors. Furthermore, leaching evaluation of the produced indicators showed higher suitability for aqueous foods. Additionally, color stability of the functionalized BC indicators was carried out, after light exposure and storage at 4 °C, to evaluate the indicators’ capacity to maintain color/sensitivity. Thus, BC membranes functionalized with bacterial pigments have the potential to be further developed and used as pH indicators.
Collapse
|
49
|
Păușescu I, Dreavă DM, Bîtcan I, Argetoianu R, Dăescu D, Medeleanu M. Bio-Based pH Indicator Films for Intelligent Food Packaging Applications. Polymers (Basel) 2022; 14:polym14173622. [PMID: 36080695 PMCID: PMC9460188 DOI: 10.3390/polym14173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The widespread concerns about the environmental problems caused by conventional plastic food packaging and food waste led to a growing effort to develop active and intelligent systems produced from renewable biodegradable polymers for food packaging applications. Among intelligent systems, the most widely used are pH indicators, which are generally based on a pH-sensitive dye incorporated into a solid support. The objective of this study was to develop new intelligent systems based on renewable biodegradable polymers and a new bio-inspired pH-sensitive dye. The structure of the dye was elucidated through FT-IR and 1D and 2D NMR spectroscopic analyses. UV-VIS measurements of the dye solutions at various pH values proved their halochromic properties. Their toxicity was evaluated through theoretical calculations, and no toxicity risks were found. The new anthocyanidin was used for the development of biodegradable intelligent systems based on chitosan blends. The obtained polymeric films were characterized through UV-VIS and FT-IR spectroscopy. Their thermal properties were assessed through a thermogravimetric analysis, which showed a better stability of chitosan–PVA–dye and chitosan–starch–dye films compared to those of chitosan–cellulose–dye films and the dye itself. The films’ sensitivity to pH variations was evaluated through immersion in buffer solutions with pH values ranging from 2 to 12, and visible color changes were observed.
Collapse
|
50
|
Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, ‘Aqilah NMN, Felicia WXL, Funk AA. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022; 27:5604. [PMID: 36080371 PMCID: PMC9457879 DOI: 10.3390/molecules27175604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Collapse
Affiliation(s)
- Luk Jun Lam Iversen
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Andree Alexander Funk
- Rural Development Corporation, Level 2, Wisma Pertanian, Locked Bag 86, Kota Kinabalu 88998, Sabah, Malaysia
| |
Collapse
|