1
|
Yadav S, Kumari P, Sinha A, Tripathi V, Saran V. Salivary microbiomes: a potent evidence in forensic investigations. Forensic Sci Med Pathol 2024; 20:1058-1065. [PMID: 38175312 DOI: 10.1007/s12024-023-00759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Saliva components combine with oral cavity microorganisms, blood cells, and airway secretions after entering the oral cavity via salivary ducts; these factors provide relevant information about persons' health state, quality of life, and lifestyle, in addition to their age and gender due to which salivary microbiome has emerged as a subject of significant interest in the forensic domain. This study aims to provide an extensive review of the possible applications of the salivary microbiome in characterizing the habit-specific microbiomes. Thirty-three relevant articles were selected for inclusion in this study. The study highlighted the influence of habits on the salivary microbiome suggesting smokers have distinct bacteria like Synergistetes, Streptococcus, Prevotella, and Veillonella in relation to age; people of higher age have more Prevotella; further, dental plaque can be corelated with Streptococci and Actinomycetes. Likewise, dietary habits, alcoholism, and consumption of coffee also affect bacteria types in oral cavities. The study underscores the added benefits of salivary microbiome profiling in forensics, as it is evident that microbial DNA profiling holds substantial promise for enhancing forensic investigations; it enables the characterization of an individual's habits, such as smoking, alcohol consumption, and dietary preferences; bacteria specific to these habits can be identified, thereby helping to narrow down the pool of potential suspects. In conclusion, the salivary microbiome presents a valuable avenue for forensic science, offering a novel approach which not only enhances the prospects of solving complex cases but also underscores the rich potential of microbiome analysis in the realm of forensic investigation.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India.
| | - Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India
| | | | - Vijay Tripathi
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P, India
| |
Collapse
|
2
|
Liu J, Yue Q, Zhang S, Xu J, Jiang X, Su Q, Sun L, Li B, Li K, Su L, Zhao L. A pilot study on oral microbiome in electronic cigarettes consumers versus traditional cigarettes smokers. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01185-w. [PMID: 38954243 DOI: 10.1007/s12223-024-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years. We performed 16S rRNA gene sequencing on the saliva samples collected to study the effects of e-cigarettes versus traditional cigarettes on the oral microbiome. The results showed that compared with the NS group, the alpha diversity of oral flora in saliva was altered in the TS group, with no significant change in the e-cigarette group. Compared with the NS and EC groups, the relative abundance of Actinomyces and Prevotella was increased in the TS group. However, compared with the NS and TS groups, the relative abundance of Veillonella was increased, and the relative abundance of Porphyromonas and Peptostreptococcus was decreased in the EC group. These results showed that both e-cigarettes and traditional cigarettes could alter the structure and composition of oral microbiota. The use of traditional cigarettes promotes the growth of some anaerobic bacteria, which may contribute to dental decay and bad breath over time. E-cigarettes have a different effect on the structure and composition of the oral microbial community compared to conventional cigarettes. In order to better understand the effects of e-cigarettes and traditional cigarettes on users' mouths, future studies will investigate the relationship between diseases such as dental caries and periodontitis and changes in oral microbial species levels.
Collapse
Affiliation(s)
- Jilong Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Jing Xu
- RELX Tech. Co., Ltd, Shenzhen, People's Republic of China
| | - Xingtao Jiang
- RELX Tech. Co., Ltd, Shenzhen, People's Republic of China
| | - Qun Su
- Shandong Baoyuan Biotechnology Co., Ltd, Yantai, People's Republic of China
| | - Lei Sun
- Shandong Baoyuan Biotechnology Co., Ltd, Yantai, People's Republic of China
| | - Baojun Li
- Shandong Danhe Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Kunlun Li
- Shengshengxiangrong (Shandong) Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| |
Collapse
|
3
|
Lin S, Zhu N, Zhu Y, Mao H, Zhang S. Exploratory analysis on the association of dietary live microbe and non-dietary prebiotic/probiotic intake with serum cotinine levels in the general adult population. Front Nutr 2024; 11:1405539. [PMID: 38863585 PMCID: PMC11165358 DOI: 10.3389/fnut.2024.1405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Background Previous research has indicated the potential involvement of the microbiota in smoking-related processes. The present study seeks to examine the relationship between dietary live microbes, as well as probiotic or prebiotic consumption, and serum cotinine levels. Methods This study used data from the National Health and Nutrition Examination Survey 1999-2018. Dietary intake information and probiotic/prebiotic intake data was collected through self-reported questionnaires. Participants were stratified into low, medium, and high intake groups according to their consumption of foods with varying microbial content. Multiple linear models were applied to explore the relationships of dietary live microbes, probiotic or prebiotic use with the serum cotinine level. Results A total of 42,000 eligible participants were included in the final analysis. The weighted median serum cotinine level was 0.05 (0.01, 10.90) ng/ml. Participants with low, medium, and high dietary microbe intake represented 35.4, 43.6, and 21.0% of the cohort, respectively. Furthermore, participants were stratified into three groups based on their overall consumption of foods with variable microbe contents. The association between dietary live microbe intake and serum cotinine levels remained robust across all models, with medium intake as the reference (Model 2: β = -0.14, 95% CI: -0.20, -0.07; High: β = -0.31, 95% CI: -0.39, -0.22). Moreover, both prebiotic and probiotic use exhibited an inverse relationship with serum cotinine levels (Prebiotic: β = -0.19, 95% CI: -0.37, -0.01; Probiotic: β = -0.47, 95% CI: -0.64, -0.30). Subgroup analyses revealed no discernible interactions between dietary live microbe, prebiotic, probiotic use, and serum cotinine levels. Conclusion Our findings suggest a negative correlation between dietary live microbe intake, as well as non-dietary prebiotic/probiotic consumption, and serum cotinine levels.
Collapse
Affiliation(s)
- Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ning Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yujing Zhu
- Department of Stomatology, The Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Haiping Mao
- Department of Ultrasound, Ninghai Third Hospital, Ningbo, China
| | - Shengmin Zhang
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Mohammed LI, Razali R, Zakaria ZZ, Benslimane FM, Cyprian F, Al-Asmakh M. Smoking induced salivary microbiome dysbiosis and is correlated with lipid biomarkers. BMC Oral Health 2024; 24:608. [PMID: 38796419 PMCID: PMC11127352 DOI: 10.1186/s12903-024-04340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The oral microbiome plays an essential role in maintaining oral homeostasis and health; smoking significantly affects it, leading to microbial dysbiosis. The study aims to investigate changes in the oral microbiome composition of smokers in the Qatari population and establish a correlation with lipid biomarkers. METHODS The oral microbiota was profiled from saliva samples of 200 smokers and 100 non-smokers in the Qatari population, and 16s rRNA V3-V4 region were sequenced using the Illumina MiSeq platform. The operational taxonomic units (OTUs) were clustered using QIIME and the statistical analysis was performed by R. RESULTS Non-smokers exhibited a more diverse microbiome, with significant alpha and beta diversity differences between the non-smoker and smoker groups. Smokers had a higher abundance of Firmicutes, Bacteroidota, Actinobacteriota, Patescibacteria, and Proteobacteria at the phylum level and of Streptococcus, Prevotella, Veillonella, TM7x, and Porphyromonas at the genus level. In contrast, non-smokers had more Bacteroidota, Firmicutes, Proteobacteria, Fusobacteriota, and Patescibacteria at the phylum level, and Prevotella, Streptococcus, Veillonella, Porphromonas, and Neisseria at the genus level. Notably, Streptococcus was significantly positively correlated with LDL and negatively correlated with HDL. Additionally, Streptococcus salivarius, within the genus Streptococcus, was substantially more abundant in smokers. CONCLUSION This study highlights the significant influence of smoking on the composition of the oral microbiome by enriching anaerobic microbes and depleting aerobic microbes. Moreover, the observed correlation between Streptococcus abundance and the lipid biomarkers suggests a potential link between smokers-induced salivary microbiome dysbiosis and lipid metabolism. Understanding the impact of smoking on altering the oral microbiome composition and its correlation with chemistry tests is essential for developing targeted interventions and strategies to improve oral health and reduce the risk of diseases.
Collapse
Affiliation(s)
- Layla I Mohammed
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
- The KINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar
| | - Zain Zaki Zakaria
- Medical and Health Sciences Office, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Farhan Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Doha, 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar.
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
5
|
Belibasakis GN, Senevirantne CJ, Jayasinghe RD, Vo PTD, Bostanci N, Choi Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontol 2000 2024. [PMID: 38501658 DOI: 10.1111/prd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
It has long been considered that the oral microbiome is tightly connected to oral health and that dysbiotic changes can be detrimental to the occurrence and progression of dysplastic oral mucosal lesions or oral cancer. Improved understanding of the concepts of microbial dysbiosis together with advances in high-throughput molecular sequencing of these pathologies have charted in greater microbiological detail the nature of their clinical state. This review discusses the bacteriome and mycobiome associated with oral mucosal lesions, oral candidiasis, and oral squamous cell carcinoma, aiming to delineate the information available to date in pursuit of advancing diagnostic and prognostic utilities for oral medicine.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Phuc Thi-Duy Vo
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| |
Collapse
|
6
|
Senaratne NLM, Yung on C, Shetty NY, Gopinath D. Effect of different forms of tobacco on the oral microbiome in healthy adults: a systematic review. FRONTIERS IN ORAL HEALTH 2024; 5:1310334. [PMID: 38445094 PMCID: PMC10912582 DOI: 10.3389/froh.2024.1310334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
Objective The study aimed to evaluate the impact of tobacco use on the composition and functions of the oral microbiome in healthy adult humans. Methods We conducted a systematic search on PubMed, Web of Science, and Cinhal databases for literature published until 15 December 2023, to identify studies that have evaluated the oral microbiome with culture-independent next-generation techniques comparing the oral microbiome of tobacco users and non-users. The search followed the PECO format. The outcomes included changes in microbial diversity and abundance of microbial taxa. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS) (PROSPERO ID CRD42022340151). Results Out of 2,435 articles screened, 36 articles satisfied the eligibility criteria and were selected for full-text review. Despite differences in design, quality, and population characteristics, most studies reported an increase in bacterial diversity and richness in tobacco users. The most notable bacterial taxa enriched in users were Fusobacteria and Actinobacteria at the phylum level and Streptococcus, Prevotella, and Veillonella at the genus level. At the functional level, more similarities could be noted; amino acid metabolism and xenobiotic biodegradation pathways were increased in tobacco users compared to non-users. Most of the studies were of good quality on the NOS scale. Conclusion Tobacco smoking influences oral microbial community harmony, and it shows a definitive shift towards a proinflammatory milieu. Heterogeneities were detected due to sampling and other methodological differences, emphasizing the need for greater quality research using standardized methods and reporting. Systematic Review Registration CRD42022340151.
Collapse
Affiliation(s)
- Nikitha Lalindri Mareena Senaratne
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Cheng Yung on
- Sungai Rengit Dental Clinic, Johor Health Department, Ministry of Health Malaysia, Kota Tinggi, Malaysia
| | - Naresh Yedthare Shetty
- Clinical Sciences Department, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Divya Gopinath
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
8
|
Yu KM, Cho HS, Lee AM, Lee JW, Lim SK. Analysis of the influence of host lifestyle (coffee consumption, drinking, and smoking) on Korean oral microbiome. Forensic Sci Int Genet 2024; 68:102942. [PMID: 37862769 DOI: 10.1016/j.fsigen.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
If a DNA sample collected in the field is old or degraded, short tandem repeat analysis is difficult to perform, a representative analysis method currently used for individual identification. Given that microorganisms exist everywhere and within the human body, in similar amounts to human cells, microbial analysis could be used to identify individuals even in cases in which human DNA-based identification is difficult. Research has demonstrated that the types of microorganisms within the human body differ depending on various internal or external factors, such as body part or bodily fluid type, lifestyle, geographical area of residence, sex, and age. In this study, we aimed to examine the relationship between lifestyle factors and the composition and diversity of the oral microbiome in individuals living in Korea. We collected 43 saliva samples from Korean individuals and analyzed the oral microbiome and its variations due to external factors, such as coffee consumption, drinking, and smoking. Linear discriminant analysis effect size revealed that Oribacterium, Campylobacter, and Megasphaera were abundant in coffee consumers, whereas Saccharimonadales, Clostridia, and Catonella were abundant in alcohol non-drinkers. We found increased levels of Stomatobaculum in the saliva of smokers, compared with that of non-smokers. Thus, our analysis revealed characteristic microorganisms for each parameter that was evaluated (coffee consumption, smoking, drinking). Consequently, our study provides insight into the oral microbiome in the Korean population and lays the foundation for developing the Korean Forensic Microbiome Database.
Collapse
Affiliation(s)
- Kyeong-Min Yu
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hye-Seon Cho
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - A-Mi Lee
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Ji-Woo Lee
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
9
|
Yadav S, Tripathi V, Saran V. Identification of habit specific bacteria in human saliva through Next-Generation Sequencing. Forensic Sci Int 2023; 353:111871. [PMID: 37939434 DOI: 10.1016/j.forsciint.2023.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Characterization of human saliva through Next-Generation Sequencing has emerged as a valuable tool for understanding the complex microbial communities residing in the oral cavity. This study aims to investigate the habit-based variations in the salivary microbiome using Next-Generation Sequencing technology. Saliva samples were collected from a diverse population representing different habits, including smoking, alcohol consumption, and vegan diet. The DNA from the samples was extracted, and the V3-V4 region of the 16 S rRNA gene was amplified for Next-Generation Sequencing analysis. The obtained sequences were processed and analysed using bioinformatics tools to determine the microbial composition and diversity. Preliminary results revealed distinct microbial profiles associated with different habits, indicating the potential influence of different habits on the salivary microbiome. Smokers exhibited a higher abundance of certain pathogenic bacteria, while alcohol consumers showed alterations in microbial diversity compared to non-consumers. Furthermore, individuals with vegan diet demonstrated an increased prevalence of specific bacteria. These findings highlight the significance of habit-based characterization of the salivary microbiome and its potential implications in the presence of certain bacteria. Understanding the relationship between habits and the salivary microbiome could contribute to developing personalized approaches for estimating and identifying any particular individual. Further research is warranted to explore additional factors and expand the scope of habit-based analysis in saliva-based microbial characterization through Next-Generation Sequencing.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India.
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India; Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K.-248002, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
Senaratne NLM, Chong CW, Yong LS, Yoke LF, Gopinath D. Impact of waterpipe smoking on the salivary microbiome. FRONTIERS IN ORAL HEALTH 2023; 4:1275717. [PMID: 38024144 PMCID: PMC10665852 DOI: 10.3389/froh.2023.1275717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background While oral mirobial dysbiosis due to tobacco smoking has been studied thoroughly, there is limited data on the effect of waterpipe smoking on the oral microbiome. This study aims to compare the salivary microbiome between waterpipe smokers and non-smokers. Materials and methods Unstimulated saliva samples were collected from 60 participants, 30 smokers and 30 non-smokers in Kuala Lumpur and Klang Valley, Malaysia. DNA extraction was performed using the Qiagen DNA mini kit, and the 16S rRNA bacterial gene was amplified and sequenced using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and the alpha and beta diversity of the bacterial community was assessed. Significantly differentiated taxa were identified using LEfSe analysis, while differentially expressed pathways were identified using MaAsLin2. Results A significant compositional change (beta diversity) was detected between the two groups (PERMANOVA P < 0.05). Specifically, the levels of phylum Firmicutes and genus Streptococcus were elevated in smokers, whereas phylum Proteobacteria and genus Haemophilus were depleted compared to non-smokers. At the species level, Streptococcus oralis, Streptococcus salivarius, and Streptococcus gingivalis were enriched in smokers. We observed significant differences in the abundance of thirty-seven microbial metabolic pathways between waterpipe smokers and non-smokers. The microbial pathways enriched in smokers were those implicated in polymer degradation and amino acid metabolism. Conclusion The taxonomic and metabolic profile of the salivary microbiome in waterpipe smokers compared to healthy controls exhibited a paradigm shift, thus, implying an alteration in the homeostatic balance of the oral cavity posing unique challenges for oral health.
Collapse
Affiliation(s)
| | - Chun Wie Chong
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
| | - Lim Shu Yong
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
- Monash University Malaysia Genomics Facility, School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ling Fong Yoke
- School of Pharmacy, Monash University, Kuala Lumpur, Malaysia
- Monash University Malaysia Genomics Facility, School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Divya Gopinath
- College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
11
|
Cauwenberghs E, Oerlemans E, Wittouck S, Allonsius CN, Gehrmann T, Ahannach S, De Boeck I, Spacova I, Bron PA, Donders G, Verhoeven V, Lebeer S. Salivary microbiome of healthy women of reproductive age. mBio 2023; 14:e0030023. [PMID: 37655878 PMCID: PMC10653790 DOI: 10.1128/mbio.00300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.
Collapse
Affiliation(s)
- Eline Cauwenberghs
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Eline Oerlemans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Peter A. Bron
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Gilbert Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
- Regional Hospital Heilig Hart, Tienen, Belgium
- Femicare, Clinical Research for Women, Tienen, Belgium
| | - Veronique Verhoeven
- Department of Family medicine and population health (FAMPOP), University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Yang M, Xu J, Chen X, Liu L, Kong D, Yang Y, Chen W, Li Z, Zhang X. Sex-based influential factors for dental caries in patients with schizophrenia. BMC Psychiatry 2023; 23:735. [PMID: 37817127 PMCID: PMC10566046 DOI: 10.1186/s12888-023-05256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Schizophrenia is a common mental disorder that seriously affects patients' daily lives and brings heavy psychological and economic burdens to their families and society. The oral problems of patients with schizophrenia are gradually gaining attention, among which dental caries are among the most common oral diseases. Sex differences may be related not only to the various clinical symptoms of schizophrenia but also to different oral hygiene statuses; therefore, the main purpose of this paper is to investigate sex differences related to influencing factors for dental caries in patients with schizophrenia. METHOD Inpatients with schizophrenia over 18 years old were included in this study, and multidimensional indicators such as demographics, symptom and cognitive impairment assessments, medications, and the caries index of decayed, missing, and filled teeth (DMFT) were collected. An analysis of sex-based influential factors for dental caries in schizophrenia patients was performed. RESULTS Four-hundred and ninety-six patients with schizophrenia were included, with a mean age of 46.73 ± 12.23 years, of which 142 were females and 354 were males. The mean DMFT was significantly higher in males (8.81 ± 8.50) than in females (5.63 ± 6.61, p < 0.001), and the odd ratio of caries in males to females was significantly higher as well (OR = 2.305, p < 0.001). The influential factors of caries in male patients were independently associated with age and smoking status, in which current smokers were at the highest risk for developing caries, and different smoking statuses had various influencing factors for caries. The influencing factors for caries in female patients were independently associated with age, antipsychotic dose, PANSS-positive symptoms, and MMSE levels. CONCLUSION Our findings suggest sex differences exist among influential factors for caries in patients with schizophrenia. These risk factors may even be associated with and affect the treatment and prognosis of psychiatric symptoms in patients. Therefore, oral hygiene management of patients with schizophrenia should be enhanced. These differential factors provide new visions and ideas for formulating individual interventions, treatments, and care priorities.
Collapse
Affiliation(s)
- Mi Yang
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jinniu District, Chengdu, 610036 China
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731 China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731 China
| | - Jingjing Xu
- Department of Psychiatry, Qingdao mental health center, No. 299, Nanjing Road, Qingdao, 266034 China
| | - Xiaoqin Chen
- Department of Psychiatry, Qingdao mental health center, No. 299, Nanjing Road, Qingdao, 266034 China
| | - Liju Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731 China
| | - Di Kong
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jinniu District, Chengdu, 610036 China
| | - Yan Yang
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jinniu District, Chengdu, 610036 China
| | - Wei Chen
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jinniu District, Chengdu, 610036 China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370 China
- Department of Psychiatry, Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, 36 Mingxin Road, Liwan District, Guangzhou, 510370 China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370 China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
13
|
Hammad AM, Alzaghari LF, Alfaraj M, Al-Shawaf L, Sunoqrot S. Nanoassemblies from the aqueous extract of roasted coffee beans modulate the behavioral and molecular effects of smoking withdrawal-induced anxiety in female rats. Drug Deliv Transl Res 2023; 13:1967-1982. [PMID: 37069327 DOI: 10.1007/s13346-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
Antioxidant-rich plant extracts have demonstrated tremendous value as inflammatory modulators and as nanomaterial precursors. Chronic cigarette smoking alters neurotransmitter systems, particularly the glutamatergic system, and produces neuroinflammation. This study aimed to investigate the behavioral and molecular correlates of cigarette smoking withdrawal-induced anxiety-like behavior in rats, and whether these effects could be mitigated by the administration of antioxidant nanoassemblies prepared by spontaneous oxidation of dark-roasted Arabica coffee bean aqueous extracts. Four experimental groups of female Sprague-Dawley rats were randomly assigned to: (i) a control group that was only exposed to room air, (ii) a COF group that was administered 20 mg/kg of the coffee nanoassemblies by oral gavage, (iii) a SMOK group that was exposed to cigarette smoke and was given an oral gavage of distilled water, (iv) and a SMOK + COF group that was exposed to cigarette smoke and administered 20 mg/kg of the coffee nanoassemblies. Animals were exposed to cigarette smoke for 2 h per day, five days per week, with a 2-day withdrawal period each week. At the end of the 4th week, rats began receiving either distilled water or the coffee nanoassemblies before being exposed to cigarette smoke for 21 additional days. Weekly behavioral tests revealed that cigarette smoking withdrawal exacerbated anxiety, while the administration of the coffee nanoassemblies reduced this effect. The effect of cigarette smoking on astroglial glutamate transporters and nuclear factor kappa B (NF-κB) expression in brain subregions was also measured. Smoking reduced the relative mRNA and protein levels of the glutamate transporter 1 (GLT-1) and the cystine/glutamate antiporter (xCT), and increased the levels of NF-κB, but these effects were attenuated by the coffee nanoassemblies. Thus, administration of the antioxidant nanoassemblies decreased the negative effects of cigarette smoke, which included neuroinflammation, changes in glutamate transporters' expression, and a rise in anxiety-like behavior.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lujain F Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Laith Al-Shawaf
- Department of Psychology, University of Colorado, Colorado Springs, CO, 80309, USA
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| |
Collapse
|
14
|
Nilendu D. Toward Oral Thanatomicrobiology-An Overview of the Forensic Implications of Oral Microflora. Acad Forensic Pathol 2023; 13:51-60. [PMID: 37457549 PMCID: PMC10338735 DOI: 10.1177/19253621231176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023]
Abstract
Introduction The oral cavity is home to numerous microorganisms including bacteria, fungi, and viruses which together form the oral microflora. It is the second most diverse microbial site in the human body after the gastrointestinal tract. Microbial degradation is a common phenomenon that occurs after death, with the early and advanced stages of decomposition being closely associated with oral microbial activity. Methods This article reviews the current state of knowledge on the role of the oral microflora in postmortem events, and highlights the growing importance of terms such as forensic microbiology and thanatomicrobiome. This article also discusses next-generation sequencing, metagenomic sequencing studies, and RNA sequencing to study the oral thanatomicrobiome and epinecrotic communities in forensic oral genetics. Results The indigenous microorganisms in the oral cavity are among the first to respond to the process of decomposition. DNA/RNA sequencing is a relatively simple, precise, and cost-effective method to estimate biological diversity during various stages of postmortem decomposition. The field of thanatomicrobiology is rapidly evolving into a key area in forensic research. Conclusion This article briefly narrates oral microflora and its implications in forensic odontology. The role of microbial activity in postmortem events is gaining importance in forensic research, and further studies are needed to fully understand the potential applications of advanced technology in the study of the oral thanatomicrobiome.
Collapse
Affiliation(s)
- Debesh Nilendu
- Debesh Nilendu PhD, Department of Oral Medicine and Radiology, K. M. Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed to be University, Waghodia Road, Piparia, Taluk Waghodia, Vadodara, Gujarat 391760, India,
| |
Collapse
|
15
|
Yang I, Rodriguez J, Young Wright C, Hu YJ. Oral microbiome of electronic cigarette users: A cross-sectional exploration. Oral Dis 2023; 29:1875-1884. [PMID: 35285123 PMCID: PMC10909585 DOI: 10.1111/odi.14186] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Electronic cigarettes have increased in popularity globally. Vaping may be associated with oral symptoms and pathologies including dental and periodontal damage, both of which have an underlying microbial etiology. The primary aim of this pilot study, therefore, was to compare the oral microbiome of vapers and non-vapers. SUBJECTS AND METHODS This secondary data analysis had a cross-sectional comparative descriptive design and included data for 36 adults. Bacterial 16S rRNA genes were extracted and amplified from soft tissue oral swab specimens and taxonomically classified using the Human Oral Microbiome Database. RESULTS Data for 18 vapers and 18 non-vapers were included in this study. Almost 56% of the vapers also smoked conventional cigarettes. Beta diversity differences were identified between vapers and non-vapers. Vapers had a significantly higher relative abundance of an unclassified species of Veillonella compared with non-vapers. Dual users had higher alpha diversity compared with exclusive vapers. Beta diversity was also associated with dual use. Multiple OTUs were identified to be associated with dual use of e-cigarettes and conventional cigarettes. CONCLUSIONS Vapers exhibit an altered oral microbiome. Dual use of electronic cigarettes and conventional cigarettes is associated with the presence of several known pathogenic microbes.
Collapse
Affiliation(s)
- Irene Yang
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Jeannie Rodriguez
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Christa Young Wright
- Chemical Insights Research Institute of Underwriters Laboratories, Marietta, Georgia, USA
| | - Yi-Juan Hu
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Campos M, Cickovski T, Fernandez M, Jaric M, Wanner A, Holt G, Donna E, Mendes E, Silva-Herzog E, Schneper L, Segal J, Amador DM, Riveros JD, Aguiar-Pulido V, Banerjee S, Salathe M, Mathee K, Narasimhan G. Lower respiratory tract microbiome composition and community interactions in smokers. Access Microbiol 2023; 5:000497.v3. [PMID: 37091735 PMCID: PMC10118249 DOI: 10.1099/acmi.0.000497.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023] Open
Abstract
The lung microbiome impacts on lung function, making any smoking-induced changes in the lung microbiome potentially significant. The complex co-occurrence and co-avoidance patterns between the bacterial taxa in the lower respiratory tract (LRT) microbiome were explored for a cohort of active (AS), former (FS) and never (NS) smokers. Bronchoalveolar lavages (BALs) were collected from 55 volunteer subjects (9 NS, 24 FS and 22 AS). The LRT microbiome composition was assessed using 16S rRNA amplicon sequencing. Identification of differentially abundant taxa and co-occurrence patterns, discriminant analysis and biomarker inferences were performed. The data show that smoking results in a loss in the diversity of the LRT microbiome, change in the co-occurrence patterns and a weakening of the tight community structure present in healthy microbiomes. The increased abundance of the genus
Ralstonia
in the lung microbiomes of both former and active smokers is significant. Partial least square discriminant and DESeq2 analyses suggested a compositional difference between the cohorts in the LRT microbiome. The groups were sufficiently distinct from each other to suggest that cessation of smoking may not be sufficient for the lung microbiota to return to a similar composition to that of NS. The linear discriminant analysis effect size (LEfSe) analyses identified several bacterial taxa as potential biomarkers of smoking status. Network-based clustering analysis highlighted different co-occurring and co-avoiding microbial taxa in the three groups. The analysis found a cluster of bacterial taxa that co-occur in smokers and non-smokers alike. The clusters exhibited tighter and more significant associations in NS compared to FS and AS. Higher degree of rivalry between clusters was observed in the AS. The groups were sufficiently distinct from each other to suggest that cessation of smoking may not be sufficient for the lung microbiota to return to a similar composition to that of NS.
Collapse
Affiliation(s)
- Michael Campos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Michael Campos,
| | - Trevor Cickovski
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
- *Correspondence: Trevor Cickovski,
| | - Mitch Fernandez
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Melita Jaric
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Adam Wanner
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gregory Holt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elio Donna
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eliana Mendes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eugenia Silva-Herzog
- Department of Molecular Microbiology and Infectious Diseases, Department Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Lisa Schneper
- Department of Molecular Microbiology and Infectious Diseases, Department Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jonathan Segal
- Department of Molecular Microbiology and Infectious Diseases, Department Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Juan Daniel Riveros
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Vanessa Aguiar-Pulido
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Department Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Florida International University, Biomolecular Sciences Institute, Miami, FL, USA
- *Correspondence: Kalai Mathee,
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
- Florida International University, Biomolecular Sciences Institute, Miami, FL, USA
- *Correspondence: Giri Narasimhan,
| |
Collapse
|
17
|
Bach L, Ram A, Ijaz UZ, Evans TJ, Haydon DT, Lindström J. The Effects of Smoking on Human Pharynx Microbiota Composition and Stability. Microbiol Spectr 2023; 11:e0216621. [PMID: 36786634 PMCID: PMC10101099 DOI: 10.1128/spectrum.02166-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
The oral microbiota is essential to the health of the host, yet little is known about how it responds to disturbances. We examined the oropharyngeal microbiota of 30 individuals over 40 weeks. As the oropharynx is an important gateway to pathogens, and as smoking is associated with increased incidence and severity of respiratory infections, we compared the microbiota of smokers and nonsmokers to shed light on its potential for facilitating infections. We hypothesized that decreased species diversity, decreased community stability, or increased differences in community structure could facilitate invading pathogens. We found that smoking is associated with reduced alpha diversity, greater differences in community structure, and increased environmental filtering. The effects of short-term perturbations (antibiotic use and participants exhibiting cold symptoms) were also investigated. Antibiotic use had a negative effect on alpha diversity, irrespective of smoking status, and both antibiotic use and cold symptoms were associated with highly unique bacterial communities. A stability analysis of models built from the data indicated that there were no differences in local or global stability in the microbial communities of smokers, compared to nonsmokers, and that their microbiota are equally resistant to species invasions. Results from these models suggest that smoker microbiota are perturbed but characterized by alternative stable states that are as stable and invasion-resistant as are the microbiota of nonsmokers. Smoking is unlikely to increase the risk of infectious disease through the altered composition and ecological function of the microbiota; this is more likely due to the effects of smoking on the local and systemic immune system. IMPORTANCE Smoking is associated with an increased risk of respiratory infections. Hypothetically, the altered community diversity of smokers' pharyngeal microbiota, together with changes in their ecological stability properties, could facilitate their invasion by pathogens. To address this question, we analyzed longitudinal microbiota data of baseline healthy individuals who were either smokers or nonsmokers. While the results indicate reduced biodiversity and increased species turnover in the smokers' pharyngeal microbiota, their ecological stability properties were not different from those of the microbiota of nonsmokers, implying, in ecological terms, that the smokers' microbial communities are not less resistant to invasions. Therefore, the study suggests that the increased propensity of respiratory infections that is seen in smokers is more likely associated with changes in the local and systemic immune system than with ecological changes in the microbial communities.
Collapse
Affiliation(s)
- Lydia Bach
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Asha Ram
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Umer Z. Ijaz
- School of Science and Engineering, University of Glasgow, United Kingdom
| | - Thomas J. Evans
- School of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, United Kingdom
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Jan Lindström
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| |
Collapse
|
18
|
Doğan B, Ayar B, Pirim D. Investigation of putative roles of smoking-associated salivary microbiome alterations on carcinogenesis by integrative in silico analysis. Comput Biol Chem 2023; 102:107805. [PMID: 36587566 DOI: 10.1016/j.compbiolchem.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Growing evidence suggests that cigarette smoking alters the salivary microbiome composition and affects the risk of various complex diseases including cancer. However, the potential role of the smoking-associated microbiome in cancer development remains unexplained. Here, the putative roles of smoking-related microbiome alterations in carcinogenesis were investigated by in silico analysis and suggested evidence can be further explored by experimental methodologies. The Disbiome database was used to extract smoking-associated microbial taxa in saliva and taxon set enrichment analysis (TSEA) was conducted to identify the gene sets associated with extracted microbial taxa. We further analyzed the expression profiles of identified genes by using RNA-sequencing data from TCGA and GTEx projects. Associations of the genes with smoking-related phenotypes in cancer datasets were analyzed to prioritize genes for their interplay between smoking-related microbiome and carcinogenesis. Thirty-eight microbial taxa associated with smoking were included in the TSEA and this revealed sixteen genes that were significantly associated with smoking-associated microbial taxa. All genes were found to be differentially expressed in at least one cancer dataset, yet the ELF3 and CTSH were the most common differentially expressed genes giving significant results for several cancer types. Moreover, C2CD3, CTSH, DSC3, ELF3, RHOT2, and WSB2 showed statistically significant associations with smoking-related phenotypes in cancer datasets. This study provides in silico evidence for the potential roles of the salivary microbiome on carcinogenesis. The results shed light on the importance of smoking cessation strategies for cancer management and interventions to stratify smokers for their risk of smoking-induced carcinogenesis.
Collapse
Affiliation(s)
- Berkcan Doğan
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, 16059 Bursa, Turkey
| | - Berna Ayar
- Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey; Istinye University, Institute of Health Science, Department of Molecular Oncology, 34010 Istanbul, Turkey
| | - Dilek Pirim
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey.
| |
Collapse
|
19
|
Yu KM, Lee AM, Cho HS, Lee JW, Lim SK. Optimization of DNA extraction and sampling methods for successful forensic microbiome analyses of the skin and saliva. Int J Legal Med 2023; 137:63-77. [PMID: 36416962 DOI: 10.1007/s00414-022-02919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Microbiome studies have contributed to many fields, such as healthcare and medicine; however, these studies are relatively limited in forensics. Microbiome analyses can provide information, such as geolocation and ancestry information, when short tandem repeat (STR) profiling fails. In this study, methods for DNA extraction and sampling from the skin and saliva were optimized for the construction of a Korean Forensic Microbiome Database (KFMD). DNA yields were estimated using four DNA extraction kits, including two automated kits (Maxwell® FSC DNA IQ™ Casework Kit and PrepFiler™ Forensic DNA Extraction Kit, updated) and two manual kits (QIAamp DNA Mini Kit and QIAamp DNA Micro Kit) commonly used in forensic DNA profiling laboratories. Next-generation sequencing of the 16S rRNA V4 region was performed to analyze microbial communities in samples. The Bacterial Transport Swab with Liquid Media (NobleBio), two cotton swabs (PoongSung and Puritan), and nylon-flocked swabs (NobleBio and COPAN) were tested for DNA recovery. The PrepFiler and Maxwell kits showed the highest yields of 3.884 ng/μL and 23.767 ng/μL from the scalp and saliva, respectively. With respect to DNA recovery, nylon-flocked swabs performed better than cotton swabs. The relative abundances of taxa sorted by DNA extraction kits were similar contributions; however, with significant differences in community composition between scalp and saliva samples. Lawsonella and Veillonella were the most abundant genera in the two sample types. Thus, the Maxwell® FSC DNA IQ™ Casework Kit and nylon-flocked swab (NobleBio) were optimal for DNA extraction and collection in microbiome analyses.
Collapse
Affiliation(s)
- Kyeong-Min Yu
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - A-Mi Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Seon Cho
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Woo Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
21
|
From Mouth to Muscle: Exploring the Potential Relationship between the Oral Microbiome and Cancer-Related Cachexia. Microorganisms 2022; 10:microorganisms10112291. [DOI: 10.3390/microorganisms10112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cachexia is a multifactorial wasting syndrome associated with skeletal muscle and adipose tissue loss, as well as decreased appetite. It affects approximately half of all cancer patients and leads to a decrease in treatment efficacy, quality of life, and survival. The human microbiota has been implicated in the onset and propagation of cancer cachexia. Dysbiosis, or the imbalance of the microbial communities, may lead to chronic systemic inflammation and contribute to the clinical phenotype of cachexia. Though the relationship between the gut microbiome, inflammation, and cachexia has been previously studied, the oral microbiome remains largely unexplored. As the initial point of digestion, the oral microbiome plays an important role in regulating systemic health. Oral dysbiosis leads to the upregulation of pro-inflammatory cytokines and an imbalance in natural flora, which in turn may contribute to muscle wasting associated with cachexia. Reinstating this equilibrium with the use of prebiotics and probiotics has the potential to improve the quality of life for patients suffering from cancer-related cachexia.
Collapse
|
22
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
23
|
Liu X, Sun W, Ma W, Wang H, Xu K, Zhao L, He Y. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154652. [PMID: 35307427 DOI: 10.1016/j.scitotenv.2022.154652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Smoking is a serious public health problem that affects human health conditions. Although there is evidence that microorganisms are associated with smoking-related lung diseases, the relationship between the rich lung microbiome of upper respiratory tract groups and smoking has not been studied. OBJECTIVE In this study, we investigated the effects of smoking on environmental microbes and lung microbiome in the Chinese population and provided clues for the role of smoking in the development of respiratory disease. METHODS Bronchoalveolar lavage fluid samples were collected from 55 individuals with a history of smoking. Microbial gene sequencing was carried out through NGS technology. We analyzed and compared the diversity, community structure, and species abundance of bronchoalveolar lavage microbiome between smokers and nonsmokers, to speculate the effects of smoking on the lung microbiome. RESULTS Smoking hardly affected the α diversity of microbial groups of bronchoalveolar lavage, but it had a huge influence on the microbiome composition. The relative abundance of Rothia, Actinomycetes, Haemophilus, Porphyrins, Neisseria, Acinetobacter, and Streptococcus genera had a remarkable increase in the smoking group. On the other hand, the relative abundance of Plusella and Veronella decreased significantly. CONCLUSION Smoking may change the environmental microbes and then alter the structure of the lung microbiome, which may lead to smoking-related diseases.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenwen Sun
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Weiqi Ma
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kandi Xu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishu Zhao
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yayi He
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
24
|
Inchingolo AD, Malcangi G, Semjonova A, Inchingolo AM, Patano A, Coloccia G, Ceci S, Marinelli G, Di Pede C, Ciocia AM, Mancini A, Palmieri G, Barile G, Settanni V, De Leonardis N, Rapone B, Piras F, Viapiano F, Cardarelli F, Nucci L, Bordea IR, Scarano A, Lorusso F, Palermo A, Costa S, Tartaglia GM, Corriero A, Brienza N, Di Venere D, Inchingolo F, Dipalma G. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1014. [PMID: 35883998 PMCID: PMC9323959 DOI: 10.3390/children9071014] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Stefania Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
- Department of Orthodontics, Faculty of Medicine, University of Milan, 20100 Milan, Italy
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| |
Collapse
|
25
|
Herremans KM, Riner AN, Cameron ME, McKinley KL, Triplett EW, Hughes SJ, Trevino JG. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. MICROBIOME 2022; 10:93. [PMID: 35701831 PMCID: PMC9199224 DOI: 10.1186/s40168-022-01262-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/23/2022] [Indexed: 05/09/2023]
Abstract
Pancreatic cancer is a deadly disease with limited diagnostic and treatment options. Not all populations are affected equally, as disparities exist in pancreatic cancer prevalence, treatment and outcomes. Recently, next-generation sequencing has facilitated a more comprehensive analysis of the human oral microbiome creating opportunity for its application in precision medicine. Oral microbial shifts occur in patients with pancreatic cancer, which may be appreciated years prior to their diagnosis. In addition, pathogenic bacteria common in the oral cavity have been found within pancreatic tumors. Despite these findings, much remains unknown about how or why the oral microbiome differs in patients with pancreatic cancer. As individuals develop, their oral microbiome reflects both their genotype and environmental influences. Genetics, race/ethnicity, smoking, socioeconomics and age affect the composition of the oral microbiota, which may ultimately play a role in pancreatic carcinogenesis. Multiple mechanisms have been proposed to explain the oral dysbiosis found in patients with pancreatic cancer though they have yet to be confirmed. With a better understanding of the interplay between the oral microbiome and pancreatic cancer, improved diagnostic and therapeutic approaches may be implemented to reduce healthcare disparities. Video Abstract.
Collapse
Affiliation(s)
- Kelly M. Herremans
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Miles E. Cameron
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Kelley L. McKinley
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, 1200 E Broad St, Richmond, VA 23298-0645 USA
| |
Collapse
|
26
|
Xiao P, Hua Z, Kang X, Lu B, Li M, Wu J, Dong W, Zhang J, Cheng C. Influence of Oral Intaking Habit on Tongue Coating Microbiota in Patients with Esophageal Precancerous Lesions. J Cancer 2022; 13:1168-1180. [PMID: 35281875 PMCID: PMC8899384 DOI: 10.7150/jca.67068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/25/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Esophageal cancer (EC) is a common digestive tract tumor in China, and oral intaking habit has a great influence on the development of EC. The present study explored the correlation between oral intaking habit and tongue coating (TC) microbiota in patients with esophageal precancerous lesions (EPL) to provide a reasonable interpretation of the influence of oral intaking habit on microbial alterations in the EPL. Methods: A case-control study was designed with 123 EPL patients and 176 volunteers with mild esophagitis, and they were well matched using sex, age, and body mass index. The TC microbiota was profiled using high-throughput sequencing of the V3-V4 region of the 16S rRNA gene, and the serum levels of total bile acid (TBA) and interleukin-17α (IL-17α) were measured using enzyme-linked immunosorbent assay. Alpha diversity, community structure, and linear discriminant analysis were conducted, and Spearman correlation analysis was used to build the symbiotic network. Results: No significant differences were observed in the diversity and richness of the TC microbiota between the cases and controls (P > 0.05). TC Peptostreptococcus and Capnocytophaga were enriched in EPL patients. Stratified analysis showed that TC microbial composition was affected by both EPL and oral intaking habit; for example, Atopobium and Actinomyces were positively related to oral intaking habit scores in both the cases and controls, while Simonsiella was negatively correlated with oral intaking habit status in cases but positively correlated with oral intaking habit status in controls. Although serum TBA and IL-17α were not associated with EPL (P > 0.05), the daily-drinking cases had a higher level of serum TBA than the nondrinking cases (P < 0.05), and Helicobacter pylori (Hp) negative controls had a higher level of serum TBA than the Hp-positive controls (P < 0.05). The symbiotic networks were comprised of 71 significant correlations in the controls and 52 significant correlations in the cases. Conclusions: The development of EPL changed the TC microbiota and decreased the symbiotic complexity of the TC bacteria, which were also influenced by the cancer-related oral intaking habit. Bile acid may be a key factor mediating changes in TC microbiota.
Collapse
Affiliation(s)
- Pan Xiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhaolai Hua
- Yangzhong Cancer Institute, Yangzhong People's Hospital, Jiangsu Yangzhong 212200, China
| | - Xiaoyu Kang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Bin Lu
- Department of Oncology, Yangzhong People's Hospital, Yangzhong 212200, Jiangsu, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Chun Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
27
|
Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F, Wang W. Active Smoking Induces Aberrations in Digestive Tract Microbiota of Rats. Front Cell Infect Microbiol 2021; 11:737204. [PMID: 34917518 PMCID: PMC8668415 DOI: 10.3389/fcimb.2021.737204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking could have certain effects on gut microbiota. Some pioneering studies have investigated effects of active smoking on the microbiome in local segments of the digestive tract, while active smoking-induced microbiome alterations in the whole digestive tract have not been fully investigated. Here, we developed a rat model of active smoking and characterized the effects of active smoking on the microbiota within multiple regions along the digestive tract. Blood glucose and some metabolic factors levels, the microbial diversity and composition, relative abundances of taxa, bacterial network correlations and predictive functional profiles were compared between the control group and active smoking group. We found that active smoking induced hyperglycemia and significant reductions in serum insulin and leptin levels. Active smoking induced region-specific shifts in microbiota structure, composition, network correlation and metabolism function along the digestive tract. Our results demonstrated that active smoking resulted in a reduced abundance of some potentially beneficial genera (i.e. Clostridium, Turicibacter) and increased abundance of potentially harmful genera (i.e. Desulfovibrio, Bilophila). Functional prediction suggested that amino acid, lipid, propanoate metabolism function could be impaired and antioxidant activity may be triggered. Active smoking may be an overlooked risk to health through its potential effects on the digestive tract microbiota, which is involved in the cause and severity of an array of chronic diseases.
Collapse
Affiliation(s)
- Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Pei Ye
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Fang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Ge
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peter J Polverini
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
DeClercq V, Nearing JT, Langille MGI. Investigation of the impact of commonly used medications on the oral microbiome of individuals living without major chronic conditions. PLoS One 2021; 16:e0261032. [PMID: 34882708 PMCID: PMC8659300 DOI: 10.1371/journal.pone.0261032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Commonly used medications produce changes in the gut microbiota, however, the impact of these medications on the composition of the oral microbiota is understudied. METHODS Saliva samples were obtained from 846 females and 368 males aged 35-69 years from a Canadian population cohort, the Atlantic Partnership for Tomorrow's Health (PATH). Samples were analyzed by 16S rRNA gene sequencing and differences in microbial community compositions between nonusers, single-, and multi-drug users as well as the 3 most commonly used medications (thyroid hormones, statins, and proton pump inhibitors (PPI)) were examined. RESULTS Twenty-six percent of participants were taking 1 medication and 21% were reported taking 2 or more medications. Alpha diversity indices of Shannon diversity, Evenness, Richness, and Faith's phylogenetic diversity were similar among groups, likewise beta diversity as measured by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.053) and weighted UniFrac distances (R2 = 0.0028, P = 0.161) were non-significant although close to our alpha value threshold (P = 0.05). After controlling for covariates (sex, age, BMI), six genera (Saprospiraceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and Mycoplasma) were significantly different from non-medication users. Thyroid hormones, HMG-CoA reductase inhibitors (statins) and PPI were the most reported medications. Shannon diversity differed significantly among those taking no medication and those taking only thyroid hormones, however, there were no significant difference in other measures of alpha- or beta diversity with single thyroid hormone, statin, or PPI use. Compared to participants taking no medications, the relative abundance of eight genera differed significantly in participants taking thyroid hormones, six genera differed in participants taking statins, and no significant differences were observed with participants taking PPI. CONCLUSION The results from this study show negligible effect of commonly used medications on microbial diversity and small differences in the relative abundance of specific taxa, suggesting a minimal influence of commonly used medication on the salivary microbiome of individuals living without major chronic conditions.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Jacob T. Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G. I. Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
30
|
Schwartz M, Canon F, Feron G, Neiers F, Gamero A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021; 10:2006. [PMID: 34574116 PMCID: PMC8467474 DOI: 10.3390/foods10092006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Flavor perception during food intake is one of the main drivers of food acceptability and consumption. Recent studies have pointed to the oral microbiota as an important factor modulating flavor perception. This review introduces general characteristics of the oral microbiota, factors potentially influencing its composition, as well as known relationships between oral microbiota and chemosensory perception. We also review diverse evidenced mechanisms enabling the modulation of chemosensory perception by the microbiota. They include modulation of the chemosensory receptors activation by microbial metabolites but also modification of receptors expression. Specific enzymatic reactions catalyzed by oral microorganisms generate fragrant molecules from aroma precursors in the mouth. Interestingly, these reactions also occur during the processing of fermented beverages, such as wine and beer. In this context, two groups of aroma precursors are presented and discussed, namely, glycoside conjugates and cysteine conjugates, which can generate aroma compounds both in fermented beverages and in the mouth. The two entailed families of enzymes, i.e., glycosidases and carbon-sulfur lyases, appear to be promising targets to understand the complexity of flavor perception in the mouth as well as potential biotechnological tools for flavor enhancement or production of specific flavor compounds.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Francis Canon
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Gilles Feron
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Fabrice Neiers
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Amparo Gamero
- Department Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
31
|
Hallang S, Esberg A, Haworth S, Johansson I. Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms 2021; 9:1674. [PMID: 34442754 PMCID: PMC8401320 DOI: 10.3390/microorganisms9081674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Modifiable lifestyle interventions may influence dental disease by shifting the composition of the oral microbiota. This study aimed to test whether lifestyle traits are associated with oral microbiota composition and function. Swedish volunteers, aged 16 to 79 years, completed a lifestyle traits questionnaire including lifestyle characteristics and oral health behaviours. Bacterial 16S rDNA amplicons were sequenced and classified into genera and species, using salivary DNA. Microbiota functions were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States and the KO Database of Molecular Functions by ortholog annotation. Tests for association used partial least squares and linear regression analysis with correction for multiple testing. The main analysis included 401 participants and 229 common bacterial species (found in ≥10% of the participants). The overall microbiota composition was strongly associated with questions "do you think caries is a disease?" and "do you use floss or a toothpick?". Enriched relative abundance of Actinomyces, Campylobacter, Dialister, Fusobacterium, Peptidophaga and Scardovia genera (all p < 0.05 after adjustment for multiple testing), and functional profiles showing enrichment of carbohydrate related functions, were found in participants who answered "no" to these questions. Socio-demographic traits and other oral hygiene behaviours were also associated. Healthier oral microbiota composition and predicted functions are found in those with favourable oral health behaviours. Modifiable risk factors could be prioritized for possible interventions.
Collapse
Affiliation(s)
- Shirleen Hallang
- Faculty of Health Sciences, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (S.H.); (S.H.)
| | - Anders Esberg
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
| | - Simon Haworth
- Faculty of Health Sciences, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (S.H.); (S.H.)
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | | |
Collapse
|
32
|
Chopyk J, Bojanowski CM, Shin J, Moshensky A, Fuentes AL, Bonde SS, Chuki D, Pride DT, Crotty Alexander LE. Compositional Differences in the Oral Microbiome of E-cigarette Users. Front Microbiol 2021; 12:599664. [PMID: 34135868 PMCID: PMC8200533 DOI: 10.3389/fmicb.2021.599664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Electronic (e)-cigarettes have been advocated as a safer alternative to conventional tobacco cigarettes. However, there is a paucity of data regarding the impact of e-cigarette aerosol deposition on the human oral microbiome, a key component in human health and disease. We aimed to fill this knowledge gap through a comparative analysis of the microbial community profiles from e-cigarette users and healthy controls [non-smokers/non-vapers (NSNV)]. Moreover, we sought to determine whether e-cigarette aerosol exposure from vaping induces persistent changes in the oral microbiome. To accomplish this, salivary and buccal mucosa samples were collected from e-cigarette users and NSNV controls, with additional oral samples collected from e-cigarette users after 2 weeks of decreased use. Total DNA was extracted from all samples and subjected to PCR amplification and sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Our analysis revealed several prominent differences associated with vaping, specific to the sample type (i.e., saliva and buccal). In the saliva, e-cigarette users had a significantly higher alpha diversity, observed operational taxonomic units (OTUs) and Faith's phylogenetic diversity (PD) compared to NSNV controls, which declined with decreased vaping. The buccal mucosa swab samples were marked by a significant shift in beta diversity between e-cigarette users and NSNV controls. There were also significant differences in the relative abundance of several bacterial taxa, with a significant increase in Veillonella and Haemophilus in e-cigarette users. In addition, nasal swabs demonstrated a trend toward higher colonization rates with Staphylococcus aureus in e-cigarette users relative to controls (19 vs. 7.1%; p = n.s.). Overall, these data reveal several notable differences in the oral bacterial community composition and diversity in e-cigarette users as compared to NSNV controls.
Collapse
Affiliation(s)
- Jessica Chopyk
- Department of Pathology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Christine M. Bojanowski
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, LA, United States
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - John Shin
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Alex Moshensky
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Ana Lucia Fuentes
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Saniya S. Bonde
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Dagni Chuki
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - David T. Pride
- Department of Pathology, University of California San Diego (UCSD), La Jolla, CA, United States
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Laura E. Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| |
Collapse
|
33
|
Wang Y, Zhang Y, Qian Y, Xie YH, Jiang SS, Kang ZR, Chen YX, Chen ZF, Fang JY. Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors. Int J Cancer 2021; 149:925-935. [PMID: 33844851 DOI: 10.1002/ijc.33596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Previous studies have suggested that gut microbiota plays a critical role in colorectal cancer (CRC). Although preliminary comparisons of the oral and gut microbiota between CRC and healthy control (HC) patients have been made, the association between microbiome abundance and host clinical factors has not been fully illustrated, especially oral health conditions. Matching samples of unstimulated saliva, cancer tissues or biopsies and stools were collected from 30 CRC and 30 HC patients from Shanghai Jiao Tong University affiliated Renji Hospital for 16S rRNA sequencing analysis. The diversity in salivary and mucosal microbiome, but not stool microbiome of CRC group, was significantly different from that of HC, as demonstrated by the Principal Component Analysis. Logistic regression analysis revealed that older age and higher oral hygiene index (OHI) were independent risk factors for CRC, with odds ratios and 95% confidence intervals of 1.159 (1.045-1.284) and 4.398 (1.328-14.567), respectively. Salivary Firmicutes to Bacteroides ratio in CRC was significantly higher than that in the HC group (P < .001), while the mucosal ratio was slightly decreased in CRC (P < .05). Salivary Rothia and Streptococcus levels were positively correlated with OHI, while Alloprevotella, Fusobacterium, Peptostreptoccus and Prevotella genera levels were negatively associated with OHI. NetShift analysis revealed that salivary Peptococcus, Centipeda and mucosal Subdoligranulum genus might act as key drivers during the process of carcinogenesis. In conclusion, the current study provides insights into the potential influence of host clinical factors on oral and gut microbiome composition and can be a guide for future studies.
Collapse
Affiliation(s)
- Yao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yao Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yun Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhao-Fei Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
34
|
Abstract
Periodontal diseases are chronic inflammatory, multifactorial diseases where the major triggering factors for disease onset are bacteria and their toxins, but the major part of tissue destruction occurs as a result of host response towards the periodontal microbiome. Periodontal microbiome consists of a wide range of microorganisms including obligate and facultative anaerobes. In health, there is a dynamic balance between the host, environment, and the microbiome. Environmental factors, mainly tobacco smoking and psychological stress, disrupt the symbiotic relationship. Tobacco smoke and its components alter the bacterial surface and functions such as growth. Psychological stressors and stress hormones may affect the outcome of an infection by changing the virulence factors and/or host response. This review aims to provide currently available data on the effects of the major environmental factors on the periodontal microbiome.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
35
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
36
|
D’Angiolella G, Tozzo P, Gino S, Caenazzo L. Trick or Treating in Forensics-The Challenge of the Saliva Microbiome: A Narrative Review. Microorganisms 2020; 8:E1501. [PMID: 33003446 PMCID: PMC7599466 DOI: 10.3390/microorganisms8101501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The oral microbiome harbours microbial community signatures that differ among individuals, highlighting that it could be highly individualizing and potentially unique to each individual. Therefore, the oral microbial traces collected in crime scenes could produce investigative leads. This narrative review will describe the current state-of-the-art of how the salivary microbiome could be exploited as a genetic signature to make inferences in the forensic field. This review has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. Even if further studies are needed to relate the variation in the oral microbiome to specific factors, in order to understand how the salivary microbiome is influenced by an individual's lifestyle, by reviewing the studies published so far, it is clear that the oral microbial analysis could become a useful forensic tool. Even if promising, caution is required in interpreting the results and an effort to direct research towards studies that fill the current knowledge gaps is certainly useful.
Collapse
Affiliation(s)
- Gabriella D’Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy;
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| | - Sarah Gino
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| |
Collapse
|
37
|
Hampelska K, Jaworska MM, Babalska ZŁ, Karpiński TM. The Role of Oral Microbiota in Intra-Oral Halitosis. J Clin Med 2020; 9:E2484. [PMID: 32748883 PMCID: PMC7465478 DOI: 10.3390/jcm9082484] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Halitosis is a common ailment concerning 15% to 60% of the human population. Halitosis can be divided into extra-oral halitosis (EOH) and intra-oral halitosis (IOH). The IOH is formed by volatile compounds, which are produced mainly by anaerobic bacteria. To these odorous substances belong volatile sulfur compounds (VSCs), aromatic compounds, amines, short-chain fatty or organic acids, alcohols, aliphatic compounds, aldehydes, and ketones. The most important VSCs are hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl mercaptan. VSCs can be toxic for human cells even at low concentrations. The oral bacteria most related to halitosis are Actinomyces spp., Bacteroides spp., Dialister spp., Eubacterium spp., Fusobacterium spp., Leptotrichia spp., Peptostreptococcus spp., Porphyromonas spp., Prevotella spp., Selenomonas spp., Solobacterium spp., Tannerella forsythia, and Veillonella spp. Most bacteria that cause halitosis are responsible for periodontitis, but they can also affect the development of oral and digestive tract cancers. Malodorous agents responsible for carcinogenesis are hydrogen sulfide and acetaldehyde.
Collapse
Affiliation(s)
- Katarzyna Hampelska
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (K.H.); (M.M.J.)
- Central Microbiology Laboratory, H. Święcicki Clinical Hospital, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Marcelina Maria Jaworska
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (K.H.); (M.M.J.)
| | - Zuzanna Łucja Babalska
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|