1
|
Su JG, Aslebagh S, Shahriary E, Barrett M, Balmes JR. Impacts from air pollution on respiratory disease outcomes: a meta-analysis. Front Public Health 2024; 12:1417450. [PMID: 39444957 PMCID: PMC11497638 DOI: 10.3389/fpubh.2024.1417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Air pollution is widely acknowledged as a significant factor in respiratory outcomes, including coughing, wheezing, emergency department (ED) visits, and even death. Although several literature reviews have confirmed the association between air pollution and respiratory outcomes, they often did not standardize associations across different studies and overlooked other increasingly impactful pollutants such as trace metals. Recognizing the importance of consistent comparison and emissions of non-exhaust particles from road traffic, this study aims to comprehensively evaluate the standardized effects of various criteria pollutants and trace metals on respiratory health. Methods We conducted a comprehensive meta-analysis of peer-reviewed journal articles on air pollution and respiratory outcomes published between 1 January 2000, and 1 June 2024. The study included children (age < 18 years), adults (age ≥ 18 years), and all age groups exposed to criteria pollutants established by the US Environmental Protection Agency National Ambient Air Quality Standards and over 10 trace metals. Using databases, such as PubMed, MEDLINE, Web of Science Core Collection, and Google Scholar, we identified 579 relevant articles. After rigorous screening and quality assessment using the Newcastle-Ottawa Scale, 50 high-quality studies were included. We converted various reported outcomes (e.g., odds ratios, relative risk, and percent increase) to a standardized odds ratio (OR) for comparability and performed meta-analyses using R 4.4.0 and related packages, ensuring the robustness of our findings. Results Our meta-analysis indicated significant associations between air pollutants and respiratory outcomes. For particulate matter with diameter ≤ 2.5 μm (PM2.5), the overall ORs for children, adults, and combined age groups were 1.31, 1.10, and 1.26, respectively, indicating a consistent positive association. Similar positive associations were observed for particulate matter with diameter ≤ 10 μm (PM10) and other pollutants, with children showing higher susceptibility than adults. The analysis of trace metals also showed significant associations; however, these findings require cautious interpretation due to the small number of studies. Conclusion Our study supports associations between air pollutants, including non-exhaust trace metals, and respiratory outcomes across different age groups. The findings underscore the need for stringent environmental health policies and further research, especially in regions with higher pollution levels. The future studies should consider long-term and short-term exposures separately and include diverse populations to improve the accuracy and generalizability of the results.
Collapse
Affiliation(s)
- Jason G. Su
- School of Public Health, University of California, Berkeley, CA, United States
| | - Shadi Aslebagh
- School of Public Health, University of California, Berkeley, CA, United States
| | - Eahsan Shahriary
- School of Public Health, University of California, Berkeley, CA, United States
| | | | | |
Collapse
|
2
|
Evangelopoulos D, Zhang H, Chatzidiakou L, Walton H, Katsouyanni K, Jones RL, Quint JK, Barratt B. Air pollution and respiratory health in patients with COPD: should we focus on indoor or outdoor sources? Thorax 2024:thorax-2024-221874. [PMID: 39375040 DOI: 10.1136/thorax-2024-221874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION While associations between ambient air pollution and respiratory health in chronic obstructive pulmonary disease (COPD) patients are well studied, little is known about individuals' personal exposure to pollution and associated health effects by source. AIM To separate measured total personal exposure into indoor-generated and outdoor-generated pollution and use these improved metrics in health models for establishing more reliable associations with exacerbations and respiratory symptoms. METHODS We enrolled a panel of 76 patients with COPD and continuously measured their personal exposure to particles and gaseous pollutants and location with portable monitors for 134 days on average. We collected daily health information related to respiratory symptoms through diary cards and peak expiratory flow (PEF). Mixed-effects models were applied to quantify the relationship between total, indoor-generated and outdoor-generated personal exposures to pollutants with exacerbation and symptoms occurrence and PEF. RESULTS Exposure to nitrogen dioxide from both indoor and outdoor sources was associated with exacerbations and respiratory symptoms. We observed an increase of 33% (22%-45%), 19% (12%-18%) and 12% (5%-20%) in the odds of exacerbation for an IQR increase in total, indoor-generated and outdoor-generated exposures. For carbon monoxide, health effects were mainly attributed to indoor-generated pollution. While no associations were observed for particulate matter2.5 with COPD exacerbations, indoor-generated particles were associated with a significant decrease in PEF. CONCLUSIONS Indoor-generated and outdoor-generated pollution can deteriorate COPD patients' health. Policy-makers, physicians and patients with COPD should note the importance of decreasing exposure equally to both source types to decrease risk of exacerbation.
Collapse
Affiliation(s)
- Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Heather Walton
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Public Health, Imperial College London, London, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| |
Collapse
|
3
|
Xydi I, Saharidis G, Kalantzis G, Pantazopoulos I, Gourgoulianis KI, Kotsiou OS. Assessing the Impact of Spatial and Temporal Variability in Fine Particulate Matter Pollution on Respiratory Health Outcomes in Asthma and COPD Patients. J Pers Med 2024; 14:833. [PMID: 39202024 PMCID: PMC11355901 DOI: 10.3390/jpm14080833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Ambient air pollution's health impacts are well documented, yet the domestic environment remains underexplored. We aimed to compare indoor versus outdoor (I/O) air quality and estimate the association between indoor/ambient fine particulate matter (PM2.5) exposure and lung function in asthma and chronic obstructive pulmonary disease (COPD) patients. The study involved 24 h monitoring of PM2.5 levels indoors and outdoors, daily peak expiratory flow (PEF), and biweekly symptoms collection from five patients with asthma and COPD (average age of 50 years, 40% male) over a whole year. Data analysis was performed with linear mixed effect models for PEF and generalized estimating equations (GEE) for exacerbations. More than 5 million PM2.5 exposure and meteorological data were collected, demonstrating significant I/O PM2.5 ratio variability with an average ratio of 2.20 (±2.10). Identified indoor PM2.5 sources included tobacco use, open fireplaces, and cooking, resulting in average indoor PM2.5 concentrations of 63.89 μg/m3 (±68.41), significantly exceeding revised World Health Organization (WHO) guidelines. Analysis indicated a correlation between ambient PM2.5 levels and decreased PEF over 0-to-3-day lag, with autumn indoor exposure significantly impacting PEF and wheezing. The study underscores the need to incorporate domestic air quality into public health research and policy-making. A personalized approach is required depending on the living conditions, taking into account the exposure to particulate pollution.
Collapse
Affiliation(s)
- Irini Xydi
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (I.X.); (K.I.G.)
| | - Georgios Saharidis
- Department of Mechanical Engineering, University of Thessaly, 38334 Volos, Greece; (G.S.); (G.K.)
| | - Georgios Kalantzis
- Department of Mechanical Engineering, University of Thessaly, 38334 Volos, Greece; (G.S.); (G.K.)
| | - Ioannis Pantazopoulos
- Emergency Medicine Department, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (I.X.); (K.I.G.)
| | - Ourania S. Kotsiou
- Laboratory of Human Pathophysiology, Nursing Department, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
4
|
Ma W, Xu L, Wang Y, Chen S, Li D, Huo X, Li R, Zhu X, Chen N, Jin Y, Luo J, Li C, Zhao K, Zheng Y, Han W, Yu D. piR-27222 mediates PM 2.5-induced lung cancer by resisting cell PANoptosis through the WTAP/m 6A axis. ENVIRONMENT INTERNATIONAL 2024; 190:108928. [PMID: 39106633 DOI: 10.1016/j.envint.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Shen Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Huo
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruoxi Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China.
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Chung C, Park SY, Huh JY, Kim NH, Shon C, Oh EY, Park YJ, Lee SJ, Kim HC, Lee SW. Fine particulate matter aggravates smoking induced lung injury via NLRP3/caspase-1 pathway in COPD. J Inflamm (Lond) 2024; 21:13. [PMID: 38654364 DOI: 10.1186/s12950-024-00384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Exposure to noxious particles, including cigarette smoke and fine particulate matter (PM2.5), is a risk factor for chronic obstructive pulmonary disease (COPD) and promotes inflammation and cell death in the lungs. We investigated the combined effects of cigarette smoking and PM2.5 exposure in patients with COPD, mice, and human bronchial epithelial cells. METHODS The relationship between PM2.5 exposure and clinical parameters was investigated in patients with COPD based on smoking status. Alveolar destruction, inflammatory cell infiltration, and pro-inflammatory cytokines were monitored in the smoking-exposed emphysema mouse model. To investigate the mechanisms, cell viability and death and pyroptosis-related changes in BEAS-2B cells were assessed following the exposure to cigarette smoke extract (CSE) and PM2.5. RESULTS High levels of ambient PM2.5 were more strongly associated with high Saint George's respiratory questionnaire specific for COPD (SGRQ-C) scores in currently smoking patients with COPD. Combined exposure to cigarette smoke and PM2.5 increased mean linear intercept and TUNEL-positive cells in lung tissue, which was associated with increased inflammatory cell infiltration and inflammatory cytokine release in mice. Exposure to a combination of CSE and PM2.5 reduced cell viability and upregulated NLRP3, caspase-1, IL-1β, and IL-18 transcription in BEAS-2B cells. NLRP3 silencing with siRNA reduced pyroptosis and restored cell viability. CONCLUSIONS PM2.5 aggravates smoking-induced airway inflammation and cell death via pyroptosis. Clinically, PM2.5 deteriorates quality of life and may worsen prognosis in currently smoking patients with COPD.
Collapse
Affiliation(s)
- Chiwook Chung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Suk Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - Jin-Young Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung- Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - ChangHo Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Efficacy Evaluation Center, WOOJUNGBIO Inc, Hwaseong, Republic of Korea
| | - Eun Yi Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Jun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Josa-Culleré A, Basagaña X, Koch S, Arbillaga-Etxarri A, Balcells E, Bosch de Basea M, Celorrio N, Foraster M, Rodriguez-Roisin R, Marin A, Peralta GP, Rodríguez-Chiaradia DA, Simonet P, Torán-Monserrat P, Vall-Casas P, Garcia-Aymerich J. Short-term effects of air pollution and weather on physical activity in patients with chronic obstructive pulmonary disease (COPD). ENVIRONMENTAL RESEARCH 2024; 247:118195. [PMID: 38237751 DOI: 10.1016/j.envres.2024.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) accumulate low levels of physical activity. How environmental factors affect their physical activity in the short-term is uncertain. AIM to assess the short-term effects of air pollution and weather on physical activity levels in COPD patients. METHODS This multi-center panel study assessed 408 COPD patients from Catalonia (Spain). Daily physical activity (i.e., steps, time in moderate-to-vigorous physical activity (MVPA), locomotion intensity, and sedentary time) was recorded in two 7-day periods, one year apart, using the Dynaport MoveMonitor. Air pollution (nitrogen dioxide (NO2), particulate matter below 10 μm (PM10) and a marker of black carbon (absorbance of PM2.5: PM2.5ABS), and weather (average and maximum temperature, and rainfall) were estimated the same day (lag zero) and up to 5 days prior to each assessment (lags 1-5). Mixed-effect distributed lag linear regression models were adjusted for age, sex, weekday, public holidays, greenness, season, and social class, with patient and city as random effects. RESULTS Patients (85% male) were on average (mean ± SD) 68 ± 9 years old with a post-bronchodilator forced expiratory volume in 1 s (FEV1) of 57 ± 18% predicted. Higher NO2, PM10 and PM2.5ABS levels at lag four were associated with fewer steps, less time in MVPA, reduced locomotion intensity, and longer sedentary time (e.g., coefficient (95% CI) of -60 (-105, -15) steps per 10 μg/m3 increase in NO2). Higher average and maximum temperatures at lag zero were related to more steps and time in MVPA, and less sedentary time (e.g., +85 (15, 154) steps per degree Celsius). Higher rainfall at lag zero was related to fewer steps and more sedentary time. CONCLUSION Air pollution affects the amount and intensity of physical activity performed on the following days in COPD patients, whereas weather affects the amount of physical activity performed on the same day.
Collapse
Affiliation(s)
- Alícia Josa-Culleré
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Sarah Koch
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ane Arbillaga-Etxarri
- Deusto Physical TherapIker, Physical Therapy Department, Faculty of Health Sciences, University of Deusto, Donostia-San Sebastián, Spain
| | - Eva Balcells
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Respiratory Medicine Department, Hospital del Mar, Barcelona, Spain; CIBER Respiratory Disease (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Magda Bosch de Basea
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Nuria Celorrio
- Clinical pneumologist, Department of Respiratory Medicine Hospital de Viladecans, Barcelona, Spain
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Robert Rodriguez-Roisin
- CIBER Respiratory Disease (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Alicia Marin
- Department of Respiratory Medicine, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Germans Trias i Pujol Research Institute - IGTP, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela P Peralta
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Diego A Rodríguez-Chiaradia
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Respiratory Disease (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain; Department of Pulmonary Medicine, Hospital del Mar, Spain
| | - Pere Simonet
- EAP Viladecans-2. Gerencia Metropolitana Sud, ICS, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Mataró, Spain; Multidisciplinary Research Group in Health and Society (GREMSAS) (2021 SGR 01484), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Spain; Department of Medicine, Faculty of Medicine, Universitat de Girona, 17001 Girona, Spain
| | | | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
7
|
Park J, Lee KH, Kim H, Woo J, Heo J, Jeon K, Lee CH, Yoo CG, Hopke PK, Koutrakis P, Yi SM. Analysis of PM 2.5 inorganic and organic constituents to resolve contributing sources in Seoul, South Korea and Beijing, China and their possible associations with cytokine IL-8. ENVIRONMENTAL RESEARCH 2024; 243:117860. [PMID: 38072108 DOI: 10.1016/j.envres.2023.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.
Collapse
Affiliation(s)
- Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyewon Kim
- Incheon Regional Customs, Korea Customs Service, 70, Gonghangdong-ro 193 Beon-gil Jung-gu, Incheon, 22381, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research, Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Gherasim A, Lee AG, Bernstein JA. Impact of Climate Change on Indoor Air Quality. Immunol Allergy Clin North Am 2024; 44:55-73. [PMID: 37973260 DOI: 10.1016/j.iac.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change may affect the quality of the indoor environment through heat and mass transfer between indoors and outdoors: first by a direct response to global warming itself and related extreme weather phenomena and second by indirect actions taken to reduce greenhouse gas emissions that can lead to increased concentrations of indoor air contaminants. Therefore, both indoor and outdoor air pollution contribute to poor indoor air quality in this context. Exposures to high concentrations of these pollutants contribute to inflammatory respiratory diseases. Climate change adaptation and mitigation measures could minimize these risks and bring associated health benefits.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC Environmental Exposure Chamber, 1 Place de l'Hôpital, Strasbourg, France
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
9
|
Zhou J, Liu J, Zhou Y, Xu J, Song Q, Peng L, Ye X, Yang D. The impact of fine particulate matter on chronic obstructive pulmonary disease deaths in Pudong New Area, Shanghai, during a long period of air quality improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122813. [PMID: 37898429 DOI: 10.1016/j.envpol.2023.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) deaths attributed to fine particulate matter (with an aerodynamic equivalent diameter <2.5 μm, PM2.5) exposure are a common global public health concern. Recent improvements in air quality and the corresponding health benefits have received much attention. Thus, we have explored the trends of PM2.5 pollution improvement on COPD deaths during an important period of air pollution control (2008-2017) in Pudong New Area, Shanghai, China. Data, including daily COPD death counts, meteorological variables, and ambient air pollutants, were collected from 2008 to 2017. Generalized additive models were fitted to evaluate the percent change (%) in pollution-related COPD deaths. The results showed that the number of days with daily PM2.5 concentrations <35 μg/m3 increased from 19 days (5.19%) in 2008 to 166 days (45.48%) in 2017, and PM2.5 concentrations >75 μg/m3 decreased from 222 days (60.66%) in 2008 to 33 days (9.04%) in 2017. The associations in the overall period between 2008 and 2017 was significant. In subperiod analysis, each 10 μg/m3 increment in PM2.5 was associated with a percent change (%) of 0.89 (95% confidence interval [CI], 0.37, 1.42) at lag 5 and 0.78 (95% CI, 0.26, 1.30) at lag 6 during 2008-2013. Significant results were also found at lag 0-5 [percent change (%), 1.12 (95% CI, 0.09, 2.17)], lag 0-6 [percent change (%), 1.52 (95% CI, 0.43, 2.62)] and lag 0-7 [percent change (%), 1.72 (95% CI, 0.57, 2.88)] during 2008-2013. By contrast, no significant association was found between 2014 and 2017. In conclusion, the decreased COPD deaths associated with PM2.5 exposure were found, especially after the air quality improvement turning point in 2014.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China; Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China.
| | - Jiangtao Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhou
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
| | - Jianming Xu
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Quanquan Song
- Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Li Peng
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Xiaofang Ye
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Dandan Yang
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| |
Collapse
|
10
|
Cardoso MS, Rocha AR, Souza-Júnior JA, Menezes-Filho JA. Analytical method for urinary homovanillic acid and 5-hydroxyindoleacetic acid levels using HPLC with electrochemical detection applied to evaluate children environmentally exposed to manganese. Biomed Chromatogr 2023; 37:e5699. [PMID: 37427763 DOI: 10.1002/bmc.5699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) are the urinary metabolites of dopamine (DA) and serotonin (5-HA), respectively. We aimed to develop an extraction method for the determination of HVA and 5-HIAA, using strong anionic exchange cartridges combined with HPLC with electrochemical detection, and apply it to measure the levels of HVA and 5-HIAA in children living near a ferro-manganese alloy plant in Simões Filho, Brazil. The validated method showed good selectivity, sensitivity, precision, and accuracy. The limits of detection (LOD) were 4 and 8 μmol/L for 5-HIAA and HVA, respectively, in urine. Recoveries ranged from 85.8 to 94%. The coefficients of determination (R2 ) of the calibration curves were greater than 0.99. Spot urine samples of 30 exposed children and 20 nonexposed ones were processed accordingly. The metabolite levels in exposed and reference children were within the physiological ranges. The medians (range) for 5-HIAA and HVA of the exposed ones were 36.4 μmol/L (18.4-58.0) and 32.9 μmol/L (
Collapse
Affiliation(s)
- Mariana Silva Cardoso
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Andrea Rebouças Rocha
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | | | - José Antonio Menezes-Filho
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
11
|
Zhu RX, Nie XH, Liu XF, Zhang YX, Chen J, Liu XJ, Hui XJ. Short-term effect of particulate matter on lung function and impulse oscillometry system (IOS) parameters of chronic obstructive pulmonary disease (COPD) in Beijing, China. BMC Public Health 2023; 23:1417. [PMID: 37488590 PMCID: PMC10367330 DOI: 10.1186/s12889-023-16308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the associations between particulate matter (PM), lung function and Impulse Oscillometry System (IOS) parameters in chronic obstructive pulmonary disease (COPD) patients and identity effects between different regions in Beijing, China. METHODS In this retrospective study, we recruited 1348 outpatients who visited hospitals between January 2016 and December 2019. Ambient air pollutant data were obtained from the central monitoring stations nearest the participants' residential addresses. We analyzed the effect of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) exposure on lung function and IOS parameters using a multiple linear regression model, adjusting for sex, smoking history, education level, age, body mass index (BMI), mean temperature, and relative humidity . RESULTS The results showed a relationship between PM2.5, lung function and IOS parameters. An increase of 10 µg/m3 in PM2.5 was associated with a decline of 2.083% (95% CI: -3.047 to - 1.103) in forced expiratory volume in one second /predict (FEV1%pred), a decline of 193 ml/s (95% CI: -258 to - 43) in peak expiratory flow (PEF), a decline of 0.932% (95% CI: -1.518 to - 0.342) in maximal mid-expiratory flow (MMEF); an increase of 0.732 Hz (95% CI: 0.313 to 1.148) in resonant frequency (Fres), an increase of 36 kpa/(ml/s) (95% CI: 14 to 57) in impedance at 5 Hz (Z5) and an increase of 31 kpa/(ml/s) (95% CI: 2 to 54) in respiratory impedance at 5 Hz (R5). Compared to patients in the central district, those in the southern district had lower FEV1/FVC, FEV1%pred, PEF, FEF75%, MMEF, X5, and higher Fres, Z5 and R5 (p < 0.05). CONCLUSION Short-term exposure to PM2.5 was associated with reductions in lung function indices and an increase in IOS results in patients with COPD. The heavier the PM2.5, the more severe of COPD.
Collapse
Affiliation(s)
- Rui-Xia Zhu
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hong Nie
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Xiao-Fang Liu
- Department of pulmonary and critical care medicine, Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Yong-Xiang Zhang
- Department of pulmonary and critical care medicine, Daxing District People's Hospital, Beijing, China.
| | - Jin Chen
- Respiratory department, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Xue-Jiao Liu
- Department of pulmonary and critical care medicine, Daxing District People's Hospital, Beijing, China
| | - Xin-Jie Hui
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Trickey KS, Chen Z, Sanghavi P. Hospitalisations for cardiovascular and respiratory disease among older adults living near unconventional natural gas development: a difference-in-differences analysis. Lancet Planet Health 2023; 7:e187-e196. [PMID: 36889860 DOI: 10.1016/s2542-5196(23)00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND During 2008-15, the Marcellus shale region of the US state of Pennsylvania experienced a boom in unconventional natural gas development (UNGD) or "fracking". However, despite much public debate, little is known about the effects of UNGD on population health in local communities. Among other mechanisms, air pollution from UNGD might affect individuals living nearby through cardiovascular or respiratory disease, and older adults could be particularly susceptible. METHODS To study the health impacts of Pennsylvania's fracking boom, we exploited the ban on UNGD in neighbouring New York state. Using 2002-15 Medicare claims, we conducted difference-in-differences analyses over multiple timepoints to estimate the risk of living near UNGD for hospitalisation with acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and bronchiectasis, heart failure, ischaemic heart disease, and stroke among older adults (aged ≥65 years). FINDINGS Pennsylvania ZIP codes that started UNGD in 2008-10 were associated with more hospitalisations for cardiovascular diseases in 2012-15 than would be expected in the absence of UNGD. Specifically, in 2015, we estimated an additional 11·8, 21·6, and 20·4 hospitalisations for AMI, heart failure, and ischaemic heart disease, respectively, per 1000 Medicare beneficiaries. Hospitalisations increased even as UNGD growth slowed. Results were robust in sensitivity analyses. INTERPRETATION Older adults living near UNGD could be at high risk of poor cardiovascular outcomes. Mitigation policies for existing UNGD might be needed to address current and future health risks. Future consideration of UNGD should prioritise local population health. FUNDING University of Chicago and Argonne National Laboratories.
Collapse
Affiliation(s)
- Kevin S Trickey
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Zihan Chen
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Prachi Sanghavi
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Liu H, Gu J, Huang Z, Han Z, Xin J, Yuan L, Du M, Chu H, Wang M, Zhang Z. Fine particulate matter induces METTL3-mediated m 6A modification of BIRC5 mRNA in bladder cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129310. [PMID: 35749893 DOI: 10.1016/j.jhazmat.2022.129310] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to fine particulate matter (PM2.5) is reportedly related to a variety of cancers including bladder cancer. However, little is known about the biological mechanism underlying this association. In the present study, PM2.5 exposure was significantly associated with increased levels of m6A modification in bladder cancer patients and bladder cells. METTL3 expression was aberrantly upregulated after PM2.5 exposure, and METTL3 was involved in PM2.5-induced m6A methylation. Higher METTL3 expression was observed in bladder cancer tissues and METTL3 knockdown dramatically inhibited bladder cancer cell proliferation, colony formation, migration and invasion, inducing apoptosis and disrupting the cell cycle. Mechanistically, PM2.5 enhanced the expression of METTL3 by inducing the promoter hypomethylation of its promoter and increasing the binding affinity of the transcription factor HIF1A. BIRC5 was identified as the target of METTL3 through m6A sequencing (m6A-Seq) and KEGG analysis. The methylated BIRC5 transcript was subsequently recognized by IGF2BP3, which increased its mRNA stability. In particular, PM2.5 exposure promoted the m6A modification of BIRC5 and its recognition by IGF2BP3. In addition, BIRC5 was involved in bladder cancer proliferation and metastasis, as well as VEGFA-regulated angiogenesis. This comprehensive study revealed that PM2.5 exposure exerts epigenetic regulatory effects on bladder cancer via the HIF1A/METTL3/IGF2BP3/BIRC5/VEGFA network.
Collapse
Affiliation(s)
- Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengkai Huang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhichao Han
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Wang Y, Shupler M, Birch A, Chu YL, Jeronimo M, Rangarajan S, Mustaha M, Heenan L, Seron P, Saavedra N, Oliveros MJ, Lopez-Jaramillo P, Camacho PA, Otero J, Perez-Mayorga M, Yeates K, West N, Ncube T, Ncube B, Chifamba J, Yusuf R, Khan A, Liu Z, Cheng X, Wei L, Tse LA, Mohan D, Kumar P, Gupta R, Mohan I, Jayachitra KG, Mony PK, Rammohan K, Nair S, Lakshmi PVM, Sagar V, Khawaja R, Iqbal R, Kazmi K, Yusuf S, Brauer M, Hystad P. Personal and household PM 2.5 and black carbon exposure measures and respiratory symptoms in 8 low- and middle-income countries. ENVIRONMENTAL RESEARCH 2022; 212:113430. [PMID: 35526584 DOI: 10.1016/j.envres.2022.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Household air pollution (HAP) from cooking with solid fuels has been associated with adverse respiratory effects, but most studies use surveys of fuel use to define HAP exposure, rather than on actual air pollution exposure measurements. OBJECTIVE To examine associations between household and personal fine particulate matter (PM2.5) and black carbon (BC) measures and respiratory symptoms. METHODS As part of the Prospective Urban and Rural Epidemiology Air Pollution study, we analyzed 48-h household and personal PM2.5 and BC measurements for 870 individuals using different cooking fuels from 62 communities in 8 countries (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Self-reported respiratory symptoms were collected after monitoring. Associations between PM2.5 and BC exposures and respiratory symptoms were examined using logistic regression models, controlling for individual, household, and community covariates. RESULTS The median (interquartile range) of household and personal PM2.5 was 73.5 (119.1) and 65.3 (91.5) μg/m3, and for household and personal BC was 3.4 (8.3) and 2.5 (4.9) x10-5 m-1, respectively. We observed associations between household PM2.5 and wheeze (OR: 1.25; 95%CI: 1.07, 1.46), cough (OR: 1.22; 95%CI: 1.06, 1.39), and sputum (OR: 1.26; 95%CI: 1.10, 1.44), as well as exposure to household BC and wheeze (OR: 1.20; 95%CI: 1.03, 1.39) and sputum (OR: 1.20; 95%CI: 1.05, 1.36), per IQR increase. We observed associations between personal PM2.5 and wheeze (OR: 1.23; 95%CI: 1.00, 1.50) and sputum (OR: 1.19; 95%CI: 1.00, 1.41). For household PM2.5 and BC, associations were generally stronger for females compared to males. Models using an indicator variable of solid versus clean fuels resulted in larger OR estimates with less precision. CONCLUSIONS We used measurements of household and personal air pollution for individuals using different cooking fuels and documented strong associations with respiratory symptoms.
Collapse
Affiliation(s)
- Ying Wang
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Matthew Shupler
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - Aaron Birch
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen Li Chu
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Jeronimo
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maha Mustaha
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Heenan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Paul A Camacho
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Johnna Otero
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | | | - Karen Yeates
- Pamoja Tunaweza Research Centre, Moshi, Tanzania; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nicola West
- Pamoja Tunaweza Research Centre, Moshi, Tanzania
| | - Tatenda Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brian Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Jephat Chifamba
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rita Yusuf
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Afreen Khan
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Zhiguang Liu
- Beijing An Zhen Hospital of the Capital University of Medical Sciences, China
| | - Xiaoru Cheng
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - Li Wei
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - L A Tse
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Deepa Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | | | - Rajeev Gupta
- Eternal Heart Care Centre & Research Institute, Jaipur, India
| | - Indu Mohan
- Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - K G Jayachitra
- St. John's Medical College & Research Institute, Bangalore, India
| | - Prem K Mony
- St. John's Medical College & Research Institute, Bangalore, India
| | - Kamala Rammohan
- Health Action By People, Government Medical College, Trivandrum, India
| | - Sanjeev Nair
- Health Action By People, Government Medical College, Trivandrum, India
| | - P V M Lakshmi
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sagar
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rehman Khawaja
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Romaina Iqbal
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Khawar Kazmi
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
15
|
Lim S, Bassey E, Bos B, Makacha L, Varaden D, Arku RE, Baumgartner J, Brauer M, Ezzati M, Kelly FJ, Barratt B. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155207. [PMID: 35421472 PMCID: PMC7615091 DOI: 10.1016/j.scitotenv.2022.155207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Due to the adverse health effects of air pollution, researchers have advocated for personal exposure measurements whereby individuals carry portable monitors in order to better characterise and understand the sources of people's pollution exposure. OBJECTIVES The aim of this systematic review is to assess the differences in the magnitude and sources of personal PM2.5 exposures experienced between countries at contrasting levels of income. METHODS This review summarised studies that measured participants personal exposure by carrying a PM2.5 monitor throughout their typical day. Personal PM2.5 exposures were summarised to indicate the distribution of exposures measured within each country income category (based on low (LIC), lower-middle (LMIC), upper-middle (UMIC), and high (HIC) income countries) and between different groups (i.e. gender, age, urban or rural residents). RESULTS From the 2259 search results, there were 140 studies that met our criteria. Overall, personal PM2.5 exposures in HICs were lower compared to other countries, with UMICs exposures being slightly lower than exposures measured in LMICs or LICs. 34% of measured groups in HICs reported below the ambient World Health Organisation 24-h PM2.5 guideline of 15 μg/m3, compared to only 1% of UMICs and 0% of LMICs and LICs. There was no difference between rural and urban participant exposures in HICs, but there were noticeably higher exposures recorded in rural areas compared to urban areas in non-HICs, due to significant household sources of PM2.5 in rural locations. In HICs, studies reported that secondhand smoke, ambient pollution infiltrating indoors, and traffic emissions were the dominant contributors to personal exposures. While, in non-HICs, household cooking and heating with biomass and coal were reported as the most important sources. CONCLUSION This review revealed a growing literature of personal PM2.5 exposure studies, which highlighted a large variability in exposures recorded and severe inequalities in geographical and social population subgroups.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Imperial College London, UK.
| | - Eridiong Bassey
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Liberty Makacha
- MRC Centre for Environment and Health, Imperial College London, UK; Place Alert Labs, Department of Surveying and Geomatics, Faculty of Science and Technology, Midlands State University, Zimbabwe; Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Diana Varaden
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Jill Baumgartner
- Institute for Health and Social Policy, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada; Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - Majid Ezzati
- MRC Centre for Environment and Health, Imperial College London, UK; Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK; Regional Institute for Population Studies, University of Ghana, Legon, Ghana
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| |
Collapse
|
16
|
Maung TZ, Bishop JE, Holt E, Turner AM, Pfrang C. Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148752. [PMID: 35886604 PMCID: PMC9316830 DOI: 10.3390/ijerph19148752] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022]
Abstract
Air pollution affects health, but much of the focus to this point has been on outdoor air. Higher indoor pollution is anticipated due to increasingly energy-efficient and less leaky buildings together with more indoor activities. Studies of indoor air pollution focusing on children and people with respiratory disease from the database Web of Science (1991–2021) were systemically reviewed according to the PRISMA guidelines, with 69 studies included in the final selection. Emissions from building materials affected indoor air quality, and ventilation also had an influence. The main indoor air pollutants are Volatile Organic Compounds (VOCs) and Particulate Matter (PM). PM sources included smoking, cooking, heating, candles, and insecticides, whereas sources of coarse particles were pets, housework and human movements. VOC sources included household products, cleaning agents, glue, personal care products, building materials and vehicle emissions. Formaldehyde levels were particularly high in new houses. Personal exposure related to both indoor and outdoor pollutant levels, highlighting home characteristics and air exchange rates as important factors. Temperature, humidity, educational level, air purifiers and time near sources were also related to personal exposure. There was an association between PM and Fractional exhaled Nitric Oxide (FeNO), lung function, oxygen saturation, childhood asthma and symptoms of chronic obstructive pulmonary disease (COPD) patients. High VOCs were associated with upper airways and asthma symptoms and cancer. Effective interventional studies for PM in the future might focus on human behavior together with air purifiers and increased ventilation, whereas VOC interventions might center more on building materials and household products, alongside purification and ventilation.
Collapse
Affiliation(s)
- Tun Z. Maung
- UHB NHS Foundation Trust, Inflammation and Aging, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Jack E. Bishop
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
| | - Eleanor Holt
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
| | - Alice M. Turner
- UHB NHS Foundation Trust, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Christian Pfrang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
- Correspondence:
| |
Collapse
|
17
|
Yin Z, Zhang L, Roradeh H, Baaghideh M, Yang Z, Hu K, Liu L, Zhang Y, Mayvaneh F, Zhang Y. Reduction in daily ambient PM 2.5 pollution and potential life gain by attaining WHO air quality guidelines in Tehran. ENVIRONMENTAL RESEARCH 2022; 209:112787. [PMID: 35090875 DOI: 10.1016/j.envres.2022.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fine particulate matter pollution (PM2.5) is widely considered to be a top-ranked risk factor for premature mortality and years of life lost (YLL). However, evidence regarding the effect of daily air quality improvement on life expectancy is scarce, especially in the Middle East such as Iran. This study aimed to investigate the potential benefits in life expectancy at concentrations meeting the daily PM2.5 standards during 2012-2016 in Tehran, Iran. METHODS We collected daily non-accidental mortality and data on air pollutants and weather conditions from Tehran, Iran, 2012-2016. A quasi-Poisson or Gaussian time-series regression was employed to fit the associations between ambient PM2.5 and mortality or YLL. Potential gains in life expectancy (PGLE) and attributable fraction (AF) were estimated by assuming that daily PM2.5 concentrations attained the World Health Organization air quality guidelines (WHO AQG) 2005 (25 μg/m3) and 2021 (15 μg/m3). RESULTS During the study period, a total of 221,231 non-accidental deaths were recorded in Tehran, resulting in 3.6 million YLL. The mean concentration of ambient PM2.5 was 34.7 μg/m3 (standard deviation: 15.3 μg/m3). For a 10-μg/m3 rise in 4-day moving average (lag 03-day) in PM2.5 concentration, non-accidental mortality and YLL increased by 1.12% (95% confidence interval: 0.60, 1.65) and 20.73 (7.08, 34.39) person years, respectively. A relatively higher effect was observed in males and young adults aged 18-64 years. We estimated that 39830 [AF = 1.1%] and 74284 [AF = 2.1%] YLL could potentially be avoided if daily PM2.5 concentrations attained the WHO AQG 2005 and 2021, respectively, which corresponded to potential gains in life expectancy of 0.18 (0.06, 0.30) and 0.34 (0.11, 0.56) years for each deceased person. PM2.5-associated PGLE estimates were largely robust when performing sensitivity analyses. CONCLUSIONS Our findings indicated that short-term exposure to PM2.5 is associated with increased non-accidental YLL and mortality. Prolonged life expectancy could be achieved if the particulate matter air pollution level were kept under a stricter standard.
Collapse
Affiliation(s)
- Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Liansheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hematollah Roradeh
- Geography and Urban Planning Department, University of Mazandaran, Babolsar P.O. Box 47415-416, Iran
| | - Mohammad Baaghideh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
18
|
Baba RY, Zhang Y, Shao Y, Berger KI, Goldring RM, Liu M, Kazeros A, Rosen R, Reibman J. COPD in Smoking and Non-Smoking Community Members Exposed to the World Trade Center Dust and Fumes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074249. [PMID: 35409931 PMCID: PMC8999000 DOI: 10.3390/ijerph19074249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023]
Abstract
Background: The characteristics of community members exposed to World Trade Center (WTC) dust and fumes with Chronic Obstructive Pulmonary Disease (COPD) can provide insight into mechanisms of airflow obstruction in response to an environmental insult, with potential implications for interventions. Methods: We performed a baseline assessment of respiratory symptoms, spirometry, small airway lung function measures using respiratory impulse oscillometry (IOS), and blood biomarkers. COPD was defined by the 2019 GOLD criteria for COPD. Patients in the WTC Environmental Health Center with <5 or ≥5 pack year smoking history were classified as nonsmoker-COPD (ns-COPD) or smoker-COPD (sm-COPD), respectively. Main Results: Between August 2005 and March 2018, 467 of the 3430 evaluated patients (13.6%) fit criteria for COPD. Among patients with COPD, 248 (53.1%) were ns-COPD. Patients with ns-COPD had measures of large airway function (FEV1) and small airway measures (R5−20, AX) that were less abnormal than those with sm-COPD. More ns-COPD compared to sm-COPD had a bronchodilator (BD) response measured by spirometry (24 vs. 14%, p = 0.008) or by IOS (36 vs. 21%, p = 0.002). Blood eosinophils did not differ between ns-COPD and sm-COPD, but blood neutrophils were higher in sm-COPD compared to ns-COPD (p < 0.001). Those with sm-COPD were more likely to be WTC local residents than ns-COPD (p = 0.007). Conclusions: Spirometry findings and small airway measures, as well as inflammatory markers, differed between patients with ns-COPD and sm-COPD. These findings suggest potential for differing mechanisms of airway injury in patients with WTC environmental exposures and have potential therapeutic implications.
Collapse
Affiliation(s)
- Ridhwan Y. Baba
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (R.Y.B.); (K.I.B.); (R.M.G.); (A.K.)
| | - Yian Zhang
- Division of Biostatistics, Department of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.Z.); (Y.S.); (M.L.)
| | - Yongzhao Shao
- Division of Biostatistics, Department of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.Z.); (Y.S.); (M.L.)
| | - Kenneth I. Berger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (R.Y.B.); (K.I.B.); (R.M.G.); (A.K.)
| | - Roberta M. Goldring
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (R.Y.B.); (K.I.B.); (R.M.G.); (A.K.)
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.Z.); (Y.S.); (M.L.)
| | - Angeliki Kazeros
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (R.Y.B.); (K.I.B.); (R.M.G.); (A.K.)
| | - Rebecca Rosen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (R.Y.B.); (K.I.B.); (R.M.G.); (A.K.)
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
19
|
Chen D, Lawrence KG, Pratt GC, Stenzel MR, Stewart PA, Groth CP, Banerjee S, Christenbury K, Curry MD, Jackson WB, Kwok RK, Blair A, Engel LS, Sandler DP. Fine Particulate Matter and Lung Function among Burning-Exposed Deepwater Horizon Oil Spill Workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27001. [PMID: 35103485 PMCID: PMC8805798 DOI: 10.1289/ehp8930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, controlled burning was conducted to remove oil from the water. Workers near combustion sites were potentially exposed to increased fine particulate matter [with aerodynamic diameter ≤2.5μm (PM2.5)] levels. Exposure to PM2.5 has been linked to decreased lung function, but to our knowledge, no study has examined exposure encountered in an oil spill cleanup. OBJECTIVE We investigated the association between estimated PM2.5 only from burning/flaring of oil/gas and lung function measured 1-3 y after the DWH disaster. METHODS We included workers who participated in response and cleanup activities on the water during the DWH disaster and had lung function measured at a subsequent home visit (n=2,316). PM2.5 concentrations were estimated using a Gaussian plume dispersion model and linked to work histories via a job-exposure matrix. We evaluated forced expiratory volume in 1 s (FEV1; milliliters), forced vital capacity (FVC; milliliters), and their ratio (FEV1/FVC; %) in relation to average and cumulative daily maximum exposures using multivariable linear regressions. RESULTS We observed significant exposure-response trends associating higher cumulative daily maximum PM2.5 exposure with lower FEV1 (p-trend=0.04) and FEV1/FVC (p-trend=0.01). In comparison with the referent group (workers not involved in or near the burning), those with higher cumulative exposures had lower FEV1 [-166.8mL, 95% confidence interval (CI): -337.3, 3.7] and FEV1/FVC (-1.7, 95% CI: -3.6, 0.2). We also saw nonsignificant reductions in FVC (high vs. referent: -120.9, 95% CI: -319.4, 77.6; p-trend=0.36). Similar associations were seen for average daily maximum PM2.5 exposure. Inverse associations were also observed in analyses stratified by smoking and time from exposure to spirometry and when we restricted to workers without prespill lung disease. CONCLUSIONS Among oil spill workers, exposure to PM2.5 specifically from controlled burning of oil/gas was associated with significantly lower FEV1 and FEV1/FVC when compared with workers not involved in burning. https://doi.org/10.1289/EHP8930.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kaitlyn G. Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gregory C. Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | | | - Caroline P. Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California–Los Angeles, Los Angeles, California, USA
| | | | | | | | - Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Office of the Director, National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
20
|
Sun X, Liu C, Liang H, Miao M, Wang Z, Ji H, van Donkelaar A, Martin RV, Kan H, Yuan W. Prenatal exposure to residential PM 2.5 and its chemical constituents and weight in preschool children: A longitudinal study from Shanghai, China. ENVIRONMENT INTERNATIONAL 2021; 154:106580. [PMID: 33905944 DOI: 10.1016/j.envint.2021.106580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Studies have reported that prenatal exposure to fine particulate matter (PM2.5) might be associated with adverse birth outcomes in offspring. However, evidence with regard to the effects of prenatal exposure to PM2.5 and, especially, its main chemical constituents on offspring's weight in childhood is limited and inconsistent. OBJECTIVES The present study aimed to examine associations of prenatal exposure to PM2.5 total mass and its chemical constituents in each trimester with children's weight from birth to 6 years of age using data from Shanghai-Minhang Birth Cohort Study. METHODS A total of 1,084 mother-infant pairs were included with both PM2.5 exposure data and at least one measurement of weight and height. Weight-for-Length (WLZ), BMI-for-Age (BMIz), and Weight-for-Age (WAZ) z-scores were generated according to the World Health Organization guidelines. Exposure to PM2.5 total mass and its chemical constituents [organic carbon (OC), black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-), and soil dust (SOIL)] during pregnancy was estimated from a satellite based modelling framework. We used multiple informant model to estimate the associations of trimester-specific PM2.5 total mass and its specific constituents concentrations with WLZ/BMIz and WAZ of offspring at birth and 1, 4, and 6 years of age. RESULTS In multiple informant model, we observed consistent patterns of associations between exposure to PM2.5 total mass, OC, BC, NH4+, NO3-, and SO42- during the 2nd and 3rd trimesters and decreased WLZ/BMIz and WAZ at 1, 4, and 6 years of age in boys. We observed associations between prenatal exposure to PM2.5 total mass, NH4+, and NO3- during the 1st and 2nd trimesters and increased WLZ/BMIz and WAZ in girls at birth. However, there were null associations at 1 and 4 years of age and inverse associations at 6 years of age. CONCLUSIONS Prenatal exposure to PM2.5 total mass and its main chemical constituents was associated with decreased weight in boys from 1 to 6 years of age, with increased weight at birth and decreased weight at 6 years of age in girls. Our findings suggest that prenatal exposure to PM2.5 and its chemical constituents may have a lasting effect on offspring's weight in childhood.
Collapse
Affiliation(s)
- Xiaowei Sun
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Hong Liang
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| | - Maohua Miao
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| | - Ziliang Wang
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| | - Honglei Ji
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, 130 Dong An Road, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| | - Wei Yuan
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai 200237, China
| |
Collapse
|
21
|
Abstract
The adverse effects of polluted air on human health have been increasingly appreciated worldwide. It is estimated that outdoor air pollution is associated with the death of 4.2 million people globally each year. Accumulating epidemiological studies indicate that exposure to ambient fine particulate matter (PM2.5), one of the important air pollutants, significantly contributes to respiratory mortality and morbidity. PM2.5 causes lung damage mainly by inducing inflammatory response and oxidative stress. In this paper, we reviewed the research results of our group on the effects of PM2.5 on chronic obstructive pulmonary disease, asthma, and lung cancer. And recent research progress on epidemiological studies and potential mechanisms were also discussed. Reducing air pollution, although remaining a major challenge, is the best and most effective way to prevent the onset and progression of respiratory diseases.
Collapse
|
22
|
Evangelopoulos D, Chatzidiakou L, Walton H, Katsouyanni K, Kelly FJ, Quint JK, Jones RL, Barratt B. Personal exposure to air pollution and respiratory health of COPD patients in London. Eur Respir J 2021; 58:13993003.03432-2020. [PMID: 33542053 PMCID: PMC8290182 DOI: 10.1183/13993003.03432-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
Previous studies have investigated the effects of air pollution on chronic obstructive pulmonary disease (COPD) patients using either fixed-site measurements or a limited number of personal measurements, usually for one pollutant and a short time period. These limitations may introduce bias and distort the epidemiological associations as they do not account for all the potential sources or the temporal variability of pollution. We used detailed information on individuals’ exposure to various pollutants measured at fine spatiotemporal scale to obtain more reliable effect estimates. A panel of 115 patients was followed up for an average continuous period of 128 days carrying a personal monitor specifically designed for this project that measured temperature, nitrogen dioxide (NO2), ozone (O3), nitric oxide (NO), carbon monoxide (CO), and particulate matter with aerodynamic diameter <2.5 and <10 μm at 1-min time resolution. Each patient recorded daily information on respiratory symptoms and measured peak expiratory flow (PEF). A pulmonologist combined related data to define a binary variable denoting an “exacerbation”. The exposure–response associations were assessed with mixed effects models. We found that gaseous pollutants were associated with a deterioration in patients’ health. We observed an increase of 16.4% (95% CI 8.6–24.6%), 9.4% (95% CI 5.4–13.6%) and 7.6% (95% CI 3.0–12.4%) in the odds of exacerbation for an interquartile range increase in NO2, NO and CO, respectively. Similar results were obtained for cough and sputum. O3 was found to have adverse associations with PEF and breathlessness. No association was observed between particulate matter and any outcome. Our findings suggest that, when considering total personal exposure to air pollutants, mainly the gaseous pollutants affect COPD patients’ health. Significant adverse associations were found between the respiratory health of COPD patients and their personal exposure to gaseous pollutants measured using portable sensors over 6 months. No significant associations were found for particulate pollutants.https://bit.ly/3aqMT6O
Collapse
Affiliation(s)
- Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Lia Chatzidiakou
- Centre for Atmospheric Science, Dept of Chemistry, University of Cambridge, Cambridge, UK
| | - Heather Walton
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,Dept of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Roderic L Jones
- Centre for Atmospheric Science, Dept of Chemistry, University of Cambridge, Cambridge, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| |
Collapse
|
23
|
Food Security, Environmental Health, and the Economy in Mexico: Lessons Learned with the COVID-19. SUSTAINABILITY 2021. [DOI: 10.3390/su13137470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The COVID-19 pandemic showed an impact mainly on the health of people and the economy of households. The levels of food security in the world’s households, especially in Mexico, have decreased. When people do not have food security, their health is compromised and they have financial problems; on the other hand, environmental deterioration has a link with food security. The purpose of this review is to analysis of the current situation in Mexico of food security, environmental health and economy, the main lessons learned in these areas and their proposals integrating public policies. A review was carried out in the main databases (MEDLINE, Embase, CINAHL Plus, Web of Science, CAB Abstracts y PAIS Index) with the following keywords and according to the MeSH terms: Food security, food insecurity, environmental health, public policies, environmental, production, integrating the word COVID-19 in English and Spanish. Only 44.5% of Mexican households presented food security. For food insecurity, 22.6% had moderate and severe food insecurity, while 32.9% had mild insecurity. Food insecurity and the health impacts of environmental origin (waste management during the coronavirus pandemic, water contaminated by bacteria, viruses, and toxins; air pollution) generates impacts on economic activity by not offering food that meets health regulations. Without the application of cost-effective measures and interventions for the prevention and control of patients with obesity, the direct costs for 2023 will amount to 9 million dollars, which worsens the household economy. Despite having laws and policies on the right to food, a healthy environment (water), and opportunities for economic growth, these human rights are not fulfilled. The conclusion is that it is necessary to use a health and agroecological model to promote public policies (health, environment, and economy) that aims to prevent the discussed issues, with multidisciplinary and intersectoral interventions (government, academia, researchers, civil society organizations, industry, and population). This upholds the human right that all people should enjoy an adequate, healthy environment and have access to high-quality food.
Collapse
|
24
|
Huang R, Lal R, Qin M, Hu Y, Russell AG, Odman MT, Afrin S, Garcia-Menendez F, O'Neill SM. Application and evaluation of a low-cost PM sensor and data fusion with CMAQ simulations to quantify the impacts of prescribed burning on air quality in Southwestern Georgia, USA. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:815-829. [PMID: 33914671 DOI: 10.1080/10962247.2021.1924311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Prescribed burning (PB) is a prominent source of PM2.5 in the southeastern US and exposure to PB smoke is a health risk. As demand for burning increases and stricter controls are implemented for other anthropogenic sources, PB emissions tend to be responsible for an increasing fraction of PM2.5 concentrations. Here, to quantify the effect of PB on air quality, low-cost sensors are used to measure PM2.5 concentrations in Southwestern Georgia. The feasibility of using low-cost sensors as a supplemental measurement tool is evaluated by comparing them with reference instruments. A chemical transport model, CMAQ, is also used to simulate the contribution of PB to PM2.5 concentrations. Simulated PM2.5 concentrations are compared to observations from both low-cost sensors and reference monitors. Finally, a data fusion method is applied to generate hourly spatiotemporal exposure fields by fusing PM2.5 concentrations from the CMAQ model and all observations. The results show that the severe impact of PB on local air quality and public health may be missed due to the dearth of regulatory monitoring sites. In Southwestern Georgia PM2.5 concentrations are highly non-homogeneous and the spatial variation is not captured even with a 4-km horizontal resolution in model simulations. Low-cost PM sensors can improve the detection of PB impacts and provide useful spatial and temporal information for integration with air quality models. R2 of regression with observations increases from an average of 0.09 to 0.40 when data fusion is applied to model simulation withholding the observations at the evaluation site. Adding observations from low-cost sensors reduces the underestimation of nighttime PM2.5 concentrations and reproduces the peaks that are missed by the simulations. In the future, observations from a dense network of low-cost sensors could be fused with the model simulated PM2.5 fields to provide better estimates of hourly exposures to smoke from PB.Implications: Prescribed burning emissions are a major cause of elevated PM2.5 concentrations, posing a risk to human health. However, their impact cannot be quantified properly due to a dearth of regulatory monitoring sites in certain regions of the United States such as Southwestern Georgia. Low-cost PM sensors can be used as a supplemental measurement tool and provide useful spatial and temporal information for integration with air quality model simulations. In the future, data from a dense network of low-cost sensors could be fused with model simulated PM2.5 fields to provide improved estimates of hourly exposures to smoke from prescribed burning.
Collapse
Affiliation(s)
- Ran Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raj Lal
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Momei Qin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - M Talat Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sadia Afrin
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Fernando Garcia-Menendez
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Susan M O'Neill
- Pacific Northwest Research Station, US Forest Service, Seattle, WA, USA
| |
Collapse
|
25
|
Su J, Ye Q, Zhang D, Zhou J, Tao R, Ding Z, Lu G, Liu J, Xu F. Joint association of cigarette smoking and PM 2.5 with COPD among urban and rural adults in regional China. BMC Pulm Med 2021; 21:87. [PMID: 33722217 PMCID: PMC7962238 DOI: 10.1186/s12890-021-01465-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Background Cigarette smoking and PM2.5 are important risk factors of Chronic Obstructive Pulmonary Disease (COPD). However, the joint association of cigarette smoking and PM2.5 with COPD is unknown. Methods A community-based study was conducted among urban and rural adults aged 40 + years between May and December of 2015 in Jiangsu Province, China. The outcome variable was spirometry-defined COPD. Explanatory measures were smoking status (non-smokers or smokers) and PM2.5 exposure [low level (< 75 μg/m3) or high level (≥ 75 μg/m3)]. Mixed-effects logistic regression models were applied to calculate the odds ratio (OR) and 95% confidence interval (CI) to investigate the associations of cigarette smoking and PM2.5 with COPD. Results The prevalence of COPD was 11.9% (95% CI = 10.9%, 13.0%) within the overall 3407 participants in this study. After adjustment for potential confounders and community-level clustering effect, smokers tended to develop COPD relative to non-smokers (OR = 2.46, 95% CI 1.76, 3.43), while only smokers exposed to high level PM2.5 were more likely to experience COPD (OR = 1.36; 95% CI 1.01, 1.83) compared to their counterparts exposed to low level PM2.5. Meanwhile, compared to non-smokers who exposed to low level PM2.5, non-smokers who exposed to high level PM2.5 (OR = 1.10, 95% CI 0.74, 1.64), smokers who exposed to low (OR = 2.22, 95% CI 1.51, 3.27) or high level PM2.5 (OR = 3.14, 95% CI 2.15, 4.59) were, respectively, more like to develop COPD. Conclusions Cigarette smoking was positively associated with COPD among overall participants, while PM2.5 was in positive relation to COPD among smokers only. Moreover, cigarette smoking and PM2.5 might have an additive effect on the risk of COPD among adult smokers aged 40 years or older in China.
Collapse
Affiliation(s)
- Jian Su
- Department of Non-Communicable Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qing Ye
- Department of Non-Communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Dandan Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, 30 Luojia Road, Nanjing, 210024, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinyi Zhou
- Department of Non-Communicable Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Ran Tao
- Department of Non-Communicable Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Department of Environmental Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Gan Lu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, 30 Luojia Road, Nanjing, 210024, China
| | - Jiannan Liu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, 30 Luojia Road, Nanjing, 210024, China.
| | - Fei Xu
- Nanjing Municipal Center for Disease Control and Prevention, 3, Zizhulin, Nanjing, 210037, China.
| |
Collapse
|
26
|
Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093042. [PMID: 32349371 PMCID: PMC7246629 DOI: 10.3390/ijerph17093042] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022]
Abstract
Background: Direct and continuous exposure to particulate matter (PM), especially in occupational settings is known to impact negatively on respiratory health and lung function. Objective: To determine the association between concentrations of PM (2.5, 2.5–10 and 10 µm) in breathing zone and lung function of informal e-waste workers at Agbogbloshie. Methods: To evaluate lung function responses to PM (2.5, 2.5–10 and 10 µm), we conducted a longitudinal cohort study with three repeated measures among 207 participants comprising 142 healthy e-waste workers from Agbogbloshie scrapyard and 65 control participants from Madina-Zongo in Accra, Ghana from 2017–2018. Lung function parameters (FVC, FEV1, FEV1/FVC, PEF, and FEF 25-75) and PM (2.5, 2.5–10 and 10 µm) concentrations were measured, corresponding to prevailing seasonal variations. Socio-demographic data, respiratory exposures and lifestyle habits were determined using questionnaires. Random effects models were then used to examine the effects of PM (2.5, 2.5–10 and 10 µm) on lung function. Results: The median concentrations of PM (2.5, 2.5–10 and 10 µm) were all consistently above the WHO ambient air standards across the study waves. Small effect estimates per IQR of PM (2.5, 2.5–10 and 10 µm) on lung function parameters were observed even after adjustment for potential confounders. However, a 10 µg increase in PM (2.5, 2.5–10 and 10 µm) was associated with decreases in PEF and FEF 25–75 by 13.3% % [β = −3.133; 95% CI: −0.243, −0.022) and 26.6% [β = −0.266; 95% CI: −0.437, 0.094]. E-waste burning and a history of asthma significantly predicted a decrease in PEF by 14.2% [β = −0.142; 95% CI: −0.278, −0.008) and FEV1 by 35.8% [β = −0.358; 95% CI: −0.590, 0.125] among e-waste burners. Conclusions: Direct exposure of e-waste workers to PM predisposes to decline in lung function and risk for small airway diseases such as asthma and COPD.
Collapse
|
27
|
Chu HJ, Ali MZ. Establishment of Regional Concentration-Duration-Frequency Relationships of Air Pollution: A Case Study for PM 2.5. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1419. [PMID: 32098343 PMCID: PMC7068585 DOI: 10.3390/ijerph17041419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Poor air quality usually leads to PM2.5 warnings and affects human health. The impact of frequency and duration of extreme air quality has received considerable attention. The extreme concentration of air pollution is related to its duration and annual frequency of occurrence known as concentration-duration-frequency (CDF) relationships. However, the CDF formulas are empirical equations representing the relationship between the maximum concentration as a dependent variable and other parameters of interest, i.e., duration and annual frequency of occurrence. As a basis for deducing the extreme CDF relationship of PM2.5, the function assumes that the extreme concentration is related to the duration and frequency. In addition, the spatial pattern estimation of extreme PM2.5 is identified. The regional CDF identifies the regional extreme concentration with a specified duration and return period. The spatial pattern of extreme air pollution over 8 h duration shows the hotspots of air quality in the central and southwestern areas. Central and southwestern Taiwan is at high risk of exposure to air pollution. Use of the regional CDF analysis is highly recommended for efficient design of air quality management and control.
Collapse
Affiliation(s)
- Hone-Jay Chu
- Department of Geomatics, National Cheng Kung University, Tainan 70101, Taiwan;
| | | |
Collapse
|
28
|
Ni Y, Shi G, Qu J. Indoor PM 2.5, tobacco smoking and chronic lung diseases: A narrative review. ENVIRONMENTAL RESEARCH 2020; 181:108910. [PMID: 31780052 DOI: 10.1016/j.envres.2019.108910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The lung is one of the most important organs exposed to environmental agents. People spend approximately 90% of their time indoors, and risks to health may thus be greater from exposure to poor air quality indoors than outdoors. Multiple indoor pollutants have been linked to chronic respiratory diseases. Environmental tobacco smoke (ETS) is known as an important source of multiple pollutants, especially in indoor environments. Indoor PM2.5 (particulate matter with aerodynamic diameter < 2.5 μm) was reported to be the most reliable marker of the presence of tobacco smoke. Recent studies have demonstrated that PM2.5 is closely correlated with chronic lung diseases. In this paper, we reviewed the relationship of tobacco smoking and indoor PM2.5 and the mechanism that underpin the link of tobacco smoke, indoor PM2.5 and chronic lung diseases.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Velasco-Torres Y, Ruiz V, Montaño M, Pérez-Padilla R, Falfán-Valencia R, Pérez-Ramos J, Pérez-Bautista O, Ramos C. Participation of the miR-22-HDAC4-DLCO Axis in Patients with COPD by Tobacco and Biomass. Biomolecules 2019; 9:E837. [PMID: 31817742 PMCID: PMC6995507 DOI: 10.3390/biom9120837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation and systemic inflammation. The main causes of COPD include interaction between genetic and environmental factors associated with tobacco smoking (COPD-TS) and/or exposure to biomass smoke (COPD-BS). Several microRNAs (miRNAs) control posttranscriptional regulation of COPD-TS associated gene expression. The miR-22-HDAC4-IL-17 axis was recently characterized. It is still unknown, however, whether this axis, participates in COPD-BS. To investigate, 50 patients diagnosed with severe-to-very severe COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages III/IV, were recruited, 25 women had COPD-BS (never smokers, exposed heavily to BS) and 25 had COPD-TS. Serum levels of miRNA-22-3p were measured by RT (Reverse Transcription)-qPCR, while the concentration of HDAC4 (Histone deacetylase 4) was detected by ELISA. Additionally, we looked for association between serum HDAC4 and DLCOsb (Single-breath diffusing capacity of the lung for carbon monoxide), as % of predicted by age, height, and gender, one of the main differences described between COPD-BS and COPD-TS. Women with COPD-BS were older and shorter and had a higher DLCOsb %P (percent predicted) compared to COPD-TS. Serum miR-22-3p was downregulated in COPD-BS relative to COPD-TS. In contrast, the concentration of HDAC4 was higher in COPD-BS compared to COPD-TS. Furthermore, a positive correlation between serum HDAC4 levels and DLCOsb %P was observed. We concluded that the miR-22-HDAC4-DLCO axis behaves differently in patients with COPD-BS and COPD-TS.
Collapse
Affiliation(s)
- Yadira Velasco-Torres
- Biological and Health Sciences, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City 04960, Mexico;
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Martha Montaño
- Cellular Biology Laboratory, Department of Research in Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Rogelio Pérez-Padilla
- Department of Research in Smoking and COPD, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Julia Pérez-Ramos
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City 04960, Mexico;
| | - Oliver Pérez-Bautista
- Department of Research in Smoking and COPD, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Carlos Ramos
- Cellular Biology Laboratory, Department of Research in Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| |
Collapse
|
30
|
Han F, Yang X, Xu D, Wang Q, Xu D. Association between outdoor PM 2.5 and prevalence of COPD: a systematic review and meta-analysis. Postgrad Med J 2019; 95:612-618. [PMID: 31494575 DOI: 10.1136/postgradmedj-2019-136675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
There were conflictions and differences among the results of cross-sectional studies association between PM2.5 and COPD prevalence. We aimed to explore the real association between outdoor PM2.5 and COPD prevalence, analyze the possible cause to the differences and conflictions in previous cross-sectional studies. Cross-sectional literatures about the association between outdoor PM2.5 and COPD prevalence were selected up to 12 September 2018. Subgroup analysis was performed to explore the source of the heterogeneity. Publication bias was tested via funnel plot. Leave-one-out method was used to conduct influential analysis. Variance analysis was used to analyze the influence of concentration, literature quality and age (over 60 or not) on the ln (aOR) values. The initial search revealed 230 studies, of which 8 were selected. The heterogeneity in this study was significant (I2=62, P<0.01), and random effects model was used. The pooled OR for the association between PM2.5 and COPD prevalence is 2.32(95%CI, 1.91-2.82). There was no evidence of publication bias. Subgroup analysis showed the subgroup of age seemed to be the source of heterogeneity (P=0.0143, residual I2=0%). Variance analysis showed that the differences of ln (aOR) among each concentration group(p=0.0075) were statistically significant, the same as age groups(P=0.0234). This meta-analysis study demonstrated a conclusive association between PM2.5 and prevalence of COPD (OR: 2.32, 95%CI 1.91-2.82). The significant heterogeneity among selected studies was mainly caused by age (over 60 or not). High PM2.5 concentration should be needed in further research of the relationship between PM2.5 and chronic diseases.
Collapse
Affiliation(s)
- Feng Han
- Department of Air Quality Monitoring, National Institute of Environmental Health, China CDC, Beijing, China.,Occupational Epidemiology and Risk Assessment, The National Institute of Occupational Health and Poison Control, China CDC, Beijing, China
| | - Xiaoyan Yang
- Department of Air Quality Monitoring, National Institute of Environmental Health, China CDC, Beijing, China
| | - Donggang Xu
- Molecular Genetics Laboratory, Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Bejing, China
| | - Qin Wang
- Department of Air Quality Monitoring, National Institute of Environmental Health, China CDC, Beijing, China
| | - Dongqun Xu
- Department of Air Quality Monitoring, National Institute of Environmental Health, China CDC, Beijing, China
| |
Collapse
|
31
|
Yoda Y, Takagi H, Wakamatsu J, Ito T, Nakatsubo R, Horie Y, Hiraki T, Shima M. Stronger association between particulate air pollution and pulmonary function among healthy students in fall than in spring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:483-489. [PMID: 31030154 DOI: 10.1016/j.scitotenv.2019.04.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have reported the short-term effects of particulate air pollution on health. However, most of those studies were relatively short in duration, with only a few, in healthy adolescents. We investigated the short-term effects of particulate air pollution on pulmonary function in healthy adolescents over a long period. A panel study was repeatedly conducted twice a year for about one month each, in spring and fall from 2014 to 2016, in an isolated island in the Seto Inland Sea, Japan. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in a total of 48 healthy college students aged 15-19 years. The ambient concentrations of particulate matter with diameter ≤2.5 μm (PM2.5) and between 2.5 and 10 μm (PM10-2.5), and black carbon (BC) were continuously measured. A mixed-effects model was used to investigate the relationships between air pollutants and pulmonary function. In the overall analyses of the six study periods, decreases in the PEF and FEV1 were significantly associated with increases in the PM2.5 and BC concentrations. The greatest decrease was found in FEV1 (-1.97% [95% confidence interval (CI): -2.90, -1.04]), which was associated with an interquartile range (IQR) increase in the 0-72-h average concentrations of PM2.5 (14.1 μg/m3). Neither PEF nor FEV1 were associated with PM10-2.5 concentrations. In the analyses by season, both the PEF and FEV1 values decreased significantly in relation to increases in the PM2.5, PM10-2.5 and BC concentrations in the fall. However, in spring, both PEF and FEV1 showed weak associations with each of the pollutants. In conclusion, relatively low increases in the ambient particulate matter levels were associated with reduced pulmonary function among healthy adolescents. This association was stronger in fall than in spring.
Collapse
Affiliation(s)
- Yoshiko Yoda
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Hiroshi Takagi
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Yosuke Horie
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
32
|
Li Z, Li N, Guo C, Li X, Qian Y, Yang Y, Wei Y. The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:396-402. [PMID: 30731271 DOI: 10.1016/j.ecoenv.2019.01.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) in air pollution is a pervasive risk factor in pulmonary diseases that are always associated with gene expression level alterations in many specific-genes. DNA methylation (5-methylcytosine [5mC]) and RNA methylation (N6-methyladenine [6 mA]) influence the gene expression from transcription and post-transcription level, and the DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]) is the oxidized form of 5mC. In the present study, the levels of global 5mC, 5hmC and 6 mA of lungs in experimental mice were investigated. We divided the animals into 3 groups randomly, the group 1 was exposed to heavy PM for 24 h in the unfiltered chamber, the group 2 was exposed to filtered air in the filtered chamber, and the group 3 was 10 of the mice in the group 1 after 24 h exposure and then being moved to the filtered chamber for further 120 h exposure. The morphology of lungs showed that acute PM exposure impaired the structure of pulmonary alveolus. Meanwhile, the global level of DNA methylation was decreased, and DNA hydroxymethylation and RNA methylation levels were increased in lungs after PM exposure for only 24 h. Very notably, after being exposed in purified air for 120 h, the pulmonary morphology, the global levels of DNA methylation, DNA hydroxymethylation and RNA methylation of lungs were all reversed. The present study clearly demonstrated the alteration of DNA and RNA methylation after acute heavy PM exposure and emphasized the reversal of the symptoms caused by PM exposure after the air purification, which provided us a new idea for the intervention of the adverse health effects from air pollution. CAPSULE: Acute PM exposure resulted in reduced global DNA methylation and increased global DNA hydroxymethylcytosine and RNA methylation, and air purification reversed these alterations.
Collapse
Affiliation(s)
- Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yining Yang
- Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
33
|
Wang Z, Zhao J, Wang T, Du X, Xie J. Fine-particulate matter aggravates cigarette smoke extract-induced airway inflammation via Wnt5a-ERK pathway in COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:979-994. [PMID: 31190784 PMCID: PMC6512785 DOI: 10.2147/copd.s195794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Exposure to environmental particulate matter (PM) ≤2.5 μm in diameter (PM2.5) and smoking are common contributors to COPD, and pertinent research implicates both factors in pulmonary inflammation. Using in vivo mouse and in vitro human cellular models, we investigated the joint impact of PM2.5 pollution, and cigarette smoke (CS) in mice or cigarette-smoke extract (CSE) in cells on COPD inflammation, and explored potential mechanisms. Methods Tissue changes in lungs of C57BL/6 mice exposed to PM2.5 and CS were studied by light microscopy, H&E, immunochemistry, and immunofluorescence-stained sections. Levels of inflammatory factors induced by PM2.5/CS in mice and PM2.5/CSE in 16HBE cells were also monitored by quantitative reverse-transcription (qRT)-PCR and ELISA. Expression of genes related to the Wnt5a-signaling pathway was assessed at transcriptional and protein levels using immunofluorescence, qRT-PCR, and Western blotting. Results Inflammatory response to combined exposure of PM2.5 and CS or CSE in mouse and 16HBE cells surpassed responses incited separately. Although separate PM2.5 and CS/CSE exposure upregulated the expression of Wnt5a (a member of the Wnt-secreted glycoprotein family), combined PM2.5 and CS/CSE exposure produced a steeper rise in Wnt5a levels. Use of a Wnt5a antagonist (BOX5) successfully blocked related inflammatory effects. ERK phosphorylation appeared to mediate the effects of Wnt5a in the COPD model, promoting PM2.5 aggravation of CS/CSE-induced airway inflammation. Conclusion Our findings suggest that combined PM2.5 and CS/CSE exposure induce airway inflammation and Wnt5a expression in vivo in mice and in vitro in 16HBE cells. Furthermore, PM2.5 seems to aggravate CS/CSE-induced inflammation via the Wnt5a–ERK pathway in the context of COPD.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Junling Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Xiaohui Du
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| |
Collapse
|
34
|
Acute Effects of Air Pollution and Noise from Road Traffic in a Panel of Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050788. [PMID: 30836690 PMCID: PMC6427505 DOI: 10.3390/ijerph16050788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
Panel studies are an efficient means to assess short-term effects of air pollution and other time-varying environmental exposures. Repeated examinations of volunteers allow for an in-depth analysis of physiological responses supporting the biological interpretation of environmental impacts. Twenty-four healthy students walked for 1 h at a minimum of four separate occasions under each of the following four settings: along a busy road, along a busy road wearing ear plugs, in a park, and in a park but exposed to traffic noise (65 dB) through headphones. Particle mass (PM2.5, PM1), particle number, and noise levels were measured throughout each walk. Lung function and exhaled nitrogen oxide (NO) were measured before, immediately after, 1 h after, and approximately 24 h after each walk. Blood pressure and heart rate variability were measured every 15 min during each walk. Recorded air pollution levels were found to correlate with reduced lung function. The effects were clearly significant for end-expiratory flows and remained visible up to 24 h after exposure. While immediate increases in airway resistance could be interpreted as protective (muscular) responses to particulate air pollution, the persisting effects indicate an induced inflammatory reaction. Noise levels reduced systolic blood pressure and heart rate variability. Maybe due to the small sample size, no effects were visible per specific setting (road vs. park).
Collapse
|
35
|
Influence of Particulate Matter during Seasonal Smog on Quality of Life and Lung Function in Patients with Chronic Obstructive Pulmonary Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010106. [PMID: 30609775 PMCID: PMC6339110 DOI: 10.3390/ijerph16010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022]
Abstract
The impact of outdoor air pollution on the quality of life (QoL) of chronic obstructive pulmonary disease (COPD) patients, as measured by the COPD assessment test (CAT) questionnaire, is limited. The aim of this study was to determine the impact of a short-term increase in outdoor particulate matter in which the particles are less than 10 microns in diameter (PM10) during a seasonal smog period on QoL, symptoms, and lung function in COPD patients. This prospective observational study was conducted at Chiang Dao Hospital, Chiang Mai, Thailand between March and August 2016. Measurement of QoL, severity of dyspnea, forced vital capacity (FVC), and forced expiratory volume in the first second (FEV₁) were performed at both high and low PM10 periods. Fifty-nine patients met the inclusion criteria for enrollment into the study, with the mean age being 71.5 ± 8.0 years. Total CAT score, but not mMRC score, was statistically higher during the high PM10 period. The two lung function parameters, FVC and FEV₁, were significantly lower at the high PM10 compared to the low PM10 period. We concluded that exposure to PM10 during the seasonal smog period resulted in short-term negative impact on the quality of life and lung function in COPD patients.
Collapse
|
36
|
Zeng W, Zhang Y, Wang L, Wei Y, Lu R, Xia J, Chai B, Liang X. Ambient fine particulate pollution and daily morbidity of stroke in Chengdu, China. PLoS One 2018; 13:e0206836. [PMID: 30399151 PMCID: PMC6219788 DOI: 10.1371/journal.pone.0206836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Association has been reported between ambient fine particulate matter (PM) and adverse outcomes of cerebrovascular events. However, it remains unclear that whether short-term exposure to PM relates to stroke and the lag of health effects. This triggers us to examine the relationship between PM and population stroke morbidity in Chengdu. Methods The daily average concentration of atmospheric pollutants and meteorological factors and daily morbidity of stroke in Chengdu (2013–2015) were collected. Based on time series analysis-generalized additive models (GAM), single-pollutant, two-pollutant and multi-pollutant model were established. The effects of atmospheric PM2.5 (defined as PM less than 2.5μm in aerodynamic diameter), PMc(defined as PM less than 10μm and more than 2.5μm in aerodynamic diameter) and PM10 (defined as PM less than 10μm in aerodynamic diameter) concentration on the daily mortality of stroke were analyzed, respectively. Results The three-year mean concentrations of PM2.5, PMc and PM10 for air pollutants were 75.9, 43.9 and 119.7 μg/m3, respectively. PM2.5 on the current day (lag0) and with a moving average of 0–1 days were significantly associated with the increasing risk of stroke morbidity, and PM2.5 with a lag of 0–1 days had greater association, whereas for PMc and PM10 there were no significant association observed. In our study, every 10μg/m3 increase of PM2.5 was associated with 0.69% percent change in stroke morbidity (95%CI: 0.01~1.38). For females, every 10μg/m3 increase of PM2.5 contributes to 0.80% percent change of onset. And for the group of age less than 65, we observed 0.78% higher risk every 10μg/m3 increase of PM2.5. Conclusions These findings suggest that short-term exposure to PM2.5 within 1 day is associated with the onset of stroke, and the younger people (age<65) and females are more sensitive than older people and males.
Collapse
Affiliation(s)
- Wei Zeng
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Yingcong Zhang
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China.,Chengdu High-tech Zone Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Liang Wang
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Yonglan Wei
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Rong Lu
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Jinjie Xia
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Bing Chai
- Chengdu Tianfu New Area Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| | - Xian Liang
- Chengdu Center for Diseases Control and Prevention, Chengdu, Sichuan, P.R. China
| |
Collapse
|
37
|
Zhang K, Guo L, Wei Q, Song Q, Liu J, Niu J, Zhang L, Ruan Y, Luo B. COPD rat model is more susceptible to cold stress and PM 2.5 exposure and the underlying mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:26-34. [PMID: 29793105 DOI: 10.1016/j.envpol.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
The purpose of this study is to verify the hypothesis that chronic obstructive pulmonary disease (COPD) model rat is more susceptible to cold stress and fine particulate matter (PM2.5) exposure than the healthy rat, and explore the related mechanism. COPD rat model, established with cigarette smoke and lipopolysaccharide intratracheal instillation, were exposed to cold stress (0 °C) and PM2.5 (0, 3.2, 12.8 mg/ml). After that, the levels of superoxide dismutase, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1) and angiotensin Ⅱ (Ang-Ⅱ) in lung were measured, as well as the expression levels of lung 8-hydroxy-2-deoxyguanosine (8-OHdG), nuclear factor kappa B (NF-κB), heme-oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2). There were significant positive relationships between PM2.5 and lung level of iNOS, TNF-α, MCP-1 and Ang-Ⅱ, lung function and pathologic damage in COPD rats. The HO-1, NF-κB and 8-OHdG were found highly expressed in COPD rat lung, particularly at the higher PM2.5 dose of cold stress groups, while Nrf2 was found declined. Thus, COPD rats may be more susceptible to cold stress and PM2.5 exposure. Cold stress may aggravate PM2.5-induced toxic effects in the lung of COPD rats through increasing Ang-Ⅱ/NF-κB signaling pathway and suppressing Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiaozhen Wei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quanquan Song
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Li Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
38
|
Salinas-Rodríguez A, Fernández-Niño JA, Manrique-Espinoza B, Moreno-Banda GL, Sosa-Ortiz AL, Qian ZM, Lin H. Exposure to ambient PM 2.5 concentrations and cognitive function among older Mexican adults. ENVIRONMENT INTERNATIONAL 2018; 117:1-9. [PMID: 29704751 DOI: 10.1016/j.envint.2018.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Recent epidemiological research has shown that exposure to fine particulate pollution (PM2.5) is associated with a reduction in cognitive function in older adults. However, primary evidence comes from high-income countries, and no specific studies have been conducted in low and middle-income countries where higher air pollution levels exist. OBJECTIVES To estimate the association between the exposure to PM2.5 and cognitive function in a nationally representative sample of older Mexican adults and the associated effect modifiers. METHODS Data for this study were taken from the National Survey of Health and Nutrition in Mexico carried out in 2012. A total of 7986 older adults composed the analytical sample. Cognitive function was assessed using two tests: semantic verbal fluency and three-word memory. The annual concentration of PM2.5 was calculated using satellite data. Association between exposure to PM2.5 and cognitive function was estimated using two-level logistic and linear regression models. RESULTS In adjusted multilevel regression models, each 10 μg/m3 increase in ambient PM2.5 raised the odds of a poorer cognitive function using the three-word memory test (OR = 1.37, 95% CI: 1.08, 1.74), and reduced the number of valid animal named in the verbal fluency test (β = -0.72, 95% CI: -1.05, -0.40). Stratified analyses did not yield any significant modification effects of age, sex, indoor pollution, urban/rural dwelling, education, smoking and other factors. CONCLUSIONS This study supports an association between exposure to PM2.5 concentrations and cognitive function in older adults. This is particularly relevant to low- and middle-income countries, which are marked by a rapid growth of their aging population and high levels of air pollution.
Collapse
Affiliation(s)
| | | | | | | | - Ana Luisa Sosa-Ortiz
- Laboratory of Dementias, National Institute of Neurology and Neurosurgery, CDMX, Mexico
| | - Zhengmin Min Qian
- College for Public Health and Social Justice, Saint Louis University, St Louis, MO, USA.
| | - Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett 2018; 15:7506-7514. [PMID: 29725457 DOI: 10.3892/ol.2018.8355] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Previous research has identified that air pollution is associated with various respiratory diseases, but few studies have investigated the function served by particulate matter 2.5 (PM2.5) in these diseases. PM2.5 is known to cause epigenetic and microenvironmental alterations in lung cancer, including tumor-associated signaling pathway activation mediated by microRNA dysregulation, DNA methylation, and increased levels of cytokines and inflammatory cells. Autophagy and apoptosis of tumor cells may also be detected in lung cancer associated with PM2.5 exposure. A number of mechanisms are involved in triggering and aggravating asthma and COPD, including PM2.5-induced cytokine release and oxidative stress. The present review is an overview of the underlying molecular mechanisms of PM2.5-induced pathogenesis in lung cancer and chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Ruyi Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Rui Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
40
|
吴 晓, 王 丽, 易 建, 雷 剑, 奥 宇, 李 建, 韩 晶. [Protective effect of paeoniflorin against PM2.5-induced damage in BEAS-2B cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:168-173. [PMID: 29502055 PMCID: PMC6743883 DOI: 10.3969/j.issn.1673-4254.2018.02.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the protective effects of paeoniflorin against PM2.5-induced damage in BEAS-2B cells and explore the possible mechanism. METHODS With a factorial design, this study was performed to observe the protective effects of different doses of paeoniflorin against PM2.5-induced BEAS-2B cell growth inhibition and the effects of paeoniflorin on the contents of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS) in the cell cultures. RESULTS Exposure to increased PM2.5 concentrations caused significant decrease in the cell survival rate (P<0.05) with a clear dose-response relationship (r=-0.759, P<0.05). Treatment of the cells with paeoniflorin significantly attenuated PM2.5-induced inhibition of BEAS-2B cell survival (P<0.05), but the effect of paeoniflorin was not dose-dependent (P>0.05). PM2.5 exposure also significantly increased the contents of MDA and intracellular ROS (P<0.05), and paeoniflorin obviously antagonized these effects of PM2.5. CONCLUSION Paeoniflorin can protect BEAS-2B cells from PM2.5-induced growth inhibition, and the mechanism might be related to the anti-oxidant effects of paeoniflorin.
Collapse
Affiliation(s)
- 晓芳 吴
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- 西北妇女儿童医院,陕西 西安 710000Northwest Women and Children's Hospital, Xi'an 710000, China
| | - 丽云 王
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 建华 易
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 剑 雷
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 宇宏 奥
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 建军 李
- 中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西 西安 710075State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an 710075, China
| | - 晶 韩
- 西安交通大学医学部公共卫生学院,陕西 西安 710061College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
41
|
Mu Z, Chen PL, Geng FH, Ren L, Gu WC, Ma JY, Peng L, Li QY. Synergistic effects of temperature and humidity on the symptoms of COPD patients. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1919-1925. [PMID: 28567499 DOI: 10.1007/s00484-017-1379-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
This panel study investigates how temperature, humidity, and their interaction affect chronic obstructive pulmonary disease (COPD) patients' self-reported symptoms. One hundred and six COPD patients from Shanghai, China, were enrolled, and age, smoking status, St. George Respiratory Questionnaire (SGRQ) score, and lung function index were recorded at baseline. The participants were asked to record their indoor temperature, humidity, and symptoms on diary cards between January 2011 and June 2012. Altogether, 82 patients finished the study. There was a significant interactive effect between temperature and humidity (p < 0.0001) on COPD patients. When the indoor humidity was low, moderate, and high, the indoor temperature ORs were 0.969 (95% CI 0.922 to 1.017), 0.977 (0.962 to 0.999), and 0.920 (95% CI 0.908 to 0.933), respectively. Low temperature was a risk factor for COPD patients, and high humidity enhanced its risk on COPD. The indoor temperature should be kept at least on average at 18.2 °C, while the humidity should be less than 70%. This study demonstrates that temperature and humidity were associated with COPD patients' symptoms, and high humidity would enhance the risk of COPD due to low temperature.
Collapse
Affiliation(s)
- Zhe Mu
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Pei-Li Chen
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu-Hai Geng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Lei Ren
- Department of Respiratory Medicine, Jing'an District Geriatric Hospital of Shanghai, Shanghai, China
| | - Wen-Chao Gu
- Department of Respiratory Medicine, People Hospital of Pudong District, Shanghai, China
| | - Jia-Yun Ma
- Department of Respiratory Medicine, No.3 People Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Qing-Yun Li
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Garcia-Olivé I, Radua J, Sánchez-Berenguer D, Hernández-Biette A, Raya-Márquez P, Stojanovic Z, Martínez-Rivera C, Fernandez Serrano S, Ruiz Manzano J. Association between environmental factors and hospitalisations for bronchiectasis in Badalona, Barcelona, Spain (2007-2015). Med Clin (Barc) 2017; 150:257-261. [PMID: 28755827 DOI: 10.1016/j.medcli.2017.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/11/2017] [Accepted: 06/15/2017] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The relationship between environmental factors and the exacerbation of respiratory diseases has been widely studied. However, there are no studies examining the relationship between these factors and bronchiectasis exacerbations. Our objective was to analyse the association between various environmental factors and hospitalisation for bronchiectasis. MATERIAL AND METHODS This was a retrospective observational study conducted at two hospitals in Badalona (Barcelona). The number of hospital admissions for exacerbation of bronchiectasis between 2007 and 2015 was obtained. Through multiple regression we analysed the relationship between the number of exacerbations and mean monthly values of temperature, SO2, NO, NO2, O3 and CO. RESULTS Temperature, SO2, NO, NO2, O3 and CO were significantly associated with an increase in admissions due to exacerbation of bronchiectasis. By controlling the effect of temperature on the pollution variables, only SO2 maintained statistical significance (P=.008). CONCLUSION We have detected an increase in hospital admissions for exacerbation of bronchiectasis with increases in the atmospheric concentration of SO2 and the decrease in temperature. Prospective studies with different geographical locations to confirm these results are needed.
Collapse
Affiliation(s)
- Ignasi Garcia-Olivé
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España; Dirección de Organización y Sistemas de Información, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España; CibeRes - Ciber de Enfermedades Respiratorias, Bunyola, Mallorca, España; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Joaquim Radua
- Departamento de Estadística, FIDMAG Research Unit, Sant Boi de Llobregat, Barcelona, España; CiberSam - Ciber de Salud Mental, Madrid, España; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Suecia
| | | | - Agnes Hernández-Biette
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | - Patricia Raya-Márquez
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | - Zoran Stojanovic
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | - Carlos Martínez-Rivera
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | | | - Juan Ruiz Manzano
- Servicio de Neumología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España; Dirección de Organización y Sistemas de Información, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España; CibeRes - Ciber de Enfermedades Respiratorias, Bunyola, Mallorca, España; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, España
| |
Collapse
|
43
|
Hussey SJK, Purves J, Allcock N, Fernandes VE, Monks PS, Ketley JM, Andrew PW, Morrissey JA. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ Microbiol 2017; 19:1868-1880. [PMID: 28195384 PMCID: PMC6849702 DOI: 10.1111/1462-2920.13686] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.
Collapse
Affiliation(s)
- Shane. J. K. Hussey
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Joanne Purves
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Natalie Allcock
- Centre for Core Biotechnology Services, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Vitor E. Fernandes
- Department of InfectionImmunity and Inflammation, Medical Sciences Building, University of Leicester, University RoadLeicesterLE1 9HNLeicestershire, UK
| | - Paul S. Monks
- Department of ChemistryUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Julian M. Ketley
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Peter W. Andrew
- Department of InfectionImmunity and Inflammation, Medical Sciences Building, University of Leicester, University RoadLeicesterLE1 9HNLeicestershire, UK
| | - Julie A. Morrissey
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| |
Collapse
|
44
|
Mbelambela EP, Hirota R, Eitoku M, Muchanga SMJ, Kiyosawa H, Yasumitsu-Lovell K, Lawanga OL, Suganuma N. Occupation exposed to road-traffic emissions and respiratory health among Congolese transit workers, particularly bus conductors, in Kinshasa: a cross-sectional study. Environ Health Prev Med 2017; 22:11. [PMID: 29165103 PMCID: PMC5664439 DOI: 10.1186/s12199-017-0608-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/04/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives Road-traffic emissions (RTE) induce adverse health effects, notably respiratory symptoms and respiratory diseases, as a result of pollutants deposited into the respiratory tract. The aim of this study was to evaluate the association between occupation groups of Congolese transit workers exposed to RTE, particularly bus conductors and respiratory health, in Kinshasa. Methods A cross-sectional study was conducted from 2015 April 20th to May 14th, whose participants were bus conductors (n = 110), bus drivers (n = 107), taxi-motorcyclists (n = 102) and high school teachers (control group; n = 106). Subjects had completed the American Thoracic Society respiratory symptom questionnaire. Lung function test was performed by spirometry. Air pollutants levels of PM2.5, NO2 and SO2 were measured between 7:30 and 8:30 and 16:30–17:30 using a portable gas monitor. Multivariate analysis was performed to evaluate the association between occupation exposed to RTE and impaired pulmonary function, after adjustment by plausible confounders. Results The prevalence of mixed syndrome was 21.9% for bus conductors, 10.9% for bus drivers, 15.4% for taxi-motorcyclists and 7.1% for high school teachers with (p < 0.05). The risk of developing a mixed syndrome was seven times higher among bus conductors [OR = 7.64; 95% CI: 1.83–31.67; p < 0.05] than other groups. Additionally, the prevalence of respiratory syndromes increased with the duration of exposure. Conclusions Occupation exposed to RTE is associated with impaired pulmonary function and the prevalence of respiratory symptoms among transit workers, especially bus conductors. Furthermore, this association increases with the duration of exposure suggesting the necessity to regulate these categories of occupations and to apply preventives measures.
Collapse
Affiliation(s)
- Etongola Papy Mbelambela
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.
| | - Ryoji Hirota
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Sifa Marie Joelle Muchanga
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.,Department of Gynecology and Obstetrics, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hidenori Kiyosawa
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Kahoko Yasumitsu-Lovell
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.,Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - Ontshick Leader Lawanga
- Department of Mathematic, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi University Medical School, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
45
|
Bloemsma LD, Hoek G, Smit LAM. Panel studies of air pollution in patients with COPD: Systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2016; 151:458-468. [PMID: 27565881 DOI: 10.1016/j.envres.2016.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Epidemiological studies have shown an increase in morbidity and mortality rates in patients with chronic obstructive pulmonary disease (COPD) following exposure to elevated levels of air pollution. Panel studies have been used to assess short-term effects of air pollution which are not detected by registry studies, specifically lung function and symptoms. The aim of this systematic review was to assess the evidence of panel studies on acute effects of air pollution among patients with COPD. METHODS We searched the PubMed database, and identified additional studies by inspecting reference lists and literature reviews. We identified and summarized 25 panel studies that were published between 1993 and February 2016. Results were presented in forest plots and effect estimates of sufficiently comparable outcomes and pollutants were summarized by a random-effects meta-analysis. RESULTS Meta-analysis showed that a 10µg/m3 increase in ambient levels of particles less than 10µm in diameter (PM10) had a small, but statistically significant impact on FEV1 (-3.38mL, 95% CI -6.39 to -0.37) and PEF (-0.61L/min, -1.20 to -0.01). There was significant heterogeneity across the included studies. A forest plot showing associations between PM10 and respiratory symptoms was also suggestive of an adverse effect of particulate air pollution, but this was not formally tested in a meta-analysis due to the heterogeneity of outcomes. Results for gaseous pollutants were inconsistent for lung function or symptoms. CONCLUSIONS Evidence from the identified panel studies indicated statistically significant associations of particulate matter air pollution with lung function in patients with COPD.
Collapse
Affiliation(s)
- Lizan D Bloemsma
- Division Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Division Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Division Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Das DN, Sinha N, Naik PP, Panda PK, Mukhopadhyay S, Mallick SK, Sarangi I, Bhutia SK. Mutagenic and genotoxic potential of native air borne particulate matter from industrial area of Rourkela city, Odisha, India. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:131-139. [PMID: 27458701 DOI: 10.1016/j.etap.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we examined potential adverse health effect of particulate matter (PM) collected from industrial areas of Rourkela, Odisha, India. Results indicate that PM in these areas contains benzo[a]pyrene in addition to other unidentified molecules. Ames test revealed the above PM to be highly mutagenic. Further studies of PM in HaCaT cells suggest its DNA damaging potential which may lead to apoptosis. Generation of reactive oxygen and nitrogen species following PM exposure may be an early event in the PM induced apoptosis. In addition, the activity of cytochrome P450 (CYP450), the key xenobiotic metabolism enzyme, was found to be increased following PM exposure indicating its role in PM induced toxicity. To confirm this, we used genetic and pharmacological inhibitors of CYP450 like CYP1B1 siRNA and Clotrimazole. Interestingly, we found that the use of these inhibitors significantly suppressed the PM induced apoptosis in HaCaT cells, which confirm the crucial role of CYP1B1 in the toxic manifestation of PM. For further analysis, blood samples were collected from the volunteer donor and analyzed for immunophenotypes and comet assay to survey any change in immune cells and DNA damage in blood cells respectively. The study was performed with 55 blood samples including 32 from industrial areas and 23 people from non-industrial zone of Rourkela city. Samples had a mean±SD age of 35±6.2years (35 men and 20 women). Our investigation did not observe any significant alteration in lymphocytes (P=0.671), B cell (P=0.104), cytotoxic T cell (P=0.512), helper T cell (P=0.396), NK cell (P=0.675) and monocytes (P=0.170) of blood cells from these two groups. Taken together; this study first time reports the possible health hazards of PM from industrial areas of Odisha, India.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | | | | | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|