1
|
Wiesenfarth M, Forouhideh-Wiesenfarth Y, Elmas Z, Parlak Ö, Weiland U, Herrmann C, Schuster J, Freischmidt A, Müller K, Siebert R, Günther K, Fröhlich E, Knehr A, Simak T, Bachhuber F, Regensburger M, Petri S, Klopstock T, Reilich P, Schöberl F, Schumann P, Körtvélyessy P, Meyer T, Ruf WP, Witzel S, Tumani H, Brenner D, Dorst J, Ludolph AC. Clinical characterization of common pathogenic variants of SOD1-ALS in Germany. J Neurol 2024; 271:6667-6679. [PMID: 39141064 PMCID: PMC11446975 DOI: 10.1007/s00415-024-12564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Pathogenic variants in the Cu/Zn superoxide dismutase (SOD1) gene can be detected in approximately 2% of sporadic and 11% of familial amyotrophic lateral sclerosis (ALS) patients in Europe. We analyzed the clinical phenotypes of 83 SOD1-ALS patients focusing on patients carrying the most frequent (likely) pathogenic variants (R116G, D91A, L145F) in Germany. Moreover, we describe the effect of tofersen treatment on ten patients carrying these variants. R116G patients showed the most aggressive course of disease with a median survival of 22.0 months compared to 198.0 months in D91A and 87.0 months in L145F patients (HR 7.71, 95% CI 2.89-20.58 vs. D91A; p < 0.001 and HR 4.25, 95% CI 1.55-11.67 vs. L145F; p = 0.02). Moreover, R116G patients had the fastest median ALSFRS-R progression rate with 0.12 (IQR 0.07-0.20) points lost per month. Median diagnostic delay was 10.0 months (IQR 5.5-11.5) and therefore shorter compared to 57.5 months (IQR 14.0-83.0) in D91A (p < 0.001) and 21.5 months (IQR 5.8-38.8) in L145F (p = 0.21) carriers. As opposed to D91A carriers (50.0%), 96.2% of R116G (p < 0.001) and 100.0% of L145F (p = 0.04) patients reported a positive family history. During tofersen treatment, all patients showed a reduction of neurofilament light chain (NfL) serum levels, independent of the SOD1 variant. Patients with SOD1-ALS carrying R116G, D91A, or L145F variants show commonalities, but also differences in their clinical phenotype, including a faster progression rate with shorter survival in R116G, and a comparatively benign disease course in D91A carriers.
Collapse
Affiliation(s)
| | | | - Zeynep Elmas
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Özlem Parlak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Ulrike Weiland
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Christine Herrmann
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Joachim Schuster
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Kathrin Müller
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Kornelia Günther
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Elke Fröhlich
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Tatiana Simak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Franziska Bachhuber
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054, Erlangen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Peter Reilich
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Florian Schöberl
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Peggy Schumann
- Ambulanzpartner Soziotechnologie GmbH, 13353, Berlin, Germany
| | - Peter Körtvélyessy
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353, Berlin, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Magdeburg, 39120, Magdeburg, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353, Berlin, Germany
| | - Wolfgang P Ruf
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| |
Collapse
|
2
|
Goutman SA, Boss J, Jang DG, Piecuch C, Farid H, Batra M, Mukherjee B, Feldman EL, Batterman SA. Residential exposure associations with ALS risk, survival, and phenotype: a Michigan-based case-control study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:543-553. [PMID: 38557405 PMCID: PMC11269018 DOI: 10.1080/21678421.2024.2336110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Environmental exposures impact amyotrophic lateral sclerosis (ALS) risk and progression, a fatal and progressive neurodegenerative disease. Better characterization of these exposures is needed to decrease disease burden. OBJECTIVE To identify exposures in the residential setting that associate with ALS risk, survival, and onset segment. METHODS ALS and control participants recruited from University of Michigan completed a survey that ascertained exposure risks in the residential setting. ALS risk was assessed using logistic regression models followed by latent profile analysis to consider exposure profiles. A case-only analysis considered the contribution of the residential exposure variables via a Cox proportional hazards model for survival outcomes and multinomial logistic regression for onset segment, a polytomous outcome. RESULTS This study included 367 ALS and 255 control participants. Twelve residential variables were associated with ALS risk after correcting for multiple comparison testing, with storage in an attached garage of chemical products including gasoline or kerosene (odds ratio (OR) = 1.14, padjusted < 0.001), gasoline-powered equipment (OR = 1.16, padjusted < 0.001), and lawn care products (OR = 1.15, padjusted < 0.001) representing the top three risk factors sorted by padjusted. Latent profile analysis indicated that storage of these chemical products in both attached and detached garages increased ALS risk. Although residential variables were not associated with poorer ALS survival following multiple testing corrections, storing pesticides, lawn care products, and woodworking supplies in the home were associated with shorter ALS survival using nominal p values. No exposures were associated with ALS onset segment. CONCLUSION Residential exposures may be important modifiable components of the ALS susceptibility and prognosis exposome.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, and
| | - Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Caroline Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Hasan Farid
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Madeleine Batra
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, and
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Sopranzi FM, Faragalli A, Pompili M, Carle F, Gesuita R, Ceravolo MG. Incidence of amyotrophic lateral sclerosis before and during the COVID-19 pandemic: evidence from an 8-year population-based study in Central Italy based on healthcare utilization databases. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:554-562. [PMID: 38557366 DOI: 10.1080/21678421.2024.2336127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder with a high multidimensional burden, with an obscure etiopathogenesis. METHODS We designed a longitudinal, population-based study of people residing in Central Italy (Marche Region) who were beneficiaries of the National Health System. People with an unprecedented ALS hospitalization (335.20 ICD-9 CM) or tagged with an ALS exemption between 2014 and 2021 were considered incident cases. ALS cases residing in the region for <3 years or with an active ALS exemption or hospitalized for ALS before 2014 were excluded. We used secondary sources to identify new ALS diagnoses. The regional referral center for ALS's database was used to test the accuracy of secondary sources in detecting cases. ALS mean incidence was compared to that reported in similar studies conducted in Italy. The incidence rate trend adjusted by sex and age was evaluated using the Poisson regression model. RESULTS We detected 425 new ALS cases (median age: 70y) in the 2014-2021 period, with a mean incidence of 3.5:100,000 py (95%CI: 3.2-3.8; M:F = 1.2), similar to that reported in similar studies conducted in Italy. No trend was observed during 2014-2019. After including 2020-2021 in the model, we observed a mean decrease in incidence of 5.8% (95% CI 2.0%; 9.5%, p = 0.003). CONCLUSION We show a decrease in the incidence rate of ALS in Marche, during the 2014-2021 period, as a possible outcome of a delayed neurological assessment and diagnosis during the pandemic. An ad hoc developed identification algorithm, based on healthcare utilization databases, is a valuable tool to assess the health impact of global contingencies.
Collapse
Affiliation(s)
- Federico Maria Sopranzi
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Faragalli
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | | | - Flavia Carle
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | - Maria Gabriella Ceravolo
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
4
|
Mazzoli R, Chiari A, Vitolo M, Garuti C, Adani G, Vinceti G, Zamboni G, Tondelli M, Galli C, Costa M, Salemme S, Boriani G, Vinceti M, Filippini T. Atrial Fibrillation and Other Cardiovascular Factors and the Risk of Dementia: An Italian Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:688. [PMID: 38928935 PMCID: PMC11203794 DOI: 10.3390/ijerph21060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Dementia is a major neurologic syndrome characterized by severe cognitive decline, and it has a detrimental impact on overall physical health, leading to conditions such as frailty, changes in gait, and fall risk. Depending on whether symptoms occur before or after the age of 65, it can be classified as early-onset (EOD) or late-onset (LOD) dementia. The present study is aimed at investigating the role of cardiovascular factors on EOD and LOD risk in an Italian population. Using a case-control study design, EOD and LOD cases were recruited at the Modena Cognitive Neurology Centers in 2016-2019. Controls were recruited among caregivers of all the dementia cases. Information about their demographics, lifestyles, and medical history were collected through a tailored questionnaire. We used the odds ratio (OR) and 95% confidence interval (CI) to estimate the EOD and LOD risk associated with the investigated factors after adjusting for potential confounders. Of the final 146 participants, 58 were diagnosed with EOD, 34 with LOD, and 54 were controls. According to their medical history, atrial fibrillation was associated with increased disease risk (ORs 1.90; 95% CI 0.32-11.28, and 3.64; 95% CI 0.32-41.39 for EOD and LOD, respectively). Dyslipidemia and diabetes showed a positive association with EOD, while the association was negative for LOD. We could not evaluate the association between myocardial infarction and EOD, while increased risk was observed for LOD. No clear association emerged for carotid artery stenosis or valvular heart disease. In this study, despite the limited number of exposed subjects and the high imprecision of the estimates, we found positive associations between cardiovascular disease, particularly dyslipidemia, diabetes, and atrial fibrillation, and EOD.
Collapse
Affiliation(s)
- Riccardo Mazzoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41225 Modena, Italy; (R.M.)
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
| | - Marco Vitolo
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, 41124 Modena, Italy
| | - Caterina Garuti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41225 Modena, Italy; (R.M.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41225 Modena, Italy; (R.M.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Chiara Galli
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
- Primary Care Department, Modena Local Health Authority, 41124 Modena, Italy
| | - Manuela Costa
- Neurology Unit of Carpi Hospital, Modena Local Health Authority, 41012 Carpi, Italy
| | - Simone Salemme
- Neurology Unit, Baggiovara Hospital, AOU Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, 41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41225 Modena, Italy; (R.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41225 Modena, Italy; (R.M.)
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
5
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Wu F, Malek AM, Buchanich JM, Arena VC, Rager JR, Sharma RK, Vena JE, Bear T, Talbott EO. Exposure to ambient air toxicants and the risk of amyotrophic lateral sclerosis (ALS): A matched case control study. ENVIRONMENTAL RESEARCH 2024; 242:117719. [PMID: 37993052 DOI: 10.1016/j.envres.2023.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with few risk factors identified and no known cure. Gene-environment interaction is hypothesized especially for sporadic ALS cases (90-95%) which are of unknown etiology. We aimed to investigate risk factors for ALS including exposure to ambient air toxics. METHODS This population-based case-control study included 267 ALS cases (from the United States [U.S.] Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry National ALS Registry and Biorepository) and 267 age, sex, and county-matched controls identified via a commercial database. Exposure assessment for 34 ambient air toxicants was performed by assigning census tract-level U.S. Environmental Protection Agency (EPA) 2011 National Air Toxics Assessment (NATA) data to participants' residential ZIP codes. Conditional logistic regression was used to compute adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for individual compounds, chemical classes, and overall exposure. Sensitivity analyses using both conditional logistic regression and Bayesian grouped weighted quartile sum (GWQS) models were performed to assess the integrity of findings. RESULTS Using the 2011 NATA, the highest exposure quartile (Q4) compared to the lowest (Q1) of vinyl chloride (aOR = 6.00, 95% CI: 1.87-19.25), 2,4-dinitrotoluene (aOR = 5.45, 95% CI: 1.53-19.36), cyanide (aOR = 4.34, 95% CI: 1.52-12.43), cadmium (aOR = 3.30, 95% CI: 1.11-9.77), and carbon disulfide (aOR = 2.98, 95% CI: 1.00-8.91) was associated with increased odds of ALS. Residential air selenium showed an inverse association with ALS (second quartile [Q2] vs. Q1: aOR = 0.38, 95% CI: 0.18-0.79). Additionally, residential exposure to organic/chlorinated solvents (Q4 vs Q1: aOR = 2.62, 95% CI: 1.003-6.85) was associated with ALS. CONCLUSIONS Our findings using the 2011 NATA linked by census tract to residential area provide evidence of increased ALS risk in cases compared to controls for 2,4-dinitrotoluene, vinyl chloride, cyanide, and the organic/chlorinated solvents class. This underscores the importance of ongoing surveillance of potential exposures for at-risk populations.
Collapse
Affiliation(s)
- Fan Wu
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeanine M Buchanich
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vincent C Arena
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith R Rager
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ravi K Sharma
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Evelyn O Talbott
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Vitturi BK, Montecucco A, Rahmani A, Dini G, Durando P. Occupational risk factors for multiple sclerosis: a systematic review with meta-analysis. Front Public Health 2023; 11:1285103. [PMID: 38054069 PMCID: PMC10694508 DOI: 10.3389/fpubh.2023.1285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Objective We decided to conduct the first systematic review with meta-analysis to provide the highest level of up-to-date evidence on the occupational risk factors for Multiple Sclerosis. Methods A systematic, comprehensive literature search was performed in four electronic academic databases. We included any case-control study that enrolled working-age subjects and compared the proportion of MS cases with controls who were not exposed to an occupational risk factor. The primary outcome was the occurrence of MS. The quality assessment was performed with the Critical Appraisal Checklist for Case Control Studies, developed, and validated by the Joanna Briggs Institute. All the selection process was also carried out by two independent and previously trained researchers. Results Overall, the total sample included 19,004 people with MS and 4,164,162 controls. Agricultural workers (OR = 1.44, 95% CI 1.13-1.83), offshore workers (OR = 3.56, 95% CI 2.74-4.61), and hairdressers (OR = 8.25, 95% CI 1.02-66.52) were associated with a higher probability of being diagnosed with MS. In parallel, workers exposed to toxic fumes from oil wells (OR = 16.80, 95% CI 8.33-33.90), low-frequency magnetic fields (OR = 1.71, 95% CI 1.03-2.72), and pesticides (OR = 3.17, 95% CI = 2.53-3.99) also had an increased likelihood of having MS. Conclusion Our study has the potential to influence more assertive public policies. Nevertheless, future studies on how the occupational setting may contribute to the incidence of MS are highly recommended. Systematic review registration The protocol was registered in the international prospective register of systematic reviews (PROSPERO- CRD42023443257).
Collapse
Affiliation(s)
| | - Alfredo Montecucco
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alborz Rahmani
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Guglielmo Dini
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Durando
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
8
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Borghero G, Sechi MM, Vasta R, Pierri V, Pili F, Pateri I, Pilotto S, Ercoli T, Muroni A, Chiò A, Defazio G. Spatial clustering of amyotrophic lateral sclerosis in Sardinia, Italy: The contribution of age, sex, and genetic factors. Muscle Nerve 2023; 68:323-328. [PMID: 37466098 DOI: 10.1002/mus.27939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION/AIMS Several microgeographic clusters of higher/lower incidence of amyotrophic lateral sclerosis (ALS) have been identified worldwide. Differences in the distribution of local factors were proposed to explain the excess ALS risk, whereas the contribution of known genetic/epigenetic factors remains unclear. The aim is to identify restricted areas of higher risk in Sardinia and to assess whether age, sex, and the most common causative genetic mutations in Sardinia (C9orf72 and TARDBP mutations) contributed to the variation in the ALS risk. METHODS We performed an ad hoc analysis of the 10-y population-based incident cohort of ALS cases from a recent study of a large Sardinian area. Cluster analysis was performed by age- and sex-adjusted Kulldorff's spatial scan statistic. RESULTS We identified a statistically significant cluster of higher ALS incidence in a relatively large area including 34 municipalities and >100,000 individuals. The investigated genetic mutations were more frequent in the cluster area than outside. Regardless of the genetic mutations, the excess of ALS risk was significantly associated with either sex or with age ≥ 65 y. Finally, an additive interaction between older age and male sex contributed to the excess of ALS risk in the cluster area but not outside. DISCUSSION Our analysis demonstrated that known genetic factors, age, and sex may contribute to microgeographic variation in ALS incidence. The significant additive interaction between older age and male sex we found in the high-incidence cluster could suggest the presence of a third factor connecting the analyzed risk factors.
Collapse
Affiliation(s)
- Giuseppe Borghero
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Maria Margherita Sechi
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosario Vasta
- Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Vincenzo Pierri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pili
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ida Pateri
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Muroni
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Adriano Chiò
- Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Giovanni Defazio
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Amyotrophic Lateral Sclerosis Center, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
11
|
Zhu Q, Zhou J, Zhang Y, Huang H, Han J, Cao B, Xu D, Zhao Y, Chen G. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci 2023; 17:1196722. [PMID: 37284659 PMCID: PMC10239956 DOI: 10.3389/fnins.2023.1196722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the upper and lower motor neurons. Though the pathogenesis of ALS is still unclear, exploring the associations between risk factors and ALS can provide reliable evidence to find the pathogenesis. This meta-analysis aims to synthesize all related risk factors of ALS to understand this disease comprehensively. Methods We searched the following databases: PubMed, EMBASE, Cochrane library, Web of Science, and Scopus. Moreover, observational studies, including cohort studies, and case-control studies, were included in this meta-analysis. Results A total of 36 eligible observational studies were included, and 10 of them were cohort studies and the rest were case-control studies. We found six factors exacerbated the progression of disease: head trauma (OR = 1.26, 95% CI = 1.13, 1.40), physical activity (OR = 1.06, 95% CI = 1.04, 1.09), electric shock (OR = 2.72, 95% CI = 1.62, 4.56), military service (OR = 1.34, 95% CI = 1.11, 1.61), pesticides (OR = 1.96, 95% CI = 1.7, 2.26), and lead exposure (OR = 2.31, 95% CI = 1.44, 3.71). Of note, type 2 diabetes mellitus was a protective factor for ALS. However, cerebrovascular disease (OR = 0.99, 95% CI = 0.75, 1.29), agriculture (OR = 1.22, 95% CI = 0.74, 1.99), industry (OR = 1.24, 95% CI = 0.81, 1.91), service (OR = 0.47, 95% CI = 0.19, 1.17), smoking (OR = 1.25, 95% CI = 0.5, 3.09), chemicals (OR = 2.45, 95% CI = 0.89, 6.77), and heavy metal (OR = 1.5, 95% CI = 0.47, 4.84) were not risk factors for ALS based on meta-analyses. Conclusions Head trauma, physical activity, electric shock, military service, pesticides, and lead were risk factors for ALS onset and progression. But DM was a protective factor. This finding provides a better understanding of ALS risk factors with strong evidence for clinicians to rationalize clinical intervention strategies. INPLSY registration number https://inplasy.com/inplasy-2022-9-0118/, INPLASY202290118.
Collapse
Affiliation(s)
- Qiaochu Zhu
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yijie Zhang
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hai Huang
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Jie Han
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Biwei Cao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Dandan Xu
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Yan Zhao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Gang Chen
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Goutman SA, Boss J, Godwin C, Mukherjee B, Feldman EL, Batterman SA. Occupational history associates with ALS survival and onset segment. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:219-229. [PMID: 36193557 PMCID: PMC10067530 DOI: 10.1080/21678421.2022.2127324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To identify associations between occupational settings and self-reported occupational exposures on amyotrophic lateral sclerosis (ALS) survival and phenotypes. METHODS All patients seen in the University of Michigan Pranger ALS Clinic were invited to complete an exposure assessment querying past occupations and exposures. Standard occupational classification (SOC) codes for each job and the severity of various exposure types were derived. Cox proportional hazards models associated all-cause mortality with occupational settings and the self-reported exposures after adjusting for sex, diagnosis age, revised El Escorial criteria, onset segment, revised ALS Functional Rating Scale (ALSFRS-R), and time from symptom onset to diagnosis. Multinomial logistic regression models with three categories, adjusted for age, assessed the association between occupational settings and exposures to onset segment. RESULTS Among the 378 ALS participants (median age, 64.7 years; 54.4% male), poorer survival was associated with work in SOC code "Production Occupations" and marginally with work in "Military Occupation"; poor survival associated with self-reported occupational pesticide exposure in adjusted models. Among onset segments: cervical onset was associated with ALS participants having ever worked in "Buildings and Grounds Cleaning and Maintenance Occupations," "Construction and Extraction Occupations," and "Production Occupations"; bulbar onset with self-reported occupational exposure to radiation; and cervical onset with exposure to particulate matter, volatile organic compounds, metals, combustion and diesel exhaust, electromagnetic radiation, and radiation. CONCLUSION Occupational settings and self-reported exposures influence ALS survival and onset segment. Further studies are needed to explore and understand these relationships, most advantageously using prospective cohorts and detailed ALS registries.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, and
| | - Christopher Godwin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, and
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Stipa G, Ancidoni A, Vanacore N, Bellomo G. Raw Water and ALS: A Unifying Hypothesis for the Environmental Agents Involved in ALS. Ann Neurosci 2023; 30:124-132. [PMID: 37706096 PMCID: PMC10496797 DOI: 10.1177/09727531221120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 09/15/2023] Open
Abstract
Different studies identified the presence of several altered genes in familial and sporadic amyotrophic lateral sclerosis (ALS) forms. The experimental data, together with the epidemiological data, would seem to suggest the existence of molecular mechanisms (e.g., axonal transport) related to these genes, together with a susceptibility of the same genes to certain environmental factors that would therefore suggest an impact of the environment on the etiopathogenesis of ALS. In our review, we considered the most relevant environmental clusters around the world, collecting different hypotheses and underlining common environmental factors among the different clusters. Moreover, further epidemiological data identified a higher risk of ALS in professional athletes and, in particular, in soccer and football players. Despite this increased risk of ALS highlighted by the epidemiological evidence in aforementioned sports, the mechanisms remain unclear. At last, the use of raw water has been associated with ALS risk. The aim of the present review is to characterize a possible relationship between these clusters, to be explored in the context of the interaction between genetic and environmental factors on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| |
Collapse
|
14
|
Kamalian A, Foroughmand I, Koski L, Darvish M, Saghazadeh A, Kamalian A, Razavi SZE, Abdi S, Dehgolan SR, Fotouhi A, Roos PM. Metal concentrations in cerebrospinal fluid, blood, serum, plasma, hair, and nails in amyotrophic lateral sclerosis: A systematic review and meta-analysis. J Trace Elem Med Biol 2023; 78:127165. [PMID: 37018859 DOI: 10.1016/j.jtemb.2023.127165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive muscle wasting, paralysis, and respiratory failure. Whereas approximately 10-15 % of ALS cases are familial, the etiology of the remaining, sporadic ALS cases remains largely unknown. Environmental exposures have been suggested as causative factors for decades, and previous studies have found elevated concentrations of metals in ALS patients. PURPOSE This meta-analysis aims to assess metal concentrations in body fluids and tissues of ALS patients. METHODS We searched the MEDLINE and EMBASE databases on December 7th, 2022 for cross-sectional, case-control, and cohort studies which measure metal concentrations in whole blood, blood plasma, blood serum, cerebrospinal fluid (CSF), urine, erythrocytes, nail, and hair samples of ALS patients. Meta-analysis was then performed when three or more articles existed for a comparison. FINDINGS Twenty-nine studies measuring 23 metals were included and 13 meta-analyses were performed from 4234 screened entries. The meta-analysis results showed elevated concentrations of lead and selenium. Lead, measured in whole blood in 6 studies, was significantly elevated by 2.88 µg/L (95 % CI: 0.83-4.93, p = 0.006) and lead, measured in CSF in 4 studies, was significantly elevated by 0.21 µg/L (95 % CI: 0.01 - 0.41, p = 0.04) in ALS patients when compared to controls. Selenium, measured in serum/plasma in 4 studies, was significantly elevated by 4.26 µg/L (95% CI: 0.73 - 7.79, p = 0.02) when compared to controls.Analyses of other metal concentrations showed no statistically significant difference between the groups. CONCLUSION Lead has been discussed as a possible causative agent in ALS since 1850. Lead has been found in the spinal cord of ALS patients, and occupational exposure to lead is more common in ALS patients than in controls. Selenium in the form of neurotoxic selenite has been shown to geochemically correlate to ALS occurrence in Italy. Although no causal relationship can be established from the results of this meta-analysis, the findings suggest an involvement of lead and selenium in the pathophysiology of ALS. After a thorough meta-analysis of published studies on metal concentrations in ALS it can only be concluded that lead and selenium are elevated in ALS.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA.
| | - Iman Foroughmand
- Bloomberg School of Public Health, Johns hopkins University, Baltimore, MD, USA
| | - Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden
| | - Mahtab Darvish
- Clinical Research Development Center, Shahid Modarres Hospital, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta Analysis Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Amirhossein Kamalian
- School of Medicine, Yazd Shahid Sadoughi University of Medical Sciences, Shahid Bahonar Square, Yazd, Iran
| | - Seyedeh Zahra Emami Razavi
- Physical Medicine and Rehabilitation Department, Imam Khomeini Hospital Complex, Tohid Square, Tehran University of Medical Sciences, Tehran, Iran; Joint Reconstruction Research Center (JRRC), Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Abdi
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Shahram Rahimi Dehgolan
- School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden; Department of Clinical Physiology, St. Göran Hospital University Unit, St. Göransplan 1, 112 81 Stockholm, Sweden
| |
Collapse
|
15
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Saucier D, Registe PPW, Bélanger M, O'Connell C. Urbanization, air pollution, and water pollution: Identification of potential environmental risk factors associated with amyotrophic lateral sclerosis using systematic reviews. Front Neurol 2023; 14:1108383. [PMID: 36970522 PMCID: PMC10030603 DOI: 10.3389/fneur.2023.1108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Despite decades of research, causes of ALS remain unclear. To evaluate recent hypotheses of plausible environmental factors, the aim of this study was to synthesize and appraise literature on the potential associations between the surrounding environment, including urbanization, air pollution and water pollution, and ALS. Methods We conducted a series (n = 3) of systematic reviews in PubMed and Scopus to identify epidemiological studies assessing relationships between urbanization, air pollution and water pollution with the development of ALS. Results The combined search strategy led to the inclusion of 44 articles pertaining to at least one exposure of interest. Of the 25 included urbanization studies, four of nine studies on living in rural areas and three of seven studies on living in more highly urbanized/dense areas found positive associations to ALS. There were also three of five studies for exposure to electromagnetic fields and/or proximity to powerlines that found positive associations to ALS. Three case-control studies for each of diesel exhaust and nitrogen dioxide found positive associations with the development of ALS, with the latter showing a dose-response in one study. Three studies for each of high selenium content in drinking water and proximity to lakes prone to cyanobacterial blooms also found positive associations to ALS. Conclusion Whereas markers of air and water pollution appear as potential risk factors for ALS, results are mixed for the role of urbanization.
Collapse
Affiliation(s)
- Daniel Saucier
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- *Correspondence: Daniel Saucier
| | - Pierre Philippe Wilson Registe
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Mathieu Bélanger
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Colleen O'Connell
- Stan Cassidy Center for Rehabilitation, Fredericton, NB, Canada
- Department of Medicine, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
17
|
Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2718-2755. [PMID: 34663153 DOI: 10.1080/09603123.2021.1987396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Following the introduction and application of pesticides in human life, they have always been along with health concerns both in acute poisoning and chronic toxicities. Neurotoxicity of pesticides in chronic exposures has been known as one of the most important human health problems, as most of these chemicals act through interacting with some elements of nervous system. Pesticide-induced neurotoxicity can be defined in different categories of neurological disorders including neurodegenerative (Alzheimer, Parkinson, amyotrophic lateral sclerosis, multiple sclerosis), neurodevelopmental (attention deficit hyperactivity disorder, autism spectrum disorders, developmental delay, and intellectual disability), neurobehavioral and neuropsychiatric (depression/suicide attempt, anxiety/insomnia, and cognitive impairment) disorders some of which are among the most debilitating human health problems. In this review, neurotoxicity of pesticides in the mentioned categories and sub-categories of neurological diseases have been systematically presented in relation to different route of exposures including general, occupational, environmental, prenatal, postnatal, and paternal.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
18
|
Theme 01 - Epidemiology and Informatics. Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Boumédiene F, Marin B, Luna J, Bonneterre V, Camu W, Lagrange E, Besson G, Esselin F, De La Cruz E, Lautrette G, Preux PM, Couratier P. Spatio-temporal clustering of amyotrophic lateral sclerosis in France: A population-based study. Eur J Epidemiol 2022; 37:1181-1193. [PMID: 36098945 DOI: 10.1007/s10654-022-00904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess spatial aggregates of amyotrophic lateral sclerosis (ALS) incident cases, using a solid geo-epidemiological statistical method, in France. METHODS This population-based study (2003-2011) investigated 47.1 million person-years of follow-up (PYFU). Case ascertainment of incident ALS cases was based on multiple sources (ALS referral centers, hospital centres and health insurance data). Neurologists confirmed all ALS diagnoses. Exhaustiveness was estimated through capture-recapture. Aggregates were investigated in four steps: (a) geographical modelling (standardized incidence ratio (SIR) calculation), (b) analysis of the spatial distribution of incidence (Phothoff-Winttinghill's test, Global Moran's Index, Kulldorf's spatial scan statistic, Local Moran's Index), (c) classification of the level of certainty of spatial aggregates (i.e. definite cluster; probable over-incidence area; possible over-incidence area) and (d) evaluation of the robustness of the results. RESULTS The standardized incidence of ALS was 2.46/100,000 PYFU (95% CI 2.31-2.63, European population as reference) based on 1199 incident cases. We identified 13 areas of spatial aggregates: one cluster (stable in robustness analysis), five probable over-incidence areas (2 stable in robustness analysis) and seven possible over-incidence areas (including 4 stable areas in robustness analysis). A cluster was identified in the Rhône-Alpes region: 100 observed vs 54.07 expected cases for 2,411,514 PYFU, SIR: 1.85 (95% CI 1.50-2.25). CONCLUSION We report here one of the largest investigations of incidence and spatial aggregation of ALS ever performed in a western country. Using a solid methodology framework for case ascertainment and cluster analysis, we identified 13 areas that warrant further investigation.
Collapse
Affiliation(s)
- Farid Boumédiene
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Benoît Marin
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Jaime Luna
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Vincent Bonneterre
- University Grenoble Alpes, CNRS, Grenoble INP, TIMC, 38000, Grenoble, France
| | - William Camu
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Emmeline Lagrange
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Gérard Besson
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Géraldine Lautrette
- Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Pierre Marie Preux
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,CEBIMER, Centre d'Epidémiologie, de Biostatistique et de Méthodologie de la Recherche, CHU Limoges, Limoges, France
| | - Philippe Couratier
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France. .,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France.
| | | |
Collapse
|
20
|
Goutman SA, Boss J, Godwin C, Mukherjee B, Feldman EL, Batterman SA. Associations of self-reported occupational exposures and settings to ALS: a case-control study. Int Arch Occup Environ Health 2022; 95:1567-1586. [PMID: 35593931 PMCID: PMC9424174 DOI: 10.1007/s00420-022-01874-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Environmental exposures contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal and progressive neurological disease. Identification of these exposures is important for targeted screening and risk factor modification. OBJECTIVE To identify occupational exposures that are associated with a higher risk of ALS using both survey and standard occupational classification (SOC) coding procedures, and to highlight how exposure surveys can complement SOC coding. METHODS ALS participants and neurologically healthy controls recruited in Michigan completed a detailed exposure assessment on their four most recent and longest held occupations. Exposure scores were generated from the exposure survey, and occupations were assigned to SOC codes by experienced exposure scientists. RESULTS This study included 381 ALS and 272 control participants. ALS participants reported higher duration-adjusted occupational exposure to particulate matter (OR = 1.45, 95% CI 1.19-1.78, p < 0.001), volatile organic compounds (OR = 1.22, 95% CI 1.02-1.45, p = 0.029), metals (OR = 1.48, 95% CI 1.21-1.82, p < 0.001), and combustion and diesel exhaust pollutants (OR = 1.20, 95% CI 1.01-1.43, p = 0.041) prior to ALS diagnosis, when adjusted for sex, age, and military service compared to controls. In multivariable models, only occupational exposure to metals remained significant risk (OR = 1.56, 95% CI 1.11-2.20, p = 0.011), although in an adaptive elastic net model, particulate matter (OR = 1.203), pesticides (OR = 1.015), and metals (1.334) were all selected as risk factors. Work in SOC code "Production Occupations" was associated with a higher ALS risk. SOC codes "Building and Grounds Cleaning and Maintenance Occupations", "Construction and Extraction Occupations", "Installation, Maintenance, and Repair Occupations", and "Production Occupations" were all associated with a higher exposure to metals as determined using survey data. DISCUSSION Occupational exposure to particulate matter, volatile organic compounds, metals, pesticides, and combustion and diesel exhaust and employment in "Production Occupations" was associated with an increased ALS risk in this cohort.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109-5223, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Godwin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109-5223, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Urbano T, Vinceti M, Mandrioli J, Chiari A, Filippini T, Bedin R, Tondelli M, Simonini C, Zamboni G, Shimizu M, Saito Y. Selenoprotein P Concentrations in the Cerebrospinal Fluid and Serum of Individuals Affected by Amyotrophic Lateral Sclerosis, Mild Cognitive Impairment and Alzheimer’s Dementia. Int J Mol Sci 2022; 23:ijms23179865. [PMID: 36077261 PMCID: PMC9456314 DOI: 10.3390/ijms23179865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein P, a selenium-transporter protein, has been hypothesized to play a role in the etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s dementia (AD). However, data in humans are scarce and largely confined to autoptic samples. In this case–control study, we determined selenoprotein P concentrations in both the cerebrospinal fluid (CSF) and the serum of 50 individuals diagnosed with ALS, 30 with AD, 54 with mild cognitive impairment (MCI) and of 30 controls, using sandwich enzyme-linked immunosorbent assay (ELISA) methods. We found a positive and generally linear association between CSF and serum selenoprotein P concentrations in all groups. CSF selenoprotein P and biomarkers of neurodegeneration were positively associated in AD, while for MCI, we found an inverted-U-shaped relation. CSF selenoprotein P concentrations were higher in AD and MCI than in ALS and controls, while in serum, the highest concentrations were found in MCI and ALS. Logistic and cubic spline regression analyses showed an inverse association between CSF selenoprotein P levels and ALS risk, and a positive association for AD risk, while an inverted-U-shaped relation with MCI risk emerged. Conversely, serum selenoprotein P concentrations were positively associated with risk of all conditions but only in their lower range. Overall, these findings indicate some abnormalities of selenoprotein P concentrations in both the central nervous system and blood associated with ALS and neurocognitive disorders, though in different directions. These alterations may reflect either phenomena of etiologic relevance or disease-induced alterations of nutritional and metabolic status.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marco Vinceti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
- Correspondence: ; Tel.: +39-059-2055-481
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Motataianu A, Serban G, Barcutean L, Balasa R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int J Mol Sci 2022; 23:ijms23169339. [PMID: 36012603 PMCID: PMC9409178 DOI: 10.3390/ijms23169339] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a grievous neurodegenerative disease whose survival is limited to only a few years. In spite of intensive research to discover the underlying mechanisms, the results are fairly inconclusive. Multiple hypotheses have been regarded, including genetic, molecular, and cellular processes. Notably, oxidative stress has been demonstrated to play a crucial role in ALS pathogenesis. In addition to already recognized and exhaustively studied genetic mutations involved in oxidative stress production, exposure to various environmental factors (e.g., electromagnetic fields, solvents, pesticides, heavy metals) has been suggested to enhance oxidative damage. This review aims to describe the main processes influenced by the most frequent genetic mutations and environmental factors concurring in oxidative stress occurrence in ALS and the potential therapeutic molecules capable of diminishing the ALS related pro-oxidative status.
Collapse
Affiliation(s)
- Anca Motataianu
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-0724-051-516
| | - Laura Barcutean
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
23
|
Adel M, Copat C, Oliveri Conti G, Sakhaie F, Hashemi Z, Mancini G, Cristaldi A, Ferrante M. Trace elements in the muscle tissue of Hemiculter leucisculus and Abramis brama orientalis from the Anzali International wetland, south-west of Caspian Sea: An exposure risk assessment. MARINE POLLUTION BULLETIN 2022; 180:113756. [PMID: 35617744 DOI: 10.1016/j.marpolbul.2022.113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
High levels of trace elements in aquatic environments can affect the quality of seafood. We analyzed the concentrations of As, Cd, Co, Hg, Mn, Ni and Pb, in the edible muscles of Hemiculter leucisculus and A. brama orientalis caught in four different areas of southwest of the Caspian Sea. We estimated the potential risks for human health deriving by the oral consumption of these two species, and the Target Hazard Quotient (THQ) according to the US-EPA approach. THQ by adults and children was always below 1 for all stations. The greater contribution was given by Co, followed by Cd, Hg, Pb, Ni, As and Mn. Total-THQ was 0.538 and 0.246 for children and adults, respectively. Trace elements detected by our study were not elevated, highlighting a positive picture of the studied area and a lower risk of developing chronic systemic effects deriving from the consumption of local fish products.
Collapse
Affiliation(s)
- Milad Adel
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Chiara Copat
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "GF Ingrassia", University of Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "GF Ingrassia", University of Catania, Italy
| | - Fahimeh Sakhaie
- School of Pharmacy, Shahid Beheshti University, Tehran, Iran
| | - Zahra Hashemi
- School of Pharmacy, Shahid Beheshti University, Tehran, Iran
| | - Giuseppe Mancini
- Department of Electric, Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "GF Ingrassia", University of Catania, Italy.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "GF Ingrassia", University of Catania, Italy
| |
Collapse
|
24
|
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig's Disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152504. [PMID: 34971691 DOI: 10.1016/j.scitotenv.2021.152504] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The etiology of sporadic amyotrophic lateral sclerosis (ALS) is still unclear. We evaluate environmental factors suspected to be associated with ALS for their potential linkage to disease causality and to model geographic distributions of susceptible populations and expected cases worldwide. A PRISMA systematic literature review was performed 2021. Bradford Hill criteria were used to identify and rank environmental factors and a secondary review of ALS diagnoses in population studies and ALS case or cohort studies was conducted. Prevalence rate projection informed estimates of impacted regions and populations. Among 1710 papers identified, 258 met the inclusion criteria, of which 173 responded to at least one of nine Bradford Hill criteria among 83 literature-identified ALS environmental factors. Environmental determinants of ALS in order of decreasing significance were β-N-methylamino-L-alanine (BMAA), formaldehyde, selenium, and heavy metals including manganese, mercury, zinc, and copper. Murine animal models were the most common methodology for exploring environmental factors. Another line of investigation of 62 population exposure studies implicated the same group of environmental agents (mean odds ratios): BMAA (2.32), formaldehyde (1.54), heavy metals (2.99), manganese (3.85), mercury (2.74), and zinc (2.78). An age-adjusted incidence model estimated current total ALS cases globally at ~85,000 people compared to only ~1600 cases projected from the reported ALS incidence in the literature. Modeling with the prevalence microscope equation forecasted an increase in U.S. ALS cases from 16,707 confirmed in 2015 to ~22,650 projected for 2040. Two orthogonal methods employed implicate BMAA, formaldehyde, manganese, mercury, and zinc as environmental factors with strong ALS associations. ALS cases likely are significantly underreported globally, and high vulnerability exists in regions with large aging populations. Recent studies on other diseases with environmental determinants suggest the need to consider additional potential triggers and mechanisms, including exposures to microbial agents and epigenetic modifications.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
25
|
Gianferrari G, Martinelli I, Zucchi E, Simonini C, Fini N, Vinceti M, Ferro S, Gessani A, Canali E, Valzania F, Sette E, Pugliatti M, Tugnoli V, Zinno L, Stano S, Santangelo M, De Pasqua S, Terlizzi E, Guidetti D, Medici D, Salvi F, Liguori R, Vacchiano V, Casmiro M, Querzani P, Currò Dossi M, Patuelli A, Morresi S, Longoni M, De Massis P, Rinaldi R, Borghi A, Amedei A, Mandrioli J. Epidemiological, Clinical and Genetic Features of ALS in the Last Decade: A Prospective Population-Based Study in the Emilia Romagna Region of Italy. Biomedicines 2022; 10:biomedicines10040819. [PMID: 35453569 PMCID: PMC9031824 DOI: 10.3390/biomedicines10040819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Increased incidence rates of amyotrophic lateral sclerosis (ALS) have been recently reported across various Western countries, although geographic and temporal variations in terms of incidence, clinical features and genetics are not fully elucidated. This study aimed to describe demographic, clinical feature and genotype–phenotype correlations of ALS cases over the last decade in the Emilia Romagna Region (ERR). From 2009 to 2019, our prospective population-based registry of ALS in the ERR of Northern Italy recorded 1613 patients receiving a diagnosis of ALS. The age- and sex-adjusted incidence rate was 3.13/100,000 population (M/F ratio: 1.21). The mean age at onset was 67.01 years; women, bulbar and respiratory phenotypes were associated with an older age, while C9orf72-mutated patients were generally younger. After peaking at 70–75 years, incidence rates, among women only, showed a bimodal distribution with a second slight increase after reaching 90 years of age. Familial cases comprised 12%, of which one quarter could be attributed to an ALS-related mutation. More than 70% of C9orf72-expanded patients had a family history of ALS/fronto-temporal dementia (FTD); 22.58% of patients with FTD at diagnosis had C9orf72 expansion (OR 6.34, p = 0.004). In addition to a high ALS incidence suggesting exhaustiveness of case ascertainment, this study highlights interesting phenotype–genotype correlations in the ALS population of ERR.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-05-9396-1640; Fax: +39-05-9396-3775
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
- Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy;
| | - Annalisa Gessani
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Elena Canali
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (F.V.)
| | - Franco Valzania
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (F.V.)
| | - Elisabetta Sette
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
| | - Lucia Zinno
- Department of Neuroscience, University of Parma, 43121 Parma, Italy; (L.Z.); (S.S.)
| | - Salvatore Stano
- Department of Neuroscience, University of Parma, 43121 Parma, Italy; (L.Z.); (S.S.)
| | - Mario Santangelo
- Department of Neurology, Carpi Hospital, 41014 Modena, Italy; (M.S.); (S.D.P.)
| | - Silvia De Pasqua
- Department of Neurology, Carpi Hospital, 41014 Modena, Italy; (M.S.); (S.D.P.)
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy; (E.T.); (D.G.)
| | - Donata Guidetti
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy; (E.T.); (D.G.)
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Parma, Italy;
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna and IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (R.L.); (V.V.)
| | - Veria Vacchiano
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna and IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (R.L.); (V.V.)
| | - Mario Casmiro
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy; (M.C.); (P.Q.)
| | - Pietro Querzani
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy; (M.C.); (P.Q.)
| | - Marco Currò Dossi
- Department of Neurology, Infermi Hospital, 47923 Rimini, Italy; (M.C.D.); (M.L.)
| | - Alberto Patuelli
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy;
| | - Simonetta Morresi
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | - Marco Longoni
- Department of Neurology, Infermi Hospital, 47923 Rimini, Italy; (M.C.D.); (M.L.)
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | | | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Clinica Neurologica Metropolitana (NeuroMet), 40139 Bologna, Italy;
| | - Annamaria Borghi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, 40133 Bologna, Italy;
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| |
Collapse
|
26
|
Chen GX, Douwes J, van den Berg L, Pearce N, Kromhout H, Glass B, McLean DJ, 't Mannetje AM. Occupational exposures to pesticides and other chemicals: a New Zealand motor neuron disease case–control study. Occup Environ Med 2022; 79:412-420. [DOI: 10.1136/oemed-2021-108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
ObjectivesTo assess associations between occupational exposures to pesticides and other chemicals and motor neuron disease (MND).MethodsA population-based case–control study that included 319 MND cases (64% male/36% female) recruited through the New Zealand MND Association complemented with hospital discharge data, and 604 controls identified from the Electoral Roll. For each job held, a questionnaire collected information on 11 exposure categories (dust, fibres, tobacco smoke, fumes, gas, fumigants, oils/solvents, acids/alkalis, pesticides, other chemicals and animals/animal products). ORs were estimated using logistic regression adjusting for age, sex, ethnicity, socioeconomic status, education, smoking, alcohol consumption, physical activities, head/spine injury and other occupational exposures.ResultsTwo exposure categories were associated with increased MND risks: pesticides (OR 1.70, 95% CI 1.17 to 2.48) and fumigants (OR 3.98, 95% CI 1.81 to 8.76), with risks increasing with longer exposure duration (p<0.01). Associations were also observed for: methyl bromide (OR 5.28, 95% CI 1.63 to 17.15), organochlorine insecticides (OR 3.28, 95% CI 1.18 to 9.07), organophosphate insecticides (OR 3.11, 95% CI 1.40 to 6.94), pyrethroid insecticides (OR 6.38, 95% CI 1.13 to 35.96), inorganic (copper) fungicides (OR 4.66, 95% CI 1.53 to 14.19), petrol/diesel fuel (OR 2.24, 95% CI 1.27 to 3.93) and unspecified solvents (OR 1.91, 95% CI 1.22 to 2.99). In women, exposure to textile fibres (OR 2.49, 95% CI 1.13 to 5.50), disinfectants (OR 9.66, 95% CI 1.29 to 72.44) and cleaning products (OR 3.53, 95% CI 1.64 to 7.59) were also associated with MND; this was not observed in men (OR 0.80, 95% CI 0.44 to 1.48; OR 0.72, 95% CI 0.29 to 1.84; OR 0.57, 95% CI 0.21 to 1.56, respectively).ConclusionsThis study adds to the evidence that pesticides, especially insecticides, fungicides, and fumigants, are risk factors for MND.
Collapse
|
27
|
Mezei G, Lau E, Pace ND, Schenk J, Kheifets L. Receipt of Electroconvulsive Therapy and Subsequent Development of Amyotrophic Lateral Sclerosis: A Cohort Study. Bioelectromagnetics 2022; 43:81-89. [PMID: 35066895 DOI: 10.1002/bem.22389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/25/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gabor Mezei
- Center for Health Sciences Exponent Inc. Oakland California
| | - Edmund Lau
- Center for Health Sciences Exponent Inc. Menlo Park California
| | | | - Jamie Schenk
- Center for Health Sciences Exponent Inc. Oakland California
| | - Leeka Kheifets
- Department of Epidemiology University of California, Los Angeles Los Angeles California
| |
Collapse
|
28
|
Andrew A, Zhou J, Gui J, Harrison A, Shi X, Li M, Guetti B, Nathan R, Tischbein M, Pioro EP, Stommel E, Bradley W. Pesticides applied to crops and amyotrophic lateral sclerosis risk in the U.S. Neurotoxicology 2021; 87:128-135. [PMID: 34562505 PMCID: PMC10756230 DOI: 10.1016/j.neuro.2021.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Environmental exposures are implicated in the etiology of amyotrophic lateral sclerosis (ALS). Application of insecticides, herbicides, and fungicides with neurotoxic properties to crops is permitted in the U.S., however reporting of the quantities is government mandated. OBJECTIVE To identify pesticides that may be associated with ALS etiology for future study. METHODS We geospatially estimated exposure to crop-applied pesticides as risk factors for ALS in a large de-identified medical claims database, the SYMPHONY Integrated Dataverse®. We extracted residence at diagnosis of ∼26,000 nationally distributed ALS patients, and matched non-ALS controls. We mapped county-level U.S. Geological Survey data on applications of 423 pesticides to estimate local residential exposure. We randomly broke the SYMPHONY dataset into two groups to form independent discovery and validation cohorts, then confirmed top hits using residential history information from a study of NH, VT, and OH. RESULTS Pesticides with the largest positive statistically significant associations in both the discovery and the validation studies and evidence of neurotoxicity in the literature were the herbicides 2,4-D (OR 1.25 95 % CI 1.17-1.34) and glyphosate (OR 1.29 95 %CI 1.19-1.39), and the insecticides carbaryl (OR 1.32 95 %CI 1.23-1.42) and chlorpyrifos (OR 1.25 95 %CI 1.17-1.33). SIGNIFICANCE Our geospatial analysis results support potential neurotoxic pesticide exposures as risk factors for sporadic ALS. Focused studies to assess these identified potential relationships are warranted.
Collapse
Affiliation(s)
- Angeline Andrew
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.
| | - Jie Zhou
- Dartmouth College, Hanover, NH, United States
| | - Jiang Gui
- Dartmouth College, Hanover, NH, United States
| | | | - Xun Shi
- Dartmouth College, Hanover, NH, United States
| | - Meifang Li
- Dartmouth College, Hanover, NH, United States
| | - Bart Guetti
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | | | - Maeve Tischbein
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Erik P Pioro
- Center for ALS and Related Disorders, Cleveland Clinic, Cleveland, OH, United States
| | - Elijah Stommel
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Walter Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
29
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
30
|
Li J, Bi H. Integrating network pharmacology and in vitro model to investigate hippocampal neurotoxicity induced by atrazine. Toxicol Mech Methods 2021; 32:259-267. [PMID: 34663174 DOI: 10.1080/15376516.2021.1995917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Atrazine (ATR), a commonly applied herbicide in agriculture, has been found to cause hippocampal injury in rodents. However, the underlying toxicological targets and mechanisms are unclear. In this study, network pharmacology analysis and in vitro model were integrated to investigate the effect and mechanism of ATR-induced hippocampal neurotoxicity. In total, 71 targets of hippocampal neurotoxicity induced by ATR were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) enrichment analysis suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate the underlying mechanisms, the top 10 hub targets were screened and included tumor protein p53 (Tp53), caspase 3 (Casp3), prostaglandin-endoperoxide synthase 2 (Ptgs2), cAMP-responsive element-binding protein 1 (Creb1), estrogen receptor 1 (Esr1), Jun proto-oncogene (Jun), brain-derived neurotrophic factor (Bdnf), catalase (Cat), sirtuin 1 (Sirt1) and Fos proto-oncogene (Fos). Moreover, the cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay showed that ATR had time and dose-dependent cytotoxicity on H19-7 cells. TUNEL staining revealed that ATR increased the apoptotic ratio. In addition, Real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that the mRNA expression levels of all hub targets showed significant changes, except Esr1 and Jun. Our study demonstrated that ATR mainly acted on multiple targets and signaling pathways to exert its hippocampal neurotoxicity. These results provided initial evidence for the further exploration of the toxicological mechanism of ATR.
Collapse
Affiliation(s)
- Jianan Li
- Key Lab of Environment and Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
He D, Cui L. Assessing the Causal Role of Selenium in Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Front Genet 2021; 12:724903. [PMID: 34691149 PMCID: PMC8527026 DOI: 10.3389/fgene.2021.724903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives: The relation between selenium overexposure and increased risk of amyotrophic lateral sclerosis (ALS) has been subject to considerable interest. Epidemiologic studies have reported suggestive associations between selenium and ALS, although the causal inference between selenium and ALS remains to be established. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to analyze the causal role of selenium on ALS risk. Variants associated with selenium levels were obtained from the GWAS meta-analysis of circulating selenium levels (n = 5,477) and toenail selenium levels (n = 4,162) in the European population. Outcome data were from the largest ALS GWAS dataset with 20,806 ALS cases and 59,804 controls in the European population. Inverse variance weighted (IVW) method was used as the main analysis, with an array of sensitivity analyses performed to detect potential violations of MR assumptions. Results: Inverse variance weighted (IVW) analysis indicated no evidence of a causal role for selenium levels in ALS development (odds ratio (OR) = 1.02, 95% confidence interval (CI) = 0.96–1.08). Similar results were observed for the sensitivity analyses (OR = 1.00, 95% CI = 0.95–1.07 for weighted median; OR = 1.07, 95% CI = 0.87–1.32 for MR-Egger), with no pleiotropy detected. Conclusions: Although selenium was found associated with ALS according to earlier epidemiologic studies, current evidence based on the population of European ancestry does not support the causal effect of selenium on ALS risk.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| |
Collapse
|
32
|
Mitsumoto H, Garofalo DC, Gilmore M, Andrews L, Santella RM, Andrews H, McElhiney M, Murphy J, Nieves JW, Rabkin J, Hupf J, Horton DK, Mehta P, Factor-Litvak P. Case-control study in ALS using the National ALS Registry: lead and agricultural chemicals are potential risk factors. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:190-202. [PMID: 34137650 DOI: 10.1080/21678421.2021.1936556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To identify occupational risk factors for ALS using well-characterized participants with ALS (P-ALS), sibling controls (S-controls), and matched population controls (P-controls) within the National ALS Registry. We also compared oxidative stress (OS) biomarkers between groups. Methods: P-ALS were recruited over 4 years. Demographic, socioeconomic, and medical data were ascertained from medical records and structured interviews. P-ALS were followed prospectively for 2 years or until death, whichever came sooner. S-controls and age-, sex-, race/ethnicity-, and residential location-matched P-controls were recruited over 3 years. Occupational exposure to lead and agricultural chemicals (ACs) were assigned by an occupational hygienist, blinded to case status. OS biomarkers in urine were measured. Results: P-ALS (mean age 62.8 years; 63% males) resided across the United States. Demographic and socioeconomic variables did not differ among P-ALS, S-controls, and P-controls. P-ALS were more likely to report occupations with exposure to lead (adjusted OR (aOR)=2.3, 95% CI 1.1, 4.6) and ACs (aOR = 2.4, 95% CI 1.2, 4.6) compared to pooled controls. Among those with occupations with exposure to both lead and ACs, aOR was 7.2 (95% CI 2.0, 26.1). Urinary 8-oxo-dG was significantly elevated among P-ALS (11.07 ± 5.42 ng/mL) compared to S-controls, P-controls, or pooled controls (pooled 7.43 ± 5.42 ng/mL; p < 0.0001) but was not associated with occupational exposure to either lead or ACs. Conclusions: Findings reveal increased risk of ALS diagnosis among those with occupational exposure to lead and ACs and increased OS biomarkers among cases compared to controls. OS may be an important pathogenic mechanism in ALS.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana C Garofalo
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Madison Gilmore
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leslie Andrews
- Department of Environmental Health, Columbia University, New York, NY, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Howard Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Martin McElhiney
- Department of Clinical Psychology, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer Murphy
- Department of Neurology, University of California, San Francisco, CA, USA, and
| | - Jeri W Nieves
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Judith Rabkin
- Department of Clinical Psychology, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Hupf
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - D Kevin Horton
- Centers for Disease Control and Prevention/Agency for Toxic Substance and Disease Registry (CDC/ATSDR), Atlanta, GA, USA
| | - Paul Mehta
- Centers for Disease Control and Prevention/Agency for Toxic Substance and Disease Registry (CDC/ATSDR), Atlanta, GA, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Residential exposure to electromagnetic fields and risk of amyotrophic lateral sclerosis: a dose-response meta-analysis. Sci Rep 2021; 11:11939. [PMID: 34099747 PMCID: PMC8185090 DOI: 10.1038/s41598-021-91349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a fatal prognosis and still unknown etiology. Some environmental risk factors have been suggested, including exposure to magnetic fields. Studies have suggested positive associations in occupationally-exposed populations, but the link with residential exposure is still debated as is the shape of such relation. Due to recent availability of advanced biostatistical tools for dose–response meta-analysis, we carried out a systematic review in order to assess the dose–response association between ALS and residential exposure to magnetic fields. We performed an online literature searching through April 30, 2021. Studies were included if they assessed residential exposure to electromagnetic fields, based either on distance from overhead power lines or on magnetic field modelling techniques, and if they reported risk estimates for ALS. We identified six eligible studies, four using distance-based and one modelling-based exposure assessment, and one both methods. Both distance-based and particularly modelling-based exposure estimates appeared to be associated with a decreased ALS risk in the highest exposure category, although estimates were very imprecise (summary RRs 0.87, 95% CI 0.63–1.20, and 0.27, 95% CI 0.05–1.36). Dose–response meta-analysis also showed little association between distance from power lines and ALS, with no evidence of any threshold. Overall, we found scant evidence of a positive association between residential magnetic fields exposure and ALS, although the available data were too limited to conduct a dose–response analysis for the modelled magnetic field estimates or to perform stratified analyses.
Collapse
|
34
|
Ferrante M, Cristaldi A, Oliveri Conti G. Oncogenic Role of miRNA in Environmental Exposure to Plasticizers: A Systematic Review. J Pers Med 2021; 11:jpm11060500. [PMID: 34199666 PMCID: PMC8229109 DOI: 10.3390/jpm11060500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The daily environmental exposure of humans to plasticizers may adversely affect human health, representing a global issue. The altered expression of microRNAs (miRNAs) plays an important pathogenic role in exposure to plasticizers. This systematic review summarizes recent findings showing the modified expression of miRNAs in cancer due to exposure to plasticizers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review of the literature published in the past 10 years, focusing on the relationship between plasticizer exposure and the expression of miRNAs related to cancer. Starting with 535 records, 17 articles were included. The results support the hypothesis that exposure to plasticizers causes changes in or the deregulation of a number of oncogenic miRNAs and show that the interaction of plasticizers with several redundant miRNAs, such as let-7f, let-7g, miR-125b, miR-134, miR-146a, miR-22, miR-192, miR-222, miR-26a, miR-26b, miR-27b, miR-296, miR-324, miR-335, miR-122, miR-23b, miR-200, miR-29a, and miR-21, might induce deep alterations. These genotoxic and oncogenic responses can eventually lead to abnormal cell signaling pathways and metabolic changes that participate in many overlapping cellular processes, and the evaluation of miRNA-level changes can be a useful target for the toxicological assessment of environmental pollutants, including plastic additives and plasticizers.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-378-2181; Fax: +39-095-378-2177
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| |
Collapse
|
35
|
Farrugia Wismayer M, Borg R, Farrugia Wismayer A, Bonavia K, Vella M, Pace A, Vassallo N, Cauchi RJ. Occupation and amyotrophic lateral sclerosis risk: a case-control study in the isolated island population of Malta. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:528-534. [PMID: 33821701 DOI: 10.1080/21678421.2021.1905847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a mostly sporadic neurodegenerative disease. The role of environmental factors has been extensively investigated but associations remain controversial. Considering that a substantial proportion of adult life is spent at work, identifying occupations and work-related exposures is considered an effective way to detect factors that increase ALS risk. This process may be further facilitated in population isolates due to environmental and genetic homogeneity. Our study investigated occupations and occupational exposures potentially associated with ALS risk in the isolated island population of Malta, using a case-control study design. Methods: Patients with ALS and randomly identified matched controls (1:1) were recruited throughout a four-year window, from 2017 through 2020. Data on educational level, residence, main occupation, smoking, and alcohol history were collected. Results: We found that compared to controls (44.4%), a higher percentage (73.7%) of ALS patients reported a blue-collar job as their main occupation (OR 2.04, 95% CI 1.2-3.72; p = 0.0072). Through regression analysis, craft and related trades occupations such as carpentry and construction (ISCO-08 major group 7), were found to be positively associated with ALS, with patients in this occupational category found to be more prone to develop bulbar-onset ALS (p = 0.0297). Overall, patients with ALS reported a significantly higher exposure to work-related strenuous physical activity (OR 2.35, 95% CI 1.53-3.59; p = 0.0002). Conclusion: Our findings suggest that manual workers particularly those working in the carpentry and construction industries have an increased ALS risk, possibly due to a history of intense or sustained physical activity.
Collapse
Affiliation(s)
- Maia Farrugia Wismayer
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Rebecca Borg
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Andrew Farrugia Wismayer
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Karl Bonavia
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Malcolm Vella
- Department of Neuroscience, Mater Dei Hospital, Msida, Malta
| | - Adrian Pace
- Department of Neurology, Gozo General Hospital, Victoria, Gozo, Malta
| | - Neville Vassallo
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Ruben J Cauchi
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
36
|
Filippini T, Mandrioli J, Malagoli C, Costanzini S, Cherubini A, Maffeis G, Vinceti M. Risk of Amyotrophic Lateral Sclerosis and Exposure to Particulate Matter from Vehicular Traffic: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030973. [PMID: 33499343 PMCID: PMC7908475 DOI: 10.3390/ijerph18030973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with still unknown etiology. Some occupational and environmental risk factors have been suggested, including long-term air pollutant exposure. We carried out a pilot case-control study in order to evaluate ALS risk due to particulate matter with a diameter of ≤10 µm (PM10) as a proxy of vehicular traffic exposure. (2) Methods: We recruited ALS patients and controls referred to the Modena Neurology ALS Care Center between 1994 and 2015. Using a geographical information system, we modeled PM10 concentrations due to traffic emissions at the geocoded residence address at the date of case diagnosis. We computed the odds ratio (OR) and 95% confidence interval (CI) of ALS according to increasing PM10 exposure, using an unconditional logistic regression model adjusted for age and sex. (3) Results: For the 132 study participants (52 cases and 80 controls), the average of annual median and maximum PM10 concentrations were 5.2 and 38.6 µg/m3, respectively. Using fixed cutpoints at 5, 10, and 20 of the annual median PM10 levels, and compared with exposure <5 µg/m3, we found no excess ALS risk at 5-10 µg/m3 (OR 0.87, 95% CI 0.39-1.96), 10-20 µg/m3 (0.94, 95% CI 0.24-3.70), and ≥20 µg/m3 (0.87, 95% CI 0.05-15.01). Based on maximum PM10 concentrations, we found a statistically unstable excess ALS risk for subjects exposed at 10-20 µg/m3 (OR 4.27, 95% CI 0.69-26.51) compared with those exposed <10 µg/m3. However, risk decreased at 20-50 µg/m3 (OR 1.49, 95% CI 0.39-5.75) and ≥50 µg/m3 (1.16, 95% CI 0.28-4.82). ALS risk in increasing tertiles of exposure showed a similar null association, while comparison between the highest and the three lowest quartiles lumped together showed little evidence for an excess risk at PM10 concentrations (OR 1.13, 95% CI 0.50-2.55). After restricting the analysis to subjects with stable residence, we found substantially similar results. (4) Conclusions: In this pilot study, we found limited evidence of an increased ALS risk due to long-term exposure at high PM10 concentration, though the high statistical imprecision of the risk estimates, due to the small sample size, particularly in some exposure categories, limited our capacity to detect small increases in risk, and further larger studies are needed to assess this relation.
Collapse
Affiliation(s)
- Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Carlotta Malagoli
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Sofia Costanzini
- DIEF Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | | | | | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Correspondence:
| |
Collapse
|
37
|
Shikha D, Singh PK. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4104-4124. [PMID: 33210252 DOI: 10.1007/s11356-020-11600-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
The heavy metal contamination of soil and groundwater is a serious threat to environment worldwide. The survival of human being primarily relies upon soil and groundwater sources. Therefore, the remediation of heavy metal-contaminated soil and groundwater is a matter of utmost concern. Heavy metals are non-degradable and persist in the environment and subsequently contaminate the food chain. Heavy metal pollution puts a serious impact on human health and it adversely affects our physical body. Although, numerous in situ conventional technologies have been utilized for the treatment purpose, but most of the techniques have some limitations such as high cost, deterioration of soil properties, disturbances to soil native flora and fauna and intensive labour. Despite that, in situ phytoremediation is a cost-effective, eco-friendly, solar-driven and novel approach with significant public acceptance. The past research reflects rare discussion addressing both (heavy metal in situ phytoremediation of soil and groundwater) in one platform. The present review article covers both the concepts of in situ phytoremediation of soil and groundwater with major emphasis on health risks of heavy metals, enhanced integrated approaches of in situ phytoremediation, mechanisms of in situ phytoremediation along with effective hyperaccumulator plants for heavy metals remediation, challenges and future prospects.
Collapse
Affiliation(s)
- Deep Shikha
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Prasoon Kumar Singh
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
38
|
Tesauro M, Bruschi M, Filippini T, D'Alfonso S, Mazzini L, Corrado L, Consonni M, Vinceti M, Fusi P, Urani C. Metal(loid)s role in the pathogenesis of amyotrophic lateral sclerosis: Environmental, epidemiological, and genetic data. ENVIRONMENTAL RESEARCH 2021; 192:110292. [PMID: 33027627 DOI: 10.1016/j.envres.2020.110292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. The etiology is still unknown and the pathogenesis remains unclear. ALS is familial in the 10% of cases with a Mendelian pattern of inheritance. In the remaining sporadic cases, a multifactorial origin is supposed in which several predisposing genes interact with environmental factors. The etiological role of environmental factors, such as pesticides, exposure to electromagnetic fields, and metals has been frequently investigated, with controversial findings. Studies in the past two decades have highlighted possible roles of metals, and ionic homeostasis dysregulation has been proposed as the main trigger to motor-neuron degeneration. This study aims at evaluating the possible role of environmental factors in etiopathogenesis of ALS, with a particular attention on metal contamination, focusing on the industrial Briga area in the province of Novara (Piedmont region, North Italy), characterized by: i) a higher incidence of sporadic ALS (sALS) in comparison with the entire province, and ii) the reported environmental pollution. Environmental data from surface, ground and discharge waters, and from soils were collected and specifically analyzed for metal content. Considering the significance of genetic mechanisms in ALS, a characterization for the main ALS genes has been performed to evaluate the genetic contribution for the sALS patients living in the area of study. The main findings of this study are the demonstration that in the Briga area the most common metal contaminants are Cu, Zn, Cr, Ni (widely used in tip-plating processes), that are above law limits in surface waters, discharge waters, and soil. In addition, other metals and metalloids, such as Cd, Pb, Mn, and As show a severe contamination in the same area. Results of genetic analyses show that sALS patients in the Briga area do not carry recurrent mutations or an excess of mutations in the four main ALS causative genes (SOD1, TARDBP, FUS, C9ORF72) and for ATXN2 CAG repeat locus. This study supports the hypothesis that the higher incidence of sALS in Briga area may be related to environmental metal(loid)s contamination, along with other environmental factors. Further studies, implementing analysis of genetic polymorphisms, as well as investigation with long term follow-up, may yield to key aspects into the etiology of ALS. The interplay between different approaches (environmental, chemical, epidemiological, genetic) of our work provides new insights and methodology to the comprehension of the disease etiology.
Collapse
Affiliation(s)
- Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy.
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Letizia Mazzini
- ALS Centre Department of Neurology, Maggiore della Carità University Hospital, Corso Mazzini, 18, 28100, Novara, Italy
| | - Lucia Corrado
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, 715 Albany Street, MA 02118, USA
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy.
| |
Collapse
|
39
|
Zuccarello P, Manganelli M, Oliveri Conti G, Copat C, Grasso A, Cristaldi A, De Angelis G, Testai E, Stefanelli M, Vichi S, Fiore M, Ferrante M. Water quality and human health: A simple monitoring model of toxic cyanobacteria growth in highly variable Mediterranean hot dry environments. ENVIRONMENTAL RESEARCH 2021; 192:110291. [PMID: 33027628 DOI: 10.1016/j.envres.2020.110291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Due to population growth, urbanization and economic development, demand for freshwater in urban areas is increasing throughout Europe. At the same time, climate change, eutrophication and pollution are affecting the availability of water supplies. Sicily, a big island in southern Italy, suffers from an increasing drought and consequently water shortage. In the last decades, in Sicilian freshwater reservoirs several Microcystis aeruginosa and more recently Planktothrix rubescens blooms were reported. The aims of the study were: (1) identify and quantify the occurring species of cyanobacteria (CB), (2) identify which parameters, among those investigated in the waters, could favor their growth, (3) set up a model to identify reservoirs that need continuous monitoring due to the presences, current or prospected, of cyanobacterial blooms and of microcystins, relevant for environmental and, consequentially, for human health. Fifteen artificial reservoirs among the large set of Sicilian artificial water bodies were selected and examined for physicochemical and microbiological characterization. Additional parameters were assessed, including the presence, identification and count of the cyanobacterial occurring species, the measurement of microcystins (MCs) levels and the search for the genes responsible for the toxins production. Principal Component Analysis (PCA) was used to relate environmental condition to cyanobacterial growth. Water quality was poor for very few parameters, suggesting common anthropic pressures, and PCA highlighted clusters of reservoirs vulnerable to hydrological conditions, related to semi-arid Mediterranean climate and to the use of the reservoir. In summer, bloom was detected in only one reservoir and different species was highlighted among the Cyanobacteria community. The only toxins detected were microcystins, although always well below the WHO reference value for drinking waters (1.0 μg/L). However, molecular analysis could not show the presence of potential cyanotoxins producers since a few numbers of cells among total could be sufficient to produce these low MCs levels but not enough high to be proved by the traditional molecular method applied. A simple environmental risk-based model, which accounts for the high variability of both cyanobacteria growth and cyanotoxins producing, is proposed as a cost-effective tool to evaluate the need for monitoring activities in reservoirs aimed to guarantee supplying waters safety.
Collapse
Affiliation(s)
- P Zuccarello
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| | - M Manganelli
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - G Oliveri Conti
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy.
| | - C Copat
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| | - A Grasso
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| | - A Cristaldi
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| | - G De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - E Testai
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - M Stefanelli
- Research Certification and Control Division, INAIL, Via Fontana Candida 1, Monteporzio Catone, Rome, Italy
| | - S Vichi
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - M Fiore
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| | - M Ferrante
- Environmental and Food Hygiene Laboratories, Department "G.F. Ingrassia", University of Catania, Italy
| |
Collapse
|
40
|
Dickerson AS, Hansen J, Gredal O, Weisskopf MG. Study of Occupational Chromium, Iron, and Nickel Exposure and Amyotrophic Lateral Sclerosis in Denmark. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8086. [PMID: 33147887 PMCID: PMC7663552 DOI: 10.3390/ijerph17218086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/19/2022]
Abstract
Studies of occupational metal exposures and amyotrophic lateral sclerosis (ALS) have focused primarily on known neurotoxicants, including lead, mercury, selenium, and cadmium. However, these exposures are often co-occurring with other lesser studied metals. We conducted a population-based case-control study with the aim of assessing associations between occupational chromium, iron, and nickel exposures and risk of ALS. We identified ALS cases in Denmark from 1982 through 2013 from the Danish National Patient Registry and matched them to 100 controls based on birth year and sex. Cumulative metal exposures were estimated using job exposure matrices applied to occupational history from the Danish Pension Fund. Although mutually adjusted odds of ALS were higher in men with chromium exposures in the third quartile (aOR = 1.24; 95% CI 0.91, 1.69) and fourth quartile (aOR = 1.19; 95% CI: 0.80, 1.76) compared to those with no exposure, differences did not reach statistical significance. We also observed higher odds of ALS in women with nickel exposures in the third quartile (aOR = 2.21; 95% CI: 1.14, 4.28), but not for the fourth quartile (aOR = 0.61; 95% CI: 0.23, 1.64). Our findings do not suggest associations between occupational exposures to these metals and ALS. However, unavoidable non-differential misclassification from the use of JEMs may have masked truly increased risk.
Collapse
Affiliation(s)
- Aisha S. Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Johnni Hansen
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark;
| | - Ole Gredal
- National Rehabilitation Center for Neuromuscular Disorders, 8000 Copenhagen, Denmark;
| | - Marc G. Weisskopf
- Departments Epidemiology of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
41
|
Adani G, Filippini T, Garuti C, Malavolti M, Vinceti G, Zamboni G, Tondelli M, Galli C, Costa M, Vinceti M, Chiari A. Environmental Risk Factors for Early-Onset Alzheimer's Dementia and Frontotemporal Dementia: A Case-Control Study in Northern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7941. [PMID: 33138082 PMCID: PMC7663191 DOI: 10.3390/ijerph17217941] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Background: Early-onset dementia (EOD) is defined as dementia with symptom onset before 65 years. The role of environmental risk factors in the etiology of EOD is still undefined. We aimed at assessing the role of environmental risk factors in EOD etiology, taking into account its different clinical types. Methods: Using a case-control study, we recruited all EOD cases referred to Modena hospitals from 2016 to 2019, while the referent population was drawn from cases' caregivers. We investigated residential history, occupational and environmental exposures to chemicals and lifestyle behaviors through a self-administered questionnaire. We computed the odds ratios of EOD risk (overall and restricting to the Alzheimer's dementia (AD) or frontotemporal dementia (FTD) diagnoses) and the corresponding 95% confidence intervals using an unconditional logistic regression model. Results: Fifty-eight EOD patients (19 FTD and 32 AD) and 54 controls agreed to participate. Most of the investigated exposures, such as occupational exposure to aluminum, pesticides, dyes, paints or thinners, were associated with an increased odds ratio (OR) for FTD but not for AD. Long-term use of selenium-containing dietary supplements was associated with increased OR for EOD and, particularly, for FTD. For both EOD forms, smoking and playing football showed an increased odds ratio, while cycling was associated with increased risk only in FTD. Overall sports practice appeared to be a protective factor for both types. Conclusions: Our results suggest a role of environmental and behavioral risk factors such as some chemical exposures and professional sports in EOD etiology, in particular with reference to FTD. Overall sports practice may be associated with a reduced EOD risk.
Collapse
Affiliation(s)
- Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Caterina Garuti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Marcella Malavolti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
| | - Giulia Vinceti
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (G.V.); (G.Z.)
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (G.V.); (G.Z.)
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Manuela Tondelli
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Primary Care Department, Modena Local Health Authority, 41124 Modena, Italy
| | - Chiara Galli
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
- Primary Care Department, Modena Local Health Authority, 41124 Modena, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NeuroFARBA), University of Florence, 50139 Florence, Italy
| | - Manuela Costa
- Neurology Unit of Carpi Hospital, Modena Local Health Authority, 41012 Carpi, Italy;
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.A.); (T.F.); (C.G.); (M.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Annalisa Chiari
- Neurology Unit, Modena Policlinico-University Hospital, 41126 Modena, Italy; (M.T.); (C.G.); (A.C.)
| |
Collapse
|
42
|
Amyotrophic lateral sclerosis and lead: A systematic update. Neurotoxicology 2020; 81:80-88. [PMID: 32941938 DOI: 10.1016/j.neuro.2020.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Heavy metals are considered to be among the leading environmental factors that trigger amyotrophic lateral sclerosis (ALS). However, no convincing biopathological mechanism and therapeutic clinical implication of such metals in ALS pathogenesis have been established. This is partly attributable to the technical and scientific difficulties in demonstrating a direct and causative role of heavy metals in the onset of ALS in patients. However, a body of epidemiological, clinical and experimental evidences suggest that lead (Pb), more than other metals, could actually play a major role in the onset and progression of ALS. Here, to clarify the nature of the association and the causative role of Pb in ALS, we comprehensively reviewed the scientific literature of the last decade with objective database searches and the methods typically adopted in systematic reviews, critically analysing and summarising the various scientifically sound evidence on the relationship between ALS and Pb. From these tasks, we noted a number of multidisciplinary associations between ALS and Pb, and specifically the importance of occupational exposure to Pb in ALS development and/or progression. We also report the possible involvement of TAR DNA binding protein (TDP-43)-based molecular mechanism in Pb-mediated ALS, although these data rely on a single study, which included both in vitro experiments and an animal model, and are therefore still preliminary. Finally, we briefly examined whether this knowledge could inspire new targeted therapies and policies in the fight against ALS.
Collapse
|
43
|
Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Oliveri Conti G, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M. Reply to Comment on "Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study". INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186492. [PMID: 32906597 PMCID: PMC7559024 DOI: 10.3390/ijerph17186492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
We much appreciate the positive comments and interest concerning our study on the environmental and occupational risk factors of amyotrophic lateral sclerosis (ALS) [...].
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Correspondence:
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Maria Fiore
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Federica Violi
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Laura Iacuzio
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Public Health, Local Health Unit, 41121 Modena, Italy
| | - Elisa Arcolin
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Elisabetta Zucchi
- Neurology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Letizia Mazzini
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Fabrizio Pisano
- Neurological Rehabilitation Division, Policlinico San Marco di Zingonia, 24046 Zingonia (BG), Italy;
| | - Ileana Gagliardi
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Francesco Patti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
44
|
Dickerson AS. Comment on: Filippini, T.; Tesauro, M.; Fiore, M.; Malagoli, C.; Consonni, M.; Violi, F.; Iacuzio, L.; Arcolin, E.; Oliveri Conti, G.; Cristaldi, A.; Zuccarello, P.; Zucchi, E.; Mazzini, L.; Pisano, F.; Gagliardi, I.; Patti, F.; Mandrioli, J.; Ferrante, M.; Vinceti, M. Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. Int. J. Environ. Res. Public Health 2020, 17, 2882. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186490. [PMID: 32906588 PMCID: PMC7559511 DOI: 10.3390/ijerph17186490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|