1
|
Wong KC, Jayapalan JJ, Subramanian P, Ismail MN, Abdul-Rahman PS. Label-free quantitative mass spectrometry analysis of the circadian proteome of Drosophila melanogaster lethal giant larvae mutants reveals potential therapeutic effects of melatonin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22008. [PMID: 36915983 DOI: 10.1002/arch.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
Mutation in the Drosophila melanogaster lethal giant larvae (lgl), a tumor suppressor gene with a well-established role in cellular polarity, is known to results in massive cellular proliferation and neoplastic outgrowths. Although the tumorigenic properties of lgl mutant have been previously studied, however, little is known about its consequences on the proteome. In this study, mass spectrometry-based label-free quantitative proteomics was employed to investigate the changes in the head and intestinal tissues proteins of Drosophila melanogaster, due to lgl mutation and following treatment with melatonin. Additionally, to uncover the time-influenced variations in the proteome during tumorigenesis and melatonin treatment, the rhythmic expression of proteins was also investigated at 6-h intervals within 24-h clock. Together, the present study has identified 434 proteins of altered expressions (p < 0.05 and fold change ±1.5) in the tissues of flies in response to lgl mutation as well as posttreatment with melatonin. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed proteins revealed that lgl mutation had significantly affected the biological functions, including metabolism, and protein synthesis and degradation, in flies' tissues. Besides, melatonin had beneficially mitigated the deleterious effects of lgl mutation by reversing the alterations in protein expression closer to baseline levels. Further, changes in protein expression in the tissues due to lgl mutation and melatonin treatment were found rhythmically orchestrated. Together, these findings provide novel insight into the pathways involved in lgl-induced tumorigenesis as well as demonstrated the efficacy of melatonin as a potential anticancer agent. Data are available via ProteomeXchange with identifier PXD033191.
Collapse
Affiliation(s)
- Kar-Cheng Wong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Mallaupoma LRC, Dias BKDM, Singh MK, Honorio RI, Nakabashi M, Kisukuri CDM, Paixão MW, Garcia CRS. Decoding the Role of Melatonin Structure on Plasmodium falciparum Human Malaria Parasites Synchronization Using 2-Sulfenylindoles Derivatives. Biomolecules 2022; 12:biom12050638. [PMID: 35625565 PMCID: PMC9138683 DOI: 10.3390/biom12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin acts to synchronize the parasite’s intraerythrocytic cycle by triggering the phospholipase C-inositol 1,4,5-trisphosphate (PLC-IP3) signaling cascade. Compounds with an indole scaffold impair in vitro proliferation of blood-stage malaria parasites, indicating that this class of compounds is potentially emerging antiplasmodial drugs. Therefore, we aimed to study the role of the alkyl and aryl thiol moieties of 14 synthetic indole compounds against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum. Four compounds (3, 26, 18, 21) inhibited the growth of P. falciparum (3D7) by 50% at concentrations below 20 µM. A set of 2-sulfenylindoles also showed activity against Dd2 parasites. Our data suggest that Dd2 parasites are more susceptible to compounds 20 and 28 than 3D7 parasites. These data show that 2-sulfenylindoles are promising antimalarials against chloroquine-resistant parasite strains. We also evaluated the effects of the 14 compounds on the parasitemia of the 3D7 strain and their ability to interfere with the effect of 100 nM melatonin on the parasitemia of the 3D7 strain. Our results showed that compounds 3, 7, 8, 10, 14, 16, 17, and 20 slightly increased the effect of melatonin by increasing parasitemia by 8–20% compared with that of melatonin-only-treated 3D7 parasites. Moreover, we found that melatonin modulates the expression of kinase-related signaling components giving additional evidence to investigate inhibitors that can block melatonin signaling.
Collapse
Affiliation(s)
- Lenna Rosanie Cordero Mallaupoma
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Bárbara Karina de Menezes Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Maneesh Kumar Singh
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Rute Isabel Honorio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Myna Nakabashi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Camila de Menezes Kisukuri
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Márcio Weber Paixão
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Correspondence:
| |
Collapse
|
3
|
Pereira PHS, Garcia CRS. Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum-Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit. Int J Mol Sci 2021; 22:12381. [PMID: 34830263 PMCID: PMC8620569 DOI: 10.3390/ijms222212381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells' external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K+ shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials.
Collapse
Affiliation(s)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo—USP, São Paulo 05508-900, Brazil;
| |
Collapse
|
4
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Pereira PHS, Garcia CRS. Melatonin action in Plasmodium infection: Searching for molecules that modulate the asexual cycle as a strategy to impair the parasite cycle. J Pineal Res 2021; 70:e12700. [PMID: 33025644 PMCID: PMC7757246 DOI: 10.1111/jpi.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Half of the world's population lives in countries at risk of malaria infection, which results in approximately 450,000 deaths annually. Malaria parasites infect erythrocytes in a coordinated manner, with cycle durations in multiples of 24 hours, which reflects a behavior consistent with the host's circadian cycle. Interference in cycle coordination can help the immune system to naturally fight infection. Consequently, there is a search for new drugs that interfere with the cycle duration for combined treatment with conventional antimalarials. Melatonin appears to be a key host hormone responsible for regulating circadian behavior in the parasite cycle. In addition to host factors, there are still unknown factors intrinsic to the parasite that control the cycle duration. In this review, we present a series of reports of indole compounds and melatonin derivatives with antimalarial activity that were tested on several species of Plasmodium to evaluate the cytotoxicity to parasites and human cells, in addition to the ability to interfere with the development of the erythrocytic cycle. Most of the reported compounds had an IC50 value in the low micromolar range, without any toxicity to human cells. Triptosil, an indole derivative of melatonin, was able to inhibit the effect of melatonin in vitro without causing changes to the parasitemia. The wide variety of tested compounds indicates that it is possible to develop a compound capable of safely eliminating parasites from the host and interfering with the life cycle, which is promising for the development of new combined therapies against malaria.
Collapse
Affiliation(s)
- Pedro H. S. Pereira
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
6
|
Dias BK, Nakabashi M, Alves MRR, Portella DP, dos Santos BM, Costa da Silva Almeida F, Ribeiro RY, Schuck DC, Jordão AK, Garcia CR. The Plasmodium falciparum eIK1 kinase (PfeIK1) is central for melatonin synchronization in the human malaria parasite. Melatotosil blocks melatonin action on parasite cell cycle. J Pineal Res 2020; 69:e12685. [PMID: 32702775 PMCID: PMC7539967 DOI: 10.1111/jpi.12685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Melatonin and its indoles derivatives are central in the synchronization of malaria parasites. In this research, we discovered that melatonin is unable to increase the parasitemia in the human malaria Plasmodium falciparum that lacks the kinase PfeIK1. The PfeIK1 knockout strain is a valuable tool in the screening of indol-related compound that blocks the melatonin effect in wild-type (WT) parasite development. The assays were performed by using flow cytometry with simultaneous labeling for mitochondria viability with MitoTracker Deep Red and nucleus staining with SYBR Green. We found that Melatotosil leads to an increase in parasitemia in P. falciparum and blocks melatonin effect in the WT parasite. Using microscopy imaging system, we found that Melatotosil at 500 nM is able to induce cytosolic calcium rise in transgenic PfGCaMP3 parasites. On the contrary, the compound Triptiofen blocks P. falciparum cell cycle with IC50 9.76 µM ± 0.6, inhibits melatonin action, and does not lead to a cytosolic calcium rise in PfGCaMP3 parasites. We also found that the synthetic indol-related compounds arrested parasite cycle for PfeIK1 knockout and (WT) P. falciparum (3D7) in 72 hours culture assays with the IC50 values slighting lower for the WT strain. We concluded that the kinase PfeIK1 is central for melatonin downstream signaling pathways involved in parasite cell cycle progression. More importantly, the indol-related compounds block its cycle as an upstream essential mechanism for parasite survival. Our data clearly show that this class of compounds emerge as an alternative for the problem of resistance with the classical antimalarials.
Collapse
Affiliation(s)
- Bárbara K.M. Dias
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | - Myna Nakabashi
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | | | | | | | | | - Ramira Yuri Ribeiro
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Desiree C. Schuck
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Alessandro Kappel Jordão
- Departamento de FarmáciaFaculdade de FarmáciaUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Unidade Universitária de FarmáciaCentro Universitário Estadual da Zona OesteRio de JaneiroRJBrazil
| | - Celia R.S. Garcia
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
7
|
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020; 10:biom10091243. [PMID: 32867164 PMCID: PMC7563138 DOI: 10.3390/biom10091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology.
Collapse
|
8
|
Yang L, Sun Q, Wang Y, Chan Z. Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 2020; 764:145082. [PMID: 32858176 DOI: 10.1016/j.gene.2020.145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Melatonin functions as a plant growth regulator in a concentration-dependent manner. In this study, we investigated the effects of melatonin on root growth and dissected underlined mechanisms. The results showed that melatonin up to 1000 μM inhibited primary root growth, but promoted lateral root development. Through RNA sequencing analysis, functions of differentially expressed genes were mainly involved in stress response, signaling transduction, transport, hormone metabolism and amino acid metabolism. Genes involving in jasmonate (JA), brassinosteroid (BR) and cytokinin (CK) biosynthesis were inhibited, but these in ethylene (ET), strigolactone (SL) and gibberellins (GA) biosynthetic pathways were activated after melatonin treatment. The majority of zinc finger proteins (ZFPs), Calmodulin-like (CMLs), NAM, ATAF1/2, and CUC2 (NACs) and ubiquitination related genes (RING/U-box and F-box) were upregulated, which possibly acted downstream of integrated hormone signals to mediate root growth. This study characterized melatonin modulated networks in regulating root growth.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
9
|
Scarpelli PH, Tessarin‐Almeida G, Viçoso KL, Lima WR, Borges‐Pereira L, Meissner KA, Wrenger C, Rafaello A, Rizzuto R, Pozzan T, Garcia CRS. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: Mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res 2019; 66:e12484. [PMID: 29480948 PMCID: PMC6585791 DOI: 10.1111/jpi.12484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Collapse
Affiliation(s)
- Pedro H. Scarpelli
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | | | - Kênia Lopes Viçoso
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Wania Rezende Lima
- Instituto de Ciências Exatas e Naturais‐MedicinaUniversidade Federal de Mato Grosso‐Campus RondonópolisMato GrossoBrazil
| | - Lucas Borges‐Pereira
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Kamila Anna Meissner
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Carsten Wrenger
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Anna Rafaello
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | | | - Tullio Pozzan
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | - Celia R. S. Garcia
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de Fisiologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
10
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
11
|
Jagota A, Mattam U. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson’s disease model in male Wistar rat and its modulation by melatonin. Biogerontology 2017; 18:615-630. [DOI: 10.1007/s10522-017-9711-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
|
12
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Devender N, Gunjan S, Tripathi R, Tripathi RP. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur J Med Chem 2017; 131:171-184. [PMID: 28319782 DOI: 10.1016/j.ejmech.2017.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Due to the recent reports of growing parasite resistance to artemisinins and other antimalarial drugs, development of new antimalarial chemotypes is an urgent priority. Here in, we report a novel series of adamantyl/cycloheptyl indoleamide derivatives bearing sulfonamide and triazole pharmacophores adopting different chemical modifications and evaluated them for antiplasmodial activity in vitro. Among all the indoleamides, compounds 22, 24, 26 and 30 with sulfonamide pharmacophore showed promising activity with IC50 of 1.87, 1.93, 2.00, 2.17 μM against CQ sensitive Pf3D7 strain and 1.69, 2.12, 1.60, 2.19 μM against CQ resistant PfK1 strain, respectively.
Collapse
Affiliation(s)
- N Devender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Gunjan
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Renu Tripathi
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
14
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|