1
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Dynamics of Spatiotemporal Variation of Groundwater Arsenic in Central Rift Vally of Ethiopia: A Serial Cross-Sectional Study. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241285391. [PMID: 39391019 PMCID: PMC11465313 DOI: 10.1177/11786302241285391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Background Arsenic is a well-known, highly poisonous metalloid that affects human health and ecosystems and is widely distributed in the environment. Nevertheless, data on the spatiotemporal distribution of arsenic in groundwater sources in Ethiopia are scarce. Objective The principal aim of this study was to assess the extent of arsenic in groundwater sources and analyze the spatiotemporal variations in the central rift valley of Ethiopia. Methods The study employed a serial cross-sectional study design and census sampling methods. The concentrations of arsenic in the groundwater samples were determined using inductively coupled plasma mass spectrometry (ICP-MS) at the Ethiopian Food and Drug Authority laboratory. Descriptive statistical analyses were performed using IBM SPSS version 29 software. Additionally, ArcGIS software was utilized to map the spatiotemporal distribution of arsenic. Furthermore, Minitab statistical software version 21.4 was employed to assess the correlation between spatiotemporal variations of arsenic concentrations in groundwater sources. Results The mean values of arsenic in the groundwater samples were 11.2 µg/L during the dry season and 10.7 µg/L during the rainy season. The study results showed that 18 wells (42.2%) and 22 wells (48.8%) had higher arsenic concentrations (>10 µg/L) during the dry and rainy seasons, respectively. Thus, arsenic levels in 42.2% and 48.8% of the samples exceeded the maximum threshold limit set by WHO, USEPA, and Ethiopian standards (10 µg/L), respectively, during the dry and rainy seasons. Furthermore, our analysis revealed a significant positive correlation between arsenic in groundwater and well depth (r = .75, P < .001), indicating a strong association between higher arsenic concentrations and deeper wells. Similarly, we observed a substantial positive correlation between arsenic concentration in groundwater and season (r = .9, P < .001), suggesting notable variations in arsenic levels between dry and rainy seasons. Conclusions The majority of the groundwater sources in the studied area are unfit for human consumption because they contain high amounts of arsenic, which poses a significant risk to human health. Moreover, the arsenic concentration varied spatially and temporally. Therefore, special attention is needed to reduce arsenic exposure and associated health risks.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
3
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
4
|
Tyagi S, Sarma K. Tracing the land use specific impacts on groundwater quality: a chemometric, information entropy WQI and health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30519-30542. [PMID: 38607485 DOI: 10.1007/s11356-024-33038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
Understanding the nexus of land use and water quality can potentially underline the influences within the groundwater management. The study envisages land use-specific qualitative assessment of the groundwater resources in Ghaziabad district, in western Uttar Pradesh, India. For encountering the relative impacts of land use on the groundwater quality, chemometric analysis has been employed to apportion the pollution sources. The integration of quality parameters, in the information entropy index modeling, has segregated the quality classes and visualized the seasonal suitability trends as per potability standards along with non-carcinogenic health hazard risk assessment (HHRA). The qualitative assessment of the groundwater resources, along with spatial distribution, has deciphered a polluting impact, specifically in western and south western parts of district, and observed the linkages with direct and indirect discharges/seepages from densely populated residential and industrial land use types localized in urbanized areas. Statistically significant annual and seasonal variations have been found exclusively for EC, Mg2+, F-, Cd, Cr(total), Ni, and Pb which inferred variable concentrations, whereas land use types showed a non-significant variation within groundwater quality. Chemometric-based source apportioning and hierarchical cluster analysis (HCA) have derived salinization and enrichment of dissolved salts, arising from mixed sources and contributes to metal pollution, i.e., mainly from anthropogenic sources. Information EWQI derived poor to extremely poor category represented degraded potability specifically for fewer sites located within western and southern parts on the Yamuna-Hindon flood plains for limited sites of residential, industrial, and agricultural in an urbanized region. However, majority of the samples fall under excellent to good groundwater quality, recommendable in the north and north-eastern (peri-urban) regions. Non-carcinogenic HHRA has shown that majority of the samples categorized under unsafe value for hazard index (HI > 1), for females and children and thus, presumed probable health hazard risk from metal groundwater pollution in south-western part, eastern, and northern regions.
Collapse
Affiliation(s)
- Shipra Tyagi
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India.
| | - Kiranmay Sarma
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
5
|
Demissie S, Mekonen S, Awoke T, Teshome B, Mengistie B. Prevalence of arsenic-induced skin lesions and associated factors in Ethiopia: Community-based study. Toxicol Rep 2023; 11:153-161. [PMID: 37559672 PMCID: PMC10407820 DOI: 10.1016/j.toxrep.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The study aimed to assess the prevalence of arsenic-induced skin lesions and associated factors among the population in the Adami Tulu Jido Kombolcha district, Ethiopia. A community-based cross-sectional study design was employed among 403 participants from June 02-20, 2022. A two-stage cluster sampling method was conducted to select study subjects. A pretested structured and semi-structured interview questionnaire and observation using a WHO flow chart were used for data collection. Data analysis was performed using SPSS version 24 statistical software for Windows. A multivariable binary logistic regression model was applied to examine the relationship between predictor variables and an outcome variable. The degrees of association between outcomes and predictor variables were assessed using ORs and 95% CIs, and P-values < 0.05 were considered significant. The prevalence of arsenic-induced skin lesions (arsenicosis) in the study area was 2.2% [95% CI: 1.0-3.7]. The most common arsenic-induced manifestation was keratosis (55.6%), followed by hyperpigmentation (33.3%) and hyperkeratosis (11.1%). Consumption of well water, smoking cigarettes, and chewing khat were significantly associated with arsenic-induced skin lesions. Therefore, the findings of this study should trigger further research on arsenic exposure and health risks.
Collapse
Affiliation(s)
- Solomon Demissie
- Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Seblework Mekonen
- Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, University of Gondar, Ethiopia
| | - Birhanu Teshome
- Division of Epidemiology and Biostatistics, Stellenbosch University, South Africa
| | - Bezatu Mengistie
- Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| |
Collapse
|
6
|
Selvaganapathi R, Sivaprakasam V, Sathyanarayanan B, Balamurugan P, Das S, Sathiyamoorthy G. Evaluating hydrogeochemical controls and noncarcinogenic health risk assessment of fluoride concentration in groundwater of Palacode and Pennagaram taluk, Dharmapuri district, Tamil Nadu, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1472. [PMID: 37964072 DOI: 10.1007/s10661-023-12082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
This study focuses on assessing hydrochemical characteristics and non-carcinogenic health risks associated with fluoride contamination in groundwater within the Palacode and Pennagaram taluks of Dharmapuri district. The presence of fluoride in drinking water is a significant concern due to its potential health impacts on both adults and children. We collected a total of 158 groundwater samples during both the summer (SUM) and monsoon (MON) seasons in 2021 to evaluate the suitability of water for drinking purposes in this region. During the SUM season, groundwater exhibits alkaline characteristics with a pH range of 6.70 to 8.73 and a mean value of 7.43, while the MON season falls within the neutral pH range with values ranging from 6.60 to 7.60 and a mean of 7.00. Hydrogeochemical analysis reveals that fluoride concentrations during the SUM season range from 0.13 to 2.7 mg/L, with a mean of 0.82 mg/L, whereas the MON season exhibits concentrations ranging from 0.08 to 1.6 mg/L, with a mean of 0.5 mg/L. Spatial distribution analysis indicates a gradual increase in fluoride concentrations from the northeast to the central and southern parts of the study area during both seasons. Residents in these areas have been exposed to high fluoride levels for an extended period, leading to health issues related to fluorosis. Our hydrogeochemical analysis attributes fluoride dominance to the Cl--SO42- water type in both seasons. Furthermore, the relationship between fluoride and pH, HCO3-, Ca2+, and Na+ suggests the influence of geological factors in fluoride dissolution under alkaline conditions, while a reverse cation exchange process and increasing calcium concentration inhibit fluoride concentration. Saturation indices indicate that the unsaturated state of gypsum dissolution contributes to elevated fluoride levels in groundwater. Additionally, Gibbs plots highlight rock-water interactions as a significant factor influencing groundwater chemistry in the study area. Based on our hazard quotient (HQ) investigation, children are at a higher risk during both seasons compared to adults, with the central and northern regions showing alarming HQ values. These findings underscore the urgent need for enhanced groundwater quality monitoring and a comprehensive assessment of health risks, providing valuable insights for groundwater safety management in vulnerable areas of this region.
Collapse
Affiliation(s)
- R Selvaganapathi
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India
| | - Vasudevan Sivaprakasam
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India.
| | | | - P Balamurugan
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India
| | - Subhrajit Das
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India
| | - G Sathiyamoorthy
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India
| |
Collapse
|
7
|
Liang CP, Lin TC, Suk H, Wang CH, Liu CW, Chang TW, Chen JS. Comprehensive assessment of the impact of land use and hydrogeological properties on the groundwater quality in Taiwan using factor and cluster analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158135. [PMID: 35987244 DOI: 10.1016/j.scitotenv.2022.158135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This study aims at making a comprehensive assessment of the impact of land use and the hydrogeological properties on groundwater quality. First, factor analysis (FA) is applied to reveal the main pollutant sources and hydrogeological processes controlling the groundwater quality. FA identifies the four most important factors. Factor 1 (seawater salinization) is characterized by a medium loading of land use type of aquaculture. It is recognized that the high scores for factor 1 in coastal areas are due to over-pumping from aquafarms. Focused land use management is required to prevent saline-water intrusion in coastal aquifers. Factor 3 (nitrate pollution) shows high correlations with the land use type of fruit farming and the gravel thickness in unsaturated layers. High scores for factor 3 are also found in the proximal area of the Chuoshui River Alluvial Fan and the northeastern mountain area in the Pingtung Plain. Fruit farmers should be educated to reduce the application of fertilizers and promote the organic fruit farming. The impacts of land use and the hydrogeological properties on both Factor 2 (arsenic enrichment) and Factor 4 (reductive dissolution of Fe2+ and Mn2+) are negligible. Second, cluster analysis (CA) is performed on computed scores of the four main factors to separates 123 monitoring wells into cluster 1 (low polluted zone), cluster 2 (nitrate polluted zone) and cluster 3 (hybrid polluted zone). The results obtained from CA provide practical applications such as reduce agrichemical use in the areas of cluster 2 and enforce intensive monitoring in the prioritizing areas of cluster 3. This study successively uses the FA and CA to extract the meaningful information present by geographical visualization of scores for 4 main factors and 3 distinct clusters zones. The results are essential for formulating sound groundwater resource and land use management policies to ensure groundwater sustainability.
Collapse
Affiliation(s)
- Ching-Ping Liang
- Department of Nursing, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Tsai-Chen Lin
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320317, Taiwan
| | - Heejun Suk
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Chia-Hui Wang
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320317, Taiwan
| | - Chen-Wuing Liu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Wei Chang
- Agricultural Engineering Research Center, Taoyuan City 32061, Taiwan.
| | - Jui-Sheng Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320317, Taiwan; Center for Advanced Model Research Development and Applications, National Central University, Taoyuan City 320317, Taiwan.
| |
Collapse
|
8
|
A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan's Lanyang Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111385. [PMID: 34769900 PMCID: PMC8582990 DOI: 10.3390/ijerph182111385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. However, in some places the groundwater arsenic (As) concentrations far exceed the World Health Organization’s standards for drinking water quality. Measurements of the As concentrations in groundwater show considerable spatial variability, which means that the associated risk to human health would also vary from region to region. This study aims to adapt a back-propagation neural network (BPNN) method to carry out more reliable spatial mapping of the As concentrations in the groundwater for comparison with the geostatistical ordinary kriging (OK) method results. Cross validation is performed to evaluate the prediction performance by dividing the As monitoring data into three sets. The cross-validation results show that the average determination coefficients (R2) for the As concentrations obtained with BPNN and OK are 0.55 and 0.49, whereas the average root mean square errors (RMSE) are 0.49 and 0.54, respectively. Given the better prediction performance of the BPNN, it is recommended as a more reliable tool for the spatial mapping of the groundwater As concentration. Subsequently, the As concentrations estimated obtained using the BPNN are applied to develop a spatial map illustrating the risk to human health associated with the ingestion of As-containing groundwater based on the noncarcinogenic hazard quotient (HQ) and carcinogenic target risk (TR) standards established by the U.S. Environmental Protection Agency. Such maps can be used to demarcate the areas where residents are at higher risk due to the ingestion of As-containing groundwater, and prioritize the areas where more intensive monitoring of groundwater quality is required. The spatial mapping of As concentrations from the BPNN was also used to demarcate the regions where the groundwater is suitable for farmland and fishponds based on the water quality standards for As for irrigation and aquaculture.
Collapse
|
9
|
Li Y, Ji L, Mi W, Xie S, Bi Y. Health risks from groundwater arsenic on residents in northern China coal-rich region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145003. [PMID: 33940709 DOI: 10.1016/j.scitotenv.2021.145003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 05/10/2023]
Abstract
Shanxi Province of northern China is a typical mining concentration and arsenism area. Years of mining activities have resulted in serious regional groundwater problems in Shanxi. Therefore, it is of great significance to know the health risk of groundwater arsenic on residents under the background of mining activities. Kriging interpolation was used to illustrate the spatio-temporal dynamics of the health risks on groundwater arsenic based on a ten-year investigation. The groundwater arsenic concentrations decreased over time and the distribution of high arsenic concentrations shrank. High arsenic concentrations were mainly distributed in the northern and middle basin areas. The forecasted area of high risks in coal mining areas was 5623 km2, which was larger than that in non-coal mining areas. The residents living around mining areas were more vulnerable to exposure to groundwater arsenic. Further, the output map outlines the high-risk zones in order to protect the safety of drinking water for residents. This study may be helpful for the policy-makers to adopt a lower limit for groundwater arsenic to the worst affected regions and groups.
Collapse
Affiliation(s)
- Yuan Li
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Taiyuan Monitoring Station of National Urban Water Quality Monitoring Network, Taiyuan, Shanxi 030009, China.
| | - Li Ji
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
10
|
Ahmed FT, Khan AHAN, Khan R, Saha SK, Alam MF, Dafader NC, Sultana S, Elius IB, Mamum SA. Characterization of arsenic contaminated groundwater from central Bangladesh: Irrigation feasibility and preliminary health risks assessment. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2021.100433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Monteiro De Oliveira EC, Caixeta ES, Santos VSV, Pereira BB. Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:119-135. [PMID: 33709865 DOI: 10.1080/10937404.2021.1898504] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic (As) occurs naturally in geologic conditions, but groundwater contamination might also be found due to the consequences of mining, agricultural and industrial processes. Human exposure to As after drinking contaminated water is commonly associated with acute toxicity outcomes and chronic effects ranging from skin lesions to cancer. Integrated actions from environmental and health authorities are needed to reduce exposure, monitoring outcomes, and promotion of actions to offer sustainable As-safe water alternatives. Considering recent research trends, the present review summarizes and discusses current issues associated with the process and effects of contamination and decontamination in an environmental health perspective. Recent findings reinforce the harmful effects of the consumption of As-contaminated water and broaden the scope of related diseases including intestinal maladies, type 2 diabetes, cancers of bladder, kidneys, lung, and liver. Among the main strategies to diminish or remove As from water, the following are highlighted (1) ion exchange system and membrane filtration (micro, ultra, and nanofiltration) as physicochemical treatment systems; (2) use of cyanobacteria and algae in bioremediation programs and (3) application of nanotechnology for water treatment.
Collapse
Affiliation(s)
| | - Evelyn Siqueira Caixeta
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | - Vanessa Santana Vieira Santos
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
12
|
Skoczynska A, Skoczynska M, Wojakowska A, Turczyn B, Gruszczynski L, Scieszka M. Urinary leucine aminopeptidase 3 in population environmentally exposed to airborne arsenic. Hum Exp Toxicol 2021; 40:1308-1319. [PMID: 33501841 DOI: 10.1177/0960327120988874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Environmental arsenic contamination is a major toxicological problem worldwide due to its carcinogenic and nephrotoxic potential. AIM The purpose of this observational study was to determine the suspected association between urinary arsenic (uAs) and urinary leucine (or leucyl) aminopeptidase 3 (uLAP3) to evaluate uLAP3 as a candidate biomarker of exposure to airborne arsenic. MATERIALS AND METHODS A total of 918 adults occupationally and/or environmentally exposed to airborne arsenic were enrolled in the study. Baseline information (age; sex; history of smoking; alcohol, fish and seafood consumption) was gathered. Total uAs concentrations [μg/L] of 918 subjects, as well as the sum of arsenic species (ΣiAs) in 259 subjects, were obtained. Urinary LAP3 was measured by an immune-enzymatic assay using an ELISA kit. Urinary creatinine concentration was assessed with the IB/lAB/1289 research protocol (version II, 2015-09-17). The values of uAs and uLAP3 were recalculated per unit of creatinine. The association between uAs and uLAP3 was assessed using a logistic regression model adjusted for confounders. RESULTS The study identified a positive correlation between the logarithm of uAs and the logarithm of uLAP3 in the study population (r = 0.1737, p < 0.0000) and between urinary creatinine and uLAP3 concentration not adjusted for creatinine level (r = 0.1871, p < 0.001). In the logistic regression model, there was also an association between increased (≥15 µg/L) uAs and decreased (below the 25th quartile) uLAP3 [OR uLAP3 = 1.22 (95% CI 1.03 to 1.44, p < 0.02)]. CONCLUSIONS These data suggest that urinary LAP3 may be a potential biomarker of arsenic exposure, which warrants further study.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Marta Skoczynska
- Department of Rheumatology and Internal Diseases, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Turczyn
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | | | | |
Collapse
|
13
|
Liu J, Peng Y, Li C, Gao Z, Chen S. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111512. [PMID: 33254392 DOI: 10.1016/j.ecoenv.2020.111512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
This study investigated 324 groundwater samples collected from the southwest plain of Shandong Province during the dry and wet seasons. Groundwater fluoride in the study area and the influencing factors were characterized and discussed using statistical analysis, ion ratios, Piper diagrams, the saturation index (SI) and ArcGIS software. In addition, the risk posed by groundwater fluoride to human health was assessed. The results showed that groundwater in the study area had elevated fluoride concentrations, with average dry and wet season concentrations of 1.15 mg·L-1 and 1.08 mg·L-1, respectively. Groundwater fluoride showed consistent spatial variations during the dry and wet seasons, with a significant regionalization pattern of low concentrations in the east and high concentrations in the west. Groundwater F- was significantly negatively correlated with Ca2+ and positively correlated with pH, HCO3- and Na+. Important factors identified as having an effect on groundwater F- in the study area included the balance of dissolution of fluorite and calcite, the weakly alkaline environment and cation exchange. In addition, hydrochemical types of high-fluoride groundwater in the study area were identified as mainly HCO3-Na and SO4·Cl-Na. The assessment of the risk of high groundwater fluoride to human health showed that children are more at risk compared to adults, with the risk during the dry season exceeding that over the wet season. It is recommended that water quality management in the study area prioritize the formulation of measures to mitigate high concentrations of fluoride in groundwater .
Collapse
Affiliation(s)
- Jiutan Liu
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuming Peng
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Key Laboratory of Groundwater Resources and Environment, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Shandong Engineering Research Center for Groundwater Environmental Protection and Remediation, Jinan 250014, China
| | - Changsuo Li
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Key Laboratory of Groundwater Resources and Environment, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Shandong Engineering Research Center for Groundwater Environmental Protection and Remediation, Jinan 250014, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Shaojie Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| |
Collapse
|
14
|
Application of Factor Analysis for Characterizing the Relationships between Groundwater Quality and Land Use in Taiwan’s Pingtung Plain. SUSTAINABILITY 2020. [DOI: 10.3390/su122410608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the average municipal water coverage in Taiwan is quite high, at 93.91%, only around half of the residents in the Pingtung Plain use tap water originating from the Taiwan Water Corporation to meet their needs. This means the exploitation of a substantial amount of groundwater as a source of water to meet drinking, agriculture, aquaculture, and industry requirements. Long-term groundwater quality surveys in Taiwan have revealed obvious contamination of the groundwater in several locations in the Pingtung Plain, with measured concentration levels of some groundwater quality parameters in excess of the permissible levels specified by the Taiwan Environmental Protection Administration. Clearly, establishing a sound plan for groundwater quality protection in this area is imperative for maximizing the protection of human health. The inappropriate use of hazardous chemicals and poor management of land use have allowed pollutants to permeate through unsaturated soil and ultimately reach the underlying shallow unconfined groundwater system. Thus, the quality of the water stored in shallow aquifers has been significantly affected by land use. This study is designed to characterize the relationship between groundwater quality and land use in the Pingtung Plain. This goal is achieved by the application of factor analysis to characterize the measured concentrations of 14 groundwater quality parameters sampled from 46 observation wells, the area percentages for nine land use categories in the neighborhood of these 46 observation wells, and the thicknesses of four unsaturated types of soil based on core samples obtained during the establishment of 46 observation wells. The results show that a four-factor model can explain 56% of the total variance. Factor 1 (seawater salinization), which includes the groundwater quality parameters of EC, SO42−, Cl−, Ca2+, Mg2+, Na+, and K+, shows a moderate correlation to land used for water conservation. Factor 2 (nitrate pollution), which includes the groundwater quality parameters of NO3−-N and HCO3−, shows a strong correlation to land used for fruit farming and a moderate correlation to the thickness of the gravel comprising unsaturated soil. Factor 3 (arsenic pollution), which is composed of groundwater quality parameters of total organic carbon (TOC) and As, is very weakly affected by land use. Factor 4 (reductive dissolution of Fe3+ and Mn2+), which involves Mn2+ and Fe3+, is weakly impacted by land use. Based on a geographic visualization of the scores for the four different factors and the patterns for land use, we can demarcate the areas where the groundwater in shallow unconfined aquifers is more vulnerable to being polluted by specific contaminants. We can then prioritize the areas where more intensive monitoring might be required, evaluate current land use practices, and adopt new measures to better prevent or control groundwater pollution.
Collapse
|
15
|
Guadagnini L, Menafoglio A, Sanchez-Vila X, Guadagnini A. Probabilistic assessment of spatial heterogeneity of natural background concentrations in large-scale groundwater bodies through Functional Geostatistics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140139. [PMID: 32927576 DOI: 10.1016/j.scitotenv.2020.140139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
We propose and exemplify a framework to assess Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies based on the context of Object Oriented Spatial Statistics. The approach enables one to fully exploit the richness of the information content embedded in the probability density function (PDF) of the variables of interest, as estimated from historical records of chemical observations. As such, the population of the entire distribution functions of NBL concentrations monitored across a network of monitoring boreholes across a given aquifer is considered as the object of the spatial analysis. Our approach starkly differs from previous studies which are mainly focused on the estimation of NBLs on the basis of the median or selected quantiles of chemical concentrations, thus resulting in information loss and limitations related to the need to invoke parametric assumptions to obtain further summary statistics in addition to those considered for the spatial analysis. Our work enables one to (i) assess spatial dependencies among observed PDFs of natural background concentrations, (ii) provide spatially distributed kriging predictions of NBLs, as well as (iii) yield a robust quantification of the ensuing uncertainty and probability of exceeding given threshold concentration values via stochastic simulation. We illustrate the approach by considering the (probabilistic) characterization of spatially variable NBLs of ammonium and arsenic detected at a monitoring network across a large scale confined groundwater body in Northern Italy.
Collapse
Affiliation(s)
- L Guadagnini
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| | - A Menafoglio
- Politecnico di Milano, MOX, Department of Mathematics, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - X Sanchez-Vila
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - A Guadagnini
- Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza L. Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
16
|
Chen SK, Jang CS, Chang CP. Employing indicator-based geostatistics and quantitative microbial risk analysis to assess the health risks of groundwater use for household demands on the Pingtung Plain, Taiwan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2007-2021. [PMID: 31722053 DOI: 10.1007/s10653-019-00468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Because of the limited surface water on the Pingtung Plain, Taiwan, the plain's residents frequently extract groundwater to meet their daily household water demands. The residents may experience gastrointestinal infections due to incidental ingestion of groundwater with fecal pollution. This study used indicator kriging (IK) and quantitative microbial risk analysis (QMRA) to assess the health risks of using groundwater for household cleaning and horticultural irrigation on the Pingtung Plain. First, IK was employed to determine the conditional cumulative distribution function (CCDF) of groundwater Escherichia coli (E. coli). Nonparametric Monte Carlo simulation based on established CCDF was then adopted to characterize the distributions and uncertainty of groundwater E. coli. Finally, QMRA was employed to determine health risks of groundwater use for household cleaning and horticultural irrigation, and the 95th percentiles of the risk distributions were calculated to obtain a representative risk. The study results indicated that the health risks of groundwater use ranged from 3.95 × 10-5 to 2.49 × 10-2 infections/user/year and exceeded the acceptable level, 1 × 10-4 infections/user/year, in most of the aquifers. Accordingly, residents of this plain should not directly extract groundwater for use in daily life.
Collapse
Affiliation(s)
- Shih-Kai Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Luzhu, Taoyuan, 338, Taiwan.
| | - Chun-Pei Chang
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| |
Collapse
|
17
|
Anthropogenic Effects on Hydrogeochemical Characterization of the Shallow Groundwater in an Arid Irrigated Plain in Northwestern China. WATER 2019. [DOI: 10.3390/w11112247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many irrigated plains in arid and semi-arid regions have groundwater quality issues due to both intensive human activity and natural processes. Comprehensive studies are urgently needed to explore hydrogeochemical evolutions, investigate possible pollution sources, and understand the controls on groundwater compositions in such regions. Here, we combine geostatistical techniques and hydrogeochemical assessments to characterize groundwater quality over time in the Yinchuan Plain (a typical irrigated plain in China), using 12 physicochemical variables derived from sampling in 600 and 602 wells in 2004 and 2014, respectively. Our results show that groundwater-rock interactions and evaporation are the key natural factors controlling groundwater compositions. Hydrogeochemical water types in both 2004 and 2014 were Ca-HCO3, Na-Cl, and mixed Ca·Mg-Cl. Along with the hydrogeochemical compositions, we used ionic ratios and the saturation index to delineate mineral solution reactions and weathering processes. Dissolution of gypsum, halite, fluorite, and mirabilite, along with silicate weathering and cation exchange, were identified in the study area. Our results indicated rising ion concentrations in groundwater, which could be the result of anthropogenic influences. Increasing total hardness and nitrates over the study period were most likely caused by agricultural activity and the discharge of waste water from human residential areas.
Collapse
|
18
|
Owoyemi FB, Oteze GE, Omonona OV. Spatial patterns, geochemical evolution and quality of groundwater in Delta State, Niger Delta, Nigeria: implication for groundwater management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:617. [PMID: 31493154 DOI: 10.1007/s10661-019-7788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Delta State of the Niger Delta, Nigeria, is an oil exploration and production region that is characterized by huge revenue generation but with its attendant waste generation and oil spillage that impact the environment. The variability in the hydrochemical characteristics, hydrochemical controlling processes and quality in space has been investigated. The pH of the groundwater samples ranged from slightly acidic to slightly alkaline nature. Biological oxygen demand and chemical oxygen demand of the coastal area are higher than those of the inland area indicating more domestic and industrial contamination. Total dissolved solid values across the region indicated fresh and brackish water for the coastal area and fresh water only for the inland area. The orders of abundance of the cations and anions for the coastal and inland areas are Ca>Mg>Na>K/Cl>HCO3>SO4>NO3 and Na>Ca>K>Mg/HCO3>Cl>NO3>SO4 respectively. A Piper diagram identified four hydrochemical facies, namely CaHCO3, NaHCO3, NaCl and CaMgClSO4. Ionic cross plots and correlation matrix revealed that the groundwater chemistry of the inland area is predominantly influenced by silicate weathering and ion exchange processes while those of the coastal area are influenced by silicate weathering, ion exchange processes and seawater tidal flushing. The groundwater from the coastal area is more polluted by heavy metals than those from the inland area. The observed variability may be attributed to effects of industrial wastes and exploration activities. In terms of water quality for domestic and irrigation, the groundwater of the coastal and the inland areas are not generally potable and suitable as drinking and irrigation water sources.
Collapse
Affiliation(s)
- Fredrick B Owoyemi
- Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, Effurun, Warri, Nigeria
| | - Gabriel E Oteze
- Department of Geology and Petroleum Studies, Western Delta University, Oghara, Nigeria
| | - Olufemi V Omonona
- Department of Physics/Geology/Geophysics, Alex Ekwueme Federal University, Ndufu Alike, Nigeria.
| |
Collapse
|
19
|
Bai X, Song K, Liu J, Mohamed AK, Mou C, Liu D. Health Risk Assessment of Groundwater Contaminated by Oil Pollutants Based on Numerical Modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183245. [PMID: 31487890 PMCID: PMC6765961 DOI: 10.3390/ijerph16183245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/02/2022]
Abstract
To provide theoretical support for the protection of dispersed drinking water sources of groundwater, we need to accurately evaluate the time and scope of groundwater pollution hazards to human health. This helps the decision-making process for remediation of polluted soil and groundwater in service stations. In this study, we conducted such an evaluation by coupling numerical modeling with a health risk assessment. During the research, soil and groundwater samples were collected and analyzed for 20 pollutants. Fifty-six percent of the heavy contaminants and 100% of the organic contaminants exhibited maximum values at the location of the oil depot. Gray correlation analysis showed that the correlation between background samples and soil underlying the depot was 0.375–0.567 (barely significant to insignificant). The correlation between the reference sequence of other points was 0.950–0.990 (excellent correlation). The correlation of environmental impact after oil depot leakage followed the order: organic pollutants > heavy metals > inorganic pollutants. The groundwater simulation status and predictions indicated that non-carcinogenic health risks covered 25,462 m2 at the time of investigation, and were predicted to extend to 29,593 m2 after five years and to 39,873 m2 after 10 years. Carcinogenic health risks covered 21,390 m2 at the time of investigation, and were predicted to extend to 40,093 m2 after five years and to 53,488 m2 after 10 years. This study provides theoretical support for the protection of a dispersed drinking water source such as groundwater, and also helps the decision-making process for groundwater and soil environment improvement.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kai Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Adam Khalifa Mohamed
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chenya Mou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
20
|
Akkajit P, Fajriati P, Assawadithalerd M. Metal accumulation in the marine bivalve, Marcia optima collected from the coastal area of Phuket Bay, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36147-36157. [PMID: 30362034 DOI: 10.1007/s11356-018-3488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Metal contamination in seafood has raised public health concerns, especially for local residents who live in coastal areas. In this study, the levels of cadmium (Cd), lead (Pb), mercury (Hg), and zinc (Zn) were determined in the marine bivalve, Marcia optima, as well as in water, and sediment samples collected from the coastal area of Phuket Bay, Thailand. The results showed that metal concentrations in sediments (4.05-7.14, 16.68-18.13, 164-213 mg kg-1 for Cd, Pb, and Zn, respectively) and water samples (0.16-0.44, 0.15-0.26, and 0.32-0.48 mg L-1 for Cd, Pb, and Zn, respectively) were below the threshold effects concentration of the sediment quality guidelines for adverse effects to occur and the marine water quality standards of Thailand. A human risk assessment was performed and the results showed that the risks associated with M. optima consumption at Saphan Hin and Paklok were negligible for most of the metals studied, with the maximum estimated daily intake value being observed for Zn (0.00663 mg kg-1 per day) at Saphan Hin. In addition, Cd, Zn, Pb, and Hg would be unlikely to pose a risk to human health with a hazard quotient of less than 1, with only the bioaccumulation factor of Zn being detectable in both locations (0.034 and 0.026 at Saphan Hin and Paklok, respectively). However, continuous monitoring is encouraged to prevent the risks associated with the consumption of metal-contaminated seafood.
Collapse
Affiliation(s)
- Pensiri Akkajit
- Integrated Science and Technology Research Center (Applied Chemistry/Environmental Management/Software Engineering), Prince of Songkla University, Phuket Campus, Phuket, 83120, Thailand.
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket, 83120, Thailand.
- Research Program of Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
- Research Unit of Site Remediation on Metals Management from Industry and Mining (Site Rem), Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Putri Fajriati
- Integrated Science and Technology Research Center (Applied Chemistry/Environmental Management/Software Engineering), Prince of Songkla University, Phuket Campus, Phuket, 83120, Thailand
| | | |
Collapse
|
21
|
Li R, Kuo YM, Liu WW, Jang CS, Zhao E, Yao L. Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1585-1599. [PMID: 29392546 DOI: 10.1007/s10653-018-0073-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Groundwater contamination with high arsenic (As) levels has caused serious health problem in Jianghan Plain. This study presents a framework to evaluate the results and their probable influencing factors of non-carcinogenic risk and carcinogenic risk in Shahu Village. An appropriate health risk assessment for residents exposing to As through ingestion and dermal contact pathways is also discussed in the paper. Hazard quotient (HQ) and target cancer risk (TR) are adopted to compute the non-carcinogenic and carcinogenic effects for residents, respectively. Monte Carlo simulation technique is used to quantify the uncertainty of the risk assessment. The assessment results show that the HQs and TRs of 10-m-deep and 25-m-deep wells exhibit seasonal variations with higher values in rainy season and lower values in dry season. The HQ values exceeding 1 at the depths of 10 (from 0.09 to 23.21 m) and 25 m (from 0.29 to 130.55 m) account for 61 and 94%, respectively, which associate with the As contents distribution in the aquifer sediments. The estimated TR values at the depths of 10 (from 3.86E-05 to 1.04E-02) and 25 m (from 1.32E-04 to 5.87E-02) exceeding the highest acceptable standard (10-4) account for 95 and 100%, respectively. Comparison of the two exposure pathways, the ingestion exposure contributes much more than the dermal contact exposure for both non-carcinogenic risk and carcinogenic risk. The results of sensitivity analysis indicate that a more accurate measurement and better definition of probability distributions for As concentration in the groundwater can increase the accuracy of health risk assessment in Jianghan Plain. The findings demonstrate the importance of the drinking water safety, and the government should take measures to ensure the drinking water safety.
Collapse
Affiliation(s)
- Ran Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yi-Ming Kuo
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Wen-Wen Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Luzhu, 338, Taoyuan, Taiwan, ROC
| | - Enmin Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Liquan Yao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
22
|
Liang CP, Chen JS, Chien YC, Chen CF. Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1048-1057. [PMID: 29426124 DOI: 10.1016/j.scitotenv.2018.01.294] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
A long-term groundwater quality survey in northeastern Taiwan's Lanyang Plain has revealed obvious contamination of the groundwater in some areas, with measured As concentrations in excess of the acceptable level of 10μg/L. Efforts for assessing the health risk associated with the intake of As through the drinking of contaminated groundwater are a necessary part of the important work of health risk management. However, the standard approach to assessing risks to human health does not adequately account for spatial heterogeneity in the measured As concentrations. Thus, this study applies two different kriging approaches to carry out a spatial analysis of the health risk associated with ingesting As through the drinking of groundwater in the Lanyang Plain. It is found that the indicator kriging (IK) approach, with occurrence probability threshold values of 0.4, 0.5 and 0.6 yields correct classification percentages of 75%, 68% and 61%, respectively, of unacceptable HQ zones. An HQ map prepared with the ordinary kriging (OK) approach shows a correct classification of unacceptable HQ zones of 80%. Considering that the OK approach does not require subjective selection of an occurrence probability threshold value as is the case with the IK approach and can yield a higher percentage of correct classification for unacceptable HQ zones, it is recommended as a more direct and reliable method for spatial analysis of human health risk due to arsenic exposure through the drinking of groundwater. The results show that the geographical distribution of unacceptable HQ zones is concentrated in the eastern part of the study area, which includes the high-population density townships. In other words, 34% of the people had access to groundwater where the HQ was >1. The results of this type of spatial health risk assessment can provide a basis for improving the decision-making process for health risk management.
Collapse
Affiliation(s)
- Ching-Ping Liang
- Department of Nursing, Fooyin University, Kaohsiung City 831, Taiwan.
| | - Jui-Sheng Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320, Taiwan
| | - Yi-Chi Chien
- Department of Environmental Engineering and Science, Fooyin University, Kaohsiung City 831, Taiwan
| | - Ching-Fang Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320, Taiwan
| |
Collapse
|
23
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Das N, Das A, Sarma KP, Kumar M. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. CHEMOSPHERE 2018; 194:755-772. [PMID: 29247935 DOI: 10.1016/j.chemosphere.2017.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The present work focuses on understanding the provenance, prevalence and health perspective of As and F- along with possible co-occurrence of uranium (U) in the aquifers of the Brahmaputra floodplains (BFP), India. Groundwater (n = 164) and sediment samples (n = 5) were obtained from the upper, middle and lower BFP. Energy dispersive spectroscopy (EDX) revealed the presence of As, U and Fe in the sediment matrix. Regression analysis showed a weaker relationship between As and F- co-occurrence. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) suggested reductive dissolution of Fe (hydr)oxides responsible for As release in the BFP, especially in the upper and lower BFP. Bicarbonate appeared to compete with As oxyanions for adsorption on positively charged surfaces leading to As release. Arsenic desorption in presence of PO43-, F- and HCO3- at elevated pH appeared greatest in the upper BFP, suggesting the highest potential for co-occurrence. Co-occurrence, were mainly in isolated aquifers of the upper BFP owing to desorption of adsorbed As and F- from Fe (hydr)oxides at higher pH. Weathering and dissolution of clay minerals in the upper BFP, and competitive desorption in presence of HCO3- and PO43- in the middle and lower BFP, respectively, explain variabilities in F- release. Amorphous Fe (hydr)oxides like ferrihydrite act as sinks of U. Concentrations of As and F- will likely increase in the future as projected from the saturated levels of goethite and ferrihydrite. Hazard indices (HI) revealed that children (3-8 years) were at greater health risk than adults.
Collapse
Affiliation(s)
- Nilotpal Das
- Department of Environmental Science, Tezpur University, Napaam 784028, Assam, India
| | - Aparna Das
- Department of Environmental Science, Tezpur University, Napaam 784028, Assam, India
| | - Kali Prasad Sarma
- Department of Environmental Science, Tezpur University, Napaam 784028, Assam, India
| | - Manish Kumar
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
25
|
Weinmuellner R, Kryeziu K, Zbiral B, Tav K, Schoenhacker-Alte B, Groza D, Wimmer L, Schosserer M, Nagelreiter F, Rösinger S, Mildner M, Tschachler E, Grusch M, Grillari J, Heffeter P. Long-term exposure of immortalized keratinocytes to arsenic induces EMT, impairs differentiation in organotypic skin models and mimics aspects of human skin derangements. Arch Toxicol 2018; 92:181-194. [PMID: 28776197 PMCID: PMC5773649 DOI: 10.1007/s00204-017-2034-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
Arsenic is one of the most important human carcinogens and environmental pollutants. However, the evaluation of the underlying carcinogenic mechanisms is challenging due to the lack of suitable in vivo and in vitro models, as distinct interspecies differences in arsenic metabolism exist. Thus, it is of high interest to develop new experimental models of arsenic-induced skin tumorigenesis in humans. Consequently, aim of this study was to establish an advanced 3D model for the investigation of arsenic-induced skin derangements, namely skin equivalents, built from immortalized human keratinocytes (NHEK/SVTERT3-5). In contrast to spontaneously immortalized HACAT cells, NHEK/SVTERT3-5 cells more closely resembled the differentiation pattern of primary keratinocytes. With regard to arsenic, our results showed that while our new cell model was widely unaffected by short-time treatment (72 h) with low, non-toxic doses of ATO (0.05-0.25 µM), chronic exposure (6 months) resulted in distinct changes of several cell characteristics. Thus, we observed an increase in the G2 fraction of the cell cycle accompanied by increased nucleus size and uneven tubulin distribution. Moreover, cells showed strong signs of de-differentiation and upregulation of several epithelial-to-mesenchymal transition markers. In line with these effects, chronic contact to arsenic resulted in impaired skin-forming capacities as well as localization of ki67-positive (proliferating) cells at the upper layers of the epidermis; a condition termed Bowen's disease. Finally, chronically arsenic-exposed cells were characterized by an increased tumorigenicity in SCID mice. Taken together, our study presents a new model system for the investigation of mechanisms underlying the tumor-promoting effects of chronic arsenic exposure.
Collapse
Affiliation(s)
- R Weinmuellner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - K Kryeziu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - B Zbiral
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - K Tav
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - B Schoenhacker-Alte
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - D Groza
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - L Wimmer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - M Schosserer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Haus B, 1190, Vienna, Austria
| | - F Nagelreiter
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Haus B, 1190, Vienna, Austria
| | - S Rösinger
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - M Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - E Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M Grusch
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - J Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Haus B, 1190, Vienna, Austria.
| | - P Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|