1
|
Park S, Safdar M, Kim W, Seol J, Kim D, Lee KH, Son HI, Kim J. Gelatin Nanoparticles can Improve Pesticide Delivery Performance to Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402899. [PMID: 38949406 DOI: 10.1002/smll.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Nanomaterials associated with plant growth and crop cultivation revolutionize traditional concepts of agriculture. However, the poor reiterability of these materials in agricultural applications necessitates the development of environmentally-friendly approaches. To address this, biocompatible gelatin nanoparticles (GNPs) as nanofertilizers with a small size (≈150 nm) and a positively charged surface (≈30 mV) that serve as a versatile tool in agricultural practices is designed. GNPs load agrochemical agents to improve maintenance and delivery. The biocompatible nature and small size of GNPs ensure unrestricted nutrient absorption on root surfaces. Furthermore, when combined with pesticides, GNPs demonstrate remarkable enhancements in insecticidal (≈15%) and weed-killing effects (≈20%) while preserving the efficacy of the pesticide. That GNPs have great potential for use in sustainable agriculture, particularly in inducing plant growth, specifically plant root growth, without fertilization and in enhancing the functions of agrochemical agents is proposed. It is suggested conceptual applications of GNPs in real-world agricultural practices.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jaehwi Seol
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoung Il Son
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
2
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J, Abdel-Maksoud MA, Asard H, AbdElgawad H. Enhanced Cd phytoextraction by rapeseed under future climate as a consequence of higher sensitivity of HMA genes and better photosynthetic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168164. [PMID: 37914112 DOI: 10.1016/j.scitotenv.2023.168164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This study aimed to investigate the underlying physiological, biochemical, and molecular mechanisms responsible for Brassica napu's potential to remediate Cd-contaminated soil under current (CC) vs. future (FC) climate (400 vs. 800 ppm of CO2, 21/14 °C vs. 25/18 °C). B. napus exhibited good tolerance to low Cd treatments (Cd-1, Cd-10, i.e., 1, 10 mg kg-1) under both climates without visible phytotoxicity symptoms. TI sharply decreased by 47 % and 68 % (p < 0.05), respectively, in Cd-50 and Cd-100 treated shoots under CC, but to a lesser extent (-26 % and -53 %, p < 0.05) under FC. This agreed with increased photosynthetic apparatus performance under FC, primarily due to a significant decrease in the closure of active PSII RCs ((dV/dt)o, TRo/RC) and less dissipated excitation energy (DIo/RC, φDo). Calvin Benson cycle-related enzyme activity also improved under FC with 2.2-fold and 2.4-fold (p < 0.05) increases in Rubisco and TPI under Cd-50 and Cd-100, respectively. Consequentially, a 2.2-fold and 2.3-fold (p < 0.05) boosted Pr resulted in a 2.3-fold and 2.4-fold (p < 0.05) increase in the DW of Cd-50 and Cd-100 treated shoots, respectively. This also led to a decrease (26 %, p < 0.05) in shoot Cd concentration under both high Cd treatments with a slight reduction in BCF. Translocation factor (TF) decreased (on average 42 %, p < 0.05) by high Cd treatments under both climates. However, under Cd-100, FC increased TF by 1.7-fold (p < 0.05) compared to CC, which could be explained by significant increases in the expression of HMA genes, especially BnaHMA4a and BnaHMA4c. Finally, Cd TU increased under FC by 65 % and 76 % (p < 0.05) under Cd-50 and Cd-100. This led to a shorter hypothetical remediation time for reaching the Cd pollution limit by 35 (p > 0.05) and 61 (p < 0.05) years, respectively, compared to CC.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403 Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Skiba E, Pietrzak M, Michlewska S, Gruszka J, Malejko J, Godlewska-Żyłkiewicz B, Wolf WM. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122735. [PMID: 37848082 DOI: 10.1016/j.envpol.2023.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Wide availability of anthropogenic TiO2 nanoparticles facilitates their penetration into environment and prompts interactions with plants. They alter plants growth and change their nutritional status. In particular, metabolic processes are affected. In this work the effect of nanometric TiO2 on photosynthesis efficiency in green pea (Pisum sativum L.) was studied. Hydroponic cultivations with three Ti levels (10; 50 and 100 mg L-1) were applied. At all concentrations nanoparticles penetrated into plant tissues and were detected by the single particle ICP-MS/MS method. Nanoparticles altered the CO2 assimilation rate and gas exchange parameters (i.e. transpiration, stomatal conductance, sub-stomatal CO2 concentration). The most pronounced effects were observed for Ti 50 mg L-1 cultivation where photosynthesis efficiency, transpiration and stomatal conductance were increased by 14.69%, 4.58% and 8.92%, respectively. They were further confirmed by high maximum ribulose 1,5-bisphosphate carboxylation rate (27.40% increase), maximum electron transport rate (21.51% increase) and the lowest CO2 compensation point (45.19% decrease). Furthermore, concentrations of Cu, Mn, Zn, Fe, Mg, Ca, K and P were examined with the most pronounced changes observed for elements directly involved in photosynthesis (Cu, Zn, Mn, and Fe). The Cu concentrations in roots, stems and leaves for Ti 50 mg L-1 cultivation were below the control by 33.15%, 38.28% and 10.76%, respectively. The Zn content in analogous treatment and organs decreased by 30.24%, 26.69% and 13.35%. The Mn and Fe levels in leaves were increased by 72.22% and 50.32%, respectively. Our results indicated that plant defence mechanisms which restrain the water uptake have been overcome in pea by photocatalytic activity of nanoparticulate TiO2 which stimulated photosynthesis. On the contrary to the substantial stomatal conductance, the transpiration has been reduced because exceptional part of water flow was already consumed in chloroplasts and could not have been freed to the atmosphere.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland.
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Poland
| | - Jakub Gruszka
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Julita Malejko
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | | | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| |
Collapse
|
4
|
Weerarathne LVY, Jahufer Z, Schäufele R, Lopez I, Matthew C. A comparative analysis of agronomic water-use efficiency and its proxy measures as derived from key morpho-physiological and supportive quantitative genetics attributes of perennial ryegrass under imposed drought. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:291-307. [PMID: 37829998 PMCID: PMC10565840 DOI: 10.1002/pei3.10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 10/14/2023]
Abstract
Water-use efficiency (WUE) is an under-researched but very important drought tolerance trait in forage breeding. This research estimated quantitative genetic parameters of morpho-physiological traits linked to agronomic water-use efficiency (WUEA) and its proxy measures based on δ13C (WUEi) or gas exchange (evapotranspiration, WUEAET, or stomatal conductance WUEASC) of genotypes from half-sib families of Lolium perenne L. (PRG) in a simulated summer drought cycle. Principal component analysis (PCA) of trait data distinguished a group of PRG genotypes where high WUEA and dry matter yield was associated with deep rooting, leaf hydration at more negative leaf osmotic and water potential, and reduced soil moisture depletion. Plants with this trait association sustained net assimilation and postdefoliation regrowth in drought. However, WUEi, WUEASC, and WUEAET were poorly correlated with most traits of interest at p < .05. Another PCA revealed a weak association between WUEA and its proxy measures under conditions tested. Quantitative genetic parameters including high estimates of narrow-sense heritability (h n 2 > 0.7 ; p < .05 ) of WUEA and related traits emphasized the genetic potential of the key trait combination for selecting PRG for improved drought tolerance. Research findings highlight the relative importance of WUEA and its proxy measures in the broad definition of PRG drought tolerance for breeding purposes.
Collapse
Affiliation(s)
- L. V. Y. Weerarathne
- Department of Crop Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Z. Jahufer
- School of Agriculture and Food Sciences, Faculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - R. Schäufele
- Crop Physiology, School of Life SciencesTechnical University of MunichFreisingGermany
| | - I. Lopez
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
| | - C. Matthew
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
5
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J. Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131181. [PMID: 36948123 DOI: 10.1016/j.jhazmat.2023.131181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to assess Cd phytoextraction efficiency in well-watered and drought-stressed B. napus plants under current climate (CC, 21/14 °C, 400 ppm CO2) and future climate (FC, 25/18 °C, 800 ppm CO2) conditions. The underlying physiological mechanisms underpinning the obtained results were investigated by studying Cd (1, 10, 50, and 100 mg kg-1) effect on B. napus photosynthetic performance and nutritional status. Only the Cd-50 and Cd-100 treatments caused visible leaf lesions, growth retardation, reductions in both gas exchange and chlorophyll fluorescence-related parameters, and disturbed mineral nutrient balance. Under CC conditions, well-watered plants were affected more than under FC conditions. The most important pathway by which Cd affected B. napus photosynthetic efficiency in well-watered plants was the damage to both photosystems, lowering photosynthetic electron transport. Meanwhile, non-stomatal and stomatal limitations were responsible for the higher reduction in the photosynthetic rate (Pr) of drought-stressed compared to well-watered plants. The significantly higher shoot dry weight, which had a strong positive relationship with Pr, was the main factor determining significantly higher shoot Cd accumulation in high Cd treatments in well-watered plants under FC conditions, resulting in a 65% (p < 0.05) higher soil Cd removal rate in the Cd-50 treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| |
Collapse
|
6
|
Vráblová M, Smutná K, Koutník I, Marková D, Vrábl D, Górecki KM, Žebrák R. A novel approach for measuring membrane permeability for organic compounds via surface plasmon resonance detection. CHEMOSPHERE 2023; 312:137165. [PMID: 36356810 DOI: 10.1016/j.chemosphere.2022.137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Dominika Marková
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Daniel Vrábl
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; University of Ostrava, Faculty of Science, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| | - Kamil Maciej Górecki
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Radim Žebrák
- Dekonta Inc., Dřetovice 109, 273 42, Stehelčeves, Czech Republic.
| |
Collapse
|
7
|
Le Provost G, Gerardin T, Plomion C, Brendel O. Molecular plasticity to soil water deficit differs between sessile oak (Quercus Petraea (Matt.) Liebl.) high- and low-water use efficiency genotypes. TREE PHYSIOLOGY 2022; 42:2546-2562. [PMID: 35867420 DOI: 10.1093/treephys/tpac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water use efficiency (WUE) is an important adaptive trait for soil water deficit. The molecular and physiological bases of WUE regulation in crops have been studied in detail in the context of plant breeding. Knowledge for most forest tree species lags behind, despite the need to identify populations or genotypes able to cope with the longer, more intense drought periods likely to result from climate warming. We aimed to bridge this gap in knowledge for sessile oak (Quercus petraea (Matt.) Liebl.), one of the most ecologically and economically important tree species in Europe, using a factorial design including trees with contrasted phenotypic values (low and high WUE) and two watering regimes (control and drought). By monitoring the ecophysiological response, we first qualified genotypes for their WUE (by using instantaneous and long-term measures). We then performed RNA-seq to quantify gene expression for the three most extreme genotypes exposed to the two watering regimes. By analyzing the interaction term, we were able to capture the molecular strategy of each group of plants for coping with drought. We identified putative candidate genes potentially involved in the regulation of transpiration rate in high-WUE phenotypes. Regardless of water availability, trees from the high-WUE phenotypic class overexpressed genes associated with drought responses, and in the control of stomatal density and distribution, and displayed a downregulation of genes associated with early stomatal closure and high transpiration rate. Fine physiological screening of sessile oaks with contrasting WUE, and their molecular characterization (i) highlighted subtle differences in transcription between low- and high-WUE genotypes, identifying key molecular players in the genetic control of this trait and (ii) revealed the genes underlying the molecular strategy that evolved in each group to potentially cope with water deficit, providing new insight into the within-species diversity in drought adaptation strategies.
Collapse
Affiliation(s)
| | - Theo Gerardin
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| |
Collapse
|
8
|
Bandurska H. Drought Stress Responses: Coping Strategy and Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070922. [PMID: 35406902 PMCID: PMC9002871 DOI: 10.3390/plants11070922] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
Plants' resistance to stress factors is a complex trait that is a result of changes at the molecular, metabolic, and physiological levels. The plant resistance strategy means the ability to survive, recover, and reproduce under adverse conditions. Harmful environmental factors affect the state of stress in plant tissues, which creates a signal triggering metabolic events responsible for resistance, including avoidance and/or tolerance mechanisms. Unfortunately, the term 'stress resistance' is often used in the literature interchangeably with 'stress tolerance'. This paper highlights the differences between the terms 'stress tolerance' and 'stress resistance', based on the results of experiments focused on plants' responses to drought. The ability to avoid or tolerate dehydration is crucial in the resistance to drought at cellular and tissue levels (biological resistance). However, it is not necessarily crucial in crop resistance to drought if we take into account agronomic criteria (agricultural resistance). For the plant user (farmer, grower), resistance to stress means not only the ability to cope with a stress factor, but also the achievement of a stable yield and good quality. Therefore, it is important to recognize both particular plant coping strategies (stress avoidance, stress tolerance) and their influence on the resistance, assessed using well-defined criteria.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| |
Collapse
|
9
|
Yang S, Bai M, Hao G, Guo H, Fu B. Transcriptomics analysis of field-droughted pear ( Pyrus spp.) reveals potential drought stress genes and metabolic pathways. PeerJ 2022; 10:e12921. [PMID: 35321406 PMCID: PMC8935990 DOI: 10.7717/peerj.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Drought acts as a major abiotic stress that hinders plant growth and crop productivity. It is critical, as such, to discern the molecular response of plants to drought in order to enhance agricultural yields under droughts as they occur with increasing frequency. Pear trees are among the most crucial deciduous fruit trees worldwide, and yet the molecular mechanisms of drought tolerance in field-grown pear remain unclear. In this study, we analyzed the differences in transcriptome profiles of pear leaves, branches, and young fruits in irrigation vs field-drought conditions over the growing seasons. In total, 819 differentially expressed genes (DEGs) controlling drought response were identified, among which 427 DEGs were upregulated and 392 DEGs were downregulated. Drought responsive genes were enriched significantly in monoterpenoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis. Fourteen phenylpropanoid, five flavonoid, and four monoterpenoid structural genes were modulated by field drought stress, thereby indicating the transcriptional regulation of these metabolic pathways in fruit exposed to drought. A total of 4,438 transcription factors (TFs) belonging to 30 TF families were differentially expressed between drought and irrigation, and such findings signal valuable information on transcriptome changes in response to drought. Our study revealed that pear trees react to drought by modulating several secondary metabolic pathways, particularly by stimulating the production of phenylpropanoids as well as volatile organic compounds like monoterpenes. Our findings are of practical importance for agricultural breeding programs, while the resulting data is a resource for improving drought tolerance through genetic engineering of non-model, but economically important, perennial plants.
Collapse
Affiliation(s)
- Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| | - Mudan Bai
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| | - Guowei Hao
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Huangping Guo
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Baochun Fu
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Gałęzewski L, Jaskulska I, Jaskulski D, Lewandowski A, Szypłowska A, Wilczek A, Szczepańczyk M. Analysis of the need for soil moisture, salinity and temperature sensing in agriculture: a case study in Poland. Sci Rep 2021; 11:16660. [PMID: 34404883 PMCID: PMC8371086 DOI: 10.1038/s41598-021-96182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient use of scarce water resources is both a marketing objective and an environmental obligation for sustainable agriculture. In modern agricultural production, which is intensive and should at the same time be environmentally friendly, there is a need to monitor soil moisture, salinity and temperature. The aim of the study was to determine the demand of producers of agricultural and horticultural plants for equipment and systems for monitoring soil properties at an individual farm level in regions with highly developed agriculture. A questionnaire survey was conducted among 1087 respondents, also direct interviews in Poland were undertaken. According to the producers' responses, it is important to know soil moisture, salinity and temperature, although currently only about 4% of the surveyed farmers have the equipment to evaluate these soil parameters. In their view cost is not the most important obstacle to the purchase of the necessary probes. More important is that the devices should be easy to install and use, and have an easy to use application for data collection, processing and transfer. The current market does not offer solutions that meet these producers expectations. The demand for suitable probes is very high as over 80% of the farmers declared their willingness to purchase such probes. Technical problems related to the operation and servicing of such equipment were the most frequently mentioned impediments in their use. However, farmers and horticulturists believe that knowledge of their soil properties would allow them to optimize the elements of cultivation technology, including the use of plant irrigation systems, the use of mineral fertilizers and plant protection products.
Collapse
Affiliation(s)
- Lech Gałęzewski
- Department of Agronomy, University of Science and Technology in Bydgoszcz, S. Kaliskiego 7, 85-796, Bydgoszcz, Poland.
| | - Iwona Jaskulska
- Department of Agronomy, University of Science and Technology in Bydgoszcz, S. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Dariusz Jaskulski
- Department of Agronomy, University of Science and Technology in Bydgoszcz, S. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Arkadiusz Lewandowski
- Institute of Electronics Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland
| | - Agnieszka Szypłowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Andrzej Wilczek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Maciej Szczepańczyk
- Department of Management Systems and Innovation, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
11
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Abstract
Water, energy and food security are crucial for a sustainable long-term economy [...]
Collapse
|
13
|
Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3-GENES GENOMES GENETICS 2020; 10:1671-1683. [PMID: 32184371 PMCID: PMC7202004 DOI: 10.1534/g3.119.400884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
Collapse
|
14
|
Oyiga BC, Palczak J, Wojciechowski T, Lynch JP, Naz AA, Léon J, Ballvora A. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. PLANT, CELL & ENVIRONMENT 2020; 43:692-711. [PMID: 31734943 DOI: 10.1111/pce.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 05/26/2023]
Abstract
Roots perform vital roles for adaptation and productivity under water-deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal-root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross-sectional areas of the main-shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome-wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome-wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root-targeted marker-assisted selection.
Collapse
Affiliation(s)
| | | | - Tobias Wojciechowski
- Forschungszentrum Jülich, Institute for Bio- and Geosciences (Plant Sciences), Bonn, Germany
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State, State College, Pennsylvania
| | - Ali A Naz
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Praspaliauskas M, Pedišius N. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110333. [PMID: 31928679 DOI: 10.1016/j.plantsci.2019.110333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions with extended drought periods and heatwaves are predicted to increase in frequency and severity in many regions of the world. Aside from this, other abiotic stress factors such as nutrient deficiency could pose a serious problem to plants when combined with other stressors resulting in more complex underpinning mechanisms. In the present study, we evaluated the response of Brassica napus to single and combined impacts of drought and heatwave (HW) under adequate or deprived (N-A and N-D) soil nutrient conditions. In addition, to get better insights in the plant response to combined stress, a post-stress period, pointing out a degree of the recovery after the cessation of stress, was also included. The results showed a different manner of single drought and heatwave action. The adverse effect of drought on leaf gas exchange was lagged on the growth and became more apparent only after recovery period with no obvious difference between different nutrient levels. Contrary, the growth response of nutrient-deprived plants to single HW was weak and in most cases, insignificant. Heatwave applied simultaneously with drought highly exacerbated the adverse effect of drought both under N-A and N-D conditions. Combined drought and heatwave stress resulted in the sharper decline of Asat and it was attributed to both stomatal and non-stomatal limitations. Interestingly, plants underwent combined drought and HW treatment under N-D conditions showed better aboveground growth recovery, compared to those grown under N-A conditions, while displayed far more diminished photochemistry of photosystem II and badly disturbed the C/N balance. This discrepancy came from the fact that soil nutrient deficiency, by itself, evoked strong stress under control climate conditions resulting in a dramatically slower aboveground growth of nutrient-deprived plant. In turn, although combined drought and HW stress had similar effect on the aboveground growth either under N-A or N-D conditions, the recovery of later one was better. These results highlight the necessity to look at plants' performance under unfavorable environmental conditions beyond the actual event, since it can be depended not only on the duration of exposure but also on the legacy effect after treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania; Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania.
| | - Akvilė Viršilė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Marius Praspaliauskas
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| | - Nerijus Pedišius
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| |
Collapse
|
16
|
Landi S, Berni R, Capasso G, Hausman JF, Guerriero G, Esposito S. Impact of Nitrogen Nutrition on Cannabis sativa: An Update on the Current Knowledge and Future Prospects. Int J Mol Sci 2019; 20:E5803. [PMID: 31752217 PMCID: PMC6888403 DOI: 10.3390/ijms20225803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy
| | - Giorgia Capasso
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Sergio Esposito
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| |
Collapse
|
17
|
Tiwari A, Kumar P, Baldauf R, Zhang KM, Pilla F, Di Sabatino S, Brattich E, Pulvirenti B. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:410-426. [PMID: 30965257 PMCID: PMC7236027 DOI: 10.1016/j.scitotenv.2019.03.350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 05/05/2023]
Abstract
Green infrastructure (GI) in urban areas may be adopted as a passive control system to reduce air pollutant concentrations. However, current dispersion models offer limited modelling options to evaluate its impact on ambient pollutant concentrations. The scope of this review revolves around the following question: how can GI be considered in readily available dispersion models to allow evaluation of its impacts on pollutant concentrations and health risk assessment? We examined the published literature on the parameterisation of deposition velocities and datasets for both particulate matter and gaseous pollutants that are required for deposition schemes. We evaluated the limitations of different air pollution dispersion models at two spatial scales - microscale (i.e. 10-500 m) and macroscale (i.e. 5-100 km) - in considering the effects of GI on air pollutant concentrations and exposure alteration. We conclude that the deposition schemes that represent GI impacts in detail are complex, resource-intensive, and involve an abundant volume of input data. An appropriate handling of GI characteristics (such as aerodynamic effect, deposition of air pollutants and surface roughness) in dispersion models is necessary for understanding the mechanism of air pollutant concentrations simulation in presence of GI at different spatial scales. The impacts of GI on air pollutant concentrations and health risk assessment (e.g., mortality, morbidity) are partly explored. The i-Tree tool with the BenMap model has been used to estimate the health outcomes of annually-averaged air pollutant removed by deposition over GI canopies at the macroscale. However, studies relating air pollution health risk assessments due to GI-related changes in short-term exposure, via pollutant concentrations redistribution at the microscale and enhanced atmospheric pollutant dilution by increased surface roughness at the macroscale, along with deposition, are rare. Suitable treatments of all physical and chemical processes in coupled dispersion-deposition models and assessments against real-world scenarios are vital for health risk assessments.
Collapse
Affiliation(s)
- Arvind Tiwari
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Richard Baldauf
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA; (d)U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Ann Arbor, MI, USA
| | - K Max Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Francesco Pilla
- Department of Planning and Environmental Policy, University College Dublin, Dublin D14, Ireland
| | - Silvana Di Sabatino
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Brattich
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Beatrice Pulvirenti
- Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Ruggiero A, Landi S, Punzo P, Possenti M, Van Oosten MJ, Costa A, Morelli G, Maggio A, Grillo S, Batelli G. Salinity and ABA Seed Responses in Pepper: Expression and Interaction of ABA Core Signaling Components. FRONTIERS IN PLANT SCIENCE 2019; 10:304. [PMID: 30941154 PMCID: PMC6433719 DOI: 10.3389/fpls.2019.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Simone Landi
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | | | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | - Albino Maggio
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| |
Collapse
|
19
|
Rapacz M, Wójcik-Jagła M, Fiust A, Kalaji HM, Kościelniak J. Genome-Wide Associations of Chlorophyll Fluorescence OJIP Transient Parameters Connected With Soil Drought Response in Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:78. [PMID: 30828338 PMCID: PMC6384533 DOI: 10.3389/fpls.2019.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/17/2019] [Indexed: 05/24/2023]
Abstract
One hundred and nine accessions of spring barley seedlings were phenotyped under soil drought conditions. Chlorophyll fluorescence induction (OJIP) parameters, leaf water content, relative turgidity, net assimilation rate (P N), and water use efficiency (WUE) of plants were measured. All the tested lines were genotyped by means of DArT sequencing (DArTseq) technology. For association mapping a 11,780 polymorphic DArTseq and 4,725 DArTseq SNP markers were used. Our results revealed dissimilar patterns of the relationships between OJIP-parameters under control and drought conditions. A high level of correlation between parameters characterizing Photosystem's II (PSII) energy trapping efficiency (Fv/Fm) and photochemical events downstream of PSII reaction center (e.g., Performance Index-PICSo) was observed only in the case of drought-treated plants. Generally, OJIP parameters were correlated with leaf water content (less in control). This correlation was weaker with WUE, and absent with P N. Under drought stress, 6,252 genotype × phenotype associations, which passed false discovery rate (FDR) verification, were found between all the studied phenotypic characteristics (23, including 19 OJIP parameters) and 2,721 markers. On the other hand, only 282 associations passed FDR test in the control. They comprised 22 phenotypic parameters and 205 markers. Probing for gene annotations of sequences was performed for markers associated with Fv/Fm for both drought and control, markers were associated with studied traits in both control and drought, as well as for markers associated with both OJIP and other physiological parameters in drought. Our work allowed us to conclude that drought treatment differentiates the studied lines through the revealing of relationships between water content and the damages to PSII reaction centers or different components of PSII energy transfer chain. Moreover, the former was not connected with net photosynthesis rate.
Collapse
Affiliation(s)
- Marcin Rapacz
- Department of Plant Physiology, University of Agriculture of Krakow, Krakow, Poland
| | | | - Anna Fiust
- Department of Plant Physiology, University of Agriculture of Krakow, Krakow, Poland
- Department of Grasslands, Institute of Technology and Life Sciences (ITP), Raszyn, Poland
| | - Hazem M. Kalaji
- Department of Grasslands, Institute of Technology and Life Sciences (ITP), Raszyn, Poland
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, University of Agriculture of Krakow, Krakow, Poland
| |
Collapse
|
20
|
Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. WATER 2018. [DOI: 10.3390/w10121771] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The demand for fresh water is on the increase, and the irrigation industry in Australia is looking to a future with less water. Irrigation consumes the bulk of the water extracted from various sources, and hence the efficiency of its use is of outmost importance. This paper reviewed the advancements made towards improving irrigation water use efficiency (WUE), with a focus on irrigation in Australia but with some examples from other countries. The challenges encountered, as well as the opportunities available, are also discussed. The review showed that improvements in irrigation infrastructure through modernisation and automation have led to water savings. The concept of real-time control and optimisation in irrigation is in its developmental stages but has already demonstrated potential for water savings. The future is likely to see increased use of remote sensing techniques as well as wireless communication systems and more versatile sensors to improve WUE. In many cases, water saved as a result of using efficient technologies ends up being reused to expand the area of land under irrigation, sometimes resulting in a net increase in the total water consumption at the basin scale. Hence, to achieve net water savings, water-efficient technologies and practices need to be used in combination with other measures such as incentives for conservation and appropriate regulations that limit water allocation and use. Factors that affect the trends in the irrigation WUE include engineering and technological innovations, advancements in plant and pasture science, environmental factors, and socio-economic considerations. Challenges that might be encountered include lack of public support, especially when the methods used are not cost-effective, and reluctance of irrigations to adopt new technologies.
Collapse
|
21
|
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:991-1009. [PMID: 29602224 DOI: 10.1111/tpj.13913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.
Collapse
Affiliation(s)
- Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| |
Collapse
|
22
|
Sreeman SM, Vijayaraghavareddy P, Sreevathsa R, Rajendrareddy S, Arakesh S, Bharti P, Dharmappa P, Soolanayakanahally R. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants. Front Chem 2018; 6:92. [PMID: 29692985 PMCID: PMC5903164 DOI: 10.3389/fchem.2018.00092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/14/2018] [Indexed: 11/23/2022] Open
Abstract
Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a "trait based" crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the "traits" to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would significantly enhance growth rates and water productivity in rice through an improved photosynthetic capacity.
Collapse
Affiliation(s)
| | | | - Rohini Sreevathsa
- ICAR-National Research Centre for Plant Biotechnology, New Delhi, India
| | - Sowmya Rajendrareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Smitharani Arakesh
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Pooja Bharti
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Prathibha Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
24
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
25
|
Aung K, Jiang Y, He SY. The role of water in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:771-780. [PMID: 29205604 PMCID: PMC5849256 DOI: 10.1111/tpj.13795] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the 'disease triangle'. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host-microbe interactions, with a focus on plant-bacterial interactions.
Collapse
Affiliation(s)
- Kyaw Aung
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| | - Yanjuan Jiang
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| |
Collapse
|
26
|
Kerry RG, Patra S, Gouda S, Patra JK, Das G. Microbes and Their Role in Drought Tolerance of Agricultural Food Crops. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
27
|
Landi S, Esposito S. Nitrate Uptake Affects Cell Wall Synthesis and Modeling. FRONTIERS IN PLANT SCIENCE 2017; 8:1376. [PMID: 28848580 PMCID: PMC5550703 DOI: 10.3389/fpls.2017.01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.
Collapse
|
28
|
Landi S, Hausman JF, Guerriero G, Esposito S. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:1214. [PMID: 28744298 PMCID: PMC5504180 DOI: 10.3389/fpls.2017.01214] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/27/2017] [Indexed: 05/03/2023]
Abstract
Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940-1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes.
Collapse
Affiliation(s)
- Simone Landi
- Dipartimento di Biologia, Università di Napoli “Federico II”Napoli, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli “Federico II”Napoli, Italy
| |
Collapse
|