1
|
Olivas-Martínez A, Ventura-Wischner PS, Fernandez MF, Freire C. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: A systematic review of human studies. Int J Hyg Environ Health 2025; 263:114487. [PMID: 39566420 DOI: 10.1016/j.ijheh.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Age at thelarche has decreased over recent decades. This change in female puberty timing may be influenced by exposure to endocrine disrupting chemicals (EDCs) during critical periods of development. OBJECTIVE To review the scientific literature for evidence on the association of exposure to EDCs and other environmental chemicals with the timing of thelarche in girls. METHODS A systematic search for original peer-reviewed articles published up to July 2023 was conducted in three databases (Medline/PubMed, Scopus, and Web of Science), following the PECO strategy and PRISMA guidelines. The quality of evidence and reporting and the risk of bias were evaluated using GRADE, STROBE, and ROBINS-E tools. RESULTS Out of 3094 articles retrieved in the search, 67 met the review inclusion criteria. Data from 10 out of the 14 studies offering high-quality suggest that in utero and/or childhood exposure to certain synthetic and natural chemicals is associated with earlier breast development in girls; 8 of these 10 studies described a relationship with exposure to organohalogenated compounds in utero and to phthalates in childhood. CONCLUSIONS This systematic review provides the first overview of available human data on the association of EDCs/environmental chemicals with the timing of thelarche. Further high-quality research is urgently needed to fully elucidate the influence of this exposure on breast development timing in girls.
Collapse
Affiliation(s)
- Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Paula Sol Ventura-Wischner
- Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol, 08916, Badalona, Barcelona, Spain; Servicio de Pediatria, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Mariana F Fernandez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
2
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
3
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
4
|
Vu Huynh QT, Ban HT, Vuong NL, Khanh NP. The relationship between bisphenol A and phthalates with precocious puberty in Vietnamese children. J Pediatr Endocrinol Metab 2024; 37:644-651. [PMID: 38829694 DOI: 10.1515/jpem-2024-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES This study is aimed to explore the correlation between bisphenol A (BPA) and phthalates, including diethylhexylphthalate (DEHP) and dibutylphthalate (DBP), and precocious puberty (PP). METHODS A case-control study was conducted in Ho Chi Minh City, Vietnam, from November 2021 to April 2022, involving 250 children, with 124 of them diagnosed with PP and 126 serving as controls. We assessed the levels of urinary BPA, DEHP, and DBP in all participants and examined their association with the risk of PP. RESULTS BPA was detected in 11.3 % of PP cases but was not found in any individuals in the control group (p<0.001). Diethylhexylphthalate metabolite (MEHP) was not detected in any of the samples. Positive urinary results for dibutylphthalate metabolite (MBP) were observed in 8.1 % of PP cases and 2.4 % in the control group, with an odds ratio of 3.6 (95 % confidence interval: 0.97-13.4, p=0.03). CONCLUSIONS The PP group exhibited a higher prevalence of positive urinary BPA and DBP levels compared to the control group.
Collapse
Affiliation(s)
- Quynh Thi Vu Huynh
- Department of Pediatrics, 249295 University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City, Vietnam
- Nephrology and Endocrinology Department, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Ho Tran Ban
- Department of Pediatric Surgery, 249295 University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City, Vietnam
- General Surgery Department, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Nguyen Lam Vuong
- Department of Medical Statistics and Informatics, Faculty of Public Health, 249295 University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City, Vietnam
| | | |
Collapse
|
5
|
Pathak RK, Kim JM. Structural insight into the mechanisms and interacting features of endocrine disruptor Bisphenol A and its analogs with human estrogen-related receptor gamma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123549. [PMID: 38350536 DOI: 10.1016/j.envpol.2024.123549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol A (BPA) is a very important chemical from the commercial perspective. Many useful products are made from it, so its production is increasing day by day. It is widely known that Bisphenol A (BPA) and its analogs are present in the environment and that they enter our body through various routes on a daily basis as we use things made of this chemical in our daily lives. BPA has already been reported to be an endocrine disruptor. Studies have shown that BPA binds strongly to the human estrogen-related receptor gamma (ERRγ) and is an important target of it. This study seeks to understand how it interacts with ERRγ. Molecular docking of BPA and its analogs with ERRγ was performed, and estradiol was taken as a reference. Then, physico-chemical and toxicological analysis of BPA compounds was performed. Subsequently, the dynamic behavior of ERRγ and ERRγ-BPA compound complexes was studied by molecular dynamics simulations over 500 ns, and using this simulated data, their binding energies were again calculated using the MM-PBSA method. We observed that the binding affinity of BPA and its analogs was much higher than that of estradiol, and apart from being toxic, they can be easily absorbed in our body as their physicochemical properties are similar to those of oral medicines. Therefore, this study facilitates the understanding of the structure-activity relationship of ERRγ and BPA compounds and provides information about the key amino acid residues of ERRγ that interact with BPA compounds, which can be helpful to design competitive inhibitors so that we can interrupt the interaction of BPA with ERRγ. In addition, it provides information on BPA and its analogs and will also be helpful in developing new therapeutics.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
6
|
Reis ACC, Jorge BC, Paschoalini BR, Bueno JN, Stein J, Moreira SDS, Manoel BDM, Fernandes GSA, Hisano H, Arena AC. Long-term reproductive effects of benzo(a)pyrene at environmentally relevant dose on juvenile female rats. Drug Chem Toxicol 2023; 46:906-914. [PMID: 35912572 DOI: 10.1080/01480545.2022.2105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
Since studies on the reproductive consequences after the exposure to environmentally relevant doses of Benzo(a)pyrene (BaP) during critical stages of development are scarce, this study evaluated female reproductive parameters of adult rats exposed to a low dose of BaP during the juvenile phase. Female rats (Post-natal 21) were treated with BaP (0 or 0.1 µg/kg/day; gavage) for 21 consecutive days. During the treatment, no clinical signs of toxicity were observed. Nevertheless, the ages of vaginal opening and first estrus were anticipated by the BaP-exposure. At the sexual maturity, the juvenile exposure compromised the sexual behavior, as well as the placental efficiency, follicle stimulating hormone levels, placenta histological analysis, and ovarian follicle count. A decrease in erythrocyte, platelet, and lymphocyte counts also was observed in the exposed-females. Moreover, the dose of BaP used in this study was not able to produce estrogenic activity in vivo. These data showed that juvenile BaP-exposure, at environmentally relevant dose, compromised the female reproductive system, possibly by an endocrine deregulation; however, this requires further investigation.
Collapse
Affiliation(s)
- Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Beatriz Rizzo Paschoalini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Jéssica Nogueira Bueno
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
| | | | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), Botucatu, Brazil
- Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| |
Collapse
|
7
|
Han XX, Zhao FY, Gu KR, Wang GP, Zhang J, Tao R, Yuan J, Gu J, Yu JQ. Development of precocious puberty in children: Surmised medicinal plant treatment. Biomed Pharmacother 2022; 156:113907. [DOI: 10.1016/j.biopha.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
|
8
|
Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. TOXICS 2022; 10:597. [PMID: 36287877 PMCID: PMC9611505 DOI: 10.3390/toxics10100597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources (micro-sized plastics manufactured on purpose) and secondary sources (breakdown of large plastic items through physical, chemical, and biological processes). Consequently, serious concerns are escalating because MPs can be easily disseminated and contaminate environments, including terrestrial, air, groundwater, marine, and freshwater systems. Furthermore, an exposure to even low doses of MPs during the early developmental stage may induce long-term health effects, even later in life. Accordingly, this study aims to gather the current evidence regarding the effects of MPs exposure on vital body systems, including the digestive, reproductive, central nervous, immune, and circulatory systems, during the early developmental stage. In addition, this study provides essential information about the possible emergence of various diseases later in life (i.e., adulthood).
Collapse
Affiliation(s)
- Nur Hanisah Amran
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Latifah Abd Manaf
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| |
Collapse
|
9
|
Castillo LY, Ríos-Carrillo J, González-Orozco JC, Camacho-Arroyo I, Morin JP, Zepeda RC, Roldán-Roldán G. Juvenile Exposure to BPA Alters the Estrous Cycle and Differentially Increases Anxiety-like Behavior and Brain Gene Expression in Adult Male and Female Rats. TOXICS 2022; 10:513. [PMID: 36136478 PMCID: PMC9505797 DOI: 10.3390/toxics10090513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Perinatal exposure to bisphenol A (BPA) in murine models has been reported to affect social behavior and increase anxiety. However, there is little information about the effects of BPA exposure during puberty, a period in which sex hormones influence the maturation and differentiation of the brain. In this work, we evaluated the effect of BPA administration during the juvenile stage (PND 21-50) on anxiety in male and female rats. Newly weaned Wistar rats were treated with BPA (0, 50, or 500 µg/kg/day) for 30 days. To compare the intra- and inter-sex behavioral profiles, rats were evaluated using four different anxiety models: the Open field test (OFT), the Elevated plus maze (EPM), the Light-dark box test (LDBT), and the Defensive burying test (DBT). Males exhibited a clear-cut anxious profile at both doses in all four tests, while no clear behavioral effect of BPA exposure was observed in female rats. The latter showed an altered estrous cycle that initiated earlier in life and had a shorter duration, with the estrous phase predominating. Moreover, the expression of ESR1, ESR2, GABRA1, GRIN1, GR, MR, and AR genes increased in the hippocampus and hypothalamus of male rats treated with 50 µg/kg, but not in females. Our results indicate that BPA consistently induces a higher anxiety profile in male than in female rats, as evidenced predominantly by an increase in passive-coping behaviors and changes in brain gene expression, highlighting the importance of sex in peripubertal behavioral toxicology studies.
Collapse
Affiliation(s)
- Laura Yesenia Castillo
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Comprehensive Biomedicine and Health Laboratory, Biomedical Research Center, Veracruzana University, Xalapa 91190, Mexico
| | - Jorge Ríos-Carrillo
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico City 04510, Mexico
| | - Jean-Pascal Morin
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Rossana C. Zepeda
- Comprehensive Biomedicine and Health Laboratory, Biomedical Research Center, Veracruzana University, Xalapa 91190, Mexico
| | - Gabriel Roldán-Roldán
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Osinubi AA, Lewis-de Los Angeles CP, Poitevien P, Topor LS. Are Black Girls Exhibiting Puberty Earlier? Examining Implications of Race-Based Guidelines. Pediatrics 2022; 150:188594. [PMID: 35909158 DOI: 10.1542/peds.2021-055595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Patricia Poitevien
- Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Pediatrics
| | - Lisa Swartz Topor
- Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Pediatrics.,Division of Pediatric Endocrinology, Hasbro Children's Hospital, Providence, Rhode Island
| |
Collapse
|
11
|
Dobrzyńska MM, Gajowik A, Radzikowska J. The impact of preconceptional exposure of F0 male mice to bisphenol A alone or in combination with X-rays on the intrauterine development of F2 progeny. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503480. [PMID: 35649674 DOI: 10.1016/j.mrgentox.2022.503480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is used for the production of polycarbonates and epoxy resins. Exposure to chemical and physical environmental factors may influence the health of exposed individuals, and of the next generations. This paper describes the prenatal effects in the F2 generation of mice after exposure of F0 pubescent or mature males to BPA (5 mg/kg bw, 10 mg/kg bw, 20 mg/kg bw), X-rays (0.05 Gy) or a combination of both factors in low doses (0.05 Gy + 5 mg/kg bw BPA) for 8 weeks. F1 males were mated with females from the same group but from a different litter. The females were sacrificed before parturition and examined for the number of implantations, live foetuses, as well as early and late post-implantation deaths. The fertility of males and the percentage of pregnant females in each group were also assessed. Exposure of pubescent F0 males to 10 mg/kg bw of BPA decreased the frequency of fertile males. Following exposure of pubescent males, the frequency of pregnant females decreased in the groups of 10 mg/kg bw and 20 mg/kg bw of BPA, whereas after exposure of adult F0 males in the groups of 5 mg/kg bw and 20 mg/kg bw of BPA, no significant changes in the frequency of total, live and dead implantations in all the experimental groups were found. The results observed in regard to prenatal development of the F2 generation suggest that sperm of the sons of F0 pubescent males exposed to BPA contains genetic defects that affect the possibility of fertilization. The results of both pubescent and mature males exposed to BPA showed that fertilized eggs died before implantation, probably due to defects induced in the sperm. This confirmed that BPA induced transgenerational effects in male germ cells.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland.
| | - Aneta Gajowik
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| | - Joanna Radzikowska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| |
Collapse
|
12
|
Mohsen R, El-Zohairy E, Hassan MM, Fathy M, Magdy M, Atef S, Issak M, Taha SHN. The Possible Association between Phthalates and Bisphenol A Exposure and Idiopathic Precocious Puberty in Egyptian Girls. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Bisphenol A (BPA) and phthalates are utilized in large spectrum of plastics, as polyvinyl chloride as well as personal products, medical equipment, and epoxy resins. Phthalate and bisphenol A are the most common endocrine disrupting chemicals that interrupt the endocrine system and cause developmental, reproductive, neurological, and immune disturbances in humans. However, the relation between phthalates and bisphenol A and precocious puberty (PP) in human is still controversial.
AIM: Consequently, the present study aimed to detect and investigate the association between exposure to bisphenol A and monobutyl phthalate (MBP) and precocious puberty in Egyptian girls.
METHODS: Urine samples were collected from 100 young females. The subjects were divided into two major groups, precocious puberty group consisted of 60 young females diagnosed by an endocrine pediatric specialist and controls consisted of 40 normal young females matched in age and demographic characters. In urine, MBP and bisphenol A (BPA) were measured with high-performance liquid chromatography.
RESULTS: The mean concentration of MBP level was 22.758 ± 6.216 for the PP group and 15.283 ± 6.262 for controls with statistical difference between the studied groups (p < 0.001). Furthermore, the mean concentration of BPA was 405.02 ± 223.54 for the PP group and 97.95 ± 55 for controls with significant difference between groups (p < 0.001).
CONCLUSION: The present study found that idiopathic precocious puberty in young females was associated with high phthalate metabolites and bisphenol A levels in urine.
Collapse
|
13
|
Dong W, He J, Wang J, Sun W, Sun Y, Yu J. Bisphenol A exposure advances puberty onset by changing Kiss1 expression firstly in arcuate nucleus at juvenile period in female rats. Reprod Toxicol 2022; 110:141-149. [DOI: 10.1016/j.reprotox.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
14
|
Edaes FS, de Souza CB. BPS and BPF are as Carcinogenic as BPA and are Not Viable Alternatives for its Replacement. Endocr Metab Immune Disord Drug Targets 2022; 22:927-934. [PMID: 35297356 DOI: 10.2174/1871530322666220316141032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastic polymers are omnipresent, and life without them is virtually impossible. Despite the advantages provided by the material, conventional plastic also has harmful effects on the environment and human health. Plastics release microplastics and compounds, such as BPA, which is a xenoestrogen and once absorbed by the body, have an affinity for estrogen receptors α and β, acting as an agonist on human cells, being an endocrine disrupter able to cause various diseases and acting as a potential neoplastic inducer. BPS and BPF are BPA's analogs, a proposed solution to solve its harmful effects incorporated into the market. The analogs can be found in daily use products and are used in several industrial applications. OBJECTIVES In the present work, the researchers aimed to develop a revisional study of BPA's harmful effects on human health, focusing on its carcinogenic potential, discussing its mechanisms of action, as well as its analogs effects, and identifying if they are a viable alternative to BPA's substitution in plastic polymers' production. METHODS In this review, articles published in the last 15 years related to the different aspects of conventional plastics and BPA were analyzed and revised with precision. The subjects ranged from conventional plastics and the problems related to their large-scale production, BPA, its negative aspects, and the feasibility of using its analogs (BPS and BPF) to replace the compound. The articles were extensively reviewed and concisely discussed. RESULTS This study demonstrated that BPA has a high carcinogenic potential, with known mechanisms to trigger breast, ovarian, prostate, cervical, and lung cancers, thus elucidating that its analogs are also xenoestrogens, that they can exert similar effects to BPA and, therefore, cannot be considered viable alternatives for its replacement. Conclusion This study suggests that new research should be carried out to develop such alternatives, allowing the substitution of plastic materials containing BPA in their composition, such as developing economically viable and sustainable biodegradable bioplastics for socio-environmental well-being.
Collapse
Affiliation(s)
- Felipe Sanches Edaes
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos, Brazil
| | - Cleide Barbieri de Souza
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos
| |
Collapse
|
15
|
Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development. Curr Res Toxicol 2021; 2:399-410. [PMID: 34901887 PMCID: PMC8639335 DOI: 10.1016/j.crtox.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Bisphenol A (BPA) is a widely known, yet controversial reproductive toxin, capable of inducing reproductive, developmental, and somatic growth defects across species. Due to scientific findings and public concern, companies have developed BPA alternatives remarkably similar to BPA. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. The newest one, tetramethyl bisphenol F (TMBPF), is the least well-studied and has never been investigated in embryological models, however it continues to be mass produced and found in various products. Here, we used the chicken embryotoxicity screening test to compare the toxicities and potencies of several BPA analogs including TMBPF. We exposed developing chicken (Gallus gallus domesticus) embryos in ovo, from embryonic day 5 to 12 (E5-12), to increasing concentrations of BPA, bisphenol S (BPS), bisphenol AF (BPAF), and TMBPF, from 0.003 to 30 μM, and analyzed their developmental and toxic effects. The bisphenols significantly impaired development, growth, and survival in a dose-dependent manner, even at low, environmentally relevant concentrations of 3-30 nM. There was severely reduced growth and developmental delay, with exposed embryos averaging half the size and weight of control vehicle-treated embryos. The most common and severe dysmorphologies were craniofacial, eye, gastrointestinal, and body pigmentation abnormalities. The bisphenols caused dose-dependent toxicity with the lowest LC50s (lethal concentration with 50% survival) ever demonstrated in chick embryos, at 0.83-2.92 μM. Notably, TMBPF was the second-most toxic and teratogenic of all chemicals tested (rank order of BPAF > TMBPF > BPS > BPA). These results underscore the adverse effects of BPA replacements on early embryo development and may have implications for reproductive health and disease across species, including pregnancy exposures in humans.
Collapse
|
16
|
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2677. [PMID: 34961148 PMCID: PMC8709323 DOI: 10.3390/plants10122677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Collapse
Affiliation(s)
- Syahirah Batrisyia Mohamed Radziff
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Gelugor 11800, Penang, Malaysia;
| | - Yih-Yih Kok
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Chiew-Yen Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| |
Collapse
|
17
|
Profita M, Fabbri E, Spisni E, Valbonesi P. Comparing effects and action mechanisms of BPA and BPS on HTR-8/SVneo placental cells. Biol Reprod 2021; 105:1355-1364. [PMID: 34270681 DOI: 10.1093/biolre/ioab139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is one of the most investigated compound as a suspected endocrine disrupting chemical. It has been found at nM concentrations in the maternal serum, cord serum, and amniotic fluid and also permeates placental tissues. Attempts are being made to replace BPA with the analog Bisphenol S (BPS). Also BPS was found in maternal and umbilical cord serum, and urine samples from a large population of pregnant women. A few studies investigated BPA impact on the placentation process, and even less are available for BPS. This work aimed to elucidate and compare the effects of BPA and BPS on physiological functions of HTR-8/SVneo cells, derived from extravillous trophoblast of first-trimester pregnancy. Proliferation and migration ability of trophoblast cells were assessed in vitro after exposure to BPA or BPS (10-13 - 10-3 M). Further, induction of the inflammatory response by the bisphenols was studied. To provide insight into the molecular pathways implicated in the responses, experiments were carried out in the presence or absence of tamoxifen as estrogen receptors (ERs) blocker, and U0126 as ERK1/2 phosphorylation inhibitor. Data indicate that BPA significantly affects both proliferation and migration of HTR-8/SVneo cells, through ER and ERK1/2 mediated processes. Differently, BPS only acts on proliferation, again through ER and ERK1/2 mediated processes. BPS, but not BPA, induces secretion of interleukins 6 and 8. Such effect is inhibited by blocking ERK1/2 phosphorylation. To the best of our knowledge, these are the first data showing that BPS affects trophoblast functions through ER/MAPK modulation.
Collapse
Affiliation(s)
- Marilin Profita
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Enzo Spisni
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| |
Collapse
|
18
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Yaglov VV, Nazimova SV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Differential Disrupting Effects of Prolonged Low-Dose Exposure to Dichlorodiphenyltrichloroethane on Androgen and Estrogen Production in Males. Int J Mol Sci 2021; 22:3155. [PMID: 33808818 PMCID: PMC8003643 DOI: 10.3390/ijms22063155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p'-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
19
|
Kim JH, Lim JS. Early menarche and its consequence in Korean female: reducing fructose intake could be one solution. Clin Exp Pediatr 2021; 64:12-20. [PMID: 32403898 PMCID: PMC7806406 DOI: 10.3345/cep.2019.00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/27/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
The mean age at menarche (AAM) of Korean females has been rapidly decreasing over the last 50 years; currently, the prevalence of early menarche (<12 years) is 22.3%. Female adolescents who experience early menarche are known to be at greater risk of psychosocial and behavioral problems along with several physical health problems such as menstrual problems. They also tend to achieve a shorter final height and develop obesity. Population-based Korean studies have shown a strong association between early menarche and the risk of obesity, insulin resistance, metabolic syndrome, nonalcoholic fatty liver disease, diabetes, breast cancer, and cardiovascular disease in adulthood. Although the exact mechanism of how early menarche causes cardiometabolic derangement in later adulthood is unknown, childhood obesity and insulin resistance might be major contributors. Recent studies demonstrated that an excessive consumption of fructose might underlie the development of obesity and insulin resistance along with an earlier AAM. A positive association was observed between sugar-sweetened beverages (a major source of fructose) intake and obesity, metabolic syndrome, insulin resistance, and cardiometabolic risk in Korean females. In pediatrics, establishing risk factors is important in preventing disease in later life. In this regard, early menarche is a simple and good marker for the management of cardiometabolic diseases in adulthood. Decreasing one's fructose intake might prevent early menarche as well as the development of obesity, insulin resistance, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jung Sub Lim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
20
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
21
|
McIlwraith EK, Belsham DD. Hypothalamic reproductive neurons communicate through signal transduction to control reproduction. Mol Cell Endocrinol 2020; 518:110971. [PMID: 32750397 DOI: 10.1016/j.mce.2020.110971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus coordinate fertility and puberty. In order to achieve successful reproductive capacity, they receive signals from the periphery and from other hypothalamic neurons that coordinate energy homeostasis. Hormones, such as estradiol, insulin, leptin, and adiponectin, act directly or indirectly on GnRH and its associated reproductive neurons. Nutrients like glucose and fatty acids can also affect reproductive neurons to signal nutrient availability. Additionally, acute and chronic inflammation is reported to detrimentally affect GnRH and kisspeptin expression. All of these cues activate signal transduction pathways within neurons that lead to the changes in GnRH neuronal function. The signalling pathways can also be dysregulated by endocrine disrupting chemicals, which impair fertility by misappropriating common signalling pathways. The complex mechanisms controlling the levels of GnRH during the reproductive cycle rely on a carefully orchestrated set of signal transduction events to regulate the positive and negative feedback arms of the hypothalamic-pituitary-gonadal axis. If these signalling events are dysregulated, this will result is a downregulatory event leading to hypogonadal hypogonadism with decreased or absent fertility. Therefore, an understanding of the mechanisms involved in distinct neuronal signalling could provide an advantage to inform therapeutic interventions for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Oral Bisphenol A Worsens Liver Immune-Metabolic and Mitochondrial Dysfunction Induced by High-Fat Diet in Adult Mice: Cross-Talk between Oxidative Stress and Inflammasome Pathway. Antioxidants (Basel) 2020; 9:antiox9121201. [PMID: 33265944 PMCID: PMC7760359 DOI: 10.3390/antiox9121201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA’s worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 μg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.
Collapse
|
23
|
Association Study of Puberty-Related Candidate Genes in Chinese Female Population. Int J Genomics 2020; 2020:1426761. [PMID: 32566640 PMCID: PMC7285286 DOI: 10.1155/2020/1426761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Puberty is a transition period where a child transforms to an adult. Puberty can be affected by various genetic factors and environmental influences. In mammals, the regulation of puberty is enhanced by the hypothalamic-pituitary-gonadal axis (HPG axis). A number of genes such as GnRH, Kiss1, and GPR54 have been reported as key regulators of puberty onset. In this study, we have conducted an association study of puberty-related candidate genes in Chinese female population. Gene variations reported to be related with some traits in a population may not exist in others due to different genetic and ethnic backgrounds, hence the need for this kind of study. The genotyping of SNPs was based on multiplex PCR and the next-generation sequencing (NGS) platform of Illumina. We finally performed association study using PLINK software. Our results confirmed that SNPs rs34787247 in LIN28, rs74795793 and rs9347389 in OCT-1, and rs379202 and rs10491080 in ZEB1 genes showed a significant association with puberty. With the result, it is reasonable to conclude that these genes affect the process of puberty in Shanghai Chinese female population, yet the mechanism remains to be investigated by further study.
Collapse
|
24
|
Assessing Endogenous and Exogenous Hormone Exposures and Breast Development in a Migrant Study of Bangladeshi and British Girls. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041185. [PMID: 32069802 PMCID: PMC7068451 DOI: 10.3390/ijerph17041185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 11/16/2022]
Abstract
Timing of breast development (or thelarche) and its endogenous and exogenous determinants may underlie global variation in breast cancer incidence. The study objectives were to characterize endogenous estrogen levels and bisphenol A (BPA) exposure using a migrant study of adolescent girls and test whether concentrations explained differences in thelarche by birthplace and growth environment. Estrogen metabolites (EM) and BPA-glucuronide (BPA-G) were quantified in urine spot samples using liquid chromatography tandem mass spectrometry (LC-MS/MS) from a cross-sectional study of Bangladeshi, first- and second-generation Bangladeshi migrants to the UK, and white British girls aged 5–16 years (n = 348). Thelarche status at the time of interview was self-reported and defined equivalent to Tanner Stage ≥2. We compared geometric means (and 95% confidence interval (CIs)) of EM and BPA-G using linear regression and assessed whether EM and BPA-G explained any of the association between exposure to the UK and the age at thelarche using hazard ratios and 95% confidence intervals. Average EM decreased with exposure to the UK, whereas BPA-G increased and was significantly higher among white British (0.007 ng/mL, 95% CI: 0.0024–0.0217) and second-generation British-Bangladeshi girls (0.009 ng/mL, 95% CI: 0.0040–0.0187) compared to Bangladeshi girls (0.002 ng/mL, 95% CI: 0.0018–0.0034). Two of four EM ratios (16-pathway/parent and parent/all pathways) were significantly associated with thelarche. The relationship between exposure to the UK and thelarche did not change appreciably after adding EM and BPA-G to the models. While BPA-G is often considered a ubiquitous exposure, our findings suggest it can vary based on birthplace and growth environment, with increasing levels for girls who were born in or moved to the UK. Our study did not provide statistically significant evidence that BPA-G or EM concentrations explained earlier thelarche among girls who were born or raised in the UK.
Collapse
|
25
|
Kim JK, Khan A, Cho S, Na J, Lee Y, Bang G, Yu WJ, Jeong JS, Jee SH, Park YH. Effect of developmental exposure to bisphenol A on steroid hormone and vitamin D3 metabolism. CHEMOSPHERE 2019; 237:124469. [PMID: 31549635 DOI: 10.1016/j.chemosphere.2019.124469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
High exposure to bisphenol A (BPA) in children has been associated with the outcomes of several diseases, including those related to developmental problems. To elucidate the mechanism of BPA mediated developmental toxicity, plasma and urine from rats exposed to BPA was analyzed with high resolution metabolomics, beginning from post-natal day 9, for 91 days. Female and male rats were orally administered 5 different BPA doses to elucidate dose- and sex-specific BPA effects. Regarding dose-specific effects, multivariate statistical analysis showed that metabolic shifts were considerably altered between 5, 50 and 250 mg BPA/kg bw/day in treated rats. A nonmonotonicity and monotonicity between BPA dose and metabolic response were major trajectories, showing overall metabolic changes in plasma and urine, respectively. Metabolic perturbation in the steroid hormone biosynthesis pathway was significantly associated with dose- and sex-specific BPA effects. Intermediate metabolites in the rate-limiting step of steroid hormone biosynthesis down-regulated steroid hormones in the 250 mg treatment. Further, our study identified that BPA increased urinary excretion of vitamin D3 and decreased its concentration in blood, suggesting that perturbation of vitamin D3 metabolism may be mechanistically associated with neurodevelopmental disorders caused by BPA. Three metabolites showed a decrease in sex difference with high BPA dose because female rats were more affected than males, which can be related with early puberty onset in female. In brief, the results demonstrated that BPA induces dose- and sex-specific metabolic shifts and that perturbation of metabolism can explain developmental problems.
Collapse
Affiliation(s)
- Jae Kwan Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Adnan Khan
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Seongha Cho
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Jinhyuk Na
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Yeseung Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Chungbuk, 28119, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Center, Korea Institute of Toxicology, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Center, Korea Institute of Toxicology, Jeollabuk-do, 56212, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngja H Park
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
26
|
Solomonian L, Kwan V, Bhardwaj S. Group-Based Naturopathic Education for Primary Prevention of Noncommunicable Disease in Families and Children: A Feasibility Study. J Altern Complement Med 2019; 25:740-752. [PMID: 31314562 DOI: 10.1089/acm.2019.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: Naturopathic medicine has demonstrated efficacy at reducing risk factors for chronic disease. Targeting health behaviors of parents and caregivers in a group-based setting may improve the behaviors of children in their care. This study sought to assess the feasibility of such a program. Design: Participants of a six-session health education series were invited to respond to surveys and participate in a focus group about their health behaviors and their experience in the program. Subjects: Caregivers of children aged 0-6 attending publicly funded community centers in Ontario, Canada. Interventions: A 6-week group-based naturopathic education program to promote healthy lifestyle behaviors among caregivers. Outcome measures: Satisfaction with content and delivery, and frequency of healthy behaviors. Results: The majority of responses indicated satisfaction with the program, and an ongoing benefit 6 weeks and more after completion. There was a clear correlation between healthy behaviors of parents and children. Conclusions: A group-based naturopathic education program may be a feasible method of delivering primary-prevention education to caregivers, particularly in the domains of practicality and acceptability.
Collapse
Affiliation(s)
| | - Vivian Kwan
- Canadian College of Naturopathic Medicine, Toronto, Canada
| | | |
Collapse
|
27
|
Lee JE, Jung HW, Lee YJ, Lee YA. Early-life exposure to endocrine-disrupting chemicals and pubertal development in girls. Ann Pediatr Endocrinol Metab 2019; 24:78-91. [PMID: 31261471 PMCID: PMC6603611 DOI: 10.6065/apem.2019.24.2.78] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Over the last decades, the onset of puberty in girls has occurred earlier, but the tempo of pubertal progression has been relatively slower, resulting in a younger age at puberty onset without a change in age at menarche. Sufficient energy availability and adiposity contribute to early pubertal development, and environmental factors, such as endocrine-disrupting chemicals (EDCs), may affect not only the control of energy balance, but also puberty and reproduction. EDCs are hormonally active substances that can perturb puberty by acting both peripherally on target organs, such as adipose tissue or adrenal glands, and/or centrally on the hypothalamic-pituitary-gonadal (HPG) axis. Depending on whether the exposure takes place earlier during fetal and neonatal life or later during early childhood, EDCs can lead to different outcomes through different mechanisms. Evidence of associations between exposures to EDCs and altered pubertal timing makes it reasonable to support their relationship. However, human epidemiologic data are limited or inconsistent and cannot provide sufficient evidence for a causal relationship between EDC exposure and changes in pubertal timing. Further investigation is warranted to determine the overall or different effects of EDCs exposure during prenatal or childhood windows on pubertal milestones and to reveal the underlying mechanisms, including epigenetic marks, whereby early-life exposure to EDCs affect the HPG-peripheral tissue axis.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan, Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea,Address for correspondence: Young Ah Lee, MD, PhD Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2082 Fax: +82-2-2072-3917 E-mail:
| |
Collapse
|
28
|
Freire C, Molina-Molina JM, Iribarne-Durán LM, Jiménez-Díaz I, Vela-Soria F, Mustieles V, Arrebola JP, Fernández MF, Artacho-Cordón F, Olea N. Concentrations of bisphenol A and parabens in socks for infants and young children in Spain and their hormone-like activities. ENVIRONMENT INTERNATIONAL 2019; 127:592-600. [PMID: 30986741 DOI: 10.1016/j.envint.2019.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Little information is available on the content of bisphenol A (BPA) and other endocrine-disrupting chemicals (EDCs) such as parabens in infant textiles and clothes. OBJECTIVES 1) To determine the concentrations of BPA and parabens in socks for infants and young children purchased in Spain, 2) to assess the (anti-)estrogenicity and (anti-)androgenicity of extracts from the socks, and 3) to estimate dermal exposure doses to these chemicals. METHODS Thirty-two pairs of socks for infants and young children (1-48 months) were purchased from 3 stores in Granada (Spain). Textile material was cut from the foot, toe, and leg of each sock (n = 96 samples) for chemical analysis. Hormone-like activities were determined in foot sections (n = 32 samples) by using the E-Screen assay for (anti-)estrogenicity and PALM luciferase assay for (anti-)androgenicity. RESULTS BPA was present in 90.6% of samples at concentrations ranging from <0.70 to 3736 ng/g. BPA levels were around 25-fold higher in socks from store 1, which had a higher cotton content compared to stores 2 and 3. Ethyl-paraben was found in 100% of samples, followed by methyl-paraben (81.0%), and propyl-paraben (43.7%). No butyl-paraben was detected in any sample. Estrogenic activity was detected in 83.3% of socks from store 1 (range = 48.2-6051 pM E2eq/g) but in only three socks from stores 2 and 3. Anti-androgenic activity was detected in six of the 32 socks studied (range = 94.4-2989 μM Proceq/g), all from store 1. Estimated dermal exposure to BPA was higher from socks for children aged 36-48 months (median = 17.6 pg/kg/day), and dermal exposure to parabens was higher from socks for children aged 24-36 months (median = 0.60 pg/kg/day). DISCUSSION This is the first report in Europe on the wide presence of BPA and parabens in socks marketed for infants and children. BPA appears to contribute to the hormone-like activity observed in sock extracts.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Granada E-18071, Spain; Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada E-18016, Spain.
| | - José-Manuel Molina-Molina
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Granada E-18071, Spain; Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada E-18016, Spain.
| | - Luz M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada E-18016, Spain
| | | | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain.
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada E-18016, Spain; Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada E-18016, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada E-18016, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Granada E-18071, Spain; Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada E-18016, Spain; Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada E-18016, Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada E-18016, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada E-18012, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Granada E-18071, Spain; Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada E-18016, Spain; Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada E-18016, Spain; Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario San Cecilio, Granada E-18016, Spain.
| |
Collapse
|
29
|
Gugoasa LA, Stefan-van Staden RI, van Staden JF, Coroș M, Pruneanu S. Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1620262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Livia Alexandra Gugoasa
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Maria Coroș
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Firm human evidence on harms of endocrine-disrupting chemicals was unlikely to be obtainable for methodological reasons. J Clin Epidemiol 2019; 107:107-115. [DOI: 10.1016/j.jclinepi.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023]
|
31
|
Rashtian J, Chavkin DE, Merhi Z. Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod Biol Endocrinol 2019; 17:5. [PMID: 30636624 PMCID: PMC6330570 DOI: 10.1186/s12958-018-0448-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
A mounting body of the literature suggests that environmental chemicals found in food and water could affect female reproduction. Many worldwide daily-used products have been shown to contain chemicals that could incur adverse reproductive outcomes in the perinatal/neonatal periods, childhood, adolescence, and even adulthood. The potential impact of Bisphenol A (BPA), Phthalates and Perfluoroalkyl substances (PFAS) on female reproduction, in particular on puberty, PCOS pathogenesis, infertility, ovarian function, endometriosis, and recurrent pregnancy loss, in both humans and animals, will be discussed in this report in order to provide greater clinician and public awareness about the potential consequences of these chemicals. The effects of these substances could interfere with hormone biosynthesis/action and could potentially be transmitted to further generations. Thus proper education about these chemicals can help individuals decide to limit exposure, ultimately alleviating the risk on future generations.
Collapse
Affiliation(s)
- Justin Rashtian
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10463, USA.
- Department of Obstetrics and Gynecology, New York University School of Medicine, 180 Varick Street, Sixth Floor, New York, NY, 10014, USA.
| |
Collapse
|
32
|
Csaba G. Hormonal Imprinting: The First Cellular-level Evidence of Epigenetic Inheritance and its Present State. Curr Genomics 2019; 20:409-418. [PMID: 32476998 PMCID: PMC7235388 DOI: 10.2174/1389202920666191116113524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
Hormonal imprinting takes place perinatally at the first encounter between the developing hormone receptor and its target hormone. This process is needed for the normal function of the receptor-hormone pair and its effect is life-long. However, in this critical period, when the developmental window is open, related molecules (members of the same hormone family, synthetic hormones and hormone-like molecules, endocrine disruptors) also can be bound by the receptor, causing life-long faulty imprinting. In this case, the receptors’ binding capacity changes and alterations are caused at adult age in the sexual and behavioral sphere, in the brain and bones, inclination to diseases and manifestation of diseases, etc. Hereby, faulty hormonal imprinting is the basis of metabolic and immunological imprinting as well as the developmental origin of health and disease (DOHaD). Although the perinatal period is the most critical for faulty imprinting, there are other critical periods as weaning and adolescence, when the original imprinting can be modified or new imprintings develop. Hormonal imprinting is an epigenetic process, without changing the base sequence of DNA, it is inherited in the cell line of the imprinted cells and also transgenerationally (up to 1000 generations in unicellulars and up to the 3rd generation in mammals are justified). Considering the enormously growing number and amount of faulty imprinters (endocrine disruptors) and the hereditary character of faulty imprinting, this latter is threatening the whole human endocrine system.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E. Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease. Front Endocrinol (Lausanne) 2019; 10:112. [PMID: 30881345 PMCID: PMC6406073 DOI: 10.3389/fendo.2019.00112] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs), a heterogeneous group of exogenous chemicals that can interfere with any aspect of endogenous hormones, represent an emerging global threat for human metabolism. There is now considerable evidence that the observed upsurge of metabolic disease cannot be fully attributed to increased caloric intake, physical inactivity, sleep deficit, and ageing. Among environmental factors implicated in the global deterioration of metabolic health, EDCs have drawn the biggest attention of scientific community, and not unjustifiably. EDCs unleash a coordinated attack toward multiple components of human metabolism, including crucial, metabolically-active organs such as hypothalamus, adipose tissue, pancreatic beta cells, skeletal muscle, and liver. Specifically, EDCs' impact during critical developmental windows can promote the disruption of individual or multiple systems involved in metabolism, via inducing epigenetic changes that can permanently alter the epigenome in the germline, enabling changes to be transmitted to the subsequent generations. The clear effect of this multifaceted attack is the manifestation of metabolic disease, clinically expressed as obesity, metabolic syndrome, diabetes mellitus, and non-alcoholic fatty liver disease. Although limitations of EDCs research do exist, there is no doubt that EDCs constitute a crucial parameter of the global deterioration of metabolic health we currently encounter.
Collapse
Affiliation(s)
- Olga Papalou
- Department of Endocrinology & Diabetes, Hygeia Hospital, Athens, Greece
| | | | | | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology & Diabetes, Hygeia Hospital, Athens, Greece
- *Correspondence: Evanthia Diamanti-Kandarakis
| |
Collapse
|
34
|
Livadas S, Chrousos GP. Molecular and Environmental Mechanisms Regulating Puberty Initiation: An Integrated Approach. Front Endocrinol (Lausanne) 2019; 10:828. [PMID: 31920956 PMCID: PMC6915095 DOI: 10.3389/fendo.2019.00828] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying the initiation of puberty, one of the cornerstones of human evolution, have not been fully elucidated as yet. However, recently, an accumulating body of evidence has helped unravel several critical aspects of the process. It is clear that a change in the pattern of pituitary gonadotropin secretion serves as a hormonal trigger for puberty induction. This change is directly guided by the hypothalamic GnRH pulse generation, a phenomenon regulated by the Kisspeptin-Neurokinin-Dynorphin (KNDy) system also in the hypothalamus. This represents the kisspeptin molecule, which is crucial in augmenting GnRH secretion at puberty, whose secretion is fine-tuned by the opposing signals neurokinin B and dynorphin. Recently, the novel kisspeptin inhibitory signal MKRN3 was described, whose role in puberty initiation provided further insight into the mechanistic aspects of pubertal onset. Furthermore, the description of higher inhibitory and stimulatory signals acting upstream of the KNDy neurons suggested that the trigger point of puberty is located upstream of the KNDy system and the GnRH pulse generator. However, the mechanism of pubertal onset should not be considered as an isolated closed loop system. On the contrary, it is influenced by such factors as adipose tissue, gastrointestinal function, adrenal androgen production, energy sensing, and physical and psychosocial stress. Also, fetal and early life stressful events, as well as exposure to endocrine disruptors, may play important roles in pubertal initiation, the latter primarily through epigenetic modifications. Here we present the available data in the field and attempt to provide an integrated view of this unique and crucial phenomenon.
Collapse
Affiliation(s)
- Sarantis Livadas
- Endocrine Unit, Metropolitan Hospital, Athens, Greece
- *Correspondence: Sarantis Livadas
| | - George P. Chrousos
- UNESCO Chair on Adolescent Health Care, University Research Institute of Maternal and Child Health and Precision Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- George P. Chrousos
| |
Collapse
|
35
|
Serum bisphenol A concentrations correlate with serum testosterone levels in women with polycystic ovary syndrome. Reprod Toxicol 2018; 82:32-37. [DOI: 10.1016/j.reprotox.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
|
36
|
Dobrzyńska MM, Gajowik A, Jankowska-Steifer EA, Radzikowska J, Tyrkiel EJ. Reproductive and developmental F1 toxicity following exposure of pubescent F0 male mice to bisphenol A alone and in a combination with X-rays irradiation. Toxicology 2018; 410:142-151. [PMID: 30321649 DOI: 10.1016/j.tox.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/11/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Exposure to environmental toxicants may affect reproduction and development of subsequent generations. This study was aimed at determining the male-mediated F1 effects induced following 8-weeks of subchronic exposure of F0 male mice to bisphenol A (BPA) alone and in a combination with X-rays irradiation (IR) started during their puberty. 4.5 weeks old F0 male mice were exposed to BPA dissolved in ethyl alcohol and diluted in drinking water at the following doses: 5 mg/kg bw, 10 mg/kg bw, 20 mg/kg bw or irradiated with X-rays (0.05 Gy) or exposed to a combination of low doses of both agents (0.05 Gy + 5 mg/kg bw BPA). Immediately after the end of the 8 weeks exposure F0 males were caged with two unexposed females each. Three quarters of the mated females from each group were sacrificed 1 day before expected parturition for examination of prenatal development of the offspring. The remainder of the females from each group were allowed to deliver and rear litters. Pups of exposed males were monitored for postnatal development for 8 weeks. At 8-9 weeks of age 6-8 males from each group of F1 generation were sacrificed to determine sperm count and quality. The current results, compared to the earlier results, showed that exposure of pubescent males to BPA alone or in combination with irradiation may be more damaging to their offspring than the exposure of adult males. The exposure of pubescent males to BPA alone and in combination with irradiation significantly increased the frequency of abnormal skeletons of surviving fetuses, increased the percent of mortality of pups in the F1 generation, reduced the sperm motility of F1 males and may induce obesity. Additionally, the combined BPA and irradiation exposure reduced the number of total and live implantations, whereas the exposure to BPA alone disturbed the male:female sex ratio. The above results may be caused by genetic or by epigenetic mechanisms. Limitation of use of products including BPA, especially by children and teenagers, is strongly recommended.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland.
| | - Aneta Gajowik
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| | - Ewa A Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004, Warsaw, Poland
| | - Joanna Radzikowska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| | - Ewa J Tyrkiel
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| |
Collapse
|
37
|
Aiba T, Saito T, Hayashi A, Sato S, Yunokawa H, Maruyama T, Fujibuchi W, Ohsako S. Does the prenatal bisphenol A exposure alter DNA methylation levels in the mouse hippocampus?: An analysis using a high-sensitivity methylome technique. Genes Environ 2018; 40:12. [PMID: 29881475 PMCID: PMC5985587 DOI: 10.1186/s41021-018-0099-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background There is still considerable debate about the effects of exposure to bisphenol A (BPA) an endocrine disrupter at low doses. Recently, many studies using animal models have shown that prenatal BPA exposure induces behavioral and neuronal disorders due to epigenetic changes in the brain. However, striking evidence of epigenomic changes has to be shown. Methods To investigate whether low-dose BPA exposure in the fetal stage can alter CpG methylation levels in the central nervous system, the hippocampus of the inbred C57BL/6 J mouse as the target tissue was collected to detect alterations in CpG methylation levels using a highly sensitive method of genome-wide DNA methylation analysis, methylated site display-amplified fragment length polymorphism (MSD-AFLP). Results BPA showed the sex-hormone like effects on male reproductive organs. Although we examined the methylation levels of 43,840 CpG sites in the control and BPA (200 μg/kg/day)-treated group (6 mice per group), we found no statistically significant changes in methylation levels in any CpG sites. Conclusions At least under the experimental condition in this study, it is considered that the effect of low-dose BPA exposure during the fetal stage on hippocampal DNA methylation levels is extremely small.
Collapse
Affiliation(s)
- Toshiki Aiba
- 1Laboratory of Environmental Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654 Japan.,2Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 Japan
| | - Toshiyuki Saito
- 2Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 Japan
| | - Akiko Hayashi
- 2Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 Japan
| | - Shinji Sato
- Maze, Inc, 1-2-17 Sennincho, Hachioji-shi, Tokyo, 193-0835 Japan
| | | | - Toru Maruyama
- 4Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Wataru Fujibuchi
- 4Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Seiichiroh Ohsako
- 1Laboratory of Environmental Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654 Japan
| |
Collapse
|
38
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
39
|
Lee DH. Evidence of the Possible Harm of Endocrine-Disrupting Chemicals in Humans: Ongoing Debates and Key Issues. Endocrinol Metab (Seoul) 2018; 33:44-52. [PMID: 29589387 PMCID: PMC5874194 DOI: 10.3803/enm.2018.33.1.44] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Evidence has emerged that endocrine-disrupting chemicals (EDCs) can produce adverse effects, even at low doses that are assumed safe. However, systemic reviews and meta-analyses focusing on human studies, especially of EDCs with short half-lives, have demonstrated inconsistent results. Epidemiological studies have insuperable methodological limitations, including the unpredictable net effects of mixtures, non-monotonic dose-response relationships, the non-existence of unexposed groups, and the low reliability of exposure assessment. Thus, despite increases in EDC-linked diseases, traditional epidemiological studies based on individual measurements of EDCs in bio-specimens may fail to provide consistent results. The exposome has been suggested as a promising approach to address the uncertainties surrounding human studies, but it is never free from these methodological issues. Although exposure to EDCs during critical developmental periods is a major concern, continuous exposure to EDCs during non-critical periods is also harmful. Indeed, the evolutionary aspects of epigenetic programming triggered by EDCs during development should be considered because it is a key mechanism for developmental plasticity. Presently, living without EDCs is impossible due to their omnipresence. Importantly, there are lifestyles which can increase the excretion of EDCs or mitigate their harmful effects through the activation of mitohormesis or xenohormesis. Effectiveness of lifestyle interventions should be evaluated as practical ways against EDCs in the real world.
Collapse
Affiliation(s)
- Duk Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
40
|
Durmaz E, Asci A, Erkekoglu P, Balcı A, Bircan I, Koçer-Gumusel B. Urinary bisphenol A levels in Turkish girls with premature thelarche. Hum Exp Toxicol 2018; 37:1007-1016. [PMID: 29405766 DOI: 10.1177/0960327118756720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is a growing concern over the timing of pubertal breast development and its possible association with exposure to endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA). BPA is abundantly used to harden plastics. The aim of this study was to investigate the relation between premature thelarche (PT) and BPA by comparing the urinary BPA levels of PT girls with those of healthy subjects. Twenty-five newly diagnosed nonobese PT subjects (aged 4-8 years) who were admitted to the Pediatric Endocrinology Department at Akdeniz University were recruited. The control group composed of 25 age-matched girls without PT and other endocrine disorders. Urinary BPA levels were measured by high pressure liquid chromatography. The median urinary concentrations of BPA were found to be significantly higher in the PT group compared to the healthy control group (3.2 vs. 1.62 μg/g creatinine, p < 0.05). We observed a weak positive correlation between uterus volume and urinary BPA levels. There was a weak correlation between estradiol and urinary BPA levels ( r = 0.166; p = 0.37); and luteinizing hormone and urinary BPA levels ( r = 0.291; p = 0.08) of PT girls. Our results suggest that exposure to BPA might be one of the underlying factors of early breast development in prepubertal girls and EDCs may be considered as one of the etiological factors in the development of PT.
Collapse
Affiliation(s)
- E Durmaz
- 1 Department of Pediatric Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - A Asci
- 2 Department of Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - P Erkekoglu
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - A Balcı
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - I Bircan
- 1 Department of Pediatric Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - B Koçer-Gumusel
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The current review summarizes recent epidemiologic data demonstrating the effects of endocrine disrupting compounds (EDCs) on the timing of puberty and highlights the complexity of understanding the interplay of environmental and genetic factors on pubertal timing. RECENT FINDINGS In girls, there have been mixed results, with some exposures being associated with earlier timing of puberty, and some with later puberty. In boys, prepubertal exposures to nondioxin-like polychlorinated biphenyls accelerate puberty, whereas levels of insecticides, dioxin-like compounds, organochlorine pesticides, and lead delay puberty. SUMMARY The effects of EDCs on pubertal timing are sexually dimorphic, compound specific, and varies according to the window of exposure. These studies confirm that low-level exposures to a mix of environmental compounds may mask the effects of individual compounds and complicate our ability to translate data from animal studies to human health and to fully understand the clinical implications of environmental epidemiology studies.
Collapse
Affiliation(s)
| | - Mary M Lee
- Pediatric Endocrine Division, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|