1
|
Okeowo OM, Anadu VE, Ijomone OK, Aschner M, Ijomone OM. Combined Restraint Stress and Metal Exposure Paradigms in Rats: Unravelling Behavioural and Neurochemical Perturbations. Mol Neurobiol 2024:10.1007/s12035-024-04570-1. [PMID: 39443350 DOI: 10.1007/s12035-024-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.
Collapse
Affiliation(s)
- Oritoke M Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Qiu Y, Liu Y, Gan M, Wang W, Jiang T, Jiang Y, Lv H, Lu Q, Qin R, Tao S, Huang L, Xu X, Liu C, Dou Y, Ke K, Sun T, Jiang Y, Xu B, Jin G, Ma H, Shen H, Hu Z, Lin Y, Du J. Association of prenatal multiple metal exposures with child neurodevelopment at 3 years of age: A prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173812. [PMID: 38857795 DOI: 10.1016/j.scitotenv.2024.173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.
Collapse
Affiliation(s)
- Yun Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuxin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ming Gan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Weiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kang Ke
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tianyu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| |
Collapse
|
3
|
Gu Q, Liu J, Zhang X, Huang A, Yu X, Wu K, Huang Y. Association between heavy metals exposure and risk of attention deficit hyperactivity disorder (ADHD) in children: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02546-z. [PMID: 39126497 DOI: 10.1007/s00787-024-02546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Heavy metals can negatively affect children's neurodevelopment, yet the relationship between heavy metals exposure and attention deficit hyperactivity disorder (ADHD) in children remains unclear. We aimed to examine associations between exposure to five common heavy metals (lead, arsenic, mercury, cadmium, and manganese) with neurodevelopmental toxicity and the risk of ADHD in children. Online databases of PubMed, Web of Science, and Embase were searched before February 29, 2024. A total of 31 studies involving 25,258 children were included in the final analysis. Our findings revealed that lead exposure was positively associated with ADHD risk in children (OR = 1.95, 95% CI: 1.57-2.41) overall, while the associations varied among different WHO regions, with the strongest in the Americas. Sensitivity analyses revealed significant associations between arsenic (OR = 1.53, 95% CI: 1.01-2.32) and manganese (OR = 1.79, 95% CI: 1.28-2.49) exposure and ADHD risk after omitting one study. Arsenic exposure was positively associated with ADHD risk in studies conducted in the Americas and adjusted for environmental smoke exposure. Positive associations between manganese exposure and ADHD risk were also found in several subgroup analyses. No significant associations were found for mercury and cadmium exposure. Dose-response meta-analysis suggested that children with higher blood lead levels exhibited a higher probability of ADHD diagnosis. Lead exposure consistently increases the risk of ADHD in children, while arsenic and manganese exposure may be associated with ADHD under different occasions. More research is required to understand heavy metals' impact on ADHD across varying exposure levels, particularly in less contaminated regions.
Collapse
Affiliation(s)
- Qianfei Gu
- School of Public Health, Shantou University, Shantou, Guangdong Province, China
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
| | - Jiayu Liu
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Xuanzhi Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Anyan Huang
- Shantou Maternity & Child Healthcare Hospital, Shantou, Guangdong Province, China
| | - Xinle Yu
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong Province, China.
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China.
| |
Collapse
|
4
|
Farmani R, Mehrpour O, Kooshki A, Nakhaee S. Exploring the link between toxic metal exposure and ADHD: a systematic review of pb and hg. J Neurodev Disord 2024; 16:44. [PMID: 39090571 PMCID: PMC11292919 DOI: 10.1186/s11689-024-09555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Attention-Deficit/Hyperactivity Disorder (ADHD) is a recognized neurodevelopmental disorder with a complex, multifactorial origin. Lead (Pb) and mercury (Hg) are highly toxic substances that can potentially impair brain development and have been implicated in the development of ADHD. This systematic review aims to analyze the epidemiological literature regarding the association between Pb and Hg exposure and the diagnosis of ADHD. METHODS From November 1983 to June 2, 2023, a comprehensive search was conducted in multiple databases and search engines, including PubMed, Web of Science, Scopus, and Google Scholar. Observational studies (case-control, cohort, and cross-sectional) measuring Pb and Hg levels in various biological samples (blood, hair, urine, nail, saliva, teeth, and bone) of children with ADHD or their parents and their association with ADHD symptoms were included. RESULTS Out of 2059 studies, 87 met the inclusion criteria and were included in this systematic review. Approximately two-thirds of the 74 studies investigating Pb levels in different biological samples reported associations with at least one subtype of ADHD. However, most studies examining Hg levels in various biological samples found no significant association with any ADHD subtype, although there were variations in exposure periods and diagnostic criteria. CONCLUSION The evidence gathered from the included studies supports an association between Pb exposure and the diagnosis of ADHD, while no significant association was found with Hg exposure. Importantly, even low levels of Pb were found to elevate the risk of ADHD. Further research is needed to explore the comprehensive range of risk factors for ADHD in children, considering its significance as a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Reyhane Farmani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, Wayne State University School of Medicine, Detroit, MI, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
5
|
Ichipi-Ifukor PC, Asagba SO, Achuba FI. Co-exposure to Aluminium and Cadmium Mediates Postpartum Maternal Variation in Brain Architecture and Behaviour of Mice; Involvement of Oxido-nitrergic and Cholinergic Mechanisms : Postpartum effects of Aluminium and Cadmium co-exposure in pregnancy. Biol Trace Elem Res 2024:10.1007/s12011-024-04218-0. [PMID: 38777875 DOI: 10.1007/s12011-024-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Most research has not been done on the possible relationship between pregnant women's cross-metal exposures and postpartum neuroendocrine functions. The purpose of this study was to look into how co-exposure to aluminium chloride (AlCl3) and cadmium chloride (CdCl2) affected the neuroendocrine and neurometabolic changes in postpartum mice. A total of 24 adult pregnant female mice were used for the study. Group 1 served as control and received neither AlCl3 nor CdCl2 (n=6), group 2 comprised pregnant mice treated with AlCl3 (10mg/kg), group 3 with CdCl2 (1.5mg/kg), group 4 with a combination of AlCl3 (10 mg/kg) and CdCl2 (1.5 mg/kg).Oral treatment of animals was done daily from gestation day 7 to gestation day 20. Upon delivery and weaning on postnatal day 21 (PND 21), behavioural assessment was done on the postpartum mice and immediately followed by sacrifice for assessment of histological and neuroendocrine markers. Our findings revealed that the brain-to-body weight ratio was affected and brain oxidative stress was elevated in mice exposed to AlCl3 and CdCl2 during pregnancy. Given the strong association between postpartum hyperactivity, social interaction index, brain catalase and acetylcholinesterase activity, and the brain/body weight ratio, it is plausible that these effects have played a role in the adverse behavioural abnormalities observed in the postpartum maternal mice. Moreover, it was noted that in certain situations, co-exposures to the metals tended to have opposite effects to single metal exposures.
Collapse
|
6
|
Kastury F, Besedin J, Betts AR, Asamoah R, Herde C, Netherway P, Tully J, Scheckel KG, Juhasz AL. Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133948. [PMID: 38493633 PMCID: PMC11097331 DOI: 10.1016/j.jhazmat.2024.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Julie Besedin
- Future Industries Institute, STEM, University of South Australia, SA, Australia; School of Science, STEM, RMIT University, Victoria, Australia
| | - Aaron R Betts
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Richmond Asamoah
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Pacian Netherway
- EPA Science, Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| | - Jennifer Tully
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
7
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
8
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Schildroth S, Kordas K, White RF, Friedman A, Placidi D, Smith D, Lucchini RG, Wright RO, Horton M, Claus Henn B. An Industry-Relevant Metal Mixture, Iron Status, and Reported Attention-Related Behaviors in Italian Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27008. [PMID: 38363634 PMCID: PMC10871126 DOI: 10.1289/ehp12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Exposure to environmental metals has been consistently associated with attention and behavioral deficits in children, and these associations may be modified by coexposure to other metals or iron (Fe) status. However, few studies have investigated Fe status as a modifier of a metal mixture, particularly with respect to attention-related behaviors. METHODS We used cross-sectional data from the Public Health Impact of Metals Exposure study, which included 707 adolescents (10-14 years of age) from Brescia, Italy. Manganese, chromium, and copper were quantified in hair samples, and lead was quantified in whole blood, using inductively coupled plasma mass spectrometry. Concentrations of Fe status markers (ferritin, hemoglobin, transferrin) were measured using immunoassays or luminescence assays. Attention-related behaviors were assessed using the Conners Rating Scales Self-Report Scale-Long Form, Parent Rating Scales Revised-Short Form, and Teacher Rating Scales Revised-Short Form. We employed Bayesian kernel machine regression to examine associations of the metal mixture with these outcomes and evaluate Fe status as a modifier. RESULTS Higher concentrations of the metals and ferritin were jointly associated with worse self-reported attention-related behaviors: metals and ferritin set to their 90th percentiles were associated with 3.0% [β = 0.03 ; 95% credible interval (CrI): - 0.01 , 0.06], 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08), and 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08) higher T -scores for self-reported attention deficit/hyperactivity disorder (ADHD) index, inattention, and hyperactivity, respectively, compared with when metals and ferritin were set to their 50th percentiles. These associations were driven by hair manganese, which exhibited nonlinear associations with all self-reported scales. There was no evidence that Fe status modified the neurotoxicity of the metal mixture. The metal mixture was not materially associated with any parent-reported or teacher-reported scale. CONCLUSIONS The overall metal mixture, driven by manganese, was adversely associated with self-reported attention-related behavior. These findings suggest that exposure to multiple environmental metals impacts adolescent neurodevelopment, which has significant public health implications. https://doi.org/10.1289/EHP12988.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Vukelić D, Baralić K, Marić Đ, Đukic-Ćosić D, Bulat Z, Panieri E, Saso L, Djordjevic AB. Hepato-renal toxicity of low dose metal(oid)s mixture in real-life risk simulation in rats: Effects on Nrf2/HO-1 signalling and redox status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168352. [PMID: 37952665 DOI: 10.1016/j.scitotenv.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The understanding that humans are exposed to a low level of toxic metals and metalloids in their lifetime has resulted in a shift in scientific and regulatory perspectives from the traditional evaluation of single metal toxicity to complex mixtures, relevant to real-life exposure. Therefore, the aim of this study was to examine the impact of real-life, 90-days exposure to mixture of toxic metal(oid)s, Cd, Pb, Ni, Cr, As and Hg, on the nuclear factor erythroid 2-related factor 2 and hemoxygenase-1 (Nrf2/HO-1) signalling and redox status by assessing total sulfhydryl groups (SH), glutathione (GSH), superoxide dismutase activity (SOD), malondialdehyde (MDA), and ischemia modified albumin (IMA) in the liver and kidney of Wistar rats. Animals (20 males and 20 females) were randomized in 2 control and 6 treated groups that received by oral gavage mixture of metal(oid)s solutions in doses that reflect blood metal(oid) levels determined in previous human biomonitoring study as benchmark dose (F/M _BMD), median (F/M _MED), and 95th percentile (F/M _95). Our results have shown that metal(oid)s mixture impaired the activation of the Nrf2/HO-1 pathway in the kidney and liver of male rats and kidney of female rats, followed by depletion of GSH levels in males. Additionally, in males elevated levels of IMA in the liver were observed, while in both genders increased MDA levels were observed in the kidney. Interestingly, the effects were more pronounced in male than in female rats. This study is among the first that examined hepato-renal toxic mechanisms of real-life metal mixture exposure, while our results might be of immense importance for assessing the risk of exposure to mixtures of toxic substances.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia.
| | - Danijela Đukic-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy; Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for the Environmental Protection and Research, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
11
|
Rosi E, Crippa A, Pozzi M, De Francesco S, Fioravanti M, Mauri M, Molteni M, Morello L, Tosti L, Metruccio F, Clementi E, Nobile M. Exposure to environmental pollutants and attention-deficit/hyperactivity disorder: an overview of systematic reviews and meta-analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111676-111692. [PMID: 37828261 PMCID: PMC10643318 DOI: 10.1007/s11356-023-30173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Although heritability estimates suggest a role for genetic components, environmental risk factors have been described as relevant in the etiology of attention deficit/hyperactivity disorder (ADHD). Several studies have investigated the role of toxicological pollution, i.e., air pollution, heavy metals, POPs, and phthalates. Clear evidence for association of ADHD and environmental factors has not been provided yet. To answer this, we have assessed all available systematic reviews and meta-analyses that focused on the association between pollutant exposure and either ADHD diagnosis or symptoms. More than 1800 studies were screened of which 14 found eligible. We found evidence of a significant role for some pollutants, in particular heavy metals and phthalates, in the increased risk of developing ADHD symptoms. However, at the current stage, data from existing literature also do not allow to weight the role of the different environmental pollutants. We also offer a critical examination of the reviews/meta-analyses and provide indications for future studies in this field. PROSPERO registration: CRD42022341496.
Collapse
Affiliation(s)
- Eleonora Rosi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy.
| | - Alessandro Crippa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Stefano De Francesco
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Mariachiara Fioravanti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Luisa Morello
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Luca Tosti
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Francesca Metruccio
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| |
Collapse
|
12
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548746. [PMID: 37503205 PMCID: PMC10370140 DOI: 10.1101/2023.07.12.548746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 730 Van Vleet Oval, University of Oklahoma, Biology, Norman, OK 73019, USA
| | - Stuart J Macdonald
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 1200 Sunnyside Ave, University of Kansas, Center for Computational Biology, Lawrence, KS 66045, USA
| |
Collapse
|
14
|
Adly HM, Saati AA, Khafagy AA, Alandiyjany MN, Saleh SAK. Evaluation of School-Age Children's Intelligence Quotient and Their Chronic Exposure to Trace Elements in Ambient Air. Cureus 2023; 15:e37532. [PMID: 37187629 PMCID: PMC10181894 DOI: 10.7759/cureus.37532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background Children's exposure to different trace elements in their air, water, and food or even present in paints or toys can affect their intelligence quotient (IQ) score. However, this correlation needs to be analyzed and evaluated in different contexts. This study aimed to investigate the associations between airborne concentrations of lead (Pb), manganese (Mn), cadmium (Cd), chromium (Cr), and arsenic (As) and intellectual function in school-age children in Makkah, Kingdom of Saudi Arabia. Methodology Our cohort study aimed to explore the link between exposure to various trace elements in the surrounding air and the IQ scores of children residing in the vicinity of Makkah. We included 430 children in the study and collected information about demographic and lifestyle factors using a structured questionnaire. We employed a mini volume sampler (MiniVol, AirMetrics, Springfield, OR, USA) to collect 24-hour PM10 samples from five locations in Makkah, representing various residential areas with small-to-medium industrial activities and traffic load. We analyzed the samples for Pb, Mn, Cd, Cr, and As concentrations using inductively coupled plasma-mass spectrometry with Perkin Elmer 7300 (Perkin Elmer, Waltham, MA, USA). The combined impact of heavy metals on continuous outcomes was assessed using the Bayesian kernel machine regression model. Results The mean atmospheric concentrations of Pb, Mn, Cd, Cr, and As in summer were 0.093, 0.006, 0.36, 0.15, and 0.017 µg/m3, respectively, while in winter, they were 0.004, 0.003, 0.12, 0.006, and 0.01 µg/m3, respectively. The findings of our study revealed that children's IQ scores were independently associated with co-exposure to the five metals, namely, Pb, Mn, Cd, Cr, and As. Conclusions This study demonstrates a link between combined exposure to five heavy metals (Pb, Mn, Cd, Cr, and As) and children's IQ scores. Regularly evaluating trace elements in children's biological samples is crucial to comprehend their effects on cognitive growth. To explore the possible future health risks of multimetal exposures and their interaction effects, it is imperative to conduct additional studies that involve repeated biological measurements of metal concentrations.
Collapse
Affiliation(s)
- Heba M Adly
- Department of Community Medicine and Pilgrims Health Care, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Abdullah A Saati
- Department of Community Medicine and Pilgrims Health Care, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Abdullah A Khafagy
- Department of Community Medicine and Pilgrims Health Care, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Maher N Alandiyjany
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, SAU
- Quality and Development Affairs, Batterjee Medical College, Jeddah, SAU
| | - Saleh A K Saleh
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, EGY
| |
Collapse
|
15
|
Dufault RJ, Crider RA, Deth RC, Schnoll R, Gilbert SG, Lukiw WJ, Hitt AL. Higher rates of autism and attention deficit/hyperactivity disorder in American children: Are food quality issues impacting epigenetic inheritance? World J Clin Pediatr 2023; 12:25-37. [PMID: 37034430 PMCID: PMC10075020 DOI: 10.5409/wjcp.v12.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 03/06/2023] Open
Abstract
In the United States, schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals. Pediatricians may play a key role in helping children access special education services. The number of children ages 6-21 in the United States receiving special education services increased 10.4% from 2006 to 2021. Children receiving special education services under the autism category increased 242% during the same period. The demand for special education services for children under the developmental delay and other health impaired categories increased by 184% and 83% respectively. Although student enrollment in American schools has remained stable since 2006, the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021. Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes. Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics. Dietary heavy metal exposures, especially inorganic mercury and lead may impact gene behavior across generations. In 2021, the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action. Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
Collapse
Affiliation(s)
- Renee J Dufault
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Raquel A Crider
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Roseanne Schnoll
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Health and Nutrition Sciences, Brooklyn College of CUNY, Brooklyn, NY 11210, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Amanda L Hitt
- Food Integrity Campaign, Government Accountability Project, Columbia, WA 20006, United States
- Department of Legal, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
16
|
Zierold KM, Myers JV, Brock GN, Zhang CH, Sears CG, Sears L. Heavy Metal(loid) Body Burden in Environmentally Exposed Children With and Without Internalizing Behavior Problems. EXPOSURE AND HEALTH 2022; 14:903-914. [PMID: 38894859 PMCID: PMC11185413 DOI: 10.1007/s12403-022-00469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 06/21/2024]
Abstract
The prevalence of internalizing behavior disorders in children is increasing. Reasons for increasing anxiety and depression include several factors with a less studied consideration being the potential neurotoxic effects of environmental exposures. One group at risk for environmental exposures is children living near coal-burning power plants with coal ash storage facilities. Multivariate logistic regression was used to assess the relationship between metal(loid) exposures and internalizing behaviors in children aged 6-14 years. Metal(loid)s in nail samples were determined by Proton-Induced X-ray Emission and internalizing behavior problems were obtained from the parent ratings on the Child Behavior Checklist. Results indicated that concentrations of metal(loid)s in nails differ between children with internalizing behaviors and without internalizing behaviors. Logistic regression models suggested that exposure to zinc and imputed zirconium were associated with internalizing behaviors in children. However, when a sex-metal(loid) interaction term was included, none of the metal(loid)s were associated with internalizing behaviors indicating a role of sex differences in neurotoxicity with zinc and copper showing effects only for males. In all models, greater exposure to traffic was associated with internalizing behaviors. Zinc has previously been shown to increase risk for mental health problems, while zirconium has received less attention. Out findings indicate that environmental exposures of zinc and zirconium deserve further attention in studies of childhood internalizing disorders.
Collapse
Affiliation(s)
- Kristina M. Zierold
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, RPHB 534C, 1720 2nd Ave S, Birmingham, AL 35294‑0022, USA
| | - John V. Myers
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Guy N. Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Charlie H. Zhang
- Department of Geographic & Environmental Sciences, University of Louisville, Louisville, KY, USA
| | - Clara G. Sears
- Department of Environmental Medicine, University of Louisville, Louisville, KY, USA
| | - Lonnie Sears
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Ayubi E, Mansori K. Maternal Infection during Pregnancy and Attention-Deficit Hyperactivity Disorder in Children: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:2674-2687. [PMID: 36742242 PMCID: PMC9874197 DOI: 10.18502/ijph.v51i12.11458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/11/2022] [Indexed: 12/29/2022]
Abstract
Background We aimed to determine the association between maternal infections during pregnancy with risk of Attention-Deficit Hyperactivity Disorder (ADHD) in children. Methods A systematic literature search was performed utilizing the online databases PubMed, Scopus, and Web of Sciences up to July 2020. Random-effects meta-analyses were applied to estimate pooled relative risk (RR). Heterogeneity, study quality and publication bias were assessed through I2 value, Newcastle-Ottawa scale (NOS) and Egger's test, respectively. Results Thirteen articles involving 1401904 mother-child pairs were included. The result of meta-analysis showed that the risk of ADHD increased by 30% among children whose mothers took any infections during pregnancy (pooled RR=1.30, 95% CI: 1.14-1.49; I2=85.5, P<0.001). Overall, the included studies were good in quality and no publication bias was found (P=0.23, Egger's test). Conclusion Maternal infections during pregnancy might be associated with an increased risk of ADHD in children.
Collapse
Affiliation(s)
- Erfan Ayubi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran,Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamyar Mansori
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Department of Biostatistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Corresponding Author:
| |
Collapse
|
18
|
Wei L, Huang H, Chen X, Wang X, Zhang R, Su L, Duan W, Rahman M, Golam Mostofa M, Qamruzzaman Q, Shen H, Hu Z, Wei Y, Christiani DC, Chen F. Umbilical cord serum elementomics of 52 trace elements and early childhood neurodevelopment: Evidence from a prospective birth cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2022; 166:107370. [PMID: 35772314 PMCID: PMC9926395 DOI: 10.1016/j.envint.2022.107370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposures to neurotoxic metals and trace elements are associated with early childhood neurodevelopmental outcomes. However, consequences of simultaneous exposure to mixtures of elements remain unclear. OBJECTIVE To examine individual and joint effects of prenatal trace element exposure on early childhood neurodevelopment. METHODS Using a well-established Bangladesh prospective birth cohort (2008-2011), we measured concentrations of 52 trace elements in umbilical cord serum of 569 mother-infant pairs using inductively coupled plasma mass spectrometry. Neurodevelopment was evaluated at 20-40 months of age using Bayley Scales of Infant and Toddler Development, Third Edition. Stability elastic net (ENET) was used to screen elements individually associated with the outcome; candidate exposures were combined by weighted linear combination to form a risk score representing their mixture effect on early childhood neurodevelopment. RESULTS Stability ENET identified 15 trace elements associated with cognitive composite score and 14 associated with motor composite score, which were linearly combined to form the element risk score (ERS). Children with higher ERScognitive had lower probability of cognitive developmental delay (ORhighest vs lowest: 0.21; 95 %CI: 0.10, 0.40; P < 0.001; Ptrend < 0.001). Children with ERSmotor in the top quintile had a significantly lower risk of motor developmental delay (OR: 0.16; 95 %CI: 0.09, 0.31; P < 0.001; Ptrend < 0.001) versus the lowest quintile. In Bayesian kernel machine regression analyses, lithium [conditional posterior inclusion probability (cPIP) = 0.68], aluminum (cPIP = 0.83) and iron (cPIP = 1.00) contributed most to the lower cognitive composite score; zinc (cPIP = 1.00), silver (cPIP = 0.81), and antimony (cPIP = 0.65) mainly contributed to the change of motor composite score. CONCLUSION Co-exposure to lithium/aluminum/iron or zinc/silver/antimony appears to impact children's neurodevelopment. ERS score reflecting maternal exposure could indicate children's risk of neurodevelopmental delay, warranting further studies to explore the underlying mechanism.
Collapse
Affiliation(s)
- Liangmin Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Wang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Weiwei Duan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | | | | | | | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Felmlee KR, Macdonald SJ, Everman ER. Pre-adult exposure to three heavy metals leads to changes in the head transcriptome of adult flies. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000591. [PMID: 35856016 PMCID: PMC9287740 DOI: 10.17912/micropub.biology.000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
We examined the effect of developmental exposure to three heavy metals - cadmium, copper, and lead - on gene expression in adult head tissue in the model organism Drosophila melanogaster . All metals affected development time and/or gene expression level. While variation in the response to each metal was apparent, two differentially-expressed genes were upregulated in response to all three metal treatments, and 11 genes were downregulated in two of the three treatments. Our work reveals that developmental metal exposure has the potential to have long-lasting, metal-specific effects on gene expression in adults, even after the metal stress has been removed.
Collapse
Affiliation(s)
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas; Center for Computational Biology, University of Kansas
| | | |
Collapse
|
20
|
Bair EC. A Narrative Review of Toxic Heavy Metal Content of Infant and Toddler Foods and Evaluation of United States Policy. Front Nutr 2022; 9:919913. [PMID: 35832055 PMCID: PMC9271943 DOI: 10.3389/fnut.2022.919913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive exposure to inorganic contaminants through ingestion of foods, such as those commonly referred to as heavy metals may cause cancer and other non-cancerous adverse effects. Infants and young children are especially vulnerable to these toxic effects due to their immature development and high ’food intake/ body weight' ratio. Concerns have been raised by multiple independent studies that heavy metals have been found to be present in many foods in the infant and child food sector. Most recently, reports from the U.S. House of Representatives Subcommittee on Economic and Consumer Policy suggest subpar testing practices, lenient or absent standards, and limited oversight of food manufacturers perpetuate the presence of these contaminants in infant and toddler foods. The aim of this narrative review is to evaluate the current state of policies in the United States designed to safe-guard against excessive heavy metal exposure and to discuss what is presently known about the presence of the so-called heavy metals; arsenic, lead, mercury and cadmium found in infant and toddler foods. PubMed was used to search for studies published between 1999 and 2022 using a combination of search terms including: “heavy metal,” “contamination,” “infant,” “toddler,” and “complementary food”.
Collapse
|
21
|
Liu C, Huang L, Huang S, Wei L, Cao D, Zan G, Tan Y, Wang S, Yang M, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Mo Z, Yang X. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112450. [PMID: 34861232 DOI: 10.1016/j.envres.2021.112450] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Impaired neurodevelopment of children has become a growing public concern; however, the associations between metals exposure and neurocognitive function have remained largely unknown. OBJECTIVES We systematically evaluated the associations of multiple metals exposure during pregnancy and childhood on the neurodevelopment of children aged 2-3 years. METHODS We measured 22 metals in the serum and urine among703 mother-child pairs from the Guangxi Birth Cohort Study. The neurocognitive development of children was assessed by the Gesell Development Diagnosis Scale (GDDS; Chinese version). Multiple linear regression models were used to evaluate the relationship between the metals (selected by elastic net regression) and the outcomes. The Bayesian kernel machine regression (BKMR) was used to evaluate the possible joint effect between the multiple metal mixture and the outcomes. RESULTS Prenatal aluminum (Al) exposure was negatively associated with the fine motor developmental quotient (DQ) (β = -1.545, 95%CI: 2.231, -0.859), adaption DQ (β = -1.182, 95%CI: 1.632, -0.732), language DQ (β = -1.284, 95% CI: 1.758, -0.809), and social DQ (β = -1.729, 95% CI: 2.406, -1.052) in the multi-metal model. Prenatal cadmium (Cd) exposure was negatively associated with gross motor DQ (β = -2.524, 95% CI: 4.060, -0.988), while postpartum Cd exposure was negatively associated with language DQ (β = -1.678, 95% CI: 3.227, -0.129). In stratified analyses, infants of different sexes had different sensitivities to metal exposure, and neurobehavioral development was more significantly affected by metal exposure in the first and second trimester. BKMR analysis revealed a negative joint effect of the Al, Cd, and selenium (Se) on the language DQ score; postpartum Cd exposure played a major role in this relationship. CONCLUSION Prenatal exposure to Al, Ba, Cd, molybdenum (Mo), lead (Pb), antimony (Sb), and strontium (Sr), and postpartum exposure to cobalt (Co), Cd, stannum (Sn), iron (Fe), nickel (Ni), and Se are associated with neurological development of infants. The first and second trimester might be the most sensitive period when metal exposure affects neurodevelopment.
Collapse
Affiliation(s)
- Chaoqun Liu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Gaohui Zan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Minjing Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Long Tian
- Department of Science and Education, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Weijun Tang
- Center for Translational Medicine, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Caitong He
- Department of Science and Education, Maternal & Child Health Hospital of Yulin, Yulin, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Baohong Pang
- Department of Women Health Care, Maternal & Child Health Hospital of Yuzhou, Yulin, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Ibiwoye MO, Snyder EA, Lyons J, Vasauskas AA, Hernandez MJ, Summerlin AR, Foster JD. The Effect of Short-Term Exposure to Cadmium on the Expression of Vascular Endothelial Barrier Antigen in the Developing Rat Forebrain and Cerebellum: A Computerized Quantitative Immunofluorescent Study. Cureus 2022; 14:e23848. [PMID: 35402117 PMCID: PMC8986507 DOI: 10.7759/cureus.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
Abstract
Clinical and laboratory studies have shown that environmental exposure to cadmium produces damage to several organs, including bones, lungs, and kidneys. The involvement of cadmium in central nervous system (CNS) disorders has also been widely reported, but the precise pathophysiological mechanism is not yet fully understood. Children who were exposed to cadmium during pregnancy are known to suffer from developmental delays, learning difficulties, attention deficit hyperactivity disorder (ADHD), and other cognitive and neurobehavioral deficits. Results from numerous studies suggest that dysfunction of the blood-brain barrier (BBB) structures is an important step in the neurotoxicity of cadmium. A rat-specific BBB marker protein, the endothelial barrier antigen (EBA), has been previously isolated and classified by Sternberger and others. The mouse IgG1 clone, anti-endothelial barrier antigen (anti-EBA), detects a protein triplet (23.5kDa, 25 kDa, and 30kDa) localized to the luminal surface of central and peripheral nervous system (CNS and PNS) vascular endothelial cells with selective permeability barrier functions. This marker has been widely used for characterizing BBB alterations under demyelinating, inflammatory, and other CNS pathologies. Many studies have been published using the rat model system for studying the neurotoxic effect of acute and chronic exposure to cadmium. We applied the indirect immunofluorescent techniques using the anti-EBA antibody in conjunction with the Olympus cellSens computerized image analysis to detect and quantify the surface areas of BBB-competent microvessel profiles in paraformaldehyde-fixed, paraffin-embedded brains of term-delivered young rats after intraperitoneal injection of a single dose of cadmium chloride. We detected a statistically significant reduction in EBA-positive microvessel surface areas in the forebrain (t = 5.86, df = 1789, p-value < 0.001) and cerebellum (t=73.40, df=1337, p < 0.001) of cadmium-treated rats compared to the normal controls. Thus, this study supports the hypothesis that the EBA is a sensitive and measurable indicator for quantitative assessment of the impact of cadmium exposure in the developing rat brain.
Collapse
Affiliation(s)
- Michael O Ibiwoye
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Emily A Snyder
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | - James Lyons
- Department Clinical Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Audrey A Vasauskas
- Institutional Effectiveness, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Mark J Hernandez
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | | | - James D Foster
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
23
|
Moore S, Paalanen L, Melymuk L, Katsonouri A, Kolossa-Gehring M, Tolonen H. The Association between ADHD and Environmental Chemicals-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052849. [PMID: 35270544 PMCID: PMC8910189 DOI: 10.3390/ijerph19052849] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The role of environmental chemicals in the etiology of attention deficit hyperactivity disorder (ADHD) has been of interest in recent research. This scoping review aims to summarize known or possible associations between ADHD and environmental exposures to substances selected as priority chemicals of the European Human Biomonitoring Initiative (HBM4EU). Literature searches were performed in PubMed to identify relevant publications. Only meta-analyses and review articles were included, as they provide more extensive evidence compared to individual studies. The collected evidence indicated that lead (Pb), phthalates and bisphenol A (BPA) are moderately to highly associated with ADHD. Limited evidence exists for an association between ADHD and polycyclic aromatic hydrocarbons (PAHs), flame retardants, mercury (Hg), and pesticides. The evidence of association between ADHD and cadmium (Cd) and per- and polyfluoroalkyl substances (PFASs) based on the identified reviews was low but justified further research. The methods of the individual studies included in the reviews and meta-analyses covered in the current paper varied considerably. Making precise conclusions in terms of the strength of evidence on association between certain chemicals and ADHD was not straightforward. More research is needed for stronger evidence of associations or the lack of an association between specific chemical exposures and ADHD.
Collapse
Affiliation(s)
- Sonja Moore
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
- Institute of Public Health and Clinical Nutrition, Kuopio Campus, University of Eastern Finland (UEF), 70210 Kuopio, Finland
| | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
- Correspondence:
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | | | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| |
Collapse
|
24
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
25
|
Nozadi SS, Li L, Luo L, MacKenzie D, Erdei E, Du R, Roman CW, Hoover J, O’Donald E, Burnette C, Lewis J. Prenatal Metal Exposures and Infants' Developmental Outcomes in a Navajo Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:425. [PMID: 35010683 PMCID: PMC8744969 DOI: 10.3390/ijerph19010425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Early-life exposure to environmental toxicants can have detrimental effects on children's neurodevelopment. In the current study, we employed a causal modeling framework to examine the direct effect of specific maternal prenatal exposures on infants' neurodevelopment in the context of co-occurring metals. Maternal metal exposure and select micronutrients' concentrations were assessed using samples collected at the time of delivery from mothers living across Navajo Nation with community exposure to metal mixtures originating from abandoned uranium mines. Infants' development across five domains was measured at ages 10 to 13 months using the Ages and Stages Questionnaire Inventory (ASQ:I), an early developmental screener. After adjusting for effects of other confounding metals and demographic variables, prenatal exposure to lead, arsenic, antimony, barium, copper, and molybdenum predicted deficits in at least one of the ASQ:I domain scores. Strontium, tungsten, and thallium were positively associated with several aspects of infants' development. Mothers with lower socioeconomic status (SES) had higher lead, cesium, and thallium exposures compared to mothers from high SES backgrounds. These mothers also had infants with lower scores across various developmental domains. The current study has many strengths including its focus on neurodevelopmental outcomes during infancy, an understudied developmental period, and the use of a novel analytical method to control for the effects of co-occurring metals while examining the effect of each metal on neurodevelopmental outcomes. Yet, future examination of how the effects of prenatal exposure on neurodevelopmental outcomes unfold over time while considering all potential interactions among metals and micronutrients is warranted.
Collapse
Affiliation(s)
- Sara S. Nozadi
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Li Li
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Li Luo
- Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Esther Erdei
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Ruofei Du
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carolyn W. Roman
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Joseph Hoover
- Social Science and Cultural Studies, Montana State University Billing, Billings, MT 59101, USA;
| | - Elena O’Donald
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Courtney Burnette
- Munroe-Meyer Institute, University of Nebraska Medical Services, Omaha, NE 68106, USA;
| | - Johnnye Lewis
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| |
Collapse
|
26
|
Thygesen M, Schullehner J, Hansen B, Sigsgaard T, Voutchkova DD, Kristiansen SM, Pedersen CB, Dalsgaard S. Trace elements in drinking water and the incidence of attention-deficit hyperactivity disorder. J Trace Elem Med Biol 2021; 68:126828. [PMID: 34391071 DOI: 10.1016/j.jtemb.2021.126828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Trace elements have been suggested to have neurotoxic effects and increase the risk of neurodevelopmental disorders, but studies of a potential role of trace elements in relation to Attention-Deficit/Hyperactivity Disorder (ADHD) are very limited. The objective of this study was to conduct an exploratory analysis investigating the associations between 17 geogenic trace elements (Ba, Co, Eu, I, Li, Mo, Rb, Re, Rh, Sb, Sc, Se, Si, Sr, Ti, U and Y) found in Danish drinking water and the risk of developing ADHD. METHODS In this cohort study, 284,309 individuals, born 1994-2007, were followed for incidence of ADHD from the age of five until the end of study, December 31, 2016. We conducted survival analyses, using Poisson regression to estimate incidence rate ratios (IRRs) with 95 % confidence intervals (CI) in three different confounder adjustment scenarios. RESULTS In a model including adjustments for age, sex, calendar year, parental socio-economic status, neighborhood level socio-economic status and parental psychiatric illness, we found that six of the 17 trace elements (Sr, Rb, Rh, Ti, Sb and Re) were associated with an increased risk of ADHD, whereas two (Ba and I) were inversely associated with ADHD. However, when including region as a covariate in the model, most trace elements were no longer associated with ADHD or the association changed direction. Four trace elements (I, Li, Rb, and Y) remained significantly associated with ADHD but in an inverse direction and for three of these (I, Li and Y), we found significant interactions with region in their association with ADHD. CONCLUSION The trace elements under investigation, at levels found in Danish drinking water, do not seem to contribute to the development of ADHD and our findings highlight the importance of examining consistency of associations across geographic areas.
Collapse
Affiliation(s)
- Malene Thygesen
- National Centre for Register-based Research, Department of Economics and Business, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrated Register Based Research, CIRRAU, Aarhus University, Aarhus, Denmark.
| | - Jörg Schullehner
- Department of Public Health, Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark; Geological Survey of Denmark and Greenland, GEUS, Denmark; Big Data Centre for Environment and Health, BERTHA, Aarhus University, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Centre for Integrated Register Based Research, CIRRAU, Aarhus University, Aarhus, Denmark; Department of Public Health, Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark; Big Data Centre for Environment and Health, BERTHA, Aarhus University, Aarhus, Denmark
| | | | | | - Carsten B Pedersen
- National Centre for Register-based Research, Department of Economics and Business, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrated Register Based Research, CIRRAU, Aarhus University, Aarhus, Denmark; Big Data Centre for Environment and Health, BERTHA, Aarhus University, Aarhus, Denmark
| | - Søren Dalsgaard
- National Centre for Register-based Research, Department of Economics and Business, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrated Register Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Dufault RJ, Wolle MM, Kingston HMS, Gilbert SG, Murray JA. Connecting inorganic mercury and lead measurements in blood to dietary sources of exposure that may impact child development. World J Methodol 2021; 11:144-159. [PMID: 34322366 PMCID: PMC8299913 DOI: 10.5662/wjm.v11.i4.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pre-natal and post-natal chemical exposures and co-exposures from a variety of sources including contaminated air, water, soil, and food are common and associated with poorer birth and child health outcomes. Poor diet is a contributing factor in the development of child behavioral disorders. Child behavior and learning can be adversely impacted when gene expression is altered by dietary transcription factors such as zinc insufficiency or deficiency or by exposure to toxic substances permitted in our food supply such as mercury, lead, or organophosphate pesticide residue. Children with autism spectrum disorder and attention deficit hyperactivity disorders exhibit decreased or impaired PON1 gene activity which is needed by the body to metabolize and excrete neurotoxic organophosphate pesticides. In this current review we present an updated macroepigenetic model that explains how dietary inorganic mercury and lead exposures from unhealthy diet may lead to elevated blood mercury and/or lead levels and the development of symptoms associated with the autism and attention deficit-hyperactivity disorders. PON1 gene activity may be suppressed by inadequate dietary calcium, selenium, and fatty acid intake or exposures to lead or mercury. The model may assist clinicians in diagnosing and treating the symptoms associated with these childhood neurodevelopmental disorders. Recommendations for future research are provided based on the updated model and review of recently published literature.
Collapse
Affiliation(s)
- Renee J Dufault
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Mesay M Wolle
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - H M Skip Kingston
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - Steven G Gilbert
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
28
|
Detection, Distribution and Health Risk Assessment of Toxic Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat Carcasses Processed for Human Consumption in South-Eastern Nigeria. Foods 2021; 10:foods10040798. [PMID: 33917819 PMCID: PMC8068235 DOI: 10.3390/foods10040798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Notwithstanding the increased toxic heavy metals/metalloids (THMs) accumulation in (edible) organs owed to goat′s feeding habit and anthropogenic activities, the chevon remains increasingly relished as a special delicacy in Nigeria. Specific to the South-Eastern region, however, there is paucity of relevant data regarding the prevalence of THMs in goat carcasses processed for human consumption. This work was, therefore, aimed to investigate the detection, distribution and health risk assessment of THMs in goat carcass processed for human consumption in South-Eastern Nigeria. To achieve this, a total of 450 meat samples (kidney, liver and muscle) were evaluated from 150 randomly selected goat carcasses processed in two major slaughterhouses in Enugu State. The detection, distribution, as well as health risk assessment parameters followed standard procedures. Results revealed that at least one THM was detected in 56% of the carcasses. Mean concentrations of arsenic (As) were 0.53 ± 0.10 mg/kg, 0.57 ± 0.09 mg/kg and 0.45 ± 0.08 mg/kg, lead (Pb) were 0.48 ± 0.38 mg/kg, 0.45 ± 0.24 mg/kg and 0.82 ± 0.39 mg/kg, cadmium (Cd) was 0.06 ± 0.32 mg/kg, 0.02 ± 0.00 mg/kg, and 0.02 ± 0.00 mg/kg for kidney, liver and muscle tissues, respectively. The estimated daily intakes (EDI) for all THMs were above the recommended safe limits. The target hazard quotient (THQ) and hazard index (HI) computed for all As, Cd and Pb fell below unity in all the studied organs, which indicated no non-carcinogenic risks. Curtailing the anthropogenic activities that aid the THM-contamination in goat production/processing lines is recommended. Screening for THM-contamination in Nigerian slaughterhouses is imperative, so as to ascertain the toxicological safety of meats intended for human consumption.
Collapse
|
29
|
Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020; 81:51-65. [PMID: 32882300 PMCID: PMC7708394 DOI: 10.1016/j.neuro.2020.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Continuous globalization and industrialization have ensured metals are an increasing aspect of daily life. Their usefulness in manufacturing has made them vital to national commerce, security and global economy. However, excess exposure to metals, particularly as a result of environmental contamination or occupational exposures, has been detrimental to overall health. Excess exposure to several metals is considered environmental risk in the aetiology of several neurological and neurodegenerative diseases. Metal-induced neurotoxicity has been a major health concern globally with intensive research to unravel the mechanisms associated with it. Recently, greater focus has been directed at epigenetics to better characterize the underlying mechanisms of metal-induced neurotoxicity. Epigenetic changes are those modifications on the DNA that can turn genes on or off without altering the DNA sequence. This review discusses how epigenetic changes such as DNA methylation, post translational histone modification and noncoding RNA-mediated gene silencing mediate the neurotoxic effects of several metals, focusing on manganese, arsenic, nickel, cadmium, lead, and mercury.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Olayemi K Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Joy D Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nzube F Olung
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
30
|
Chang LS, Yan JH, Li JY, Yeter DD, Huang YH, Guo MMH, Lo MH, Kuo HC. Blood Mercury Levels in Children with Kawasaki Disease and Disease Outcome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103726. [PMID: 32466179 PMCID: PMC7277186 DOI: 10.3390/ijerph17103726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
The risk of ethnic Kawasaki disease (KD) has been proposed to be associated with blood mercury levels in American children. We investigated the blood levels of mercury in children with KD and their association with disease outcome. The mercury levels demonstrated a significantly negative correlation with sodium levels (p = 0.007). However, data failed to reach a significant difference after excluding the child with blood mercury exceeding the toxic value. The findings indicate that KD patients with lower sodium concentrations had a remarkably higher proportion of intravenous immunoglobulin (IVIG) resistance (p = 0.022). Our patients who had lower mercury levels (<0.5 μg/L) had more changes in bacille Calmette-Guerin. Mercury levels in 14/14 patients with coronary artery lesions and 4/4 patients with IVIG resistance were all measured to have values greater than 1 μg/L (while average values showed 0.92 μg/L in Asian American children). Mercury levels had no correlations with IVIG resistance or coronary artery lesion (CAL) formation (p > 0.05). CAL development was more common in the incomplete group than in the complete KD group (p = 0.019). In this first report about mercury levels in KD patients, we observed that the juvenile Taiwanese had higher mercury concentration in blood compared to other populations.
Collapse
Affiliation(s)
- Ling-Sai Chang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-S.C.); (Y.-H.H.); (M.M.-H.G.); (M.-H.L.)
| | - Jia-Huei Yan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Jin-Yu Li
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China;
| | - Deniz Des Yeter
- KU School of Nursing, Nursing Associate Tech Adult Inpatient Psych KU Strawberry Hill Campus, Kansas City, KS 66101, USA;
| | - Ying-Hsien Huang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-S.C.); (Y.-H.H.); (M.M.-H.G.); (M.-H.L.)
| | - Mindy Ming-Huey Guo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-S.C.); (Y.-H.H.); (M.M.-H.G.); (M.-H.L.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-S.C.); (Y.-H.H.); (M.M.-H.G.); (M.-H.L.)
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-S.C.); (Y.-H.H.); (M.M.-H.G.); (M.-H.L.)
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
- Correspondence:
| |
Collapse
|
31
|
Zhou T, Guo J, Zhang J, Xiao H, Qi X, Wu C, Chang X, Zhang Y, Liu Q, Zhou Z. Sex-Specific Differences in Cognitive Abilities Associated with Childhood Cadmium and Manganese Exposures in School-Age Children: a Prospective Cohort Study. Biol Trace Elem Res 2020; 193:89-99. [PMID: 30977088 DOI: 10.1007/s12011-019-01703-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
To examine sex-specific associations of neonatal and childhood exposure to eight trace elements with cognitive abilities of school-age children. The association between exposure and effects was assessed among 296 school-age children from a population-based birth cohort study, who had manganese (Mn), cadmium (Cd), and lead (Pb) exposure measured in cord blood and chromium (Cr), manganese, cobalt (Co), copper (Cu), arsenic (As), selenium (Se), cadmium, and lead exposure quantified in spot urine. Cognitive abilities were assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models were performed to analyze associations of intelligence quotient (IQ) with trace element concentrations in cord blood and urinary trace element levels. General linear models were used to evaluate association between exposure fluctuation and children's IQ. Urinary Cd concentrations were negatively associated with full-scale IQ (β = - 3.469, 95% confidence interval (CI) - 6.291, - 0.647; p = 0.016) and performance IQ (β = - 4.012, 95% CI - 7.088, - 0.936; p = 0.011) in girls; however, neonatal Cd exposure expressed as Cd concentrations in cord blood was in inverse associations with verbal IQ (β = - 2.590, 95% CI - 4.570, - 0.609; p = 0.010) only in boys. Positive association between urinary Mn concentrations and performance IQ (β = 1.305, 95% CI 0.035, 2.575; p = 0.044) of children was observed, especially in girls. In addition, inverse association of urinary Cu concentrations with verbal IQ (β = - 2.200, 95% CI - 4.360, - 0.039; p = 0.046) was only found in boys. Childhood Cd exposure may adversely affect cognitive abilities, while Mn exposure may beneficially modify cognitive abilities of school-age children, particularly in girls.
Collapse
Affiliation(s)
- Tong Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Hongxi Xiao
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399, Binsheng Road, Hangzhou, 310051, China
| | - Chunhua Wu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Qiang Liu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
32
|
Levin-Schwartz Y, Gennings C, Schnaas L, Del Carmen Hernández Chávez M, Bellinger DC, Téllez-Rojo MM, Baccarelli AA, Wright RO. Time-varying associations between prenatal metal mixtures and rapid visual processing in children. Environ Health 2019; 18:92. [PMID: 31666078 PMCID: PMC6822453 DOI: 10.1186/s12940-019-0526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Humans are exposed to mixtures of chemicals across their lifetimes, a concept sometimes called the "exposome." Mixtures likely have temporal "critical windows" of susceptibility like single agents and measuring them repeatedly might help to define such windows. Common approaches to evaluate the effects of chemical mixtures have focused on their effects at a single time point. Our goal is to expand upon these previous techniques and examine the time-varying critical windows for metal mixtures on subsequent neurobehavior in children. METHODS We propose two methods, joint weighted quantile sum regression (JWQS) and meta-weighted quantile sum regression (MWQS), to estimate the effects of chemical mixtures measured across multiple time points, while providing data on their critical windows of exposure. We compare the performance of both methods using simulations. We also applied both techniques to assess second and third trimester metal mixture effects in predicting performance in the Rapid Visual Processing (RVP) task from the Cambridge Neuropsychological Test Automated Battery (CANTAB) assessed at 6-9 years in children who are part of the PROGRESS (Programming Research in Obesity, GRowth, Environment and Social Stressors) longitudinal cohort study. The metals, arsenic, cadmium (Cd), cesium, chromium, lead (Pb) and antimony (Sb) were selected based on their toxicological profile. RESULTS In simulations, JWQS and MWQS had over 80% accuracy in classifying exposures as either strongly or weakly contributing to an association. In real data, both JWQS and MWQS consistently found that Pb and Cd exposure jointly predicted longer latency in the RVP and that second trimester exposure better predicted the results than the third trimester. Additionally, both JWQS and MWQS highlighted the strong association Cd and Sb had with lower accuracy in the RVP and that third trimester exposure was a better predictor than second trimester exposure. CONCLUSIONS Our results indicate that metal mixtures effects vary across time, have distinct critical windows and that both JWQS and MWQS can determine longitudinal mixture effects including the cumulative contribution of each exposure and critical windows of effect.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | | | | | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
33
|
Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. ENVIRONMENTAL RESEARCH 2019; 177:108641. [PMID: 31421445 DOI: 10.1016/j.envres.2019.108641] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a worldwide environmental contaminant that even at low levels influences brain development and affects neurobehavior later in life; nevertheless it is only a small fraction of the neurotoxicant (NT) exposome. Exposure to environmental Pb concurrent with other NT substances is often the norm, but their joint effects are challenging to study during early life. The aim of this review is to integrate studies of Pb-containing NT mixtures during the early life and neurodevelopment outcomes of children. The Pb-containing NT mixtures that have been most studied involve other metals (Mn, Al, Hg, Cd), metalloids (As), halogen (F), and organo-halogen pollutants. Co-occurring Pb-associated exposures during pregnancy and lactation depend on the environmental sources and the metabolism and half-life of the specific NT contaminant; but offspring neurobehavioral outcomes are also influenced by social stressors. Nevertheless, Pb-associated effects from prenatal exposure portend a continued burden on measurable neurodevelopment; they thus favor increased neurological health issues, decrements in neurobehavioral tests and reductions in the quality of life. Neurobehavioral test outcomes measured in the first 1000 days showed Pb-associated negative outcomes were frequently noticed in infants (<6 months). In older (preschool and school) children studies showed more variations in NT mixtures, children's age, and sensitivity and/or specificity of neurobehavioral tests; these variations and choice of statistical model (individual NT stressor or collective effect of mixture) may explain inconsistencies. Multiple exposures to NT mixtures in children diagnosed with 'autism spectrum disorders' (ASD) and 'attention deficit and hyperactivity disorders' (ADHD), strongly suggest a Pb-associated effect. Mixture potency (number or associated NT components and respective concentrations) and time (duration and developmental stage) of exposure often showed a measurable impact on neurodevelopment; however, net effects, reversibility and/or predictability of delays are insufficiently studied and need urgent attention. Nevertheless, neurodevelopment delays can be prevented and/or attenuated if public health policies are implemented to protect the unborn and the young child.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
34
|
Lucchini RG, Guazzetti S, Renzetti S, Conversano M, Cagna G, Fedrighi C, Giorgino A, Peli M, Placidi D, Zoni S, Forte G, Majorani C, Pino A, Senofonte O, Petrucci F, Alimonti A. Neurocognitive impact of metal exposure and social stressors among schoolchildren in Taranto, Italy. Environ Health 2019; 18:67. [PMID: 31324194 PMCID: PMC6642538 DOI: 10.1186/s12940-019-0505-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Metal exposure is a public health hazard due to neurocognitive effects starting in early life. Poor socio-economic status, adverse home and family environment can enhance the neurodevelopmental toxicity due to chemical exposure. Disadvantaged socio-economic conditions are generally higher in environmentally impacted areas although the combined effect of these two factors has not been sufficiently studied. METHODS The effect of co-exposure to neurotoxic metals including arsenic, cadmium, manganese, mercury, lead, selenium, and to socio-economic stressors was assessed in a group of 299 children aged 6-12 years, residing at incremental distance from industrial emissions in Taranto, Italy. Exposure was assessed with biological monitoring and the distance between the home address and the exposure point source. Children's cognitive functions were examined using the Wechsler Intelligence Scale for Children (WISC) and the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear mixed models were chosen to assess the association between metal exposure, socio-economic status and neurocognitive outcomes. RESULTS Urinary arsenic, cadmium and hair manganese resulted inversely related to the distance from the industrial emission source (β - 0.04; 95% CI -0.06, - 0.01; β - 0.02; 95% CI -0.05, - 0.001; β - 0.02 95% CI -0.05, - 0.003) while the WISC intellectual quotient and its sub-scores (except processing speed index) showed a positive association with distance. Blood lead and urinary cadmium were negatively associated with the IQ total score and all sub-scores, although not reaching the significance level. Hair manganese and blood lead was positively associated with the CANTAB between errors of spatial working memory (β 2.2; 95% CI 0.3, 3.9) and the reaction time of stop signal task (β 0.05; 95% CI 0.02, 0.1) respectively. All the other CANTAB neurocognitive tests did not show to be significantly influenced by metal exposure. The highest socio-economic status showed about five points intellectual quotient more than the lowest level on average (β 4.8; 95% CI 0.3, 9.6); the interaction term between blood lead and the socio-economic status showed a significant negative impact of lead on working memory at the lowest socio-economic status level (β - 4.0; 95% CI -6.9, - 1.1). CONCLUSIONS Metal exposure and the distance from industrial emission was associated with negative cognitive impacts in these children. Lead exposure had neurocognitive effect even at very low levels of blood lead concentration when socio-economic status is low, and this should further address the importance and prioritize preventive and regulatory interventions.
Collapse
Affiliation(s)
- Roberto G Lucchini
- Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Stefano Guazzetti
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
- Department of Public Health, Azienda USL - IRCCS, Reggio Emilia, Italy
| | - Stefano Renzetti
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy.
| | | | - Giuseppa Cagna
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Chiara Fedrighi
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | | | - Marco Peli
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Silvia Zoni
- Department of Occupational Health, University of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Costanza Majorani
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Anna Pino
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Oreste Senofonte
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Francesco Petrucci
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Alessandro Alimonti
- Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
35
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
36
|
Clay K, Portnykh M, Severnini E. The legacy lead deposition in soils and its impact on cognitive function in preschool-aged children in the United States. ECONOMICS AND HUMAN BIOLOGY 2019; 33:181-192. [PMID: 30913446 DOI: 10.1016/j.ehb.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Surface soil contamination has been long recognized as an important pathway of human lead exposure, and is now a worldwide health concern. This study estimates the causal effects of exposure to lead in topsoil on cognitive ability among 5-year-old children. We draw on individual level data from the 2000 U.S. Census, and USGS data on lead in topsoil covering a broad set of counties across the United States. Using an instrumental variable approach relying on the 1944 Interstate Highway System Plan, we find that higher lead in topsoil increases considerably the probability of 5-year-old boys experiencing cognitive difficulties such as learning, remembering, concentrating, or making decisions. Living in counties with topsoil lead concentration above the national median roughly doubles the probability of 5-year-old boys having cognitive difficulties. Nevertheless, it does not seem to affect 5-year-old girls, consistent with previous studies. Importantly, the adverse effects of lead exposure on boys are found even in counties with levels of topsoil lead concentration considered low by the guidelines from the U.S. EPA and state agencies. These findings are concerning because they suggest that legacy lead may continue to impair cognition today, both in the United States and in other countries that have considerable lead deposition in topsoil.
Collapse
Affiliation(s)
- Karen Clay
- Carnegie Mellon University and NBER, 4800 Forbes Avenue, Pittsburgh, PA 15213, United States.
| | - Margarita Portnykh
- Carnegie Mellon University, 4800 Forbes Avenue, Pittsburgh, PA 15213, United States.
| | - Edson Severnini
- Carnegie Mellon University and IZA, 4800 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
37
|
Donzelli G, Carducci A, Llopis-Gonzalez A, Verani M, Llopis-Morales A, Cioni L, Morales-Suárez-Varela M. The Association between Lead and Attention-Deficit/Hyperactivity Disorder: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E382. [PMID: 30700018 PMCID: PMC6388268 DOI: 10.3390/ijerph16030382] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/15/2022]
Abstract
The etiology of Attention-Deficit/Hyperactivity Disorder (ADHD) is complex and multifactorial. Although the development of ADHD symptoms remains to be elucidated, in recent years, epigenetic processes have emerged as candidate mechanisms. Lead is one of the most dangerous environmental pollutants, and it is suspected to be associated with ADHD. The aim of the present study was to review the epidemiological literature currently available on the relation between lead exposure and the diagnosis of ADHD. The PubMed and EMBASE databases were searched from 1 July 2018 up to 31 July 2018. The authors included observational studies (cohort, case⁻control and cross-sectional studies) published in English carried out on children within the last 5 years, measuring lead exposure and health outcomes related to ADHD. Seventeen studies met the inclusion criteria: 5 of these studies found no association between lead exposure and ADHD whereas the remaining 12 studies showed positive associations, even though not all of them were homogeneous in terms of exposure periods considered or ADHD diagnosis. To conclude, the evidence from the studies allowed us to establish that there is an association between lead and ADHD and that even low levels of lead raise the risk. However, there is still a lack of longitudinal studies about the relationship between lead exposure and the development of ADHD. Given the potential importance for public health, further research that includes the entire potential risk factors for ADHD in children must be encouraged.
Collapse
Affiliation(s)
- Gabriele Donzelli
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Legal Medicine, School of Pharmacy, Universitat de Valencia. Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain.
- Department of Biology, University of Pisa, Via Luca Ghini, 13-56126 Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via Luca Ghini, 13-56126 Pisa, Italy.
| | - Agustin Llopis-Gonzalez
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Legal Medicine, School of Pharmacy, Universitat de Valencia. Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain.
- Biomedical Research Consortium in Epidemiology and Public Health Network (CIBERESP), Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid, Spain.
| | - Marco Verani
- Department of Biology, University of Pisa, Via Luca Ghini, 13-56126 Pisa, Italy.
| | - Agustin Llopis-Morales
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Legal Medicine, School of Pharmacy, Universitat de Valencia. Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain.
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri, 7-56126 Pisa, Italy.
| | - María Morales-Suárez-Varela
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Legal Medicine, School of Pharmacy, Universitat de Valencia. Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain.
- Biomedical Research Consortium in Epidemiology and Public Health Network (CIBERESP), Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid, Spain.
| |
Collapse
|
38
|
Dórea JG. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj 2018; 1863:129243. [PMID: 30385391 DOI: 10.1016/j.bbagen.2018.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
All chemical forms of Hg can affect neurodevelopment; however, low levels of organic Hg (methylmercury-MeHg and ethylmercury-EtHg in Thimerosal-containing vaccines, hereafter 'TCV') exposures during early life (pregnancy and lactation) co-occur with other environmental neurotoxic substances. These neurotoxicants may act in parallel, synergistically, or antagonistically to Hg. Nevertheless, the risks of neurotoxicity associated with multiple neuro-toxicants depend on type, time, combinations of exposure, and environmental and/or genetic-associated factors. Neurological developmental disorders, delays in cognition and behavioral outcomes associated with multiple exposures (which include Hg) may show transient or lasting outcomes depending on constitutional and/or environmental factors that can interact to neutralize, aggravate or attenuate these effects; often these studies are challenging to interpret. During pregnancy and lactation, fish-MeHg exposure is frequently confounded with the opposing effects of neuroactive nutrients (in fish) that lead to positive, negative, or no effects on neurobehavioral tests. In infancy, exposures to acute binary mixtures (TCV- EtHg and Al-adjuvants in infant immunizations) are associated with increased risks of tics and other developmental disorders. Despite the certitude that promulgates single environmental neurotoxicants, empirical comparisons of combined exposures indicate that Hg-related outcome is uneven. Hg in combination with other neurotoxic mixtures may elevate risks of neurotoxicity, but these risks arise in circumstances that are not yet predictable. Therefore, to achieve the goals of the Minamata treaty and to safeguard the health of children, low levels of mercury exposure (in any chemical form) needs to be further reduced whether the source is environmental (air- and food-borne) or iatrogenic (pediatric TCVs).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília 70919-970, DF, Brazil..
| |
Collapse
|