1
|
Moodley D, Botes A. A carboxymethyl cellulase from the yeast Cryptococcus gattii WM276: Expression, purification and characterisation. Protein Expr Purif 2025; 225:106594. [PMID: 39197672 DOI: 10.1016/j.pep.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.
Collapse
Affiliation(s)
- Dylan Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Bilkay M, Yazıcı S, Erkmen C, Celik I, Satana Kara HE. Unraveling the interaction mechanism between orphan drug Nitisinone and bovine serum albumin through spectroscopic and in silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124818. [PMID: 39029202 DOI: 10.1016/j.saa.2024.124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The interaction between Nitisinone (NTBC) and bovine serum albumin (BSA) as the transport protein in a circulating system was investigated for the first time utilizing various analytical (UV-Vis spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and differential scanning calorimetry) and computational (molecular docking and molecular dynamics simulations) methods. The BSA fluorescence intensity was quenched upon interaction with NTBC, and the quenching mechanism was observed as static. The interaction between NTBC and BSA was examined at 288 K, 298 K, and 308 K where the binding constants were found to be 1.44 × 105 ± 0.22 M-1, 5.18 × 104 ± 0.20 M-1, and 3.02 × 104 ± 0.22 M-1 respectively, suggesting an intermediate binding affinity between NTBC and BSA. Changes in the microenvironment surrounding tryptophan and tyrosine residues of BSA were elucidated using 3-D fluorescence spectroscopy. Thermodynamic studies revealed the calculated values of ΔH = - 54.34 ± 5 kJ/mol and ΔS = - 0.0908 ± 0.24 kJ/mol K-1, indicating the involvement of van der Waals forces and hydrogen bonds in the interaction between NTBC and BSA. Moreover, the interaction's spontaneous nature was evidenced by negative ΔG values across all temperatures. Using dynamic light scattering, it was observed that higher NTBC concentrations led to a gradual rise in hydrodynamic diameter and notable aggregation of the NTBC-BSA complex. Moreover, changing signal values and shifted peaks of BSA, NTBC, and complex in differential scanning calorimetry curves, meant there were molecular interactions between the NTBC and BSA. In silico approaches also elucidated how NTBC binds to active sites on BSA, further supporting other findings. Moreover, molecular docking studies offer a more profound insight into the changing dynamics of hydrophobic, hydrogen, and halogen bonding involved in stabilizing the NTBC-BSA complex.
Collapse
Affiliation(s)
- Mehmetcan Bilkay
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Türkiye
| | - Sule Yazıcı
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Türkiye
| | - Cem Erkmen
- Istanbul Aydın University, Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul 34295, Türkiye.
| | - Ismail Celik
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayseri 38039, Türkiye
| | - Hayriye Eda Satana Kara
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Türkiye
| |
Collapse
|
3
|
Gi Byun W, Lee M, Ko M, Hyae Lee J, Yi S, Lee J, Kim S, Bum Park S. Broad-Spectrum Antiviral Agents against SARS-CoV-2 Variants Inhibit the Conserved Viral Protein Nsp1-RNA Interaction. Angew Chem Int Ed Engl 2024; 63:e202405472. [PMID: 39132967 DOI: 10.1002/anie.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
The ongoing global threats posed by COVID-19 pandemic, catalyzed by SARS-CoV-2, underscores the pressing need for effective antiviral strategies. The viral non-structural protein 1 (Nsp1) significantly influences pathogenicity by impeding host protein expression and enhancing viral RNA translation through its interaction with the stem-loop 1 (SL1) in the 5' untranslated region (UTR). We have developed a novel dual-luciferase reporter assay, designed to investigate the critical Nsp1-SL1 interaction, and identified P23E02 as a potential inhibitor. Our investigation, combining molecular docking studies and alanine mutagenesis, has unveiled that P23E02 disrupts Nsp1-40S ribosomal subunit interaction, liberating translational inhibition and empowering host antiviral responses. P23E02 exhibits antiviral efficacy against various sarbecoviruses, making it a promising candidate for combatting COVID-19 and related diseases. This study underscores the therapeutic potential of targeting the Nsp1/SL1 axis and lays the foundation for innovative antiviral interventions, ultimately fortifying global preparedness against future viral threats.
Collapse
Affiliation(s)
- Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Minha Lee
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Meehyun Ko
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Ji Hyae Lee
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - JinAh Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| |
Collapse
|
4
|
Salazar Marcano DE, Chen JJ, Moussawi MA, Kalandia G, Anyushin AV, Parac-Vogt TN. Redox-active polyoxovanadates as cofactors in the development of functional protein assemblies. J Inorg Biochem 2024; 260:112687. [PMID: 39142056 DOI: 10.1016/j.jinorgbio.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
The interactions of polyoxovanadates (POVs) with proteins have increasingly attracted interest in recent years due to their potential biomedical applications. This is especially the case because of their redox and catalytic properties, which make them interesting for developing artificial metalloenzymes. Organic-inorganic hybrid hexavanadates in particular offer several advantages over all-inorganic POVs. However, they have been scarcely investigated in biological systems even though, as shown in this work, hybrid hexavanadates are highly stable in aqueous solutions up to relatively high pH. Therefore, a novel bis-biotinylated hexavanadate was synthesized and shown to selectively interact with two biotin-binding proteins, avidin and streptavidin. Bridging interactions between multiple proteins led to their self-assembly into supramolecular bio-inorganic hybrid systems that have potential as artificial enzymes with the hexavanadate core as a redox-active cofactor. Moreover, the structure and charge of the hexavanadate core were determined to enhance the binding affinity and slightly alter the secondary structure of the proteins, which affected the size and speed of formation of the assemblies. Hence, tuning the polyoxometalate (POM) core of hybrid POMs (HPOMs) with protein-binding ligands has been demonstrated to be a potential strategy for controlling the self-assembly process while also enabling the formation of novel POM-based biomaterials that could be of interest in biomedicine.
Collapse
Affiliation(s)
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
5
|
P E, Jeevanandam J, Kumar B, N AM, N T S. 2-Methoxy-4-formylphenol suppresses methylglyoxal glycation mediated structural alterations and esterase activity of hemoglobin - A multi spectroscopic, biophysical and in-silico study. Int J Biol Macromol 2024; 282:137128. [PMID: 39486728 DOI: 10.1016/j.ijbiomac.2024.137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Glycation is the non-enzymatic reaction of glucose or its metabolites to proteins, causing irreversible changes. Methylglyoxal, a dicarbonyl, affects the structure and function of physiologically important proteins. Being a major circulatory protein, hemoglobin is highly prone to glycation. Current research focuses on identifying potent glycation inhibitors to prevent glycation and their impact on protein structure and function. The present study investigates the Advanced Glycation Endproducts (AGEs) inhibitory effects of 2-methoxy-4-formylphenol (Vanillin) against methylglyoxal mediated glycation of hemoglobin. The hemoglobin-vanillin glycation model exhibited inhibition of AGE formation, amyloid fibrils, aggregates and reduction in esterase activity. The fluorescence spectroscopic technique revealed efficient binding of vanillin and hemoglobin, with Stern Volmer plot indicating the presence of static quenching. The conformational stability of the vanillin and hemoglobin interaction was also evident from the molecular docking and dynamics studies. The proximal orientation of residues (H2 and K82 associated in esterase activity) of hemoglobin β1 chain and vanillin, supports the noted effect of reduced esterase activity in the presence of vanillin in glycated hemoglobin and the inhibition of the overall formation of AGE of hemoglobin in the presence of vanillin.
Collapse
Affiliation(s)
- Esackimuthu P
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur 613401, TamilNadu, India
| | - Jayanth Jeevanandam
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur 613401, TamilNadu, India
| | - Bhuvana Kumar
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur 613401, TamilNadu, India
| | - Arul Murugan N
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Saraswathi N T
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur 613401, TamilNadu, India.
| |
Collapse
|
6
|
Ma X, Zhang Z, Barba-Bon A, Han D, Qi Z, Ge B, He H, Huang F, Nau WM, Wang X. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. Proc Natl Acad Sci U S A 2024; 121:e2407515121. [PMID: 39436658 PMCID: PMC11536097 DOI: 10.1073/pnas.2407515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Intracellular protein delivery has the potential to revolutionize cell-biological research and medicinal therapy, with broad applications in bioimaging, disease treatment, and genome editing. Herein, we demonstrate successful delivery of a functional protein, cytochrome c (CYC), by using a boron cluster anion as molecular carrier of the superchaotropic anion type (B12Br11OPr2-). CYC was delivered into lipid bilayer vesicles as well as living cells, with a cellular uptake ratio approaching 90%. Mechanistic studies showed that CYC was internalized into cells through a permeation pathway directly into the cytoplasm, bypassing endosomal entrapment. Upon carrier-assisted internalization, CYC retained its bioactivity, as reflected by an induced cell apoptosis rate of 25% at low dose (1 µM). This study furbishes a direct protein delivery method by a molecular carrier with high efficiency, confirming the potential of inorganic cluster ions as protein transport vehicles with an extensive range of future cell-biological or biomedical applications.
Collapse
Affiliation(s)
- Xiqi Ma
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhixiong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | | | - Dongxue Han
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zichun Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Baosheng Ge
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Hua He
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Werner M. Nau
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
- School of Science, Constructor University, Bremen28759, Germany
| | - Xiaojuan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
7
|
Zhang J, Mao X, Zhang J, Liu Q. Structural changes and functional characteristics of common vetch isolate proteins altered by different pH-shifting treatments. Int J Biol Macromol 2024; 282:136887. [PMID: 39490483 DOI: 10.1016/j.ijbiomac.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
To investigate protein structure and functional changes, common vetch protein isolate (CVPI) during pH-shifting were performed. Results showed secondary and tertiary structures of CVPI were improved during these treatments compared with the pH 7.0. Scanning electron microscopy showed the microstructure was changed from lamellar to spherical granular and rod-like structure during pH - shifting. Under 8 pH treatments (pH 2.0, 3.0, 12.0, 2.0 → 7.0, 3.0 → 7.0, 12.0 → 7.0, 11.0 → 9.0 and 11.0 → 7.0), the average particle sizes were smaller and from 82 to 146 nm. Under 8 pH treatments (pH 2.0, 3.0, 11.0, 12.0, 11.0 → 9.0, 11.0 → 7.0,12.0 → 9.0 and 12.0 → 7.0), the protein solubility was higher and from 63 to 86 %. Under 3 pH treatments (pH 2.0, 11.0 and 12.0), the emulsion activity index and emulsion stability index was higher and from 40 to 60 m2/g and from 54 to 97 min. Under 5 pH treatments (pH 2.0, 12.0, 11.0 → 9.0, 12.0 → 9.0 and 12.0 → 7.0), the foaming capacity and foaming stability was higher and from 145 to 185 % and from 67 to 82 %. Therefore, the pH - shifting treatment gave the CVPI improved characteristics in structural and functional properties.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Xinqi Mao
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
| | - Quanlan Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
8
|
Cooper GID, Saha I, Newman J, Shin RH, Harran PG. Indolizinylalanine Regioisomers: Tryptophan Isosteres with Bathochromic Fluorescence Emission. J Org Chem 2024; 89:14665-14672. [PMID: 39307984 DOI: 10.1021/acs.joc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We have developed a high yielding synthesis of indolizine and directly elaborated the molecule into three optically active indolizinylalanine regioisomers. The protocols exploit metal catalyzed coupling of indolizinyl-halides with organozinc reagents derived from carbamoylated iodoalanine esters. The scalable protocols provide products in a form amenable to solid-phase peptide synthesis (SPPS). When incorporated into peptides, the indolizine heterocycle is more basic and markedly less nucleophilic than tryptophan. Its protonated vinylpyridinium form is deeply colored in solution while the neutral heterocycle is highly fluorescent. The fluorescence quantum yield of indolizine exceeds that of indole and aza-indoles in water, suggesting that indolizinylalanines could be powerful optical probes of protein structure and dynamics, functioning as true tryptophan isosteres.
Collapse
Affiliation(s)
- Gabriella I D Cooper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ishika Saha
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jacob Newman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ruthy H Shin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Drewniak P, Xiao P, Ladizhansky V, Bondar AN, Brown LS. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. Biophys J 2024:S0006-3495(24)00683-0. [PMID: 39425471 DOI: 10.1016/j.bpj.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024] Open
Abstract
Aquaporins (AQPs) are α-helical transmembrane proteins that conduct water through membranes with high selectivity and permeability. For human AQP1, in addition to the functional Asn-Pro-Ala motifs and the aromatic/Arg selectivity filter within the pore, there are several highly conserved residues that form an expansive hydrogen-bonding network. Previous solid-state nuclear magnetic resonance studies and structural conservation analysis have detailed which residues may be involved in this network. We explored this network by mutating the side chains or backbones involved in hydrogen-bonding, generating the following mutants: N127A, V133P, E142A, T187A, R195A, and S196A. The fold and stability of these mutants were assessed with attenuated total reflection Fourier transform infrared spectroscopy coupled with hydrogen/deuterium exchange upon increasing temperature. We found that replacement of any of the chosen residues to alanine leads to either partial instability or outright misfolding at room temperature, with the latter being most pronounced for the N127A, V133P, T187A, and R195A mutants. Deconvolution analysis of the amide I band revealed considerable secondary structure deviations, with some mutants exhibiting new random coil and β sheet structures. We also found that some of these mutations potentially disrupt the oligomerization of human AQP1. BN-PAGE and DLS data provide evidence toward the loss of tetramers within most of the mutants, meanwhile only the S196A mutant retains tetrameric organization. The molecular dynamics simulation of the wild-type, and the N127A, E142A, and T187A mutants show that these mutations result in major rearrangements of intra- and intermonomer hydrogen-bond networks. Overall, we show that specific point mutations that perturb hydrogen-bonding clusters result in severe misfolding in hAQP1 and disruption of its oligomerization. These data provide valuable insight into the structural stability of human aquaporin-1 and have implications toward other members of the AQP family, as these networks are largely conserved among a variety of human and nonmammalian AQP homologs.
Collapse
Affiliation(s)
- Philip Drewniak
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Peng Xiao
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM), Computational Biomedicine (INM-9), Wilhelm-Johnen Straße, 5428 Jülich, Germany.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
10
|
Bezir K, Pelit Arayici P, Akgül B, Abamor EŞ, Acar S. RABV antigenic peptide loaded polymeric nanoparticle production, characterization, and preliminary investigation of its biological activity. NANOTECHNOLOGY 2024; 36:025603. [PMID: 39383880 DOI: 10.1088/1361-6528/ad84fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoparticle-based antigen carrier systems have become a significant area of research with the advancement of nanotechnology. Biodegradable polymers have emerged as particularly promising carrier vehicles due to their ability to address the limitations of existing vaccine systems. In this study, we successfully encapsulated the G5-24 linear peptide, located between amino acids 253 and 275 in the primary sequence of the rabies virus G protein, into biodegradable and biocompatible PLGA copolymer using the double emulsion solvent evaporation method. The resulting nanoparticles had a size of approximately 230.9 ± 0.9074 nm, with a PDI value of 0.168 ± 0.017 and a zeta potential value of -9.86 ± 0.132 mV. SEM images confirmed that the synthesized nanoparticles were uniform in size and distribution. Additionally, FTIR spectra indicated successful peptide loading into the nanoparticles. The encapsulation efficiency of the peptide-loaded nanoparticles was 73.3%, with a peptide loading capacity of 48.2% and a reaction yield of 30.4%. Peptide release studies demonstrated that 65.55% of the peptide was released in a controlled manner over 28 d, following a 'biphasic burst release' profile consistent with the degradation profile of PLGA. This controlled release is particularly beneficial for vaccine studies. Cytotoxicity tests revealed that the R-NP formulation did not induce cytotoxicity in fibroblast cells and enhanced NO production in macrophages, indicating its potential for vaccine development.
Collapse
Affiliation(s)
- Kübra Bezir
- Faculty of Engineering and Natural Sciences, Bioengineering Department, Bursa Technical University, Bursa, Turkey
| | - Pelin Pelit Arayici
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Ashkaran F, Seyedalipour B, Baziyar P, Hosseinkhani S. Mutation/metal deficiency in the "electrostatic loop" enhanced aggregation process in apo/holo SOD1 variants: implications for ALS diseases. BMC Chem 2024; 18:177. [PMID: 39300574 PMCID: PMC11411779 DOI: 10.1186/s13065-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Despite the many mechanisms it has created to prevent unfolding and aggregation of proteins, many diseases are caused by abnormal folding of proteins, which are called misfolding diseases. During this process, proteins undergo structural changes and become stable, insoluble beta-sheet aggregates called amyloid fibrils. Mutations/disruptions in metal ion homeostasis in the ALS-associated metalloenzyme superoxide dismutase (SOD1) reduce conformational stability, consistent with the protein aggregation hypothesis for neurodegenerative diseases. However, the exact mechanism of involvement is not well understood. Hence, to understand the role of mutation/ metal deficiency in SOD1 misfolding and aggregation, we investigated the effects of apo/holo SOD1 variants on structural properties using biophysical/experimental techniques. The MD results support the idea that the mutation/metal deficiency can lead to a change in conformation. The increased content of β-sheet structures in apo/holo SOD1 variants can be attributed to the aggregation tendency, which was confirmed by FTIR spectroscopy and dictionary of secondary structure in proteins (DSSP) results. Thermodynamic studies of GdnHCl showed that metal deficiency/mutation/intramolecular S-S reduction together are required to initiate misfolding/aggregation of SOD1. The results showed that apo/holo SOD1 variants under destabilizing conditions induced amyloid aggregates at physiological pH, which were detected by ThT/ANS fluorescence, as well as further confirmation of amyloid/amorphous species by TEM. This study confirms that mutations in the electrostatic loop of SOD1 lead to structural abnormalities, including changes in hydrophobicity, reduced disulfide bonds, and an increased propensity for protein denaturation. This process facilitates the formation of amyloid/amorphous aggregates ALS-associated.
Collapse
Affiliation(s)
- Faezeh Ashkaran
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Wang Z, Lu J, Hao A, Xing P. Odd-Even Law Mediated Supramolecular Chirality of Luminescent Dipeptides for Chiroptical Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405698. [PMID: 39263767 DOI: 10.1002/smll.202405698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Inherent luminescent short peptides essentially provide opportunities to rationally manipulate supramolecular chirality and chiral luminescence. Herein, a facile protocol to construct a series of naphthalimide-appended dipeptides is reported that show ultrasound wave-activated supramolecular chirality regulated by odd-even law. Naphthalimide luminophores are conjugated to the dipeptide skeleton with variable alkyl spacers. The presence of tyrosine interferes the kinetic aggregation into achiral nanoparticles without chirality transfer to supramolecular scale. However, ultrasound treatment initiates the nanoparticle-to-helix transition accompanied with the appeared chiral optics, including Cotton effect and circularly polarized luminescence (CPL). The supramolecular chiral parameters, including handedness of helices and chiroptical behaviors, follow the odd-even law of alkyl spacers in dipeptides bearing non-substituted naphthalimides. The amine-substitution boosted the quantum yields of dipeptide whereas no odd-even effect. The two types of dipeptides constituted ideal energy transfer pairs that enable the efficient energy transfer as well as the transportation of odd-even law to dipeptides containing substituted naphthalimides. This work sheds light on the construction of luminescent dipeptides with applications in precise control over chirality transportation and chiral luminescence.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jiahui Lu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
Tong SC, Siow LF, Tang TK, Lee YY. Understanding the synergistic effect of pea protein and rice bran protein interaction in stabilizing palm kernel oil-in-water emulsion assisted by high-pressure homogenization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39264093 DOI: 10.1002/jsfa.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Plant-based beverages have recently seen a significant increase in market demand. However, many of these products suffer from poor emulsion stability and low protein content. Gums have commonly been used to enhance emulsion stability but they do not improve the amino acid profile. This study investigated the use of multiples plant proteins to enhance both the stability and nutritional value of plant-based beverages. RESULT Pea and rice bran proteins both enhanced emulsion stability. Pea protein enhanced the viscosity of the continuous phase whereas rice bran protein lowered interfacial tension. When applied synergistically, competitive adhesion occurred. Rice bran protein gradually displaced pea protein from the oil droplet surface as its concentration increased, leading to emulsion destabilization due to the displaced pea protein. The use of high-pressure homogenization further enhanced the stability of the emulsion by unfolding protein partially. However, increasing homogenization pressure (>500 Bar) and homogenization cycle (>2 cycles) led to protein aggregation due to excessive exposure of its hydrophobic core. The emulsion formed was resistant to coalescence at 4 °C for 28 days and was stable under high pH and low ionic conditions. CONCLUSION The synergistic combination of plant proteins and the effective utilization of co-processing (homogenization) can enhance the functionality of the individual proteins significantly, leading to the formation of a stable emulsion. The use of plant protein mixture as a stabilizer not only improved the emulsion stability but also ensured a plant-based beverage with a complete amino acid profile for the vegan community. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Shi Cheng Tong
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Teck Kim Tang
- Malaysia Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Monash Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| |
Collapse
|
14
|
Nudrat S, Maity B, Quraishi S, Karankumar I, Kumari K, Jana M, Singha Roy A. Binding Interaction of Coumarin Derivative Daphnetin with Ovalbumin: Molecular Insights into the Complexation Process and Effects of Metal Ions and pH in the Binding and Antifibrillation Studies. Mol Pharm 2024; 21:4708-4725. [PMID: 39115967 DOI: 10.1021/acs.molpharmaceut.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This study investigates the interaction between daphnetin and ovalbumin (OVA) as well as its potential to inhibit OVA fibrillation using both spectroscopic and computational analysis. A moderate binding affinity of 1 × 104 M-1 was observed between OVA and daphnetin, with a static quenched mechanism identified during the fluorescence quenching processes. Metal ions' (Cu2+ and Zn2+) presence led to an increase in the binding affinities of daphnetin toward OVA, mirroring a similar trend observed with the pH variation. Synchronous and 3D fluorescence studies indicated an increase in the polarity of the microenvironment surrounding the Trp residues during binding. Interestingly, circular dichroism and Fourier transform infrared studies showed a significant change in the secondary structure of OVA upon binding with daphnetin. The efficacy of daphnetin in inhibiting protein fibrillation was confirmed through thioflavin T and Congo Red binding assays along with fluorescence microscopic imaging analysis. The thermodynamic assessment showed positive ΔH° [+(29.34 ± 1.526) kJ mol-1] and ΔS° [+(181.726 ± 5.465) J mol-1] values, indicating the presence of the hydrophobic forces, while negative ΔG° signifies spontaneous binding interactions. These experimental findings were further correlated with computational analysis, revealing daphnetin dynamics within the binding site of OVA.
Collapse
Affiliation(s)
- Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Bilash Maity
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Irungbam Karankumar
- Department of Chemistry, National Institute of Technology Manipur, Imphal, Manipur 795004, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Madhurima Jana
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| |
Collapse
|
15
|
Liow MY, Chan ES, Ng WZ, Song CP. Stabilization of Eversa® Transform 2.0 lipase with sorbitol to enhance the efficiency of ultrasound-assisted biodiesel production. Int J Biol Macromol 2024; 276:133817. [PMID: 39002902 DOI: 10.1016/j.ijbiomac.2024.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Ultrasound technology has emerged as a promising tool for enhancing enzymatic biodiesel production, yet the cavitation effect induced can compromise enzyme stability. This study explored the efficiency of polyols in enhancing lipase stability under ultrasound conditions to further improve biodiesel yield. The incorporation of sorbitol resulted in the highest fatty acid methyl ester (FAME) content in the ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 among the investigated polyols. Furthermore, sorbitol enhanced the stability of the lipase, allowing it to tolerate up to 100 % ultrasound amplitude, compared to 60 % amplitude in its absence. Enzyme activity assays revealed that sorbitol preserved 99 % of the lipase activity, in contrast to 84 % retention observed without sorbitol under an 80 % ultrasound amplitude. Circular dichroism (CD) and fluorescence spectroscopy analyses confirmed that sorbitol enhanced lipase rigidity and preserved its conformational structure under ultrasound exposure. Furthermore, employing a stepwise methanol addition strategy in ultrasound-assisted reactions with sorbitol achieved an 81.2 wt% FAME content in 8 h with only 0.2 wt% enzyme concentration. This promising result highlights the potential of sorbitol as a stabilizing agent in ultrasound-assisted enzymatic biodiesel production, offering a viable approach for enhancing biodiesel yield and enzyme stability in industrial applications.
Collapse
Affiliation(s)
- Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
16
|
Brockmöller S, Seeger T, Worek F, Rothmiller S. Cell-Sonar, a Novel Method for Intracellular Tracking of Secretory Pathways. Cells 2024; 13:1449. [PMID: 39273021 PMCID: PMC11394445 DOI: 10.3390/cells13171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Intracellular tracking is commonly used in trafficking research. Until today, the respective techniques have remained complex, and complicated, mostly transgenic target protein changes are necessary, often requiring expensive equipment and expert knowledge. METHODS We present a novel method, which we term "cell-sonar", that enables the user to track expression changes of specific protein markers that serve as points of interaction. Our study provides comparable analyses of expression changes of these marker proteins by in-cell Western analyses in two otherwise isogenic cell lines that only differ in the overexpression of the tracked target protein. Using the overexpressed human adult muscle-type nicotinic acetylcholine receptor as an example, we demonstrate that cell-sonar can cover multiple intracellular compartments such as the endoplasmic reticulum, the pathway between it and the Golgi apparatus, and the endocytic pathway. RESULTS We provide evidence for receptor maturation in the Golgi and storage in recycling endosomes, rather than the fate of increased insertion into the plasma membrane. Additionally, we demonstrate with the implementation of nicotine that the receptor's destiny is exasperated up to secondary degradation. CONCLUSIONS Cell-sonar is an affordable, easy-to-implement, and cheap method that can be adapted to a broad variety of proteins and cellular pathways of interest to researchers.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Bavaria, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Bavaria, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Bavaria, Germany
| |
Collapse
|
17
|
Li X, Tao Q, Hu Q, Ma N, Ma G. In vitro gastrointestinal digestion and fecal fermentation of Pleurotus eryngii proteins extracted using different methods: insights for the utilization of edible mushroom-based proteins as novel nutritional and functional components. Food Funct 2024; 15:8865-8877. [PMID: 39120615 DOI: 10.1039/d4fo02604g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Pleurotus eryngii (P. eryngii) protein is considered a high-quality protein because it is rich in essential amino acids and displays multiple significant functional characterizations that vary with its fabrication processes. We aimed to investigate the differences in P. eryngii protein extracted via alkaline extraction and acid precipitation (AA), cellulase complex alkaline extraction and acid precipitation (CAA), ultrasound-assisted alkaline extraction and acid precipitation (UAA), and salt dissolution (S) in terms of gastrointestinal digestion and fecal fermentation consequences. Protein hydrolysis and structural analysis were performed after in vitro gastrointestinal digestion, and it was found that AA showed the highest hydrolysis degree, whereas CAA showed the lowest. The results of fluorescence chromatography and infrared chromatography indicated that the reasons for the digestion difference might be the unfolding degrees of the protein tertiary structure and polysaccharide content, which is the major component of crude proteins and can prevent protein hydrolysis. Metagenomic analysis suggested that compared with other groups, AA had excellent biological functions, including regulating obesity and insulin-related microbiota. This study could provide a new theoretical basis for the P. eryngii protein as a novel type of nutritional and functional component and contributes to the development of a diversified emerging food protein supply system.
Collapse
Affiliation(s)
- Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Ning Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
18
|
Alvarez JAE, Dean SN. TEMPRO: nanobody melting temperature estimation model using protein embeddings. Sci Rep 2024; 14:19074. [PMID: 39154093 PMCID: PMC11330463 DOI: 10.1038/s41598-024-70101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Single-domain antibodies (sdAbs) or nanobodies have received widespread attention due to their small size (~ 15 kDa) and diverse applications in bio-derived therapeutics. As many modern biotechnology breakthroughs are applied to antibody engineering and design, nanobody thermostability or melting temperature (Tm) is crucial for their successful utilization. In this study, we present TEMPRO which is a predictive modeling approach for estimating the Tm of nanobodies using computational methods. Our methodology integrates various nanobody biophysical features to include Evolutionary Scale Modeling (ESM) embeddings, NetSurfP3 structural predictions, pLDDT scores per sdAb region from AlphaFold2, and each sequence's physicochemical characteristics. This approach is validated with our combined dataset containing 567 unique sequences with corresponding experimental Tm values from a manually curated internal data and a recently published nanobody database, NbThermo. Our results indicate the efficacy of protein embeddings in reliably predicting the Tm of sdAbs with mean absolute error (MAE) of 4.03 °C and root mean squared error (RMSE) of 5.66 °C, thus offering a valuable tool for the optimization of nanobodies for various biomedical and therapeutic applications. Moreover, we have validated the models' performance using experimentally determined Tms from nanobodies not found in NbThermo. This predictive model not only enhances nanobody thermostability prediction, but also provides a useful perspective of using embeddings as a tool for facilitating a broader applicability of downstream protein analyses.
Collapse
Affiliation(s)
- Jerome Anthony E Alvarez
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Scott N Dean
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA.
| |
Collapse
|
19
|
Ghosh A, Jani V, Sonavane U, Naphade AN, Joshi R, Kulkarni MJ, Giri AP. The multi-dimensional impact of captopril modification on human serum albumin. Int J Biol Macromol 2024; 274:133289. [PMID: 38908639 DOI: 10.1016/j.ijbiomac.2024.133289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Captopril is a thiol drug, widely used for the management of hypertension and cardiovascular diseases. Reactive thiols are found to covalently modify the cysteines of plasma proteins and affect their structure and function. Human serum albumin (HSA) is prone to undergo modification by various low molecular weight compounds, including drugs. Cysteine34 (Cys34) in HSA has a free thiol group with antioxidant properties, considered to be the most redox-sensitive amino acid in plasma. Through mass-spectrometric analysis, we demonstrate for the first time that captopril forms a disulfide adduct at Cys34 residue and increases the protease susceptibility of HSA to trypsin. As evidenced by our biophysical and electron microscopy studies, HSA undergoes structural alteration, aggregation and morphological changes when treated with different captopril concentrations. Molecular dynamics studies further revealed the regions of secondary structural changes in HSA due to disulfide adduct formation by captopril at Cys34. It also elucidated the residues involved in the noncovalent interactions with captopril. It is envisaged that structural change in HSA may influence the efficacy of drug delivery as well as its own biological function. These findings may thus provide significant insights into the field of pharmacology intriguing further investigation into the effects of long-term captopril treatment.
Collapse
Affiliation(s)
- Amrita Ghosh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vinod Jani
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Uddhavesh Sonavane
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Anvi N Naphade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rajendra Joshi
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok P Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Dürauer A, Jungbauer A, Scharl T. Sensors and chemometrics in downstream processing. Biotechnol Bioeng 2024; 121:2347-2364. [PMID: 37470278 DOI: 10.1002/bit.28499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The biopharmaceutical industry is still running in batch mode, mostly because it is highly regulated. In the past, sensors were not readily available and in-process control was mainly executed offline. The most important product parameters are quantity, purity, and potency, in addition to adventitious agents and bioburden. New concepts using disposable single-use technologies and integrated bioprocessing for manufacturing will dominate the future of bioprocessing. To ensure the quality of pharmaceuticals, initiatives such as Process Analytical Technologies, Quality by Design, and Continuous Integrated Manufacturing have been established. The aim is that these initiatives, together with technology development, will pave the way for process automation and autonomous bioprocessing without any human intervention. Then, real-time release would be realized, leading to a highly predictive and robust biomanufacturing system. The steps toward such automated and autonomous bioprocessing are reviewed in the context of monitoring and control. It is possible to integrate real-time monitoring gradually, and it should be considered from a soft sensor perspective. This concept has already been successfully implemented in other industries and requires relatively simple model training and the use of established statistical tools, such as multivariate statistics or neural networks. This review describes a scenario for integrating soft sensors and predictive chemometrics into modern process control. This is exemplified by selective downstream processing steps, such as chromatography and membrane filtration, the most common unit operations for separation of biopharmaceuticals.
Collapse
Affiliation(s)
- Astrid Dürauer
- Institute of Bioprocessing Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Institute of Bioprocessing Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Theresa Scharl
- Institute of Statistics, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
21
|
Gürer F, Mohan T, Bračič M, Barlič A, Makuc D, Plavec J, Kleinschek KS, Kargl R. Hyaluronic acid conjugates of glycine peptides and L-tryptophan. Int J Biol Macromol 2024; 274:133301. [PMID: 38914403 DOI: 10.1016/j.ijbiomac.2024.133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
This work reports about the conjugation of glycine C-terminal ethyl and methyl ester peptides and L-tryptophan methyl ester with sodium hyaluronate in aqueous solutions using the peptide coupling agent DMTMM (or short DMT, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride). Detailed infrared (IR) absorbance and 1H and 13C (2D) NMR studies (heteronuclear multi-bond correlation spectroscopy, HMBC) confirmed covalent and regioselective amide bonds with the D-glucuronate, but also proves the presence of DMT traces in all conjugates. The ethyl ester`s methyl protons on the peptides` C-terminal could be used to quantify the degree of substitution of the peptide on the hyaluronate scaffold by NMR. The ester group also proved stable during conjugation and work-up, and could in some cases be selectively cleaved in water whilst leaving the amide bond intact as shown by potentiometric charge titration, NMR and IR. The conjugates did not influence the capability of human umbilical vein endothelial cells (HUVECs) to reduce MTS (5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) to a formazan dye, which points towards a low cytotoxicity for the obtained products. The conjugation method and products could be tested for tissue engineering gels or drug delivery purposes with alternative, biologically active peptides.
Collapse
Affiliation(s)
- Fazilet Gürer
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI - 2000 Maribor, Slovenia
| | - Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI - 2000 Maribor, Slovenia; Institute for Chemistry and Technology of Biobased System, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Matej Bračič
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI - 2000 Maribor, Slovenia
| | - Ariana Barlič
- Educell, Podjetje Za Celično Biologijo, d.o.o. Prevale 9, 1236 Trzin, Slovenia
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased System, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Rupert Kargl
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI - 2000 Maribor, Slovenia; Institute for Chemistry and Technology of Biobased System, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
22
|
Si W, Chen J, Zhang Z, Wu G, Zhao J, Sha J. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Chemphyschem 2024; 25:e202400281. [PMID: 38686913 DOI: 10.1002/cphc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
23
|
Mukunda DC, Basha S, D'Souza MG, Chandra S, Ameera K, Stanley W, Mazumder N, Mahato KK. Label-free visualization of unfolding and crosslinking mediated protein aggregation in nonenzymatically glycated proteins. Analyst 2024; 149:4029-4040. [PMID: 38963259 DOI: 10.1039/d4an00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nonenzymatic glycation (NEG) unfolds and crosslinks proteins, resulting in aggregation. Label-free evaluation of such structural changes, without disturbing molecular integrity, would be beneficial for understanding the fundamental mechanisms of protein aggregation. The current study demonstrates the assessment of NEG-induced protein aggregation by combining autofluorescence (AF) spectroscopy and imaging. The methylglyoxal (MG) induced protein unfolding and the formation of cross-linking advanced glycation end-products (AGEs) leading to aggregation were evaluated using deep-UV-induced-autofluorescence (dUV-AF) spectroscopy in proteins with distinct structural characteristics. Since the AGEs formed on proteins are fluorescent, the study demonstrated the possibility of autofluorescence imaging of NEG-induced protein aggregates. Autofluorescence spectroscopy can potentially reveal molecular alterations such as protein unfolding and cross-linking. In contrast, AGE-based autofluorescence imaging offers a means to visually explore the structural arrangement of aggregates, regardless of whether they are amyloid or non-amyloid in nature.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - K Ameera
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Weena Stanley
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
24
|
Sundaramoorthy A, Bharanidharan G, Prakasarao A, Ganesan S. Characterization and classification of pathogenic bacteria using native fluorescence and spectral deconvolution. JOURNAL OF BIOPHOTONICS 2024; 17:e202300566. [PMID: 38847123 DOI: 10.1002/jbio.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Identification and classification of pathogenic bacterial strains is of current interest for the early treatment of diseases. In this work, protein fluorescence from eight different pathogenic bacterial strains were characterized using steady state and time resolved fluorescence spectroscopy. The spectral deconvolution method was also employed to decompose the emission contribution from different intrinsic fluorophores and extracted various key parameters, such as intensity, emission maxima, emission line width of the fluorophores, and optical redox ratio. The change in average lifetime values across different bacterial strains exhibits good statistical significance (p ≤ 0.01). The variations in the photophysical characteristics of bacterial strains are due to the different conformational states of the proteins. The stepwise multiple linear discriminate analysis of fluorescence emission spectra at 280 nm excitation across eight different bacterial strains classifies the original groups and cross validated group with 100% and 99.5% accuracy, respectively.
Collapse
Affiliation(s)
| | | | - Aruna Prakasarao
- Department of Medical Physics, Anna University, Chennai, Tamilnadu, India
| | | |
Collapse
|
25
|
Souto-Guevara CA, Obiol D, Bruno CL, Ferreira-Gomes MS, Rossi JPFC, Costabel MD, Mangialavori IC. Magnesium enhances aurintricarboxylic acid's inhibitory action on the plasma membrane Ca 2+-ATPase. Sci Rep 2024; 14:14693. [PMID: 38926545 PMCID: PMC11208427 DOI: 10.1038/s41598-024-65465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Our research aimed to elucidate the mechanism by which aurintricarboxylic acid (ATA) inhibits plasma membrane Ca2+-ATPase (PMCA), a crucial enzyme responsible for calcium transport. Given the pivotal role of PMCA in cellular calcium homeostasis, understanding how it is inhibited by ATA holds significant implications for potentially regulating physiopathological cellular processes in which this pump is involved. Our experimental findings revealed that ATA employs multiple modes of action to inhibit PMCA activity, which are influenced by ATP but also by the presence of calcium and magnesium ions. Specifically, magnesium appears to enhance this inhibitory effect. Our experimental and in-silico results suggest that, unlike those reported in other proteins, ATA complexed with magnesium (ATA·Mg) is the molecule that inhibits PMCA. In summary, our study presents a novel perspective and establishes a solid foundation for future research efforts aimed at the development of new pharmacological molecules both for PMCA and other proteins.
Collapse
Affiliation(s)
- Cecilia A Souto-Guevara
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Diego Obiol
- Departamento de Física, Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), CONICET, B8000CPB, Bahía Blanca, Argentina
| | - Camila L Bruno
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Mariela S Ferreira-Gomes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Juan Pablo F C Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Marcelo D Costabel
- Departamento de Física, Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), CONICET, B8000CPB, Bahía Blanca, Argentina
| | - Irene C Mangialavori
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
27
|
Liow MY, Chan ES, Ng WZ, Song CP. Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization. Int J Biol Macromol 2024; 271:132538. [PMID: 38782325 DOI: 10.1016/j.ijbiomac.2024.132538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
This study focused on the ultrasound-assisted transesterification of simulated low-quality feedstocks using a low-cost liquid lipase Eversa® Transform 2.0 (ET2). Enzyme characterization was also performed to investigate the effect of ultrasound parameters on enzyme structure. The optimal ultrasound parameters, 40 % amplitude, and 5 % duty cycle effectively enhanced the reaction rate compared to the conventional stirring method while retaining 95 % of the enzyme activity. Analysis of circular dichroism (CD) spectra revealed the preservation of the secondary structure of ET2 under the optimal ultrasound intensities, while fluorescence spectra indicated a slight change in its tertiary structure. The implementation of a two-stage methanol dosing strategy in the ultrasound-assisted reaction effectively mitigated lipase inhibition, yielding a remarkable fatty acid methyl ester (FAME) content of 92.2 % achieved within a 12-h reaction time. Notable, this high FAME content was achieved with only a 4:1 methanol-to-oil molar ratio and a 0.5 wt% enzyme concentration. Under these optimized conditions, the ultrasound-assisted reaction also demonstrated a 15 % improvement in the final FAME content compared to the conventional stirring method. These promising results hold significant potential for advancing the field of biodiesel production via ultrasound technology, contributing substantively to sustainable energy sources.
Collapse
Affiliation(s)
- Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
28
|
Suarez J, Fortunato C. Ultraviolet-fluorescence detection of E. Coli using threshold-comparison electronics. APPLIED OPTICS 2024; 63:4345-4350. [PMID: 38856612 DOI: 10.1364/ao.522511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
We describe an optical system that detects the presence of E. coli bacteria, making use of the bacteria's natural fluorescence properties. The system provides an excitation signal at 365 nm and detects the emission signal, from the bacteria, at approximately 445 nm. The system also allows the intensity of the emitted signal to be compared with a user-programmable threshold. This allows rapid testing of many samples in a laboratory setting. Complete setup and performance details are provided, enabling the experimentalist to tailor the system parameters to other species of microorganisms, which may have fluorescence properties at other wavelengths.
Collapse
|
29
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Vahedi SZ, Farhadian S, Shareghi B, Asgharzadeh S. Thermodynamic and functional changes of alpha-chymotrypsin after interaction with gallic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124109. [PMID: 38447443 DOI: 10.1016/j.saa.2024.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
In the present study, the interaction mechanism between gallic acid (GA) and α-Chymotrypsin (α-CT) was investigated by employing a series ofspectroscopic methods, computational docking and molecular dynamic (MD) simulation. Fluorescence spectra analysis indicated the formation of a stable complex between GA and α-CT, where the quenching of the fluorescence emission was predominantly characterized by a static mechanism. TheCA obtained binding constants for the α-CT-GA complex were in the order of 103 M-1, indicating the moderate binding affinity of GA for α-CT. The corresponding CD findings showed that the interaction between GA and α-CT resulted in an alteration of the protein's secondary structure. The findings of the enzyme activity investigation clearly showed that the presence of GA led to a notable decline in the enzymatic activity of α-CT, highlighting GA's function as an effective inhibitor for α-CT. The molecular docking simulations revealed the optimal binding site for the GA molecule within the α-CT structure and MD simulations confirmed the stability of the α-CT-GA complex. This research expands our comprehension regarding the behavior of enzymes in the presence of small-molecule ligands and opens avenues for food safety.
Collapse
Affiliation(s)
- Seyedeh Zohreh Vahedi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
31
|
Sutthasupa S, Pankaew A, Thisan S, Wangngae S, Kumphune S. Approaching Tryptophan-Derived Polynorbornene Fluorescent Chemosensors: Synthesis, Characterization, and Sensing Ability for Biomedical Applications as Biomarkers for Detecting Fe 2+ Ions. Biomacromolecules 2024; 25:2875-2889. [PMID: 38554086 DOI: 10.1021/acs.biomac.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
We present a novel group of tryptophan (Trp)-based fluorescent polymeric probes synthesized via ring-opening metathesis polymerization (ROMP) of Trp-derived norbornene monomers. These probes, in mono- and disubstituted forms, incorporate amide and ester anchoring groups. The quantity of Trp substituents did not affect fluorescence selectivity but influenced quenching percentage. Poly-diamide-Trp, Poly-monoamide-Trp, Poly-diester-Trp, and Poly-monoester-Trp probes displayed selective detection of Fe2+ and Fe3+ ions with fluorescence on-off characteristics. Poly-diamide-Trp and Poly-monoamide-Trp exhibited a limit of detection (LOD) for Fe2+ and Fe3+ ions of 0.86-11.32 μM, while Poly-diester-Trp and Poly-monoester-Trp showed higher LODs (21.8-108.7 μM). These probes exhibited high selectivity over Fe2+, a crucial metal ion in the body known for its redox properties causing oxidative stress and cell damage. Cell cytotoxicity tests in various cell types confirmed biocompatibility. Additionally, Poly-diamide-Trp displayed excellent cell permeability and iron ion detection in EA.hy926 cells, suggesting potential for bioimaging and clinical applications.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Aphiwat Pankaew
- Mahidol University-Frontier Research Facility, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya 73170, Nakhon Pathom, Thailand
| | - Sukanya Thisan
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| | - Sirilak Wangngae
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| |
Collapse
|
32
|
Kumar G, Kellogg M, Dey S, Oliver TAA, Bradforth SE. Unraveling the Photoionization Dynamics of Indole in Aqueous and Ethanol Solutions. J Phys Chem B 2024; 128:4158-4170. [PMID: 38655896 DOI: 10.1021/acs.jpcb.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The photoionization dynamics of indole, the ultraviolet-B chromophore of tryptophan, were explored in water and ethanol using ultrafast transient absorption spectroscopy with 292, 268, and 200 nm excitation. By studying the femtosecond-to-nanosecond dynamics of indole in two different solvents, a new photophysical model has been generated that explains many previously unsolved facets of indole's complex solution phase photochemistry. Photoionization is only an active pathway for indole in aqueous solution, leading to a reduction in the fluorescence quantum yield in water-rich environments, which is frequently used in biophysical experiments as a key signature of the protein-folded state. Photoionization of indole in aqueous solution was observed for all three pump wavelengths but via two different mechanisms. For 200 nm excitation, electrons are ballistically ejected directly into the bulk solvent. Conversely, 292 and 268 nm excitation populates an admixture of two 1ππ* states, which form a dynamic equilibrium with a tightly bound indole cation and electron-ion pair. The ion pair dissociates on a nanosecond time scale, generating separated solvated electrons and indole cations. The charged species serve as important precursors to triplet indole production and greatly enhance the overall intersystem crossing rate. Our proposed photophysical model for indole in aqueous solution is the most appropriate for describing photoinduced dynamics of tryptophan in polypeptide sequences; tryptophan in aqueous pH 7 solution is zwitterionic, unlike in peptides, and resultantly has a competitive excited state proton transfer pathway that quenches the tryptophan fluorescence.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Michael Kellogg
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Shivalee Dey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas A A Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, U.K
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
33
|
Kladova OA, Tyugashev TE, Miroshnikov AA, Novopashina DS, Kuznetsov NA, Kuznetsova AA. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Biomolecules 2024; 14:547. [PMID: 38785954 PMCID: PMC11117729 DOI: 10.3390/biom14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In the cell, DNA polymerase β (Polβ) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polβ can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polβ variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polβ functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | | | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| |
Collapse
|
34
|
Haddad Momeni M, Zitting A, Jäämuru V, Turunen R, Penttilä P, Buchko GW, Hiltunen S, Maiorova N, Koivula A, Sapkota J, Marjamaa K, Master ER. Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:56. [PMID: 38654330 DOI: 10.1186/s13068-024-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Vilma Jäämuru
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Rosaliina Turunen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Salla Hiltunen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Natalia Maiorova
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
35
|
Gibbard JA, Kellow CS, Verlet JRR. Photoelectron spectroscopy of the deprotonated tryptophan anion: the contribution of deprotomers to its photodetachment channels. Phys Chem Chem Phys 2024; 26:12053-12059. [PMID: 38578256 DOI: 10.1039/d4cp00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photoelectron spectroscopy and electronic structure calculations are used to investigate the electronic structure of the deprotonated anionic form of the aromatic amino acid tryptophan, and its chromophore, indole. The photoelectron spectra of tryptophan, recorded at different wavelengths across the UV, consist of two direct detachment channels and thermionic emission, whereas the hν = 4.66 eV spectrum of indole consists of two direct detachment features. Electronic structure calculations indicate that two deprotomers of tryptophan are present in the ion beam; deprotonation of the carboxylic acid group (Trp(I)-) or the N atom on the indole ring (Trp(II)-). Strong similarities are observed between the direct detachment channels in the photoelectron spectra of tryptophan and indole, which in conjunction with electronic structure calculations, indicate that electron loss from Trp(II)- dominates this portion of the spectra. However, there is some evidence that direct detachment of Trp(I)- is also observed. Thermionic emission is determined to predominantly arise from the decarboxylation of Trp(I)-, mediated by the ππ* excited state near λ = 300 nm, which results in an anionic fragment with a negative electron affinity that readily autodetaches.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
36
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
37
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
38
|
Antoniou AI, Pesenti M, Crespi S, Shenoy DS, Penconi M, Bossi A, Pellegrino S. Aggregation-Induced Enhanced Emission of Tetraphenylethene-phenylalanine Hybrids: Synthesis and Characterization. J Org Chem 2024; 89:4733-4740. [PMID: 38520355 DOI: 10.1021/acs.joc.3c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Aggregation-induced emitting (AIE) luminophores are sensitive and easy-to-handle types of probes that allow driving a stimulus-responsive off/on optical tool through the manipulation of the aggregation behavior. In this work, tetraphenylethene (TPE)-phenylalanine derivatives, characterized by strong aggregation-induced luminescence, were obtained through Suzuki-Miyaura cross-coupling reactions. The reaction proved to be straightforwardly applicable in the single amino acid synthesis as well as in the late-stage peptide functionalization by means of both the classical solution-phase reaction and solid-phase synthesis. A comprehensive structural and analytical investigation highlighted the features driving the self-assembly process and its relationship to AIE efficiency. In particular, we showed that the simple slight (asymmetric) extension of the TPE π-systems results in more efficient and brighter emissions, with respect to the simple TPE system itself.
Collapse
Affiliation(s)
- Antonia I Antoniou
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Michela Pesenti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Stefania Crespi
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Dhriti S Shenoy
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" del Consiglio Nazionale delle Ricerche, CNR-SCITEC; Photoactive Molecular Materials & Devices Group, IT-20138 Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" del Consiglio Nazionale delle Ricerche, CNR-SCITEC; Photoactive Molecular Materials & Devices Group, IT-20138 Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| |
Collapse
|
39
|
Badve P, Meier KK. Defining Requirements for Heme Binding in PGRMC1 and Identifying Key Elements that Influence Protein Dimerization. Biochemistry 2024; 63:926-938. [PMID: 38489495 DOI: 10.1021/acs.biochem.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) binds heme via a surface-exposed site and displays some structural resemblance to cytochrome b5 despite their different functions. In the case of PGRMC1, it is the protein interaction with drug-metabolizing cytochrome P450s and the epidermal growth factor receptor that has garnered the most attention. These interactions are thought to result in a compromised ability to metabolize common chemotherapy agents and to enhance cancer cell proliferation. X-ray crystallography and immunoprecipitation data have suggested that heme-mediated PGRMC1 dimers are important for facilitating these interactions. However, more recent studies have called into question the requirement of heme binding for PGRMC1 dimerization. Our study employs spectroscopic and computational methods to probe and define heme binding and its impact on PGRMC1 dimerization. Fluorescence, electron paramagnetic resonance and circular dichroism spectroscopies confirm heme binding to apo-PGRMC1 and were used to demonstrate the stabilizing effect of heme on the wild-type protein. We also utilized variants (C129S and Y113F) to precisely define the contributions of disulfide bonds and direct heme coordination to PGRMC1 dimerization. Understanding the key factors involved in these processes has important implications for downstream protein-protein interactions that may influence the metabolism of chemotherapeutic agents. This work opens avenues for deeper exploration into the physiological significance of the truncated-PGRMC1 model and developing design principles for potential therapeutics to target PGRMC1 dimerization and downstream interactions.
Collapse
Affiliation(s)
- Prajakta Badve
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Katlyn K Meier
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
40
|
Sarin D, Krishna K, Nejadnik MR, Suryanarayanan R, Rathore AS. Impact of Excipient Extraction and Buffer Exchange on Recombinant Monoclonal Antibody Stability. Mol Pharm 2024; 21:1872-1883. [PMID: 38422397 PMCID: PMC10988557 DOI: 10.1021/acs.molpharmaceut.3c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The foundation of a biosimilar manufacturer's regulatory filing is the demonstration of analytical and functional similarity between the biosimilar product and the pertinent originator product. The excipients in the formulation may interfere with characterization using typical analytical and functional techniques during this biosimilarity exercise. Consequently, the producers of biosimilar products resort to buffer exchange to isolate the biotherapeutic protein from the drug product formulation. However, the impact that this isolation has on the product stability is not completely known. This study aims to elucidate the extent to which mAb isolation via ultrafiltration-diafiltration-based buffer exchange impacts mAb stability. It has been demonstrated that repeated extraction cycles do result in significant changes in higher-order structure (red-shift of 5.0 nm in fluorescence maxima of buffer exchanged samples) of the mAb and also an increase in formation of basic variants from 19.1 to 26.7% and from 32.3 to 36.9% in extracted innovator and biosimilar Tmab samples, respectively. It was also observed that under certain conditions of tertiary structure disruptions, Tmab could be restabilized depending on formulation composition. Thus, mAb isolation through extraction with buffer exchange impacts the product stability. Based on the observations reported in this paper, we recommend that biosimilar manufacturers take into consideration these effects of excipients on protein stability when performing biosimilarity assessments.
Collapse
Affiliation(s)
- Deepika Sarin
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Kunal Krishna
- School
of Interdisciplinary Research, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - M. Reza Nejadnik
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Raj Suryanarayanan
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anurag S. Rathore
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
41
|
Bagheri N, Chen H, Rabasovic M, Widengren J. Non-fluorescent transient states of tyrosine as a basis for label-free protein conformation and interaction studies. Sci Rep 2024; 14:6464. [PMID: 38499633 PMCID: PMC10948778 DOI: 10.1038/s41598-024-57054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
The amino acids tryptophan, tyrosine, and phenylalanine have been extensively used for different label-free protein studies, based on the intensity, lifetime, wavelength and/or polarization of their emitted fluorescence. Similar to most fluorescent organic molecules, these amino acids can undergo transitions into dark meta-stable states, such as triplet and photo-radical states. On the one hand, these transitions limit the fluorescence signal, but they are also highly environment-sensitive and can offer an additional set of parameters, reflecting interactions, folding states, and immediate environments around the proteins. In this work, by analyzing the average intensity of tyrosine emission under different excitation modulations with the transient state monitoring (TRAST) technique, we explored the photo physics of tyrosine as a basis for such environment-sensitive readouts. From how the dark state transitions of tyrosine varied with excitation intensity and solvent conditions we first established a photophysical model for tyrosine. Next, we studied Calmodulin (containing two tyrosines), and how its conformation is changed upon calcium binding. From these TRAST experiments, performed with 280 nm time-modulated excitation, we show that tyrosine dark state transitions clearly change with the calmodulin conformation, and may thus represent a useful source of information for (label-free) analyses of protein conformations and interactions.
Collapse
Affiliation(s)
- Niusha Bagheri
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91, Stockholm, Sweden
| | - Hongjian Chen
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91, Stockholm, Sweden
| | - Mihailo Rabasovic
- Laboratory for Biophysics, Institute of Physics Belgrade, Pregrevica 118, 11080, Zemun-Belgrade, Serbia
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
42
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
43
|
Sinha BK, Kumar D, Meher P, Kumari S, Prakash K, Gourinath S, Kashav T. Biophysical and functional characterization of N-terminal domain of Human Interferon Regulatory Factor 6. Mol Biol Rep 2024; 51:380. [PMID: 38429584 DOI: 10.1007/s11033-024-09205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNβ gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNβ). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNβ promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION NTD-IRF6 consists of a mix of α-helix and β-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNβ.
Collapse
Affiliation(s)
- Binita Kumari Sinha
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Devbrat Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyabrata Meher
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Shilpi Kumari
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, New Delhi, India
| | - Krishna Prakash
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | | | - Tara Kashav
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India.
| |
Collapse
|
44
|
Zheng L, Console G, Wang C, Whang K, Ting HP, Torres YM, Rude E, Smithson DC, Stella C, Bhargava AC. Development and Qualification of Analytical Methods to Support Low Concentration Drug Product in-use Studies. J Pharm Sci 2024; 113:604-615. [PMID: 37758160 DOI: 10.1016/j.xphs.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The emergence of highly potent therapeutics with low expected clinical doses creates a challenge for analytical characterization of simulated drug product in-use samples. The low expected protein concentration (often µg/mL) and highly charged and sub-optimal sample matrices like 0.9% saline or 5% dextrose make ensuring dose solution stability and characterizing product quality changes difficult. Health authority expectations require analysis of low concentration in-use samples to be completed with suitable assays to ensure little to no changes are occurring during drug product dose preparation and administration, thus ensuring patient safety. However, characterization of these samples for protein concentration, size variants, charge variants and potency often necessitates additional analytical method development to improve sensitivity and compatibility with in-use samples. Here we report the development and qualification of reliable in-use methods to characterize simulated in-use samples to assist during drug product development.
Collapse
Affiliation(s)
- Laura Zheng
- Protein Analytical Chemistry, Genentech Inc., United States
| | - Gary Console
- Protein Analytical Chemistry, Genentech Inc., United States
| | | | - Kevin Whang
- Biological Technologies, Genentech Inc., United States
| | - Hau-Ping Ting
- Pharmaceutical Development, Genentech Inc., United States
| | | | - Erina Rude
- Pharmaceutical Development, Genentech Inc., United States
| | | | - Cinzia Stella
- Protein Analytical Chemistry, Genentech Inc., United States
| | | |
Collapse
|
45
|
Yu Z, Cao Y, Tian Y, Ji W, Chen KE, Wang Z, Ren J, Xiao H, Zhang L, Liu W, Fan L, Zhang Q, Cao C. Real-time and quantitative protein detection via polyacrylamide gel electrophoresis and online intrinsic fluorescence imaging. Anal Chim Acta 2024; 1291:342219. [PMID: 38280790 DOI: 10.1016/j.aca.2024.342219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
The detection of intrinsic protein fluorescence is a powerful tool for studying proteins in their native state. Thanks to its label-free and stain-free feature, intrinsic fluorescence detection has been introduced to polyacrylamide gel electrophoresis (PAGE), a fundamental and ubiquitous protein analysis technique, to avoid the tedious detection process. However, the reported methods of intrinsic fluorescence detection were incompatible with online PAGE detection or standard slab gel. Here, we fulfilled online intrinsic fluorescence imaging (IFI) of the standard slab gel to develop a PAGE-IFI method for real-time and quantitative protein detection. To do so, we comprehensively investigated the arrangement of the deep-UV light source to obtain a large imaging area compatible with the standard slab gel, and then designed a semi-open gel electrophoresis apparatus (GEA) to scaffold the gel for the online UV irradiation and IFI with low background noise. Thus, we achieved real-time monitoring of the protein migration, which enabled us to determine the optimal endpoint of PAGE run to improve the sensitivity of IFI. Moreover, online IFI circumvented the broadening of protein bands to enhance the separation resolution. Because of the low background noise and the optimized endpoint, we showcased the quantitative detection of bovine serum albumin (BSA) with a limit of detection (LOD) of 20 ng. The standard slab gel provided a high sample loading volume that allowed us to attain a wide linear range of 0.03-10 μg. These results indicate that the PAGE-IFI method can be a promising alternative to conventional PAGE and can be widely used in molecular biology labs.
Collapse
Affiliation(s)
- Zixian Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weicheng Ji
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
46
|
Wang G, Li L, Liao X, Wang S, Mitchell J, Rabel C, Luo S, Shi J, Sorrells JE, Iyer RR, Aksamitiene E, Renteria CA, Chaney EJ, Milner DJ, Wheeler MB, Gillette MU, Schwing A, Chen J, Tu H. Supercontinuum intrinsic fluorescence imaging heralds free view of living systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577383. [PMID: 38328159 PMCID: PMC10849662 DOI: 10.1101/2024.01.26.577383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.
Collapse
|
47
|
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci 2024; 25:1764. [PMID: 38339045 PMCID: PMC10855643 DOI: 10.3390/ijms25031764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Collapse
Affiliation(s)
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland;
| |
Collapse
|
48
|
Kyrychenko A, Ladokhin AS. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions. CHEM REC 2024; 24:e202300232. [PMID: 37695081 PMCID: PMC11113672 DOI: 10.1002/tcr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, United States
| |
Collapse
|
49
|
Nikravesh FY, Gholami P, Bayat E, Talebkhan Y, Mirabzadeh E, Damough S, Aliabadi HAM, Nematollahi L, Ardakani YH. Expression, Purification, and Biological Evaluation of XTEN-GCSF in a Neutropenic Rat Model. Appl Biochem Biotechnol 2024; 196:804-820. [PMID: 37209276 DOI: 10.1007/s12010-023-04522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.
Collapse
Affiliation(s)
| | - Parisa Gholami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Shadi Damough
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
50
|
Abou-Hatab S, Matsika S. Excited state hydrogen or proton transfer pathways in microsolvated n-cyanoindole fluorescent probes. Phys Chem Chem Phys 2024; 26:4511-4523. [PMID: 38240574 DOI: 10.1039/d3cp04844f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The sensitivity of the fluorescence properties of n-cyanoindole (n-CNI) fluorescent probes to the microenvironment makes them potential reporters of protein conformation and hydration. The fluorescence intensity of 5-CNI, 6-CNI, and 7-CNI is quenched when exposed to water solvent whereas substitution on position 4 of indoles dramatically increases it. A potential mechanism for this sensitivity to water may be similar to that found in indole. The fluorescence of indole is found to be quenched when interacting with water and ammonia solvent molecules via radiationless decay through an S1 (πσ*)/S0 conical intersection caused by excited state proton or hydrogen transfer to the solvent molecules. In this study we examine this fluorescence quenching mechanism along the N-H bond stretch of n-CNI probes using water cluster models and quantum mechanical calculations of the excited states. We find that n-CNI-(H2O)1-2 clusters form cyclic or non-cyclic structures via hydrogen bonds which lead to different photochemical reaction paths that can potentially quench the fluorescence by undergoing internal conversion from S1 to S0. However, the existence of a high energy barrier along the potential energy surface of the S1 state in most cases prevents this from occurring. We show that substitution on position 4 leads to the highest energy barrier that prevents the fluorophore from accessing these non-radiative channels, in agreement with its high intensity. We also find that the energy barrier in the S1 state of non-cyclic 5-CNI-(H2O)1-2 excited complexes decreases as the number of water molecules increases, which suggests great sensitivity of the fluorescence quenching on the aqueous environment.
Collapse
|