1
|
Carvajal V, Jorques Molla JV, Luo Y, Zhao Y, Moncunill G, Gascon M. Air pollution and systemic immune biomarkers in early life: A systematic review. ENVIRONMENTAL RESEARCH 2025; 269:120838. [PMID: 39832545 DOI: 10.1016/j.envres.2025.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Children's rapid development and immature immune systems place them at a higher risk of adverse health outcomes associated with air pollution exposure. However, the specific mechanisms in which air pollution mediates immune dysregulation in youth are poorly understood. Thus, we aimed to systematically review the available epidemiological evidence surrounding the effects of indoor and ambient air pollution exposure on systemic immune biomarkers in early life (from birth to 18 years old). METHODS based on PRISMA guidelines, we developed a systematic search strategy and defined inclusion and exclusion criteria to retrieve publications from PubMed, SCOPUS and Web of Science published up to August 10th, 2024. Quality assessment and evidence evaluation were also performed. Five independent reviewers participated in the process. RESULTS In total, 96 studies were included. We found limited evidence of a causal relationship between prenatal ambient PM2.5 and reduced T-cells (CD3+ and CD8+), as well as between postnatal PM exposure and increased IgE levels or allergic sensitization. For the rest of exposure-outcome combinations we classified the evidence as inadequate, mainly due to the limited number of studies available or the lack of consistency in the results obtained among them. This was particularly the case for indoor air pollution research, for which only 12 studies were available. CONCLUSION the present systematic review highlights the need for further research on the impacts of air pollution on youth's immune system. We provided recommendations for future studies in order to better understand the early subclinical and clinical effects of air pollution and the underlying biological pathways, and identify the dynamics of the innate and adaptive immune responses to environmental threats. Considering the significance of childhood immunity on health outcomes within all stages of life, and the globally extensive burden of air pollution exposure, further research on this topic should be prioritized.
Collapse
Affiliation(s)
- Veronica Carvajal
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan Vicente Jorques Molla
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Yana Luo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Yu Zhao
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| |
Collapse
|
2
|
Jung YS, Aguilera J, Kaushik A, Ha JW, Cansdale S, Yang E, Ahmed R, Lurmann F, Lutzker L, Hammond SK, Balmes J, Noth E, Burt TD, Aghaeepour N, Waldrop AR, Khatri P, Utz PJ, Rosenburg-Hasson Y, DeKruyff R, Maecker HT, Johnson MM, Nadeau KC. Impact of air pollution exposure on cytokines and histone modification profiles at single-cell levels during pregnancy. SCIENCE ADVANCES 2024; 10:eadp5227. [PMID: 39612334 PMCID: PMC11606498 DOI: 10.1126/sciadv.adp5227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Fine particulate matter (PM2.5) exposure can induce immune system pathology via epigenetic modification, affecting pregnancy outcomes. Our study investigated the association between PM2.5 exposure and immune response, as well as epigenetic changes using high-dimensional epigenetic landscape profiling using cytometry by time-of-flight (EpiTOF) at the single cell. We found statistically significant associations between PM2.5 exposure and levels of certain cytokines [interleukin-1RA (IL-1RA), IL-8/CXCL8, IL-18, and IL-27)] and histone posttranslational modifications (HPTMs) in immune cells (HPTMs: H3K9ac, H3K23ac, H3K27ac, H2BK120ub, H4K20me1/3, and H3K9me1/2) among pregnant and nonpregnant women. The cord blood of neonates with high maternal PM2.5 exposure showed lower IL-27 than those with low exposure. Furthermore, PM2.5 exposure affects the co-modification profiles of cytokines between pregnant women and their neonates, along with HPTMs in each immune cell type between pregnant and nonpregnant women. These modifications in specific histones and cytokines could indicate the toxicological mechanism of PM2.5 exposure in inflammation, inflammasome pathway, and pregnancy complications.
Collapse
Affiliation(s)
- Youn Soo Jung
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Juan Aguilera
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Abhinav Kaushik
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ji Won Ha
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Stuart Cansdale
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Emily Yang
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Rizwan Ahmed
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Fred Lurmann
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Sonoma Technology Inc., Petaluma, CA, USA
| | - Liza Lutzker
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - John Balmes
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- California Air Resources Board, Riverside, CA, USA
| | - Elizabeth Noth
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trevor D. Burt
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Nima Aghaeepour
- Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Anne R. Waldrop
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, CA, USA
| | - Purvesh Khatri
- Department of Medicine, Institute for Immunity, Transplantation, and Infection, Stanford University, Palo Alto, CA, USA
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | | | - Rosemarie DeKruyff
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
| | - Mary M. Johnson
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kari C. Nadeau
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Yount CS, Scheible K, Thurston SW, Qiu X, Ge Y, Hopke PK, Lin Y, Miller RK, Murphy SK, Brunner J, Barrett E, O'Connor TG, Zhang J, Rich DQ. Short term air pollution exposure during pregnancy and associations with maternal immune markers. ENVIRONMENTAL RESEARCH 2024; 260:119639. [PMID: 39034020 PMCID: PMC11421383 DOI: 10.1016/j.envres.2024.119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Air pollution exposure during pregnancy has been associated with numerous adverse pregnancy, birth, and child health outcomes. One proposed mechanism underlying these associations is maternal immune activation and dysregulation. We examined associations between PM2.5 and NO2 exposure during pregnancy and immune markers within immune function groups (TH1, TH2, TH17, Innate/Early Activation, Regulatory, Homeostatic, and Proinflammatory), and examined whether those associations changed across pregnancy. METHODS In a pregnancy cohort study (n = 290) in Rochester, New York, we measured immune markers (using Luminex) in maternal plasma up to 3 times during pregnancy. We estimated ambient PM2.5 and NO2 concentrations at participants' home addresses using a spatial-temporal model. Using mixed effects models, we estimated changes in immune marker concentrations associated with interquartile range increases in PM2.5 (2.88 μg/m3) and NO2 (7.82 ppb) 0-6 days before blood collection, and assessed whether associations were different in early, mid, and late pregnancy. RESULTS Increased NO2 concentrations were associated with higher maternal immune markers, with associations observed across TH1, TH2, TH17, Regulatory, and Homeostatic groups of immune markers. Furthermore, the largest increases in immune markers associated with each 7.82 ppb increase in NO2 concentration were in late pregnancy (e.g., IL-23 = 0.26 pg/ml, 95% CI = 0.07, 0.46) compared to early pregnancy (e.g., IL-23 = 0.08 pg/ml, 95% CI = -0.11, 0.26). CONCLUSIONS Results were suggestive of NO2-related immune activation. Increases in effect sizes from early to mid to late pregnancy may be due to changes in immune function over the course of pregnancy. These findings provide a basis for immune activation as a mechanism for previously observed associations between air pollution exposure during pregnancy and reduced birthweight, fetal growth restriction, and pregnancy complications.
Collapse
Affiliation(s)
- C S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - K Scheible
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - S W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - X Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Y Ge
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - P K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, USA
| | - Y Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - R K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - S K Murphy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - J Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - E Barrett
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - T G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - D Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
4
|
Smith AR, Lin PID, Rifas-Shiman SL, Fleisch AF, Wright RO, Coull B, Finn PW, Oken E, Gold DR, Cardenas A. Prenatal blood metals, per- and polyfluoroalkyl substances and antigen- or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion. ENVIRONMENTAL RESEARCH 2024; 259:119555. [PMID: 38964580 PMCID: PMC11365774 DOI: 10.1016/j.envres.2024.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Evidence suggests that prenatal per- and polyfluoroalkyl substances (PFAS) and metals, two classes of chemicals found ubiquitously in human populations, influence immune system development and response. OBJECTIVE We evaluated whether first trimester blood PFAS and metals were associated with antigen- or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion. METHODS We measured six PFAS, as well as six nonessential and four essential metals, in first trimester blood from participants in the longitudinal pre-birth Project Viva cohort, recruited between 1999 and 2000 in eastern Massachusetts. We measured antigen- or mitogen-stimulated cord blood mononuclear cell proliferation responses (n = 269-314) and cytokine secretion (n = 217-302). We used covariate-adjusted least absolute shrinkage and selection operator (LASSO) for variable selection and multivariable regression to estimate associations with the immune markers. RESULTS Each ng/mL of MeFOSAA was associated with a 3.6% (1.4, 5.8) higher lymphocyte proliferation response after stimulation with egg antigen, as well as 0.8 (0.7, 1.0) reduced odds of having IFN-γ detected in response to dust mite. Each ng/g increment of cesium was associated with 27.8% (-45.1, -4.9) lower IL-10 levels in response to dust mite. Each ng/g increment of mercury was associated with 12.0% (1.3, 23.8) higher IL-13 levels in response to mitogen PHA. Each ng/g increment of selenium and zinc was associated with 0.2% (0.01, 0.4) and 0.01% (0.002, 0.02) higher TNF-α in response to mitogen PHA, respectively. CONCLUSIONS Prenatal metals and PFAS influence cord blood lymphocyte proliferation and cytokine secretion in ways that may increase risk for atopic disease in childhood.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Westbrook, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| | - Robert O Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Patricia W Finn
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Pedersen M, Liu S, Andersen ZJ, Nybo AA, Brandt J, Budtz-Jørgensen E, Bønnelykke K, Frohn LM, Ketzel M, Khan J, Tingskov PC, Stayner LT, Zhang J, Brunekreef B, Loft S. Birth Cohort Studies of Long-Term Exposure to Ambient Air Pollution in Early Life and Development of Asthma in Children and Adolescents from Denmark. Res Rep Health Eff Inst 2024; 2024:1-63. [PMID: 39469971 PMCID: PMC11525942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Exposure to ambient air pollution from combustion-source emissions contributes to the prevalence of asthma, but the role of early-life exposure in asthma development is not well understood. The objective was to examine the effects of early-life exposure to multiple specific ambient air pollutants on incidence and prevalence of asthma and to determine the mechanistic basis for these effects. METHODS The study included all live-born singletons in Denmark during 1998-2016 (N = 1,060,154), participants in the Danish National Birth Cohort (DNBC3, N = 22,084), and participants in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC, N = 803). We modeled the concentrations of particulate matter ≤2.5 and ≤10 μm in aerodynamic diameter (PM2.5 and PM10), PM-related elemental carbon (EC), organic carbon (OC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), secondary organic aerosols (SOA), and sea salt as well as nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3) - from all sources. Prenatal and postnatal time-weighted mean exposures were calculated for all residential addresses. We defined asthma incidence as the first registered asthma diagnosis for all and used parental recall at child aged 7 to determine the prevalence of doctor-diagnosed asthma ever and active asthma for the DNBC participants. For the COPSAC participants, we analyzed inflammatory markers in blood collected at 6 months of age; at 6 years of age, we analyzed nasal epithelial deoxyribonucleic acid (DNA) methylation, gene expression, immune mediators, and forced expiratory volume in 1 second (FEV1). Cox proportional hazard models were fitted with fixed prenatal means and time-varying running annual means of a year before the event for the postnatal follow-up period for asthma incidence. Logistic regression models with cluster-robust standard errors and generalized estimating equations for dependence between women being included more than once were used for asthma prevalence. Mixed-effect linear regression models with random intercept for cohort were used to examine changes in lung function, and linear regression models were used to examine changes in biomarkers. RESULTS The prenatal mean and interquartile range (IQR) concentrations of PM2.5 and NO2 were 10.5 (2.4) and 17.5 (8.7) μg/m3. In the nationwide study the risk of asthma incidence increased with increasing prenatal exposure to all pollutants except for O3 and sea salt. An IQR increase in prenatal exposure was associated with an adjusted hazard ratio (HR) and 95% confidence interval (CI) of 1.06 (95% CI: 1.04-1.08) for PM2.5 and 1.04 (1.02-1.05) for NO2. The corresponding estimates for postnatal exposures were 1.08 (1.05-1.10) and 1.02 (1.01-1.04), respectively. In the DNBC participants, the asthma incidence results from models further adjusted with cohort-specific covariates were similar to models adjusted for register-based covariates only. Prenatal exposure to PM2.5, PM10, NO2, NOx, EC, SO42-, and sea salt were weakly associated with elevated risk for asthma incidence. There was no evidence of associations with asthma prevalence. For the COPSAC children, an IQR of PM2.5 and of NH4+ was each associated with a 2%-3% (95% CI: 1%-5%) reduction in mean FEV1, consistently for prenatal and postnatal exposures. Prenatal exposure to PM and NO2 was associated with immunological changes in blood and the airways but not with DNA methylation or gene expression changes. CONCLUSIONS The results of these studies strengthen the evidence that long-term exposure to ambient air pollution contributes to the development of asthma in early life through an altered immune profile, even at these relatively low concentrations.
Collapse
Affiliation(s)
| | - S Liu
- University of Copenhagen, Denmark
| | | | | | - J Brandt
- Aarhus University, Roskilde, Denmark
| | | | | | - L M Frohn
- Aarhus University, Roskilde, Denmark
| | - M Ketzel
- Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - J Khan
- Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | | | | | - J Zhang
- University of Copenhagen, Denmark
| | | | - S Loft
- University of Copenhagen, Denmark
| |
Collapse
|
6
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Christensen GM, Marcus M, Naudé PJW, Vanker A, Eick SM, Caudle WM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint effects of prenatal exposure to indoor air pollution and psychosocial factors on early life inflammation. ENVIRONMENTAL RESEARCH 2024; 252:118822. [PMID: 38565416 PMCID: PMC11188991 DOI: 10.1016/j.envres.2024.118822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
It is hypothesized that air pollution and stress impact the central nervous system through neuroinflammatory pathways Despite this, the association between prenatal exposure to indoor air pollution and psychosocial factors on inflammatory markers in infancy has been underexplored in epidemiology studies. This study investigates the individual and joint effects of prenatal exposure to indoor air pollution and psychosocial factors on early life inflammation (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)). We analyzed data from the South African Drakenstein Child Health Study (N = 225). Indoor air pollution and psychosocial factor measurements were taken in the 2nd trimester of pregnancy. Circulating inflammatory markers (IL-1β, Il-6, and TNF-α) were measured in serum in the infants at 6 weeks postnatal. Linear regression models were used to investigate associations between individual exposures and inflammatory markers. To investigate joint effects of environmental and psychosocial factors, Self-Organizing Maps (SOM) were used to create exposure profile clusters. These clusters were added to linear regression models to investigate the associations between exposure profiles and inflammatory markers. All models were adjusted for maternal age, maternal HIV status, and ancestry to control for confounding. Most indoor air pollutants were positively associated with inflammatory markers, particularly benzene and TNF-α in single pollutant models. No consistent patterns were found for psychosocial factors in single-exposure linear regression models. In joint effects analyses, the SOM profile with high indoor air pollution, low SES, and high maternal depressive symptoms were associated with higher inflammation. Indoor air pollutants were consistently associated with increased inflammation in both individual and joint effects models, particularly in combination with low SES and maternal depressive symptoms. The trend for individual psychosocial factors was not as clear, with mainly null associations. As we have observed pro- and anti-inflammatory effects, future research should investigate joint effects of these exposures on inflammation and their health effects.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Stephanie M Eick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Susan Malcolm-Smith
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Li ZH, Mao YC, Li Y, Zhang S, Hu HY, Liu ZY, Liu XJ, Zhao JW, Huang K, Chen ML, Gao GP, Hu CY, Zhang XJ. Joint effects of prenatal exposure to air pollution and pregnancy-related anxiety on birth weight: A prospective birth cohort study in Ma'anshan, China. ENVIRONMENTAL RESEARCH 2023; 238:117161. [PMID: 37717800 DOI: 10.1016/j.envres.2023.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND A growing number of studies have shown that prenatal exposure to chemical and non-chemical stressors has effects on fetal growth. The co-exposure of both better reflects real-life exposure patterns. However, no studies have included air pollutants and pregnancy-related anxiety (PrA) as mixtures in the analysis. METHOD Using the birth cohort study method, 576 mother-child pairs were included in the Ma'anshan Maternal and Child Health Hospital. Evaluate the exposure levels of six air pollutants during pregnancy using inverse distance weighting (IDW) based on the pregnant woman's residential address and air pollution data from monitoring stations. Prenatal anxiety levels were assessed using the PrA Questionnaire. Generalized linear regression (GLR), quantile g-computation (QgC) and bayesian kernel machine regression (BKMR) were used to assess the independent or combined effects of air pollutants and PrA on birth weight for gestational age z-score (BWz). RESULT The results of GLR indicate that the correlation between the six air pollutants and PrA with BWz varies depending on the different stages of pregnancy and pollutants. The QgC shows that during trimester 1, when air pollutants and PrA are considered as a whole exposure, an increase of one quartile is significantly negatively correlated with BWz. The BKMR similarly indicates that during trimester 1, the combined exposure of air pollutants and PrA is moderately correlated with a decrease in BWz. CONCLUSION Using the method of analyzing mixed exposures, we found that during pregnancy, the combined exposure of air pollutants and PrA, particularly during trimester 1, is associated with BWz decrease. This supports the view that prenatal exposure to chemical and non-chemical stressors has an impact on fetal growth.
Collapse
Affiliation(s)
- Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Yu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhe-Ye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Jie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Mao-Lin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Guo-Peng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
9
|
Eick SM, Barr DB, Brennan PA, Taibl KR, Tan Y, Robinson M, Kannan K, Panuwet P, Yakimavets V, Ryan PB, Liang D, Dunlop AL. Per- and polyfluoroalkyl substances and psychosocial stressors have a joint effect on adverse pregnancy outcomes in the Atlanta African American Maternal-Child cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159450. [PMID: 36252672 PMCID: PMC9884463 DOI: 10.1016/j.scitotenv.2022.159450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND African Americans (AAs) experience high rates of adverse pregnancy outcomes relative to Whites. Differential in utero exposure to environmental chemicals and psychosocial stressors may explain some of the observed health disparities, as exposures to per- and polyfluoroalkyl substances (PFAS) and experiences of discrimination have been linked to adverse birth outcomes. Few studies have examined chemicals and non-chemical stressors together as an exposure mixture, which may better reflect real-life exposure patterns. Here, we adapted methods designed for the analysis of exposure mixtures to examine joint effects of PFAS and psychosocial stress on birth outcomes among AAs. METHODS 348 participants from the Atlanta African American Maternal-Child cohort were included in this study. Four PFAS were measured in first trimester serum samples. Self-report questionnaires were administered during the first trimester and were used to assess psychosocial stress (perceived stress, depression, anxiety, gendered racial stress). Quantile g-computation and Bayesian kernel machine regression (BKMR) were used to estimate the joint effects between PFAS and psychosocial stressors on gestational age at delivery and birthweight for gestational age z-scores. All models were adjusted for maternal education, maternal age, parity, and any alcohol, tobacco and marijuana use. RESULTS Our analytic sample included a socioeconomically diverse group of pregnant women, with 79 % receiving public health insurance. In quantile g-computation models, a simultaneous one-quartile increase in all PFAS, perceived stress, depression, anxiety, and gendered racial stress was associated with a reduction in birthweight z-scores (mean %change per quartile increase = -0.24, 95 % confidence interval = -0.43, -0.06). BKMR similarly showed that increasing all exposures in the mixture was associated with a modest decrease in birthweight z-scores, but not a reduced length of gestation. DISCUSSION Using methods designed for analyzing exposure mixtures, we found that a simultaneous increase in in utero PFAS and psychosocial stressors was associated with reduced birthweight for gestational age z-scores.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Zhang M, Yang X, Zhang Y, Dong T, Bigambo FM, Chen D, Aase H, Wang X, Xia Y. Gestational Exposure to Ambient Particulate Matter Alters Neonatal Cytokines. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:79-85. [DOI: 10.1021/acs.estlett.2c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Heidi Aase
- Norwegian Institute of Public Health, Department of Child Health and Development, N-0213 Oslo, Norway
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
11
|
He S, Klevebro S, Baldanzi G, Pershagen G, Lundberg B, Eneroth K, Hedman AM, Andolf E, Almqvist C, Bottai M, Melén E, Gruzieva O. Ambient air pollution and inflammation-related proteins during early childhood. ENVIRONMENTAL RESEARCH 2022; 215:114364. [PMID: 36126692 DOI: 10.1016/j.envres.2022.114364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM Experimental studies show that short-term exposure to air pollution may alter cytokine concentrations. There is, however, a lack of epidemiological studies evaluating the association between long-term air pollution exposure and inflammation-related proteins in young children. Our objective was to examine whether air pollution exposure is associated with inflammation-related proteins during the first 2 years of life. METHODS In a pooled analysis of two birth cohorts from Stockholm County (n = 158), plasma levels of 92 systemic inflammation-related proteins were measured by Olink Proseek Multiplex Inflammation panel at 6 months, 1 year and 2 years of age. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. Stratified by sex, longitudinal cross-referenced mixed effect models were applied to estimate the overall effect of preceding air pollution exposure on combined protein levels, "inflammatory proteome", over the first 2 years of life, followed by cross-sectional protein-specific bootstrapped quantile regression analysis. RESULTS We identified significant longitudinal associations of inflammatory proteome during the first 2 years of life with preceding PM2.5 exposure, while consistent associations with PM10 and NO2 across ages were only observed among girls. Subsequent protein-specific analyses revealed significant associations of PM10 exposure with an increase in IFN-gamma and IL-12B in boys, and a decrease in IL-8 in girls at different percentiles of proteins levels, at age 6 months. Several inflammation-related proteins were also significantly associated with preceding PM10, PM2.5 and NO2 exposures, at ages 1 and 2 years, in a sex-specific manner. CONCLUSIONS Ambient air pollution exposure influences inflammation-related protein levels already during early childhood. Our results also suggest age- and sex-specific differences in the impact of air pollution on children's inflammatory profiles.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Susanna Klevebro
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gabriel Baldanzi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Björn Lundberg
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
12
|
García-Serna AM, Martín-Orozco E, Jiménez-Guerrero P, Hernández-Caselles T, Pérez-Fernández V, Cantero-Cano E, Muñoz-García M, Molina-Ruano MD, Rojo-Atenza E, García-Marcos L, Morales E, Garcia‐Marcos L, Gimenez‐Banon MJ, Martinez‐Torres A, Morales E, Perez‐Fernandez V, Sanchez‐Solis M, Nieto A, Prieto‐Sanchez MT, Sanchez‐Ferrer M, Fernanez‐Palacios L, Gomez‐Gomez VP, Martinez‐Gracia C, Peso‐Echarri P, Ros‐Berruezo G, Santaella‐Pacual M, Gazquez A, Larque E, Pastor‐Fajardo MT, Sanchez‐Campillo M, Serrano‐Munuera A, Zornoza‐Moreno M, Jimenez‐Guerrero P, Adomnei E, Arense‐Gonzalo JJ, Mendiola J, Navarro‐Lafuente F, Torres‐Cantero AM, Salvador‐Garcia C, Segovia‐Hernández M, Yagüe‐Guirao G, Valero‐Guillén PL, Aviles‐Plaza FV, Cabezas‐Herrera J, Martinez‐Lopez A, Martinez‐Villanueva M, Noguera‐Velasco JA, Franco‐Garcia A, Garcia‐Serna AM, Hernandez‐Caselles T, Martin‐Orozco E, Norte‐Muñoz M, Canovas M, Cantero‐Cano E, de Diego T, Pastor JM, Sola‐Martínez RA, Esteban‐Gil A, Fernández‐Breis JT, Alcántara MV, Hernández S, López‐Soler C. Cytokine profiles in cord blood in relation to prenatal traffic-related air pollution: The NELA cohort. Pediatr Allergy Immunol 2022; 33:e13732. [PMID: 35212052 DOI: 10.1111/pai.13732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Outdoor air pollution may disturb immune system development. We investigated whether gestational exposure to traffic-related air pollutants (TRAP) is associated with unstimulated cytokine profiles in newborns. METHODS Data come from 235 newborns of the NELA cohort. Innate response-related cytokines (IL-6, IFN-α, IL1-β, and TNF-α), Th1-related (IFN-γ and IL-2), Th2-related (IL-4, IL-5, and IL-13), Th17-related (IL-17 and IL-23), and immunomodulatory cytokine IL-10 were quantified in the supernatant of unstimulated whole umbilical cord blood cells after 7 days of culture using the Luminex technology. Dispersion/chemical transport modeling was used to estimate long-term (whole pregnancy and trimesters) and short-term (15 days before delivery) residential exposures to traffic-related nitrogen dioxide (NO2 ), particulate matter (PM2.5 and PM10 ), and ozone (O3 ). We fitted multivariable logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression models. RESULTS NO2 during the whole pregnancy increased the odds of detection of IL-1β (OR per 10 µg/m3 increase = 1.37; 95% CI, 1.02, 1.85) and IL-6 (OR per 10 µg/m3 increase = 1.32; 95% CI 1.00, 1.75). Increased odds of detected concentrations of IL-10 was found in newborns exposed during whole pregnancy to higher levels of NO2 (OR per 10 µg/m3 increase = 1.30; 95% CI 0.99, 1.69), PM10 (OR per 10 µg/m3 increase = 1.49; 95% CI 0.95, 2.33), and PM2.5 (OR per 5 µg/m3 increase = 1.56; 95% CI 0.97, 2.51). Exposure to O3 during the whole pregnancy increased the odds of detected IL-13 (OR per 10 µg/m3 increase = 1.22; 95% CI 1.01, 1.49). WQS model revealed first and third trimesters of gestation as windows of higher susceptibility. CONCLUSIONS Gestational exposure to TRAP may increase detection of pro-inflammatory, Th2-related, and T regulatory cytokines in newborns. These changes might influence immune system responses later in life.
Collapse
Affiliation(s)
- Azahara M García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Virginia Pérez-Fernández
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | - María Dolores Molina-Ruano
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Encarna Rojo-Atenza
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain.,Pediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|