1
|
Li J, Yang H, Cai Y, Gu R, Chen Y, Wang Y, Dong Y, Zhao Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int J Biol Macromol 2024; 282:136405. [PMID: 39423980 DOI: 10.1016/j.ijbiomac.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The prevention of catheter-associated urinary tract infections (CAUTIs) significantly impacts the reduction of morbidity and mortality associated with the use of indwelling urinary catheters. This study focused on developing an antibacterial double network hydrogel coating for latex urinary catheters, which incorporated Ag quantum dots (Ag QDs) in a polyvinyl alcohol (PVA)-chitosan (CS) double network hydrogel matrix. The PVA-CS-Ag QDs, referred to as the PCA hydrogel coating exhibited excellent mechanical and physiochemical properties with controlled release of Ag QDs. The antibacterial properties of the PCA hydrogel-coated urinary catheters were studied against both gram-negative Escherichia coli (E. coli, ATCC25922) and gram-positive Staphylococcus aureus (S. aureus, ATCC29213). The continuous release of CS oligomers and Ag QDs from the hydrogel coating contributed to the synergistic antibacterial and antiadhesion effects. Measurements of the Ag release rate revealed that even after 30 days, the concentration of Ag QDs from the PCA hydrogel-coated urinary catheters remained significantly higher than the effective antibacterial concentration of the total Ag (0.1 μg·L-1). These results indicated that the PCA hydrogel coating not only efficiently prevented bacteria attachment, but also exhibited long-term antibacterial activity, thereby inhibiting biofilm formation. Furthermore, the PCA hydrogel-coated urinary catheter demonstrated excellent biocompatibility and hemocompatibility. Overall, this novel PCA hydrogel-coated urinary catheter, with its exceptional antibacterial properties, holds great potential in reducing the incidence of CAUTIs.
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yimeng Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yuhang Dong
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
2
|
Qiu H, Nazarenus J, Egeler B, Thode T, Osman F, Osmonov D, Bahr J, Kaps S, Siebert FA, Koch R, Lützen U, Adelung R, Siebert L. Hydrogel System with Independent Tailoring of Mechanics, CT, and US Contrasts for Affordable Medical Phantoms. ACS MATERIALS LETTERS 2024; 6:4847-4853. [PMID: 39391745 PMCID: PMC11463687 DOI: 10.1021/acsmaterialslett.4c01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Medical phantoms mimic aspects of procedures like computed tomography (CT), ultrasound (US) imaging, and surgical practices. However, the materials for current commercial phantoms are expensive and the fabrication with these is complex and lacks versatility. Therefore, existing material solutions are not suitable for creating patient-specific phantoms. We present a novel and cost-effective material system (utilizing ubiquitous sodium alginate hydrogel and coconut fat) with independently and accurately tailorable CT, US, and mechanical properties. By varying the concentration of alginate, cross-linker, and coconut fat, the radiological parameters and the elastic modulus were adjusted independently in a wide range. The independence was demonstrated by creating phantoms with features hidden in US, while visible in CT imaging and vice versa. This system is particularly beneficial in resource-scarce areas since the materials are cheap (<$ 1 USD/kg) and easy to obtain, offering realistic and versatile phantoms to practice surgeries and ultimately enhance patient care.
Collapse
Affiliation(s)
- Haoyi Qiu
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Jakob Nazarenus
- Multimedia
Information Processing, Institute for Computer Science, Kiel University, 24118 Kiel, Germany
| | - Bernhard Egeler
- Department
of Nuclear Medicine, University Hospital
Schleswig-Holstein, Campus
Kiel, 24105 Kiel, Germany
| | - Tom Thode
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Firdaws Osman
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Daniar Osmonov
- Department
of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jörg Bahr
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Sören Kaps
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Frank-Andre Siebert
- Department
of Radiation Oncology, University Hospital
Schleswig-Holstein, Campus
Kiel, 24105 Kiel, Germany
| | - Reinhard Koch
- Multimedia
Information Processing, Institute for Computer Science, Kiel University, 24118 Kiel, Germany
| | - Ulf Lützen
- Department
of Nuclear Medicine, University Hospital
Schleswig-Holstein, Campus
Kiel, 24105 Kiel, Germany
| | - Rainer Adelung
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
- Kiel Nano,
Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Leonard Siebert
- Functional
Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
- Kiel Nano,
Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
3
|
Guzik A, de Maere d'Aertrycke F, Stuart MCA, Raffa P. Lowest gelation concentration in a complex-coacervate-driven self-assembly system, achieved by redox-RAFT synthesis of high molecular weight block polyelectrolytes. SOFT MATTER 2024. [PMID: 39359157 DOI: 10.1039/d4sm00763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The objective of this work was to synthesize high molecular weight polyelectrolyte complex (PEC) micelles that are effective in controlling the rheology of aqueous solutions at low concentrations, paving the way for industrial applications of thickeners based on the principle of electrostatic self-assembly. Redox-initiated RAFT (reversible addition-fragmentation chain-transfer) polymerization was used to obtain anionic block polyelectrolytes based on poly(sodium 2-acrylamido-2-methylpropane sulfonate) and poly(acrylamide)-poly(AMPS)-block-poly(AM) (di-block) and poly(AMPS)-block-poly(AM)-block-poly(AMPS) (tri-block), with molecular weights of 237 kDa and 289 kDa and polydispersities of 1.29 and 1.34, respectively. A random poly(AMPS)-co-poly(AM) copolymer was also synthesized for comparison. PEC micelles were obtained upon mixing with cationic poly(N-[3-(dimethylamino)propyl]methacrylamide hydrochloride) - poly(DMAPMA), forming viscoelastic gels at unprecedented low concentrations of <3 wt% for the di-block and <1 wt% for the tri-block, which to date is the lowest demonstrated gelation concentration for a synthetic PEC micelle system. Differences between tri-block and di-block architectures are discussed, with the former being more affected by the addition of salt, which is attributed to percolated network breakdown. The random co-polymer was shown not to be an effective thickener but displayed a surprising lack of phase separation upon coacervation. The assemblies were characterized using dynamic light scattering (DLS) and cryo transmission electron microscopy (cryoTEM), revealing spherical micelles with a diameter of approximately 200 nm for the diblock and a mixture of spherical micelles and network particles for the tri-block PEC micelles. The micelles were not affected by dilution down to a polymer concentration of 7.8 × 10-4% (approx. 0.03 μM). Responsiveness to salinity, pH, and temperature was studied using DLS, revealing a critical NaCl concentration of 1.1 M for the block copolymer micelles.
Collapse
Affiliation(s)
- Aleksander Guzik
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
- DPI, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Fabrice de Maere d'Aertrycke
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
| |
Collapse
|
4
|
Cordts SC, Yuki K, Henao Echeverri MF, Narasimhan B, Kuo CJ, Tang SKY. Microdissection tools to generate organoids for modeling the tumor immune microenvironment. MICROSYSTEMS & NANOENGINEERING 2024; 10:126. [PMID: 39251611 PMCID: PMC11385579 DOI: 10.1038/s41378-024-00756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Patient-derived tumor organoids have emerged as promising models for predicting personalized drug responses in cancer therapy, but they typically lack immune components. Preserving the in vivo association between tumor cells and endogenous immune cells is critical for accurate testing of cancer immunotherapies. Mechanical dissection of tumor specimens into tumor fragments, as opposed to enzymatic digestion into single cells, is essential for maintaining these native tumor-immune cell spatial relationships. However, conventional mechanical dissection relying on manual mincing is time-consuming and irreproducible. This study describes two microdissection devices, the µDicer and µGrater, to facilitate the generation of intact tumor fragments from mouse B16 melanoma, a common model of human melanoma. The µDicer- and µGrater-cut tumor fragments were used to generate air‒liquid interface (ALI) organoids that copreserve tumor cells with infiltrating immune subsets without artificial reconstitution. The µDicer, consisting of a hexagonal array of silicon microblades, was employed to investigate the effect of organoid size. The viability of ALI organoid immune cells appeared insensitive to organoid sizes exceeding ~400 µm but diminished in organoids ~200 µm in size. The µGrater, consisting of an array of submillimeter holes in stainless steel, was employed to accelerate dissection. For the samples studied, the µGrater was 4.5 times faster than manual mincing. Compared with those generated by manual mincing, ALI organoids generated by the µGrater demonstrated similar viability, immune cell composition, and responses to anti-PD-1 immunotherapy. With further optimization, the µGrater holds potential for integration into clinical workflows to support the advancement of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Seth C Cordts
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | | | | | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Bento CSA, Leite Lopes D, Flora Villarreal C, Empadinhas N, Alarico S, de Sousa HC, Braga MEM. Integrated processes (HPSE+scCO 2) to prepare sterilized alginate-gelatine-based aerogel. Int J Pharm 2024; 662:124546. [PMID: 39097154 DOI: 10.1016/j.ijpharm.2024.124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Biopolymers application in biomedical areas has been limited due to the physicochemical degradation that occurs using conventional processing/sterilization methods (e.g., steam heat, γ-radiation, ethylene oxide). Aiming to avoid/minimize degradation and preserve their properties, supercritical carbon dioxide (scCO2) has been proposed as an alternative sterilization method for such materials. ScCO2 can simultaneously be used as a drying method to produce aerogels (i) and sterilize them (ii). However, a solvent exchange is required to prepare the alcogel from hydrogel, achievable through high-pressure solvent exchange (HPSE) (iii). This study integrated three processes: HPSE, scCO2 drying, and sterilization to prepare alginate-gelatine sterilized aerogels. Two scCO2 sterilization methods were tested. Results showed that sterilization did not compromise the aerogels' chemical, thermal and swelling properties. Conversely, Young's Modulus increased, and BET surface area decreased, due to the structural changes caused by the fast pressurization/depressurization rates applied during sterilization. Regarding the sterilization efficiency, results showed a reduction in contamination throughout the process, achieving a SAL of 10-4. The sterilized aerogels were non-cytotoxic in vitro and showed improved wound-healing properties. The innovative integrated process produced decontaminated/sterile and ready-to-use aerogels reducing process time by 75 %, from 2 days up to 12 h without compromising the aerogel's properties.
Collapse
Affiliation(s)
- Cristiana S A Bento
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal
| | - Dhara Leite Lopes
- Federal University of Bahia, School of Pharmacy, 40.170-115, Salvador, BA, Brazil
| | | | - Nuno Empadinhas
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Faculty of Medicine, Polo I, 1st Floor 3004-504, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Casa Costa Alemão - Pólo II, 3030-789, Coimbra, Portugal
| | - Susana Alarico
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Faculty of Medicine, Polo I, 1st Floor 3004-504, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Casa Costa Alemão - Pólo II, 3030-789, Coimbra, Portugal.
| | - Hermínio C de Sousa
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal
| | - Mara E M Braga
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790, Coimbra, Portugal.
| |
Collapse
|
6
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
7
|
Soliman BG, Chin IL, Li Y, Ishii M, Ho MH, Doan VK, Cox TR, Wang PY, Lindberg GCJ, Zhang YS, Woodfield TBF, Choi YS, Lim KS. Droplet-based microfluidics for engineering shape-controlled hydrogels with stiffness gradient. Biofabrication 2024; 16:045026. [PMID: 39121873 DOI: 10.1088/1758-5090/ad6d8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yiwei Li
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Melissa Ishii
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Minh Hieu Ho
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Vinh Khanh Doan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 32500, People's Republic of China
| | - Gabriella C J Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, United States of America
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
8
|
Martins EAG, Deus IA, Gomes MC, Silva AS, Mano JF, Custódio CA. Human Chorionic Membrane-derived Tunable Hydrogels for Vascular Tissue Engineering Strategies. Adv Healthc Mater 2024:e2401510. [PMID: 39101324 DOI: 10.1002/adhm.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
One of the foremost targets in the advancement of biomaterials to engineer vascularized tissues is not only to replicate the composition of the intended tissue but also to create thicker structures incorporating a vascular network for adequate nutrients and oxygen supply. For the first time, to the best of current knowledge, a clinically relevant biomaterial is developed, demonstrating that hydrogels made from the human decellularized extracellular matrix can exhibit robust mechanical properties (in the kPa range) and angiogenic capabilities simultaneously. These properties enable the culture and organization of human umbilical vein endothelial cells into tubular structures, maintaining their integrity for 14 days in vitro without the need for additional polymers or angiogenesis-related factors. This is achieved by repurposing the placenta chorionic membrane (CM), a medical waste with an exceptional biochemical composition, into a valuable resource for bioengineering purposes. After decellularization, the CM underwent chemical modification with methacryloyl groups, giving rise to methacrylated CM (CMMA). CMMA preserved key proteins, as well as glycosaminoglycans. The resulting hydrogels rapidly photopolymerize and have enhanced strength and customizable mechanical properties. Furthermore, they demonstrate angio-vasculogenic competence in vitro and in vivo, holding significant promise as a humanized platform for the engineering of vascularized tissues.
Collapse
Affiliation(s)
- Elisa A G Martins
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Inês A Deus
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana S Silva
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024; 10:507. [PMID: 39195036 DOI: 10.3390/gels10080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Mariangela Rosa
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Célio Fernandes
- Transport Phenomena Research Centre (CEFT), Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Gangrade A, Zehtabi F, Ohe JY, Kouchehbaghi NH, Voskanian L, Haghniaz R, Shepes M, Rashad A, Ermis M, Khademhosseini A, Barros NRD. Engineered Regenerative and Adhesive Hydrogel for Concurrent Sealing and Healing of Enterocutaneous Fistulas. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39046205 DOI: 10.1021/acsami.4c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In addressing the intricate challenges of enterocutaneous fistula (ECF) treatment, such as internal bleeding, effluent leakage, inflammation, and infection, our research is dedicated to introducing a regenerative adhesive hydrogel that can seal and expedite the healing process. A double syringe setup was utilized, with dopagelatin and platelet-rich plasma (PRP) in one syringe and Laponite and sodium periodate in another. The hydrogel begins to cross-link immediately after passing through a mixing tip and exhibits tissue adhesive properties. Results demonstrated that PRP deposits within the pores of the cross-linked hydrogel and releases sustainably, enhancing its regenerative capabilities. The addition of PRP further improved the mechanical properties and slowed down the degradation of the hydrogel. Furthermore, the hydrogel demonstrated cytocompatibility, hemostatic properties, and time-dependent macrophage M1 to M2 phase transition, suggesting the anti-inflammatory response of the material. In an in vitro bench test simulating high-pressure fistula conditions, the hydrogel effectively occluded pressures up to 300 mmHg. In conclusion, this innovative hydrogel holds promise for ECF treatment and diverse fistula cases, marking a significant advancement in its therapeutic approaches.
Collapse
Affiliation(s)
- Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Joo-Young Ohe
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Matan Shepes
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| |
Collapse
|
11
|
Chaurasia P, Singh R, Mahto SK. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink. Biofabrication 2024; 16:045007. [PMID: 38942010 DOI: 10.1088/1758-5090/ad5d18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Traditional three-dimensional (3D) bioprinting has always been associated with the challenge of print fidelity of complex geometries due to the gel-like nature of the bioinks. Embedded 3D bioprinting has emerged as a potential solution to print complex geometries using proteins and polysaccharides-based bioinks. This study demonstrated the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting method of chitosan bioink to 3D bioprint complex geometries. 4.5% chitosan was dissolved in an alkali solvent to prepare the bioink. Rheological evaluation of the bioink described its shear-thinning nature. The power law equation was fitted to the shear rate-viscosity plot. The flow index value was found to be less than 1, categorizing the material as pseudo-plastic. The chitosan bioink was extruded into another medium, a thermo-responsive 4.5% gelatin hydrogel. This hydrogel supports the growing print structures while printing. After this, the 3D bioprinted structure was crosslinked with hot water to stabilize the structure. Using this method, we have 3D bioprinted complex biological structures like the human tri-leaflet heart valve, a section of a human right coronary arterial tree, a scale-down outer structure of the human kidney, and a human ear. Additionally, we have shown the mechanical tunability and suturability of the 3D bioprinted structures. This study demonstrates the capability of the chitosan bioink and FRESH method for 3D bioprinting of complex biological models for biomedical applications.
Collapse
Affiliation(s)
- Parul Chaurasia
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Richa Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
12
|
Krieger K, Egger J, Kleesiek J, Gunzer M, Chen J. Multisensory Extended Reality Applications Offer Benefits for Volumetric Biomedical Image Analysis in Research and Medicine. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01094-x. [PMID: 38862851 DOI: 10.1007/s10278-024-01094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
3D data from high-resolution volumetric imaging is a central resource for diagnosis and treatment in modern medicine. While the fast development of AI enhances imaging and analysis, commonly used visualization methods lag far behind. Recent research used extended reality (XR) for perceiving 3D images with visual depth perception and touch but used restrictive haptic devices. While unrestricted touch benefits volumetric data examination, implementing natural haptic interaction with XR is challenging. The research question is whether a multisensory XR application with intuitive haptic interaction adds value and should be pursued. In a study, 24 experts for biomedical images in research and medicine explored 3D medical shapes with 3 applications: a multisensory virtual reality (VR) prototype using haptic gloves, a simple VR prototype using controllers, and a standard PC application. Results of standardized questionnaires showed no significant differences between all application types regarding usability and no significant difference between both VR applications regarding presence. Participants agreed to statements that VR visualizations provide better depth information, using the hands instead of controllers simplifies data exploration, the multisensory VR prototype allows intuitive data exploration, and it is beneficial over traditional data examination methods. While most participants mentioned manual interaction as the best aspect, they also found it the most improvable. We conclude that a multisensory XR application with improved manual interaction adds value for volumetric biomedical data examination. We will proceed with our open-source research project ISH3DE (Intuitive Stereoptic Haptic 3D Data Exploration) to serve medical education, therapeutic decisions, surgery preparations, or research data analysis.
Collapse
Affiliation(s)
- Kathrin Krieger
- Biospectroscopy, Leibniz-Institut for Analytical Science-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44139, NRW, Germany.
- Neuroinformatics Group, Faculity of Technology, Bielefeld University, Inspiration 1, Bielefeld, 33619, NRW, Germany.
| | - Jan Egger
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, Girardetstr. 2, Essen, 45131, NRW, Germany
- Center for Virtual and Extended Reality in Medicine (ZvRM), University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, NRW, Germany
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, Girardetstr. 2, Essen, 45131, NRW, Germany
| | - Matthias Gunzer
- Biospectroscopy, Leibniz-Institut for Analytical Science-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44139, NRW, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, NRW, Germany
| | - Jianxu Chen
- Biospectroscopy, Leibniz-Institut for Analytical Science-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44139, NRW, Germany
| |
Collapse
|
13
|
Asciak L, Domingo-Roca R, Dow JR, Brodie R, Paterson N, Riches PE, Shu W, McCormick C. Exploiting light-based 3D-printing for the fabrication of mechanically enhanced, patient-specific aortic grafts. J Mech Behav Biomed Mater 2024; 154:106531. [PMID: 38588633 DOI: 10.1016/j.jmbbm.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Despite polyester vascular grafts being routinely used in life-saving aortic aneurysm surgeries, they are less compliant than the healthy, native human aorta. This mismatch in mechanical behaviour has been associated with disruption of haemodynamics contributing to several long-term cardiovascular complications. Moreover, current fabrication approaches mean that opportunities to personalise grafts to the individual anatomical features are limited. Various modifications to graft design have been investigated to overcome such limitations; yet optimal graft functionality remains to be achieved. This study reports on the development and characterisation of an alternative vascular graft material. An alginate:PEGDA (AL:PE) interpenetrating polymer network (IPN) hydrogel has been produced with uniaxial tensile tests revealing similar strength and stiffness (0.39 ± 0.05 MPa and 1.61 ± 0.19 MPa, respectively) to the human aorta. Moreover, AL:PE tubular conduits of similar geometrical dimensions to segments of the aorta were produced, either via conventional moulding methods or stereolithography (SLA) 3D-printing. While both fabrication methods successfully demonstrated AL:PE hydrogel production, SLA 3D-printing was more easily adaptable to the fabrication of complex structures without the need of specific moulds or further post-processing. Additionally, most 3D-printed AL:PE hydrogel tubular conduits sustained, without failure, compression up to 50% their outer diameter and returned to their original shape upon load removal, thereby exhibiting promising behaviour that could withstand pulsatile pressure in vivo. Overall, these results suggest that this AL:PE IPN hydrogel formulation in combination with 3D-printing, has great potential for accelerating progress towards personalised and mechanically-matched aortic grafts.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Roger Domingo-Roca
- Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, UK
| | - Jamie R Dow
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK; Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Robbie Brodie
- Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Niall Paterson
- Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Philip E Riches
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
14
|
Marquis M, Zykwinska A, Novales B, Leroux I, Schleder C, Pichon J, Cuenot S, Rouger K. Human muscle stem cell responses to mechanical stress into tunable 3D alginate matrices. Int J Biol Macromol 2024; 266:130823. [PMID: 38492703 DOI: 10.1016/j.ijbiomac.2024.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Mélanie Marquis
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France.
| | - Agata Zykwinska
- Ifremer, MASAE, Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Bruno Novales
- INRAE, BIA, Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Isabelle Leroux
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Cindy Schleder
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Julien Pichon
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44322 Nantes cedex 3, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| |
Collapse
|
15
|
Zhu S, Zhang W, Xu C, Huang J, Zou C. An injectable polyacrylamide/chitosan-based hydrogel with highly adhesive, stretchable and electroconductive properties loaded with irbesartan for treatment of myocardial ischemia-reperfusion injury. Int J Biol Macromol 2024; 266:131175. [PMID: 38552696 DOI: 10.1016/j.ijbiomac.2024.131175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.
Collapse
Affiliation(s)
- Shasha Zhu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunming Xu
- Department of Cardiology, Zhangjiagang First People Hospital, Suzhou 215600, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cao Zou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
16
|
Davoodi P, Rezaei N, Hassan M, Hay DC, Vosough M. Bioengineering vascularized liver tissue for biomedical research and application. Scand J Gastroenterol 2024; 59:623-629. [PMID: 38319110 DOI: 10.1080/00365521.2024.2310172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.
Collapse
Affiliation(s)
- Parsa Davoodi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh, UK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Feng X, Xing C, Wang C, Tian Y, Shang S, Liu H, Huang X, Jiang J, Song Z, Zhang H. Degradable, anti-swelling, high-strength cellulosic hydrogels via salting-out and ionic coordination. Int J Biol Macromol 2024; 267:131536. [PMID: 38608993 DOI: 10.1016/j.ijbiomac.2024.131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Cellulosic hydrogels are widely used in various applications, as they are natural raw materials and have excellent degradability. However, their poor mechanical properties restrict their practical application. This study presents a facile approach for fabricating cellulosic hydrogels with high strength by synergistically utilizing salting-out and ionic coordination, thereby inducing the collapse and aggregation of cellulose chains to form a cross-linked network structure. Cellulosic hydrogels are prepared by soaking cellulose in an Al2(SO4)3 solution, which is both strong (compressive strength of up to 16.99 MPa) and tough (compressive toughness of up to 2.86 MJ/m3). The prepared cellulosic hydrogels exhibit resistance to swelling in different solutions and good biodegradability in soil. The cellulosic hydrogels are incorporated into strain sensors for human-motion monitoring by introducing AgNWs. Thus, the study offers a promising, simple, and scalable approach for preparing strong, degradable, and anti-swelling hydrogels using common biomass resources with considerable potential for various applications.
Collapse
Affiliation(s)
- Xuezhen Feng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Xing
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu 210042, China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
18
|
Aerts A, Vovchenko M, Elahi SA, Viñuelas RC, De Maeseneer T, Purino M, Hoogenboom R, Van Oosterwyck H, Jonkers I, Cardinaels R, Smet M. A Spontaneous In Situ Thiol-Ene Crosslinking Hydrogel with Thermo-Responsive Mechanical Properties. Polymers (Basel) 2024; 16:1264. [PMID: 38732733 PMCID: PMC11085619 DOI: 10.3390/polym16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network through a biocompatible thiol-ene click-reaction by mixing two polymer solutions. Co-polymers with variable thiol or acrylate groups to thermo-responsive co-monomer ratios, ranging from 1% to 10%, were synthesized. Precise control of the crosslink density allowed customization of the hydrogel's mechanical properties to match different tissue stiffness levels. Increasing the temperature of the hydrogel above its transition temperature of 31 °C induced the formation of additional physical interactions. These additional interactions both further increased the stiffness of the material and impacted its relaxation behavior. The developed optimized hydrogels reach stiffnesses more than ten times higher compared to the state of the art using similar polymers. Furthermore, when adding cells to the precursor polymer solutions, homogeneous thermo-responsive hydrogels with good cell viability were created upon mixing. In future work, the influence of the mechanical micro-environment on the cell's behavior can be studied in vitro in a continuous manner by changing the incubation temperature.
Collapse
Affiliation(s)
- Andreas Aerts
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Maxim Vovchenko
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, P.O. Box 2416, 3001 Leuven, Belgium
| | - Seyed Ali Elahi
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Rocío Castro Viñuelas
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
- Laboratory for Tissue Homeostasis and Disease, Department of Development and Regeneration, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Tess De Maeseneer
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Ruth Cardinaels
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Mario Smet
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| |
Collapse
|
19
|
Yu Y, Pan Y, Shen Y, Tian J, Zhang R, Guo W, Li C, Shum HC. Vascular network-inspired fluidic system (VasFluidics) with spatially functionalizable membranous walls. Nat Commun 2024; 15:1437. [PMID: 38365901 PMCID: PMC10873510 DOI: 10.1038/s41467-024-45781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
In vascular networks, the transport across different vessel walls regulates chemical compositions in blood over space and time. Replicating such trans-wall transport with spatial heterogeneity can empower synthetic fluidic systems to program fluid compositions spatiotemporally. However, it remains challenging as existing synthetic channel walls are typically impermeable or composed of homogeneous materials without functional heterogeneity. This work presents a vascular network-inspired fluidic system (VasFluidics), which is functionalizable for spatially different trans-wall transport. Facilitated by embedded three-dimensional (3D) printing, elastic, ultrathin, and semipermeable walls self-assemble electrostatically. Physicochemical reactions between fluids and walls are localized to vary the trans-wall molecules among separate regions, for instance, by confining solutions or locally immobilizing enzymes on the outside of channels. Therefore, fluid compositions can be regulated spatiotemporally, for example, to mimic blood changes during glucose absorption and metabolism. Our VasFluidics expands opportunities to replicate biofluid processing in nature, providing an alternative to traditional fluidics.
Collapse
Affiliation(s)
- Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yanting Shen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
20
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
21
|
Yuan Y, Tyson C, Szyniec A, Agro S, Tavakol TN, Harmon A, Lampkins D, Pearson L, Dumas JE, Taite LJ. Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering. Gels 2024; 10:108. [PMID: 38391438 PMCID: PMC10887679 DOI: 10.3390/gels10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU-PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications.
Collapse
Affiliation(s)
- Yixuan Yuan
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Caleb Tyson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Annika Szyniec
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Samuel Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Alexander Harmon
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - DessaRae Lampkins
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Lauran Pearson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Jerald E Dumas
- Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
22
|
Hirth E, Cao W, Peltonen M, Kapetanovic E, Dietsche C, Svanberg S, Filippova M, Reddy S, Dittrich PS. Self-assembled and perfusable microvasculature-on-chip for modeling leukocyte trafficking. LAB ON A CHIP 2024; 24:292-304. [PMID: 38086670 PMCID: PMC10793075 DOI: 10.1039/d3lc00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Leukocyte recruitment from blood to tissue is a process that occurs at the level of capillary vessels during both physiological and pathological conditions. This process is also relevant for evaluating novel adoptive cell therapies, in which the trafficking of therapeutic cells such as chimeric antigen receptor (CAR)-T cells throughout the capillaries of solid tumors is important. Local variations in blood flow, mural cell concentration, and tissue stiffness contribute to the regulation of capillary vascular permeability and leukocyte trafficking throughout the capillary microvasculature. We developed a platform to mimic a biologically functional human arteriole-venule microcirculation system consisting of pericytes (PCs) and arterial and venous primary endothelial cells (ECs) embedded within a hydrogel, which self-assembles into a perfusable, heterogeneous microvasculature. Our device shows a preferential association of PCs with arterial ECs that drives the flow-dependent formation of microvasculature networks. We show that PCs stimulate basement membrane matrix synthesis, which affects both vessel diameter and permeability in a manner correlating with the ratio of ECs to PCs. Moreover, we demonstrate that hydrogel concentration can affect capillary morphology but has no observed effect on vascular permeability. The biological function of our capillary network was demonstrated using an inflammation model, where significantly higher expression of cytokines, chemokines, and adhesion molecules was observed after tumor necrosis factor-alpha (TNF-α) treatment. Accordingly, T cell adherence and transendothelial migration were significantly increased in the immune-activated state. Taken together, our platform allows the generation of a perfusable microvasculature that recapitulates the structure and function of an in vivo capillary bed that can be used as a model for developing potential immunotherapies.
Collapse
Affiliation(s)
- Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Marina Peltonen
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Sara Svanberg
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Maria Filippova
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sai Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| |
Collapse
|
23
|
Ji Z, Gong D, Zhu M, Yang J, Bao Y, Wang Z, Xu M. Mussel-inspired adhesive and anti-swelling hydrogels for underwater strain sensing. SOFT MATTER 2024; 20:629-639. [PMID: 38163997 DOI: 10.1039/d3sm01503c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.
Collapse
Affiliation(s)
- Zhengxiao Ji
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Dianjinfeng Gong
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Mengni Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Jiaqi Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Yueyue Bao
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Zihui Wang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
24
|
Giorgi Z, Veneruso V, Petillo E, Veglianese P, Perale G, Rossi F. Biomaterials and Cell Therapy Combination in Central Nervous System Treatments. ACS APPLIED BIO MATERIALS 2024; 7:80-98. [PMID: 38158393 PMCID: PMC10792669 DOI: 10.1021/acsabm.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zoe Giorgi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Valeria Veneruso
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Emilia Petillo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Pietro Veglianese
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Perale
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Filippo Rossi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
25
|
Forg S, Guo X, von Klitzing R. Influence of Dopamine Methacrylamide on Swelling Behavior and Nanomechanical Properties of PNIPAM Microgels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1521-1534. [PMID: 38146181 DOI: 10.1021/acsami.3c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The combination of the catechol-containing comonomer dopamine methacrylamide (DMA) with stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels bears a huge potential in research and for applications due to the versatile properties of catechols. This research gives the first detailed insights into the influence of DMA on the swelling of PNIPAM microgels and their nanomechanical properties. Dynamic light scattering measurements showed that DMA decreases the volume phase transition temperature and completion temperature due to its higher hydrophobicity when compared to NIPAM, while sharpening the transition. The cross-linking ability of DMA decreases the swelling ratios and mesh sizes of the microgels. Microgels adsorbed at the solid surface are characterized by atomic force microscopy─as the DMA content increases, microgels protrude more from the surface. Force spectroscopy measurements below and above the volume phase transition temperature display a stiffening of the microgels with the incorporation of DMA and upon heating across its entire cross section as evidenced by an increase in the E modulus. This confirms the cross-linking ability of DMA. The affine network factor β, derived from the Flory-Rehner theory, is linearly correlated with the E moduli of both pure PNIPAM and P(NIPAM-co-DMA) microgels. However, large DMA amounts hinder the microgel shrinking while maintaining mechanical stiffness, possibly due to catechol interactions within the microgel network.
Collapse
Affiliation(s)
- Sandra Forg
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Xuhong Guo
- School of Chemical Engineering, East China University of Science and Technology, 200231 Shanghai, China
| | - Regine von Klitzing
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
26
|
Galindo JM, San-Millán MI, Castillo-Sarmiento CA, Ballesteros-Yáñez I, Vázquez E, Merino S, Herrero MA. Optimization of 3D Synthetic Scaffolds for Neuronal Tissue Engineering Applications. Chemistry 2024; 30:e202302481. [PMID: 37823243 DOI: 10.1002/chem.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The increasing prevalence of neurodegenerative diseases has spurred researchers to develop advanced 3D models that accurately mimic neural tissues. Hydrogels stand out as ideal candidates as their properties closely resemble those of the extracellular matrix. A critical challenge in this regard is to comprehend the influence of the scaffold's mechanical properties on cell growth and differentiation, thus enabling targeted modifications. In light of this, a synthesis and comprehensive analysis of acrylamide-based hydrogels incorporating a peptide has been conducted. Adequate cell adhesion and development is achieved due to their bioactive nature and specific interactions with cellular receptors. The integration of a precisely controlled physicochemical hydrogel matrix and inclusion of the arginine-glycine-aspartic acid peptide sequence has endowed this system with an optimal structure, thus providing a unique ability to interact effectively with biomolecules. The analysis fully examined essential properties governing cell behavior, including pore size, mechanical characteristics, and swelling ability. Cell-viability experiments were performed to assess the hydrogel's biocompatibility, while the incorporation of grow factors aimed to promote the differentiation of neuroblastoma cells. The results underscore the hydrogel's ability to stimulate cell viability and differentiation in the presence of the peptide within the matrix.
Collapse
Affiliation(s)
- Josué M Galindo
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ms Irene San-Millán
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | | | | | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sonia Merino
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - M Antonia Herrero
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
27
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
28
|
Kim H, Rigo B, Wong G, Lee YJ, Yeo WH. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. NANO-MICRO LETTERS 2023; 16:52. [PMID: 38099970 PMCID: PMC10724104 DOI: 10.1007/s40820-023-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
This review summarizes recent progress in developing wireless, batteryless, fully implantable biomedical devices for real-time continuous physiological signal monitoring, focusing on advancing human health care. Design considerations, such as biological constraints, energy sourcing, and wireless communication, are discussed in achieving the desired performance of the devices and enhanced interface with human tissues. In addition, we review the recent achievements in materials used for developing implantable systems, emphasizing their importance in achieving multi-functionalities, biocompatibility, and hemocompatibility. The wireless, batteryless devices offer minimally invasive device insertion to the body, enabling portable health monitoring and advanced disease diagnosis. Lastly, we summarize the most recent practical applications of advanced implantable devices for human health care, highlighting their potential for immediate commercialization and clinical uses.
Collapse
Affiliation(s)
- Hyeonseok Kim
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bruno Rigo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gabriella Wong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woon-Hong Yeo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Choi CE, Chakraborty A, Adzija H, Shamiya Y, Hijazi K, Coyle A, Rizkalla A, Holdsworth DW, Paul A. Metal Organic Framework-Incorporated Three-Dimensional (3D) Bio-Printable Hydrogels to Facilitate Bone Repair: Preparation and In Vitro Bioactivity Analysis. Gels 2023; 9:923. [PMID: 38131909 PMCID: PMC10742699 DOI: 10.3390/gels9120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.
Collapse
Affiliation(s)
- Cho-E Choi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hailey Adzija
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Khaled Hijazi
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Amin Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
- Dentistry, The University of Western Ontario, London, ON N5A 5B9, Canada
| | - David W. Holdsworth
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
31
|
Zeinstra N, Frey AL, Xie Z, Blakely LP, Wang RK, Murry CE, Zheng Y. Stacking thick perfusable human microvascular grafts enables dense vascularity and rapid integration into infarcted rat hearts. Biomaterials 2023; 301:122250. [PMID: 37481833 PMCID: PMC10530304 DOI: 10.1016/j.biomaterials.2023.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Fabrication of large-scale engineered tissues requires extensive vascularization to support tissue survival and function. Here, we report a modular fabrication approach, by stacking of patterned collagen membranes, to generate thick (2 mm and beyond), large, three-dimensional, perfusable networks of endothelialized vasculature. In vitro, these perfusable vascular networks exhibit remodeling and evenly distributed perfusion among layers, while maintaining their patterned, open-lumen architecture. Compared to non-perfusable, self-assembled vasculature, constructs with perfusable vasculature demonstrated increased gene expression indicative of vascular development and angiogenesis. Upon implantation onto infarcted rat hearts, perfusable vascular networks attain greater host vascular integration than self-assembled controls, indicated by 2.5-fold greater perfused vascular density measured by histological analysis and 5-fold greater perfusion rate measured by optical microangiography. Together, the success of fabricating thick, perfusable tissues with dense vascularity and rapid anastomoses represents an important step forward for vascular bioengineering, and paves the way towards more complex, large scale, highly metabolic engineered tissues.
Collapse
Affiliation(s)
- Nicole Zeinstra
- Department of Bioengineering, University of Washington, USA; Center for Cardiovascular Biology, University of Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Ariana L Frey
- Department of Bioengineering, University of Washington, USA; Center for Cardiovascular Biology, University of Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Zhiying Xie
- Department of Bioengineering, University of Washington, USA
| | | | - Ruikang K Wang
- Department of Bioengineering, University of Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, USA; Center for Cardiovascular Biology, University of Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Department of Laboratory Medicine and Pathology, University of Washington, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA, 98109, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, USA; Center for Cardiovascular Biology, University of Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, USA.
| |
Collapse
|
32
|
Zhang J, Suttapreyasri S, Leethanakul C, Samruajbenjakun B. Triaxial bioprinting large-size vascularized constructs with nutrient channels. Biomed Mater 2023; 18:055026. [PMID: 37604152 DOI: 10.1088/1748-605x/acf25a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Bioprinting has demonstrated great advantages in tissue and organ regeneration. However, constructing large-scale tissue and organsin vitrois still a huge challenge due to the lack of some strategies for loading multiple types of cells precisely while maintaining nutrient channels. Here, a new 3D bioprinting strategy was proposed to construct large-scale vascularized tissue. A mixture of gelatin methacrylate (GelMA) and sodium alginate (Alg) was used as a bioink, serving as the outer and middle layers of a single filament in the triaxial printing process, and loaded with human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells, respectively, while a calcium chloride (CaCl2) solution was used as the inner layer. The CaCl2solution crosslinked with the middle layer bioink during the printing process to form and maintain hollow nutrient channels, then a stable large-scale construct was obtained through photopolymerization and ion crosslinking after printing. The feasibility of this strategy was verified by investigating the properties of the bioink and construct, and the biological performance of the vascularized construct. The results showed that a mixture of 5% (w/v) GelMA and 1% (w/v) Alg bioink could be printed at room temperature with good printability and perfusion capacity. Then, the construct with and without channels was fabricated and characterized, and the results revealed that the construct with channels had a similar degradation profile to that without channels, but lower compressive modulus and higher swelling rate. Biological investigation showed that the construct with channels was more favorable for cell survival, proliferation, diffusion, migration, and vascular network formation. In summary, it was demonstrated that constructing large-scale vascularized tissue by triaxial printing that can precisely encapsulate multiple types of cells and form nutrient channels simultaneously was feasible, and this technology could be used to prepare large-scale vascularized constructs.
Collapse
Affiliation(s)
- Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Guiyang Hospital of Stomatology, Guiyang 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Bancha Samruajbenjakun
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
33
|
Choi I, Jang S, Jung S, Woo S, Kim J, Bak C, Lee Y, Park S. A dual stimuli-responsive smart soft carrier using multi-material 4D printing. MATERIALS HORIZONS 2023; 10:3668-3679. [PMID: 37350575 DOI: 10.1039/d3mh00521f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
This paper proposes a 4D printed smart soft carrier with a hemispherical hollow and openable lid. The soft carrier is composed of a lid with a slot (with a shape of 4 legs), a border, and a hemisphere. The soft carrier is fabricated by 4D printing using smart hydrogels. Specifically, the lid, border, and hemisphere are fabricated using a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel, a non-responsive polyethylene glycol (PEG) hydrogel with superparamagnetic iron oxide nanoparticles (SPIONs), and a PEG hydrogel, respectively. Since the SPIONs are included in the border, the slot in the center of the lid is opened and closed according to the temperature change caused by near-infrared (NIR) irradiation, and the proposed soft carrier is magnetically driven by an external magnetic field. The hemisphere enables the storage and transport of cargo. The proposed soft carrier can control the opening and closing of the slot and movement to a desired position in water. Several cargo delivery experiments were conducted using various shapes and numbers of cargo. In addition, the proposed soft carrier can successfully handle small living marine organisms. This soft carrier can be manufactured by 4D printing and operated by dual stimuli (NIR and magnetic field) and can safely deliver various types of cargo and delicate organisms without leakage or damage. The flexibility of 4D printing enables the size of the soft carrier to be tailored to the specific physical attributes of various objects, making it an adaptable and versatile delivery approach.
Collapse
Affiliation(s)
- Inyoung Choi
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.
| | - Saeeun Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea
| | - Seunggyeom Jung
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.
| | - Seohyun Woo
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.
| | - Jinyoung Kim
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.
| | - Cheol Bak
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea
| | - Yongmin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea
- Energy Science and Engineering Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea
| | - Sukho Park
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea
| |
Collapse
|
34
|
Ali AA, Al-Sayah MH, Al-Othman A, Al-Nashash H. A Flexible Conductive Electrode Using Boronic-Acid Modified Carbon Dots. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38082587 DOI: 10.1109/embc40787.2023.10341162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Flexible electrodes are becoming a topic of interest for a range of applications including implantation. They can be used for neural signal recording and for electrical stimulation of atrophying muscles. Unlike the traditionally used metal electrodes that are harsh to the body's tissues, flexible electrodes conduct electricity while preserving the delicate tissues. Polydimethylsiloxane (PDMS), a non-conductive synthetic polymer characterized by its flexibility, low cost, biocompatibility, and durability during implantation, has been explored as a matrix for flexible electrodes. This study reports the synthesis of composite boronic acid-modified carbon dots (BA-CDs)/PDMS electrode materials. The performance of the composite electrode is evaluated electrochemically (for its conductivity and charge storage capacity) and mechanically (Young's modulus). Furthermore, the effect of increasing the PDMS crosslinking density on the electrode's performance is studied based on the hypothesis that a higher crosslinking will bring the BA-CDs closer together, thereby facilitating the movement of electrons. Results of this study showed that incorporating 10% BA-CDs dispersed with 16% glycerol in 74% PDMS with a higher crosslinking density resulted in a bulk impedance of 47.7 Ω and a conductivity of 2.68×10-3 S/cm, both of which surpassed that of the same composition with lower crosslinking. The synthesized flexible electrode material was capable of charge storage although the charge storage capacity (0.00365 mC/cm2) was lower than the safe limit for some tissue activation. Furthermore, the electrode maintained a modulus of elasticity (0.2322 MPa) that is compatible with biological soft tissues.Clinical Relevance- This study reports a conductive electrode that has a flexibility compatible with that of biological tissues for future purposes such as neural signal recording and tissue electrical stimulation (e.g. atrophying muscles). The reported BA-CD/PDMS electrode overcomes the limitations of the harsh metals previously used as implantable electrodes that harm the biological tissues due to their high rigidity.
Collapse
|
35
|
Jang D, Beckett LE, Keum J, Korley LTJ. Leveraging peptide-cellulose interactions to tailor the hierarchy and mechanics of peptide-polymer hybrids. J Mater Chem B 2023; 11:5594-5606. [PMID: 37255364 PMCID: PMC10330573 DOI: 10.1039/d3tb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix-filler interactions. Specifically, peptide-polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix-filler interactions (or peptide-cellulose interactions). In this material platform, we explored the effect of these matrix-filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide-cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks.
Collapse
Affiliation(s)
- Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Laura E Beckett
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Jong Keum
- Center for Nanophase Materials Sciences and Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37830, Tennessee, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware, 19716, USA
| |
Collapse
|
36
|
Xue H, Wang D, Jin M, Gao H, Wang X, Xia L, Li D, Sun K, Wang H, Dong X, Zhang C, Cong F, Lin J. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. MICROSYSTEMS & NANOENGINEERING 2023; 9:79. [PMID: 37313471 PMCID: PMC10258200 DOI: 10.1038/s41378-023-00524-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 06/15/2023]
Abstract
Noninvasive brain-computer interfaces (BCIs) show great potential in applications including sleep monitoring, fatigue alerts, neurofeedback training, etc. While noninvasive BCIs do not impose any procedural risk to users (as opposed to invasive BCIs), the acquisition of high-quality electroencephalograms (EEGs) in the long term has been challenging due to the limitations of current electrodes. Herein, we developed a semidry double-layer hydrogel electrode that not only records EEG signals at a resolution comparable to that of wet electrodes but is also able to withstand up to 12 h of continuous EEG acquisition. The electrode comprises dual hydrogel layers: a conductive layer that features high conductivity, low skin-contact impedance, and high robustness; and an adhesive layer that can bond to glass or plastic substrates to reduce motion artifacts in wearing conditions. Water retention in the hydrogel is stable, and the measured skin-contact impedance of the hydrogel electrode is comparable to that of wet electrodes (conductive paste) and drastically lower than that of dry electrodes (metal pin). Cytotoxicity and skin irritation tests show that the hydrogel electrode has excellent biocompatibility. Finally, the developed hydrogel electrode was evaluated in both N170 and P300 event-related potential (ERP) tests on human volunteers. The hydrogel electrode captured the expected ERP waveforms in both the N170 and P300 tests, showing similarities in the waveforms generated by wet electrodes. In contrast, dry electrodes fail to detect the triggered potential due to low signal quality. In addition, our hydrogel electrode can acquire EEG for up to 12 h and is ready for recycled use (7-day tests). Altogether, the results suggest that our semidry double-layer hydrogel electrodes are able to detect ERPs in the long term in an easy-to-use fashion, potentially opening up numerous applications in real-life scenarios for noninvasive BCI.
Collapse
Affiliation(s)
- Hailing Xue
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dongyang Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Mingyan Jin
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Hanbing Gao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xuhui Wang
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Long Xia
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dong’ang Li
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Kai Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Xufeng Dong
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
37
|
Lian JJ, Guo WT, Sun QJ. Emerging Functional Polymer Composites for Tactile Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4310. [PMID: 37374494 DOI: 10.3390/ma16124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors. Examples of FPCs are elaborated with a focus on miniaturization, self-healing, self-cleaning, integration, biodegradation, and neural control. Furthermore, the applications of FPC-based tactile sensors in tactile perception, human-machine interaction, and healthcare are further described. Finally, the existing limitations and technical challenges for FPCs-based tactile sensors are briefly discussed, offering potential avenues for the development of electronic products.
Collapse
Affiliation(s)
- Jia-Jin Lian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Marin MM, Gifu IC, Pircalabioru GG, Albu Kaya M, Constantinescu RR, Alexa RL, Trica B, Alexandrescu E, Nistor CL, Petcu C, Ianchis R. Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing. Gels 2023; 9:gels9050425. [PMID: 37233016 DOI: 10.3390/gels9050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Collapse
Affiliation(s)
- Maria Minodora Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), University of Bucharest, 030018 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Madalina Albu Kaya
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rebeca Leu Alexa
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Bogdan Trica
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Raluca Ianchis
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
39
|
Tiskratok W, Yamada M, Watanabe J, Pengyu Q, Kimura T, Egusa H. Mechanoregulation of Osteoclastogenesis-Inducing Potentials of Fibrosarcoma Cell Line by Substrate Stiffness. Int J Mol Sci 2023; 24:ijms24108959. [PMID: 37240303 DOI: 10.3390/ijms24108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A micro-physiological system is generally fabricated using soft materials, such as polydimethylsiloxane silicone (PDMS), and seeks an inflammatory osteolysis model for osteoimmunological research as one of the development needs. Microenvironmental stiffness regulates various cellular functions via mechanotransduction. Controlling culture substrate stiffness may help spatially coordinate the supply of osteoclastogenesis-inducing factors from immortalized cell lines, such as mouse fibrosarcoma L929 cells, within the system. Herein, we aimed to determine the effects of substrate stiffness on the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction. L929 cells showed increased expression of osteoclastogenesis-inducing factors when cultured on type I collagen-coated PDMS substrates with soft stiffness, approximating that of soft tissue sarcomas, regardless of the addition of lipopolysaccharide to augment proinflammatory reactions. Supernatants of L929 cells cultured on soft PDMS substrates promoted osteoclast differentiation of the mouse osteoclast precursor RAW 264.7 by stimulating the expression of osteoclastogenesis-related gene markers and tartrate-resistant acid phosphatase activity. The soft PDMS substrate inhibited the nuclear translocation of YES-associated proteins in L929 cells without reducing cell attachment. However, the hard PDMS substrate hardly affected the cellular response of the L929 cells. Our results showed that PDMS substrate stiffness tuned the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, 111 University Rd. Suranaree, Nakhon Ratchasima 30000, Mueang, Thailand
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Chiyoda-ku, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
40
|
Min K, Tae G. Cellular infiltration in an injectable sulfated cellulose nanocrystal hydrogel and efficient angiogenesis by VEGF loading. Biomater Res 2023; 27:28. [PMID: 37038209 PMCID: PMC10084697 DOI: 10.1186/s40824-023-00373-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Cellular infiltration and angiogenesis into implanted biomaterial scaffolds are crucial for successful host tissue integration and tissue regeneration. Cellulose nanocrystal (CNC) is a nano-sized cellulose derivative, which can form an injectable physical gel with salts. Sulfate groups of sulfated CNC (CNC-S) can act as a binding domain to various growth factors and cytokines with a heparin-binding domain for sustained release of them. Vascular endothelial growth factor (VEGF) can promote the proliferation of endothelial cells and angiogenesis. In this study, VEGF-loaded CNC-S hydrogel was evaluated as an injectable scaffold that can induce cellular infiltration and angiogenesis. METHODS CNC-S was hydrolyzed to get desulfated CNC (CNC-DS), which was used as a negative control group against CNC-S. Both CNC-S and CNC-DS hydrogels were prepared and compared in terms of biocompatibility and VEGF release. The hydrogels with or without VEGF loading were subcutaneously injected into mice to evaluate the biocompatibility, cellular infiltration, and angiogenesis induction of the hydrogels. RESULTS Both hydrogels possessed similar stability and shear-thinning behavior to be applicable as injectable hydrogels. However, CNC-S hydrogel showed sustained release (until 8 weeks) of VEGF whereas CNC-DS showed a very fast release of VEGF with a large burst. Subcutaneously injected CNC-S hydrogel showed much enhanced cellular infiltration as well as better biocompatibility with milder foreign body response than CNC-DS hydrogel. Furthermore, VEGF-loaded CNC-S hydrogel induced significant angiogenesis inside the hydrogel whereas VEGF-loaded CNC-DS did not. CONCLUSION CNC-S possesses good properties as a biomaterial including injectability, biocompatibility, and allowing cellular infiltration and sustained release of growth factors. VEGF-loaded CNC-S hydrogel exhibited efficient angiogenesis inside the hydrogel. The sulfate group of CNC-S was a key for good biocompatibility and the biological activities of VEGF-loaded CNC hydrogel.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Park J, Nguyen TTC, Lee SJ, Wang S, Heo D, Kang DH, Tipan-Quishpe A, Lee WJ, Lee J, Yang SY, Yoon MH. Instant formation of horizontally ordered nanofibrous hydrogel films and direct investigation of peculiar neuronal cell behaviors atop. Biomater Res 2023; 27:19. [PMID: 36907873 PMCID: PMC10009932 DOI: 10.1186/s40824-023-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Hydrogels have been widely used in many research fields owing to optical transparency, good biocompatibility, tunable mechanical properties, etc. Unlike typical hydrogels in the form of an unstructured bulk material, we developed aqueous dispersions of fiber-shaped hydrogel structures with high stability under ambient conditions and their application to various types of transparent soft cell culture interfaces with anisotropic nanoscale topography. METHOD Nanofibers based on the polyvinyl alcohol and polyacrylic acid mixture were prepared by electrospinning and hydrogelified to nano-fibrous hydrogels (nFHs) after thermal crosslinking and sulfuric acid treatment. By modifying various material surfaces with positively-charged polymers, negatively-charged superabsorbent nFHs could be selectively patterned by employing micro-contact printing or horizontally aligned by applying shear force with a wired bar coater. RESULTS The angular distribution of bar-coated nFHs was dramatically reduced to ± 20° along the applied shear direction unlike the drop-coated nFHs which exhibit random orientations. Next, various types of cells were cultured on top of transparent soft nFHs which showed good viability and attachment while their behaviors could be easily monitored by both upright and inverted optical microscopy. Particularly, neuronal lineage cells such as PC 12 cells and embryonic hippocampal neurons showed highly stretched morphology along the overall fiber orientation with aspect ratios ranging from 1 to 14. Furthermore, the resultant neurite outgrowth and migration behaviors could be effectively controlled by the horizontal orientation and the three-dimensional arrangement of underlying nFHs, respectively. CONCLUSION We expect that surface modifications with transparent soft nFHs will be beneficial for various biological/biomedical studies such as fundamental cellular studies, neuronal/stem cell and/or organoid cultures, implantable probe/device coatings, etc.
Collapse
Affiliation(s)
- Jaeil Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Thi Thuy Chau Nguyen
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Su-Jin Lee
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Sungrok Wang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Dongmi Heo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Dong-Hee Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Alexander Tipan-Quishpe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Won-June Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Jongwon Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Sung Yun Yang
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
42
|
Woodley JP, Lambert DW, Asencio IO. Reduced Fibroblast Activation on Electrospun Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:bioengineering10030348. [PMID: 36978739 PMCID: PMC10045272 DOI: 10.3390/bioengineering10030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In vivo, quiescent fibroblasts reside in three-dimensional connective tissues and are activated in response to tissue injury before proliferating rapidly and becoming migratory and contractile myofibroblasts. When deregulated, chronic activation drives fibrotic disease. Fibroblasts cultured on stiff 2D surfaces display a partially activated phenotype, whilst many 3D environments limit fibroblast activation. Cell mechanotransduction, spreading, polarity, and integrin expression are controlled by material mechanical properties and micro-architecture. Between 3D culture systems, these features are highly variable, and the challenge of controlling individual properties without altering others has led to an inconsistent picture of fibroblast behaviour. Electrospinning offers greater control of mechanical properties and microarchitecture making it a valuable model to study fibroblast activation behaviour in vitro. Here, we present a comprehensive characterisation of the activation traits of human oral fibroblasts grown on a microfibrous scaffold composed of electrospun polycaprolactone. After over 7 days in the culture, we observed a reduction in proliferation rates compared to cells cultured in 2D, with low KI67 expression and no evidence of cellular senescence. A-SMA mRNA levels fell, and the expression of ECM protein-coding genes also decreased. Electrospun fibrous scaffolds, therefore, represent a tuneable platform to investigate the mechanisms of fibroblast activation and their roles in fibrotic disease.
Collapse
|
43
|
Żak M, Rusak A, Kuropka P, Szymonowicz M, Pezowicz C. Mechanical properties and osteointegration of the mesh structure of a lumbar fusion cage made by 3D printing. J Mech Behav Biomed Mater 2023; 141:105762. [PMID: 36931002 DOI: 10.1016/j.jmbbm.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/17/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
The currently popular 3D printing makes it possible to produce spatial scaffolds, the main purpose of which is to obtain implants that have favourable mechanical properties to promote cell adhesion. This study aims to prove the influence of changes in selected geometrical parameters of scaffolds, used in intervertebral cages, on the mechanical properties obtained and thus on the osteointegration of the studied constructs with osteoblasts and fibroblasts. The stiffness values and maximum failure force of four modifications to geometric dimensions of the meshes were determined from the intendation test. Adhesion assays were conducted (including gentle pendulum motion) for Balb/3T3 fibroblasts and NHOst osteoblasts. The study revealed that an important geometrical parameter affecting the strength of the mesh is the height (h) of the connection point between arms of successive mesh cells. There was no significant effect of the mesh geometry on the abundance and survival of Balb/3T3 and NHOst cells. At the same time, fibroblasts were more likely to form colonies in the area where there is fusion of mesh cells, as opposed to osteoblasts that were more numerous at vertices of the mesh.
Collapse
Affiliation(s)
- Małgorzata Żak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Maria Szymonowicz
- Pre-Clinical Research Centre, Wroclaw Medical University, Wrocław, Poland
| | - Celina Pezowicz
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
44
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
45
|
Mouchati A, Yagoubi N. Mechanical Performance and Cytotoxicity of an Alginate/Polyacrylamide Bipolymer Network Developed for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1789. [PMID: 36902903 PMCID: PMC10004427 DOI: 10.3390/ma16051789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Several hydrogels could be used as scaffolds for tissue engineering and a model of extracellular matrices for biological studies. However, the scope of alginate in medical applications is often severely limited by its mechanical behavior. In the present study, the modification of the mechanical properties of the alginate scaffold is obtained by its combination with polyacrylamide in order to obtain a multifunctional biomaterial. The advantage of this double polymer network is due to an improvement in the mechanical strength with regard to the alginate alone, and in particular, its Young's modulus values. The morphological study of this network was carried out by scanning electron microscopy (SEM). The swelling properties were also studied over several time intervals. In addition to mechanical property requirements, these polymers must meet several biosafety parameters as part of an overall risk management strategy. Our preliminary study illustrates that the mechanical property of this synthetic scaffold depends on the ratio of the two polymers (alginate, polyacrylamide) which allows us to choose the appropriate ratio to mimic replaceable body tissue and be used in various biological and medical uses, including 3D cell culture, tissue engineering, and protection against local shocks.
Collapse
|
46
|
Mao BH, Nguyen Thi KM, Tang MJ, Kamm RD, Tu TY. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. Biofabrication 2023; 15. [PMID: 36594698 DOI: 10.1088/1758-5090/acaa00] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
During cancer metastasis, tumor cells likely navigate, in a collective manner, discrete tissue spaces comprising inherently heterogeneous extracellular matrix microstructures where interfaces may be frequently encountered. Studies have shown that cell migration modes can be determined by adaptation to mechanical/topographic cues from interfacial microenvironments. However, less attention has been paid to exploring the impact of interfacial mechnochemical attributes on invasive and metastatic behaviors of tumor aggregates. Here, we excogitated a collagen matrix-solid substrate interface platform to investigate the afore-stated interesting issue. Our data revealed that stiffer interfaces stimulated spheroid outgrowth by motivating detachment of single cells and boosting their motility and velocity. However, stronger interfacial adhesive strength between matrix and substrate led to the opposite outcomes. Besides, this interfacial parameter also affected the morphological switch between migration modes of the detached cells and their directionality. Mechanistically, myosin II-mediated cell contraction, compared to matrix metalloproteinases-driven collagen degradation, was shown to play a more crucial role in the invasive outgrowth of tumor spheroids in interfacial microenvironments. Thus, our findings highlight the importance of heterogeneous interfaces in addressing and combating cancer metastasis.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Kim Mai Nguyen Thi
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America.,Department of Mechanical Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
47
|
Nun N, Joy A. Fabrication and Bioactivity of Peptide-Conjugated Biomaterial Tissue Engineering Constructs. Macromol Rapid Commun 2023; 44:e2200342. [PMID: 35822458 DOI: 10.1002/marc.202200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Tissue engineering combines materials engineering, cells and biochemical factors to improve, restore or replace various types of biological tissues. A nearly limitless combination of these strategies can be combined, providing a means to augment the function of a number of biological tissues such as skin tissue, neural tissue, bones, and cartilage. Compounds such as small molecule therapeutics, proteins, and even living cells have been incorporated into tissue engineering constructs to influence biological processes at the site of implantation. Peptides have been conjugated to tissue engineering constructs to circumvent limitations associated with conjugation of proteins or incorporation of cells. This review highlights various contemporary examples in which peptide conjugation is used to overcome the disadvantages associated with the inclusion of other bioactive compounds. This review covers several peptides that are commonly used in the literature as well as those that do not appear as frequently to provide a broad scope of the utility of the peptide conjugation technique for designing constructs capable of influencing the repair and regeneration of various bodily tissues. Additionally, a brief description of the construct fabrication techniques encountered in the covered examples and their advantages in various tissue engineering applications is provided.
Collapse
Affiliation(s)
- Nicholas Nun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| |
Collapse
|
48
|
Gelatin Meshes Enriched with Graphene Oxide and Magnetic Nanoparticles Support and Enhance the Proliferation and Neuronal Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022; 24:ijms24010555. [PMID: 36613995 PMCID: PMC9820391 DOI: 10.3390/ijms24010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.
Collapse
|
49
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
50
|
Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S. Hydrogel based 3D printing: Bio ink for tissue engineering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|