1
|
Ueda MT, Inamo J, Miya F, Shimada M, Yamaguchi K, Kochi Y. Functional and dynamic profiling of transcript isoforms reveals essential roles of alternative splicing in interferon response. CELL GENOMICS 2024; 4:100654. [PMID: 39288763 DOI: 10.1016/j.xgen.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Type I interferon (IFN-I) plays an important role in the innate immune response through inducing IFN-I-stimulated genes (ISGs). However, how alternative splicing (AS) events, especially over time, affect their function remains poorly understood. We generated an annotation (113,843 transcripts) for IFN-I-stimulated human B cells called isoISG using high-accuracy long-read sequencing data from PacBio Sequel II/IIe. Transcript isoform profiling using isoISG revealed that isoform switching occurred in the early response to IFN-I so that ISGs would gain functional domains (e.g., C4B) or higher protein production (e.g., IRF3). Conversely, isoforms lacking functional domains increased during the late phase of IFN-I response, mainly due to intron retention events. This suggests that isoform switching both triggers and terminates IFN-I responses at the translation and protein levels. Furthermore, genetic variants influencing the isoform ratio of ISGs were associated with immunological and infectious diseases. AS has essential roles in regulating innate immune response and associated diseases.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Jun Inamo
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mihoko Shimada
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kensuke Yamaguchi
- Biomedical Engineering Research Innovation Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Pileckaite E, Vilkeviciute A, Kriauciuniene L, Liutkevicius V, Liutkeviciene R. Investigating the Link between STAT4 Genetic Variants, STAT4 Protein Concentrations, and Laryngeal Squamous Cell Carcinoma: A Comprehensive Analysis of Clinical Manifestations. Int J Mol Sci 2024; 25:10180. [PMID: 39337665 PMCID: PMC11432593 DOI: 10.3390/ijms251810180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
According to recent research, inflammatory STAT4 and its protein impact may be important factors in developing cancerous diseases. Still unanalyzed is this effect in patients with laryngeal squamous cell carcinoma (LSCC). In the present study, we evaluated four single nucleotide variants (SNVs) of STAT4 (rs10181656, rs7574865, rs7601754, and rs10168266) and STAT4 serum levels to determine their link between LSCC development and its clinical manifestations. A total of 632 men (324 LSCC patients and 338 healthy individuals) were involved in this study. The genotyping was carried out using real-time PCR. Additionally, we measured 80 study subjects' (40 LSCC patients and 40 control subjects) STAT4 protein concentrations using an enzyme-linked immunosorbent assay (ELISA). In our study, the T allele of STAT4 rs7574865 significantly increases the likelihood of LSCC occurrence by 1.4-fold. Additionally, this SNV is associated with higher odds of early-stage disease, T1 size LSCC development, absence of metastasis to neck lymph nodes, and well-differentiated carcinoma. The G allele of rs10181656 is significantly associated with various clinical characteristics of LSCC, increasing the odds of early- and advanced-stage disease by 2.8-fold and 1.9-fold, respectively. Additionally, this allele is linked to an increased likelihood of developing tumors of different sizes and non-metastasized LSCC, as well as poorly differentiated carcinoma, highlighting its potential impact on the development and features of LSCC. Conclusion: The analysis of the STAT4 rs7574865 SNV revealed that the G allele is linked to a more favorable prognosis in LSCC. Additionally, it is hypothesized that the G allele of rs10181656 may be associated with the occurrence of LSCC but may not serve as a sensitive prognostic biomarker for distinguishing between disease stages, cell differentiation, or tumor size.
Collapse
Affiliation(s)
- Enrika Pileckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.P.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.P.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.P.); (L.K.); (R.L.)
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.P.); (L.K.); (R.L.)
| |
Collapse
|
3
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
5
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
7
|
Shi X, Zhang R, Liu Z, Zhao G, Guo J, Mao X, Fan B. Alternative Splicing Reveals Acute Stress Response of Litopenaeus vannamei at High Alkalinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:103-115. [PMID: 38206418 DOI: 10.1007/s10126-023-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.
Collapse
Affiliation(s)
- Xiang Shi
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Ruiqi Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Jintao Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Xue Mao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Baoyi Fan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
8
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
9
|
Li H, Sun C, Sun H. Analysis of alternative splicing in chicken macrophages infected with avian pathogenic E. coli (APEC). Anim Biotechnol 2023; 34:3681-3692. [PMID: 37083115 DOI: 10.1080/10495398.2023.2200433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.
Collapse
Affiliation(s)
- Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou Polytechnic College, Yangzhou, China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou Polytechnic College, Yangzhou, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Bravo S, Moya J, Leiva F, Guzman O, Vidal R. Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease. Heliyon 2023; 9:e22377. [PMID: 38058636 PMCID: PMC10696053 DOI: 10.1016/j.heliyon.2023.e22377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
In the Chilean salmon farming industry, infection by Piscirickettsia salmonis is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey P. salmonis-induced modifications in the AS of Atlantic salmon and found that P. salmonis infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 of.26, Puerto Varas, Chile
| | - Francisco Leiva
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Ner-Gaon H, Peleg R, Gazit R, Reiner-Benaim A, Shay T. Mapping the splicing landscape of the human immune system. Front Immunol 2023; 14:1116392. [PMID: 37711610 PMCID: PMC10499523 DOI: 10.3389/fimmu.2023.1116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronnie Peleg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
12
|
Yang Y, Zhang YM, Wang Y, Liu K, Cui SY, Luo YQ, Zheng W, Xu J, Duan W, Wang JY. Genome-wide identification of aberrant alternative splicing and RNA-binding protein regulators in acute myeloid leukaemia which may contribute to immune microenvironment remodelling. Carcinogenesis 2023; 44:418-425. [PMID: 37209099 DOI: 10.1093/carcin/bgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 05/19/2023] [Indexed: 05/22/2023] Open
Abstract
Acute myeloid leukaemia (AML) is one of the most lethal cancers of the haematopoietic system with a poorly understood aetiology. Recent studies have shown that aberrant alternative splicing (AS) and a (RBP) regulators are highly associated with the pathogenesis of AML. This study presents an overview of the abnormal AS and differential expression of RNA-binding proteins (RBPs) in AML and further highlights their close relation to the remodelling of the immune microenvironment in AML patients. An in-depth understanding of the regulatory mechanism underlying AML will contribute to the future development of strategies for the prevention, diagnosis and therapy of AML and thus improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yu-Mei Zhang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Kui Liu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Si-Yuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Ya-Qin Luo
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wei Zheng
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jing-Yi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| |
Collapse
|
13
|
Zhu D, Yang J, Zhang M, Han Z, Shao M, Fan Q, Ma Y, Xie D, Xiao W. Identification of neoantigens and immunological subtypes in clear cell renal cell carcinoma for mRNA vaccine development and patient selection. Aging (Albany NY) 2023; 15:204798. [PMID: 37315301 PMCID: PMC10292886 DOI: 10.18632/aging.204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy with diverse histological types. This study aimed to detect neoantigens in ccRCC to develop mRNA vaccines and distinguish between ccRCC immunological subtypes for construction of an immune landscape to select patients suitable for vaccination. Using The Cancer Genome Atlas SpliceSeq database, The Cancer Genome Atlas, and the International Cancer Genome Consortium cohorts, we comprehensively analysed potential tumour antigens of ccRCC associated with aberrant alternative splicing, somatic mutation, nonsense-mediated mRNA decay factors, antigen-presenting cells, and overall survival. Immune subtypes (C1/C2) and nine immune gene modules of ccRCC were identified by consistency clustering and weighted correlation network analysis. The immune landscape as well as molecular and cellular characteristics of immunotypes were assessed. Rho-guanine nucleotide exchange factor 3 (ARHGEF3) was identified as a new ccRCC antigen for development of an mRNA vaccine. A higher tumour mutation burden, differential expression of immune checkpoints, and immunogenic cell death were observed in cases with the C2 immunotype. Cellular characteristics increased the complexity of the immune environment, and worse outcomes were observed in ccRCC cases with the C2 immunotype. We constructed the immune landscape for selecting patients with the C2 immunotype suitable for vaccination.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Meng Shao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yun Ma
- Department of pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dandan Xie
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, Guangdong, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
14
|
Bravo S, Leiva F, Moya J, Guzman O, Vidal R. Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:223-234. [PMID: 36629943 DOI: 10.1007/s10126-023-10196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 05/06/2023]
Abstract
Sea lice are pathogenic marine ectoparasite copepods that represent a severe risk to the worldwide salmon industry. Several transcriptomic investigations have characterized the regulation of gene expression response of Atlantic salmon to sea lice infestation. These studies have focused on the levels of transcript, overlooking the potentially relevant role of alternative splicing (AS), which corresponds to an essential control mechanism of gene expression through RNA processing. In the present study, we performed a genome-wide bioinformatics characterization of differential AS event dynamics in control and infested C. rogercresseyi Atlantic salmon and in resistant and susceptible phenotypes. We identified a significant rise of alternative splicing events and AS genes after infestation and 176 differential alternative splicing events (DASE) from 133 genes. In addition, a higher number of DASE and AS genes were observed among resistant and susceptible phenotypes. Functional annotation of AS genes shows several terms and pathways associated with behavior, RNA splicing, immune response, and RNA binding. Furthermore, three protein-coding genes were identified undergoing differential transcript usage events, among resistant and susceptible phenotypes. Our findings support AS performing a relevant regulatory role in the response of salmonids to sea lice infestation.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Takei Y, Huang W, Blanco MR, Guttman M. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522632. [PMID: 36711853 PMCID: PMC9881923 DOI: 10.1101/2023.01.04.522632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.
Collapse
|
16
|
Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer. Nat Commun 2022; 13:6725. [PMID: 36344512 PMCID: PMC9640649 DOI: 10.1038/s41467-022-34407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The poor prognosis of head and neck cancer (HNC) is associated with metastasis within the lymph nodes (LNs). Herein, the proteome of 140 multisite samples from a 59-HNC patient cohort, including primary and matched LN-negative or -positive tissues, saliva, and blood cells, reveals insights into the biology and potential metastasis biomarkers that may assist in clinical decision-making. Protein profiles are strictly associated with immune modulation across datasets, and this provides the basis for investigating immune markers associated with metastasis. The proteome of LN metastatic cells recapitulates the proteome of the primary tumor sites. Conversely, the LN microenvironment proteome highlights the candidate prognostic markers. By integrating prioritized peptide, protein, and transcript levels with machine learning models, we identify nodal metastasis signatures in blood and saliva. We present a proteomic characterization wiring multiple sites in HNC, thus providing a promising basis for understanding tumoral biology and identifying metastasis-associated signatures.
Collapse
|
17
|
Woolley CR, Chariker JH, Rouchka EC, Ford EE, Hudson EA, Waigel SJ, Smith ML, Mitchell TC. Reference long-read isoform-aware transcriptomes of 4 human peripheral blood lymphocyte subsets. G3 (BETHESDA, MD.) 2022; 12:jkac253. [PMID: 36161486 PMCID: PMC9635627 DOI: 10.1093/g3journal/jkac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Long-read sequencing technologies such as isoform sequencing can generate highly accurate sequences of full-length mRNA transcript isoforms. Such long-read transcriptomics may be especially useful in investigations of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes are readily available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified 4 lymphocyte populations (CD4+ T, CD8+ T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN > 8) for isoform sequencing and parallel RNA-Seq analyses. Many novel polyadenylated transcript isoforms, supported by both isoform sequencing and RNA-Seq data, were identified within each sample. The datasets met several metrics of high quality and have been deposited to the Gene Expression Omnibus database (GSE202327, GSE202328, GSE202329) as both raw and processed files to serve as long-read reference transcriptomes for future studies of human circulating lymphocytes.
Collapse
Affiliation(s)
- Cassandra R Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Julia H Chariker
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40202, USA
| | - Eric C Rouchka
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth A Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sabine J Waigel
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Brown Cancer Center, University of Louisville Health, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
19
|
Huang CM, Chen YC, Lai IL, Chen HD, Huang PH, Tu SJ, Lee YT, Yen JC, Lin CL, Liu TY, Chang JG. Exploring RNA modifications, editing, and splicing changes in hyperuricemia and gout. Front Med (Lausanne) 2022; 9:889464. [PMID: 36148448 PMCID: PMC9487523 DOI: 10.3389/fmed.2022.889464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia and gout are two of the most common metabolic disorders worldwide; their incidence is increasing with changes in lifestyle, and they are correlated with many diseases, including renal and cardiovascular diseases. The majority of studies on hyperuricemia and gout have focused on the discovery of the associated genes and their functions and on the roles of monocytes and neutrophils in the development of gout. Virtually no studies investigating the epigenomics of gout disease or exploring the clinical significance of such research have been conducted. In this study, we observed that the expression of enzymes involved in RNA modifications or RNA editing was affected in uric acid (UA)- or monosodium urate (MSU)-treated cell lines. RNA alternative splicing and splicing factors were also affected by UA or MSU treatment. We used transcriptome sequencing to analyze genome-wide RNA splicing and RNA editing and found significant changes in RNA splicing and RNA editing in MSU- or UA-treated THP-1 and HEK293 cells. We further found significant changes of RNA modifications, editing, and splicing in patients with gout. The data indicate that RNA modifications, editing, and splicing play roles in gout. The findings of this study may help to understand the mechanism of RNA splicing and modifications in gout, facilitating the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Ming Huang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Hao Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Li Lin
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Jan-Gowth Chang,
| |
Collapse
|
20
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
21
|
Xu L, Su X, Liu Z, Zhou A. Predicted Immune-Related Genes and Subtypes in Systemic Lupus Erythematosus Based on Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:8911321. [PMID: 35864995 PMCID: PMC9296307 DOI: 10.1155/2022/8911321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/07/2022]
Abstract
Objective The present investigation is aimed at identifying key immune-related genes linked with SLE and their roles using integrative analysis of publically available gene expression datasets. Methods Four gene expression datasets pertaining to SLE, 2 from whole blood and 2 experimental PMBC, were sourced from GEO. Shared differentially expressed genes (DEG) were determined as SLE-related genes. Immune cell infiltration analysis was performed using CIBERSORT, and case samples were subjected to k-means cluster analysis using high-abundance immune cells. Key immune-related SLE genes were identified using correlation analysis with high-abundance immune cells and subjected to functional enrichment analysis for enriched Gene Ontology Biological Processes and KEGG pathways. A PPI network of genes interacting with the key immune-related SLE genes was constructed. LASSO regression analysis was performed to identify the most significant key immune-related SLE genes, and correlation with clinicopathological features was examined. Results 309 SLE-related genes were identified and found functionally enriched in several pathways related to regulation of viral defenses and T cell functions. k-means cluster analysis identified 2 sample clusters which significantly differed in monocytes, dendritic cell resting, and neutrophil abundance. 65 immune-related SLE genes were identified, functionally enriched in immune response-related signaling, antigen receptor-mediated signaling, and T cell receptor signaling, along with Th17, Th1, and Th2 cell differentiation, IL-17, NF-kappa B, and VEGF signaling pathways. LASSO regression identified 9 key immune-related genes: DUSP7, DYSF, KCNA3, P2RY10, S100A12, SLC38A1, TLR2, TSR2, and TXN. Imputed neutrophil percentage was consistent with their expression pattern, whereas anti-Ro showed the inverse pattern as gene expression. Conclusions Comprehensive bioinformatics analyses revealed 9 key immune-related genes and their associated functions highly pertinent to SLE pathogenesis, subtypes, and identified valuable candidates for experimental research.
Collapse
Affiliation(s)
- Lin Xu
- Department of Nephrology, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an 271000, Shandong Province, China
| | - Xiaoyan Su
- Intensive Care Unit, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong Province, China
| | - Zhongcheng Liu
- Department of Neurosurgery, The First People's Hospital of Taian, Tai'an city, Shandong Province, China
| | - Aihong Zhou
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Shandong First Medical University, Shandong Province, China
| |
Collapse
|
22
|
Chen D, Wang W, Wu L, Liang L, Wang S, Cheng Y, Zhang T, Chai C, Luo Q, Sun C, Zhao W, Lv Z, Gao Y, Wu X, Sun N, Zhang Y, Zhang J, Chen Y, Tong J, Wang X, Bai Y, Sun C, Jin X, Niu J. Single-cell atlas of peripheral blood mononuclear cells from pregnant women. Clin Transl Med 2022; 12:e821. [PMID: 35522918 PMCID: PMC9076016 DOI: 10.1002/ctm2.821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background During pregnancy, mother–child interactions trigger a variety of subtle changes in the maternal body, which may be reflected in the status of peripheral blood mononuclear cells (PBMCs). Although these cells are easy to access and monitor, a PBMC atlas for pregnant women has not yet been constructed. Methods We applied single‐cell RNA sequencing (scRNA‐seq) to profile 198,356 PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a control cohort. We also used scRNA‐seq data to establish a transcriptomic clock and thereby predicted the gestational age of normal pregnancy. Results We identified reconfiguration of the peripheral immune cell phenotype during pregnancy, including interferon‐stimulated gene upregulation, activation of RNA splicing‐related pathways and immune activity of cell subpopulations. We also developed a cell‐type‐specific model to predict gestational age of normal pregnancy. Conclusions We constructed a single‐cell atlas of PBMCs in pregnant women spanning the entire gestation period, which should help improve our understanding of PBMC composition turnover in pregnant women.
Collapse
Affiliation(s)
- Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Wu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Langchao Liang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaochao Chai
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | - Xiaoxia Wu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianing Tong
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiangdong Wang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.,Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianmin Niu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
23
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
24
|
Thurlapati A, Boudreaux K, Guntupalli S, Mansour RP, Bhayani S. A Case of Aplastic Anemia and Colon Cancer With Underlying Spliceosome Mutation: Is It an Incidental Finding or a Novel Association? Cureus 2022; 14:e22632. [PMID: 35371815 PMCID: PMC8960534 DOI: 10.7759/cureus.22632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/05/2022] Open
Abstract
Alternative splicing is an epigenetic mechanism that plays a role in the development and function of antigen-specific lymphocytes. One such is the zinc-finger-RNA-binding-motif-and-serine/arginine-rich-2 (ZRSR2), which is clinically implicated in myelodysplastic syndrome and leukemia. Here, we present a case of a young male with myriad autoimmune conditions and adenocarcinoma of the colon in the setting of ZRSR2 mutation. A 28-year-old male with common variable immunodeficiency disease, atopic dermatitis, autoimmune gastroenteropathy, inflammatory polyarthropathy, primary bone marrow failure, colon cancer, and family history of Lynch syndrome was admitted to our hospital for an acute flare of autoimmune enteropathy secondary to subtherapeutic tacrolimus levels. He initially developed pancytopenia at the age of 26 years. Workup for HIV, hepatitis, cytomegalovirus, human-herpesvirus 6, parvovirus was negative. Partial thromboplastin time (PTT), international normalized ratio (INR), d-dimer, ferritin, iron profile, antinuclear antibodies (ANA) screen was unremarkable. Direct, indirect, and super-combs antibodies were undetectable. Chromosomal study for Fanconi-related chromosomal breakage and telomerase gene panel was negative. Flow cytometry did not reveal an abnormal clone. Bone marrow biopsy showed markedly hypocellular marrow with reduced trilineage hematopoiesis and 1% blasts with normal cytogenetics, immunohistochemistry, fluorescence in situ hybridization (FISH), and negative for myelodysplastic syndrome and paroxysmal nocturnal hemoglobinuria (PNH). Cincinnati inherited children’s bone marrow transplant (BMT) panel was negative. He was diagnosed with aplastic anemia and was treated with antithymocyte globulin, cyclosporine, prednisone, and currently tacrolimus. At the age of 26 years, he was diagnosed with colon cancer. Immunohistochemistry was positive for MLH1, but the confirmatory genetic testing for Lynch syndrome was negative. He underwent total proctocolectomy and ileostomy and is currently in remission. Next-generation sequencing of bone marrow revealed a germline homozygous ZRSR2 mutation. ZRSR2 spliceosome mutations are more common in males as it’s an X-linked gene. They are seen in myelodysplastic syndrome, leukemia, increased autoimmune phenomenon, and 35 cases of colon cancer associated with this mutation are reported. In the setting of aplastic anemia and lynch negative colon cancer, we suspect our patient could have aplastic anemia due to an autoimmune phenomenon, underlying common variable immunodeficiency disease (CVID), or the new ZRSR2 mutation could be playing a role. Further studies and research is warranted to determine its true association with the disease entities. The underlying contributing factor is ZRSR2 mutation.
Collapse
|
25
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
26
|
Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev 2021; 304:111-125. [PMID: 34523719 PMCID: PMC8616848 DOI: 10.1111/imr.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.
Collapse
Affiliation(s)
- Timothy C. Borbet
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Marcus J. Hines
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Sergei B. Koralov
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| |
Collapse
|
27
|
Oh J, Pradella D, Kim Y, Shao C, Li H, Choi N, Ha J, Di Matteo A, Fu XD, Zheng X, Ghigna C, Shen H. Global Alternative Splicing Defects in Human Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13123071. [PMID: 34202984 PMCID: PMC8235023 DOI: 10.3390/cancers13123071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Aberrant alternative splicing (AS) regulation plays a pivotal role in breast cancer development, progression, and resistance to therapeutical interventions. Indeed, cancer cells can adapt their own transcriptome by changing different AS programs, thus generating cancer-specific AS isoforms involved in every hallmark of cancer. Here, we investigated global AS errors occurring in human breast cancer cells by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing. Our results identified several dysregulated AS events potentially relevant for breast cancer-related biological processes and that provide a better comprehension of the molecular mechanisms that orchestrate the malignant transformation. Abstract Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.
Collapse
Affiliation(s)
- Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Davide Pradella
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Yoonseong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Anna Di Matteo
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Claudia Ghigna
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| |
Collapse
|
28
|
Sun C, Jin K, Zuo Q, Sun H, Song J, Zhang Y, Chen G, Li B. Characterization of Alternative Splicing (AS) Events during Chicken ( Gallus gallus) Male Germ-Line Stem Cell Differentiation with Single-Cell RNA-seq. Animals (Basel) 2021; 11:ani11051469. [PMID: 34065391 PMCID: PMC8160964 DOI: 10.3390/ani11051469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Studies have shown that alternative splicing (AS) has been utilized in a wide variety of life processes. However, there are very few studies on AS during germ cell development. In this study, we preliminarily investigated the variation of variable shear events during the formation of chicken germ cells through the RNA-seq data analysis of embryonic stem cells (ESCs), gonad PGCs (gPGCs), and spermatogonia stem cells (SSCs), and the critical AS mode for several crucial stage-specific genes, which were identified during germ cell development. The results of this study lay a theoretical foundation for further analysis of the regulation mechanism of key genes involved in germ cell formation. Abstract Alternative splicing (AS) is a ubiquitous, co-transcriptional, and post-transcriptional regulation mechanism during certain developmental processes, such as germ cell differentiation. A thorough understanding of germ cell differentiation will help us to open new avenues for avian reproduction, stem cell biology, and advances in medicines for human consumption. Here, based on single-cell RNA-seq, we characterized genome-wide AS events in manifold chicken male germ cells: embryonic stem cells (ESCs), gonad primordial germ cells (gPGCs), and spermatogonia stem cells (SSCs). A total of 38,494 AS events from 15,338 genes were detected in ESCs, with a total of 48,955 events from 14,783 genes and 49,900 events from 15,089 genes observed in gPGCs and SSCs, respectively. Moreover, this distribution of AS events suggests the diverse splicing feature of ESCs, gPGCs, and SSCs. Finally, several crucial stage-specific genes, such as NANOG, POU5F3, LIN28B, BMP4, STRA8, and LHX9, were identified in AS events that were transmitted in ESCs, gPGCs, and SSCs. The gene expression results of the RNA-seq data were validated by qRT-PCR. In summary, we provided a comprehensive atlas of the genome-wide scale of the AS event landscape in male chicken germ-line cells and presented its distribution for the first time. This research may someday improve treatment options for men suffering from male infertility.
Collapse
Affiliation(s)
- Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Department of Food Technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MD 20741, USA;
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.S.); (K.J.); (Q.Z.); (H.S.); (Y.Z.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
29
|
Putscher E, Hecker M, Fitzner B, Lorenz P, Zettl UK. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. Int J Mol Sci 2021; 22:5154. [PMID: 34068052 PMCID: PMC8152502 DOI: 10.3390/ijms22105154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Splicing is an important RNA processing step. Genetic variations can alter the splicing process and thereby contribute to the development of various diseases. Alterations of the splicing pattern can be examined by gene expression analyses, by computational tools for predicting the effects of genetic variants on splicing, and by splicing reporter minigene assays for studying alternative splicing events under defined conditions. The minigene assay is based on transient transfection of cells with a vector containing a genomic region of interest cloned between two constitutive exons. Cloning can be accomplished by the use of restriction enzymes or by site-specific recombination using Gateway cloning. The vectors pDESTsplice and pSpliceExpress represent two minigene systems based on Gateway cloning, which are available through the Addgene plasmid repository. In this review, we describe the features of these two splicing reporter minigene systems. Moreover, we provide an overview of studies in which determinants of alternative splicing were investigated by using pDESTsplice or pSpliceExpress. The studies were reviewed with regard to the investigated splicing regulatory events and the experimental strategy to construct and perform a splicing reporter minigene assay. We further elaborate on how analyses on the regulation of RNA splicing offer promising prospects for gaining important insights into disease mechanisms.
Collapse
Affiliation(s)
- Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany;
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| |
Collapse
|
30
|
Su Z, Huang D. Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes (Basel) 2021; 12:genes12040574. [PMID: 33921058 PMCID: PMC8071365 DOI: 10.3390/genes12040574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune response is a complex process that responds to numerous exogenous antigens in preventing infection by microorganisms, as well as to endogenous components in the surveillance of tumors and autoimmune diseases, and a great number of molecules are necessary to carry the functional complexity of immune activity. Alternative splicing of pre-mRNA plays an important role in immune cell development and regulation of immune activity through yielding diverse transcriptional isoforms to supplement the function of limited genes associated with the immune reaction. In addition, multiple factors have been identified as being involved in the control of alternative splicing at the cis, trans, or co-transcriptional level, and the aberrant splicing of RNA leads to the abnormal modulation of immune activity in infections, immune diseases, and tumors. In this review, we summarize the recent discoveries on the generation of immune-associated alternative splice variants, clinical disorders, and possible regulatory mechanisms. We also discuss the immune responses to the neoantigens produced by alternative splicing, and finally, we issue some alternative splicing and immunity correlated questions based on our knowledge.
Collapse
Affiliation(s)
- Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| | - Dongyang Huang
- Department of Cell Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| |
Collapse
|
31
|
UBR5 HECT domain mutations identified in mantle cell lymphoma control maturation of B cells. Blood 2021; 136:299-312. [PMID: 32325489 DOI: 10.1182/blood.2019002102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Coordination of a number of molecular mechanisms including transcription, alternative splicing, and class switch recombination are required to facilitate development, activation, and survival of B cells. Disruption of these pathways can result in malignant transformation. Recently, next-generation sequencing has identified a number of novel mutations in mantle cell lymphoma (MCL) patients including mutations in the ubiquitin E3 ligase UBR5. Approximately 18% of MCL patients were found to have mutations in UBR5, with the majority of mutations within the HECT domain of the protein that can accept and transfer ubiquitin molecules to the substrate. Determining if UBR5 controls the maturation of B cells is important to fully understand malignant transformation to MCL. To elucidate the role of UBR5 in B-cell maturation and activation, we generated a conditional mutant disrupting UBR5's C-terminal HECT domain. Loss of the UBR5 HECT domain leads to a block in maturation of B cells in the spleen and upregulation of proteins associated with messenger RNA splicing via the spliceosome. Our studies reveal a novel role of UBR5 in B-cell maturation by stabilization of spliceosome components during B-cell development and suggests UBR5 mutations play a role in MCL transformation.
Collapse
|
32
|
Yabas M, Yazicioglu YF, Hoyne GF, Goodnow CC, Enders A. Loss of hnRNPLL-dependent splicing of Ptprc has no impact on B-cell development, activation and terminal differentiation into antibody-secreting cells. Immunol Cell Biol 2021; 99:532-541. [PMID: 33331104 DOI: 10.1111/imcb.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023]
Abstract
The RNA-binding protein heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) controls alternative splicing of protein tyrosine phosphatase receptor type C (Ptprc) which encodes CD45. hnRNPLL deficiency leads to a failure in silencing Ptprc exons 4-6 causing aberrant expression of the corresponding CD45 isoforms, namely, CD45RA, RB and RC. While an N-ethyl-N-nitrosourea-induced point mutation in murine Hnrnpll results in loss of peripheral naïve T cells, its role in B-cell biology remains unclear. Here, we demonstrate that B-cell development in the bone marrow of Hnrnpllthu/thu mice is normal and the number of mature B-cell subsets in the spleen and peritoneal cavity is comparable to control littermates. In response to in vivo immunization, Hnrnpllthu/thu mice were deficient in generating germinal center (GC) B cells, and analysis of mixed bone marrow chimeras revealed that the GC B-cell deficiency was a B-cell extrinsic effect of the hnRNPLL mutation. Mature Hnrnpllthu/thu B cells proliferated normally in response to various B-cell receptor- and Toll-like receptor-mediated stimuli. Similarly, in vitro stimulation of mutant B cells led to normal generation of plasmablasts, but mutant plasmablasts failed to downregulate B220 expression because of the inability of cells to undergo proper CD45 pre-messenger RNA alternative splicing. These findings collectively suggest that, like in T and natural killer T cells, the mutation disrupts hnRNPLL-mediated alternative splicing of the Ptprc gene in plasmablasts, but this dysregulation of Ptprc alternative splicing does not affect the development and function of B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Yavuz F Yazicioglu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Gerard F Hoyne
- School of Health Sciences, Institute of Health Science Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The Garvan Institute of Medical Research, The University of New South Wales, Darlinghurst, NSW, Australia.,Department of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
33
|
Bernard A, Hibos C, Richard C, Viltard E, Chevrier S, Lemoine S, Melin J, Humblin E, Mary R, Accogli T, Chalmin F, Bruchard M, Peixoto P, Hervouet E, Apetoh L, Ghiringhelli F, Végran F, Boidot R. The Tumor Microenvironment Impairs Th1 IFNγ Secretion through Alternative Splicing Modifications of Irf1 Pre-mRNA. Cancer Immunol Res 2021; 9:324-336. [PMID: 33419764 DOI: 10.1158/2326-6066.cir-19-0679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/26/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
It is clearly established that the immune system can affect cancer response to therapy. However, the influence of the tumor microenvironment (TME) on immune cells is not completely understood. In this respect, alternative splicing is increasingly described to affect the immune system. Here, we showed that the TME, via a TGFβ-dependent mechanism, increased alternative splicing events and induced the expression of an alternative isoform of the IRF1 transcription factor (IRF1Δ7) in Th1 cells. We found that the SFPQ splicing factor (splicing factor, proline- and glutamine-rich) was responsible for the IRF1Δ7 production. We also showed, in both mice and humans, that the IRF1 alternative isoform altered the full-length IRF1 transcriptional activity on the Il12rb1 promoter, resulting in decreased IFNγ secretion in Th1 cells. Thus, the IRF1Δ7 isoform was increased in the TME, and inhibiting IRF1Δ7 expression could potentiate Th1 antitumor responses.
Collapse
Affiliation(s)
- Antoine Bernard
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Christophe Hibos
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - Corentin Richard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Etienne Viltard
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - Sandy Chevrier
- Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Sophie Lemoine
- Genomic Platform, Institut de Biologie de l'ENS, Paris, France
| | - Joséphine Melin
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,LipSTIC LabEx, Dijon, Burgundy, France
| | - Etienne Humblin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - Romain Mary
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - Théo Accogli
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - Fanny Chalmin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France
| | - Mélanie Bruchard
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Paul Peixoto
- INSERM UMR1098 "Interactions Hôte-Greffon-Tumeur & Ingénierie Cellulaire et Génique," Besançon, France
| | - Eric Hervouet
- INSERM UMR1098 "Interactions Hôte-Greffon-Tumeur & Ingénierie Cellulaire et Génique," Besançon, France
| | - Lionel Apetoh
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France
| | - François Ghiringhelli
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France.,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Frédérique Végran
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France. .,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France
| | - Romain Boidot
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer," Team "CAdIR," Dijon, Burgundy, France. .,Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, Burgundy, France.,Centre Georges François Leclerc, Dijon, Burgundy, France.,UMR CNRS 6302, Dijon, Burgundy, France
| |
Collapse
|
34
|
Byun S, Han S, Zheng Y, Planelles V, Lee Y. The landscape of alternative splicing in HIV-1 infected CD4 T-cells. BMC Med Genomics 2020; 13:38. [PMID: 32241262 PMCID: PMC7118826 DOI: 10.1186/s12920-020-0680-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Elucidating molecular mechanisms that are altered during HIV-1 infection may provide a better understanding of the HIV-1 life cycle and how it interacts with infected T-cells. One such mechanism is alternative splicing (AS), which has been studied for HIV-1 itself, but no systematic analysis has yet been performed on infected T-cells. We hypothesized that AS patterns in infected T-cells may illuminate the molecular mechanisms underlying HIV-1 infection and identify candidate molecular markers for specifically targeting infected T-cells. Methods We downloaded previously published raw RNA-seq data obtained from HIV-1 infected and non-infected T-cells. We estimated percent spliced in (PSI) levels for each AS exon, then identified differential AS events in the infected cells (FDR < 0.05, PSI difference > 0.1). We performed functional gene set enrichment analysis on the genes with differentially expressed AS exons to identify their functional roles. In addition, we used RT-PCR to validate differential alternative splicing events in cyclin T1 (CCNT1) as a case study. Results We identified 427 candidate genes with differentially expressed AS exons in infected T-cells, including 20 genes related to cell surface, 35 to kinases, and 121 to immune-related genes. In addition, protein-protein interaction analysis identified six essential subnetworks related to the viral life cycle, including Transcriptional regulation by TP53, Class I MHC mediated antigen, G2/M transition, and late phase of HIV life cycle. CCNT1 exon 7 was more frequently skipped in infected T-cells, leading to loss of the key Cyclin_N motif and affecting HIV-1 transcriptional elongation. Conclusions Our findings may provide new insight into systemic host AS regulation under HIV-1 infection and may provide useful initial candidates for the discovery of new markers for specifically targeting infected T-cells.
Collapse
Affiliation(s)
- Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yue Zheng
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
36
|
Shrestha M, Solé M, Ducro BJ, Sundquist M, Thomas R, Schurink A, Eriksson S, Lindgren G. Genome-wide association study for insect bite hypersensitivity susceptibility in horses revealed novel associated loci on chromosome 1. J Anim Breed Genet 2019; 137:223-233. [PMID: 31489730 DOI: 10.1111/jbg.12436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
Abstract
Equine insect bite hypersensitivity (IBH) is a pruritic skin allergy caused primarily by biting midges, Culicoides spp. IBH susceptibility has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide, causing increased costs and reduced welfare of affected horses. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) associated with equine IBH susceptibility. After quality control, 33,523 SNPs were included in a Bayesian genome-wide association study on 177 affected and 178 unaffected Icelandic horses. We report associated regions in E. caballus (ECA) 1, 3, 15 and 18, overlapping with known IBH QTLs in horses, and novel regions containing several genes, together explaining 11.46% of the total genetic variance. For validation, three SNPs on ECA 1 and ECA X (explaining the largest percentage of genetic variance) within 1-mb genomic windows for IBH were genotyped in an independent population of 280 Exmoor ponies. The associated genomic region (152-153 mb) on ECA 1 was confirmed in Exmoor ponies and contains the AQR gene involved in splicing processes and a long non-coding RNA. This study confirms the polygenic nature of IBH susceptibility and suggests a role of transcriptional regulatory mechanisms (e.g., alternative splicing) for IBH predisposition in these horse breeds.
Collapse
Affiliation(s)
- Merina Shrestha
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Marina Solé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Ruth Thomas
- The Exmoor Pony Society, Woodmans, Deveon, UK
| | - Anouk Schurink
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Caines R, Cochrane A, Kelaini S, Vila-Gonzalez M, Yang C, Eleftheriadou M, Moez A, Stitt AW, Zeng L, Grieve DJ, Margariti A. The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 2019; 132:jcs.230276. [PMID: 31331967 DOI: 10.1242/jcs.230276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel Caines
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Amy Cochrane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Marta Vila-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Chunbo Yang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
38
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Yang Y, Gao D, Liu Z. Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2019; 91:188-193. [PMID: 31077849 DOI: 10.1016/j.fsi.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/22/2023]
Abstract
Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
39
|
Kim TR, Jeong HH, Sohn KA. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference. BMC Med Genomics 2019; 12:94. [PMID: 31296204 PMCID: PMC6624183 DOI: 10.1186/s12920-019-0511-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The analysis of integrated multi-omics data enables the identification of disease-related biomarkers that cannot be identified from a single omics profile. Although protein-level data reflects the cellular status of cancer tissue more directly than gene-level data, past studies have mainly focused on multi-omics integration using gene-level data as opposed to protein-level data. However, the use of protein-level data (such as mass spectrometry) in multi-omics integration has some limitations. For example, the correlation between the characteristics of gene-level data (such as mRNA) and protein-level data is weak, and it is difficult to detect low-abundance signaling proteins that are used to target cancer. The reverse phase protein array (RPPA) is a highly sensitive antibody-based quantification method for signaling proteins. However, the number of protein features in RPPA data is extremely low compared to the number of gene features in gene-level data. In this study, we present a new method for integrating RPPA profiles with RNA-Seq and DNA methylation profiles for survival prediction based on the integrative directed random walk (iDRW) framework proposed in our previous study. In the iDRW framework, each omics profile is merged into a single pathway profile that reflects the topological information of the pathway. In order to address the sparsity of RPPA profiles, we employ the random walk with restart (RWR) approach on the pathway network. RESULTS Our model was validated using survival prediction analysis for a breast cancer dataset from The Cancer Genome Atlas. Our proposed model exhibited improved performance compared with other methods that utilize pathway information and also out-performed models that did not include the RPPA data utilized in our study. The risk pathways identified for breast cancer in this study were closely related to well-known breast cancer risk pathways. CONCLUSIONS Our results indicated that RPPA data is useful for survival prediction for breast cancer patients under our framework. We also observed that iDRW effectively integrates RNA-Seq, DNA methylation, and RPPA profiles, while variation in the composition of the omics data can affect both prediction performance and risk pathway identification. These results suggest that omics data composition is a critical parameter for iDRW.
Collapse
Affiliation(s)
- Tae Rim Kim
- Department of Computer Engineering, Ajou University, Suwon, 16499 South Korea
| | - Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Kyung-Ah Sohn
- Department of Computer Engineering, Ajou University, Suwon, 16499 South Korea
| |
Collapse
|
40
|
Kumar S, Chera JS, Vats A, De S. Nature of selection varies on different domains of IFI16-like PYHIN genes in ruminants. BMC Evol Biol 2019; 19:26. [PMID: 30654734 PMCID: PMC6335826 DOI: 10.1186/s12862-018-1334-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background ALRs (AIM2-like Receptors) are germline encoded PRRs that belong to PYHIN gene family of cytokines, which are having signature N-terminal PYD (Pyrin, PAAD or DAPIN) domain and C-terminal HIN-200 (hematopoietic, interferon-inducible nuclear protein with 200 amino acid repeat) domain joined by a linker region. The positively charged HIN-200 domain senses and binds with negatively charged phosphate groups of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) purely through electrostatic attractions. On the other hand, PYD domain interacts homotypically with a PYD domain of other mediators to pass the signals to effector molecules downwards the pathways for inflammatory responses. There is remarkable inter-specific diversity in the numbers of functional PYHIN genes e.g. one in cow, five in human, thirteen in mice etc., while there is a unique loss of PYHIN genes in the bat genomes which was revealed by Ahn et al. (2016) by studying genomes of ten different bat species belonging to sub-orders yinpterochiroptera and yangochiroptera. The conflicts between host and pathogen interfaces are compared with “Red queen’s arms race” which is also described as binding seeking dynamics and binding avoidance dynamics. As a result of this never-ending rivalry, eukaryotes developed PRRs as antiviral mechanism while viruses developed counter mechanisms to evade host immune defense. The PYHIN receptors are directly engaged with pathogenic molecules, so these should have evolved under the influence of selection pressures. In the current study, we investigated the nature of selection pressure on different domain types of IFI16-like (IFI16-L) PYHIN genes in ruminants. Results Three transcript variants of the IFI16-like gene were found in PBMCs of ruminant animals-water buffalo, zebu cattle, goat, and sheep. The IFI16-like gene has one N-terminal PYD domain and one C-terminal HIN-200 domain, separated by an inter-domain linker region. HIN domain and inter-domain region are positively selected while the PYD domain is under the influence of purifying selection. Conclusion Herein, we conclude that the nature of selection pressure varies on different parts (PYD domain, HIN domain, and inter-domain linker region) of IFI16-like PYHIN genes in the ruminants. This data can be useful to predict the molecular determinants of pathogen interactions. Electronic supplementary material The online version of this article (10.1186/s12862-018-1334-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sushil Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashutosh Vats
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
41
|
Tan S, Wang W, Zhong X, Tian C, Niu D, Bao L, Zhou T, Jin Y, Yang Y, Yuan Z, Gao D, Dunham R, Liu Z. Increased Alternative Splicing as a Host Response to Edwardsiella ictaluri Infection in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:729-738. [PMID: 30014301 DOI: 10.1007/s10126-018-9844-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Alternative splicing is the process of generating multiple transcripts from a single pre-mRNA used by eukaryotes to regulate gene expression and increase proteomic complexity. Although alternative splicing profiles have been well studied in mammalian species, they have not been well studied in aquatic species, especially after biotic stresses. In the present study, genomic information and RNA-Seq datasets were utilized to characterize alternative splicing profiles and their induced changes after bacterial infection with Edwardsiella ictaluri in channel catfish (Ictalurus punctatus). A total of 27,476 alternative splicing events, derived from 9694 genes, were identified in channel catfish. Exon skipping was the most abundant while mutually exclusive exon was the least abundant type of alternative splicing. Alternative splicing was greatly induced by E. ictaluri infection with 21.9% increase in alternative splicing events. Interestingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced genes after infection. Sequence analyses of splice variants of a representative alternatively spliced gene, splicing factor srsf2, revealed that certain spliced transcripts may undergo nonsense-mediated decay (NMD), suggesting functional significance of the induced alternative splicing. Although statistical analysis was not possible with such large datasets, results from quantitative real-time PCR from representative differential alternative splicing events provided general validation of the bacterial infection-induced alternative splicing. This is the first comprehensive study of alternative splicing and its changes in response to bacterial infection in fish species, providing insights into the molecular mechanisms of host responses to biotic stresses.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
42
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Jin Y, Yang Y, Gao D, Dunham R, Liu Z. Heat stress induced alternative splicing in catfish as determined by transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:166-172. [PMID: 30481682 DOI: 10.1016/j.cbd.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Heat tolerance is increasingly becoming an important trait for aquaculture species with a changing climate. Transcriptional studies on responses to heat stress have been conducted in catfish, one of the most important economic aquaculture species around the world. The molecular mechanisms underlying heat tolerance is still poorly understood, especially at the post-transcriptional level including regulation of alternative splicing. In this study, existing RNA-Seq datasets were utilized to characterize the change of alternative splicing in catfish following heat treatment. Heat-tolerant and -intolerant catfish were differentiated by the time to lost equilibrium after heat stress. With heat stress, alternative splicing was generally increased. In heat-intolerant fish, the thermal stress induced 29.2% increases in alternative splicing events and 25.8% increases in alternatively spliced genes. A total of 282, 189, and 44 differential alternative splicing (DAS) events were identified in control-intolerant, control-tolerant, and intolerant-tolerant comparisons, corresponding to 252, 171, and 42 genes, respectively. Gene ontology analyses showed that genes involved in the molecular function of RNA binding were significantly enriched in DAS gene sets after heat stress in both heat-intolerant and -tolerant catfish compared with the control group. Similar results were also observed in the DAS genes between heat-intolerant and -tolerant catfish, and the biological process of RNA splicing was also enriched in this comparison, indicating the involvement of RNA splicing-related genes underlying heat tolerance. This is the first comprehensive study of alternative splicing in response to heat stress in fish species, providing insights into the molecular mechanisms of responses to the abiotic stress.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
43
|
Spahr CS, Daris ME, Graham KC, Soriano BD, Stevens JL, Shi SDH. Discovery, characterization, and remediation of a C-terminal Fc-extension in proteins expressed in CHO cells. MAbs 2018; 10:1291-1300. [PMID: 30148415 DOI: 10.1080/19420862.2018.1511197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Protein-based biotherapeutics are produced in engineered cells through complex processes and may contain a wide variety of variants and post-translational modifications that must be monitored or controlled to ensure product quality. Recently, a low level (~1-5%) impurity was observed in a number of proteins derived from stably transfected Chinese hamster ovary (CHO) cells using mass spectrometry. These molecules include antibodies and Fc fusion proteins where Fc is on the C-terminus of the construct. By liquid chromatography-mass spectrometry (LC-MS), the impurity was found to be ~1177 Da larger than the expected mass. After tryptic digestion and analysis by LC-MS/MS, the impurity was localized to the C-terminus of Fc in the form of an Fc sequence extension. Targeted higher-energy collision dissociation was performed using various normalized collision energies (NCE) on two charge states of the extended peptide, resulting in nearly complete fragment ion coverage. The amino acid sequence, SLSLSPEAEAASASELFQ, obtained by the de novo sequencing effort matches a portion of the vector sequence used in the transfection of the CHO cells, specifically in the promoter region of the selection cassette downstream of the protein coding sequence. The modification was the result of an unexpected splicing event, caused by the resemblance of the commonly used GGU codon of the C-terminal glycine to a consensus splicing donor. Three alternative codons for glycine were tested to alleviate the modification, and all were found to completely eliminate the undesirable C-terminal extension, thus improving product quality.
Collapse
Affiliation(s)
- Christopher S Spahr
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Mark E Daris
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Kevin C Graham
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Brian D Soriano
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Jennitte L Stevens
- b Biologics Optimization, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| | - Stone D-H Shi
- a Discovery Attribute Sciences, Therapeutic Discovery , Amgen Discovery Research , Thousand Oaks , CA , USA
| |
Collapse
|
44
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
45
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|
46
|
Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 2018; 19:622. [PMID: 30134841 PMCID: PMC6103977 DOI: 10.1186/s12864-018-4982-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background The success of early reproductive events depends on an appropriate communication between gametes/embryos and the oviduct. Extracellular vesicles (EVs) contained in oviductal secretions have been suggested as new players in mediating this crucial cross-talk by transferring their cargo (proteins, mRNA and small ncRNA) from cell to cell. However, little is known about the oviductal EVs (oEVS) composition and their implications in the reproductive success. The aim of the study was to determine the oEVs content at protein, mRNA and small RNA level and to examine whether the oEVs content is under the hormonal influence of the estrous cycle. Results We identified the presence of oEVs, exosomes and microvesicles, in the bovine oviductal fluid at different stages of the estrous cycle (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage) and demonstrated that their composition is under hormonal regulation. RNA-sequencing identified 903 differentially expressed transcripts (FDR < 0.001) in oEVs across the estrous cycle. Moreover, small RNA-Seq identified the presence of different types of ncRNAs (miRNAs, rRNA fragments, tRNA fragments, snRNA, snoRNA, and other ncRNAs), which were partially also under hormonal influence. Major differences were found between post-ovulatory and the rest of the stages analyzed for mRNAs. Interesting miRNAs identified in oEVs and showing differential abundance among stages, miR-34c and miR-449a, have been associated with defective cilia in the oviduct and infertility. Furthermore, functional annotation of the differentially abundant mRNAs identified functions related to exosome/vesicles, cilia expression, embryo development and many transcripts encoding ribosomal proteins. Moreover, the analysis of oEVs protein content also revealed changes across the estrous cycle. Mass spectrometry identified 336 clusters of proteins in oEVs, of which 170 were differentially abundant across the estrous cycle (p-value< 0.05, ratio < 0.5 or ratio > 2). Our data revealed proteins related to early embryo development and gamete-oviduct interactions as well as numerous ribosomal proteins. Conclusions Our study provides with the first molecular signature of oEVs across the bovine estrous cycle, revealing marked differences between post- and pre-ovulatory stages. Our findings contribute to a better understanding of the potential role of oEVs as modulators of gamete/embryo-maternal interactions and their implications for the reproductive success. Electronic supplementary material The online version of this article (10.1186/s12864-018-4982-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Almiñana
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland. .,UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - G Tsikis
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| | - V Labas
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.,Plate-forme CIRE, Pôle d'Analyse et d'Imagerie des Biomolécules, INRA, CHRU de Tours, Université de Tours, 37380, Nouzilly, France
| | - R Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 10 boulevard Tonnellé, 37032, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Moscow, Russia
| | - J C da Silveira
- Department of Veterinary Medicine, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - S Bauersachs
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland
| | - P Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| |
Collapse
|
47
|
Sellegounder D, Gupta YR, Murugananthkumar R, Senthilkumaran B. Enterotoxic effects of Aeromonas hydrophila infection in the catfish, Clarias gariepinus: Biochemical, histological and proteome analyses. Vet Immunol Immunopathol 2018; 204:1-10. [PMID: 30596375 DOI: 10.1016/j.vetimm.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Aeromonas hydrophila is considered as a potential risk to fish populations in the aquaculture industry and could also pose a serious threat to humans. In this study, the impact of A. hydrophila infection in the air-breathing catfish, Clarias gariepinus was analyzed using a multidimensional approach. Aeromonas hydrophila (1 × 107 cells) was injected into C. gariepinus intraperitoneally and maintained at an ambient temperature and photoperiod with periodical monitoring for morphological changes. After 7 days post-infection, tissue samples of the gills, liver, intestine, and kidney were subjected to biochemical, histological, transmission electron microscope (TEM) and proteomic analyses. Observed results indicated distinct morphological changes with the significant increase of ROS and oxidative stress enzymes (CAT and SOD) in tissues of the infected group when compared to the control. Histological analysis in infected fish revealed the presence of pyknotic nuclei, early stages of necrosis in the liver, degradation of renal tubules and widened sinusoidal space in kidneys along with enlargement of the epithelial region in the intestine. TEM analysis of the infected intestine showed degeneration of villi and the presence of multinucleated erythrocytes. Two-dimensional proteomic and mass spectrometry analysis of intestine and liver displayed up-regulation of several immune regulatory proteins such as proteasome subunit 3 protein, prolactin and intermediated filament protein; and down-regulation of proteins including actin, serine/arginine-rich splicing factor and carbonic anhydrase. Taken together, these results suggest that the identified proteins may have a role in immune regulation against A. hydrophila infection in C. gariepinus and support further investigations of host-pathogen interactions.
Collapse
Affiliation(s)
- Durai Sellegounder
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
48
|
Cao L, Wu XM, Hu YW, Xue NN, Nie P, Chang MX. The discrepancy function of NLRC5 isoforms in antiviral and antibacterial immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:153-163. [PMID: 29454830 DOI: 10.1016/j.dci.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
NOD-like receptors (NLRs) are a family of intracellular pattern recognition receptors (PRRs) that play critical roles in innate immunity against pathogens infection. NLRC5, the largest member of NLR family, has been characterized as a regulator of innate immunity and MHC class I expression. Alternative splicing of NLRC5 is only reported in human and zebrafish. However, the function of NLRC5 isoforms in the innate immune responses remains unknown. In the present study, we report the functional characterization of zfNLRC5a and zfNLRC5d, two splicing isoforms of zebrafish NLRC5. zfNLRC5a and zfNLRC5d are generated by exon skipping, and whose alternative splicing sites exist in the region of LRRs. Fluorescence microscopy showed that zfNLRC5 isoforms were located throughout the entire cell including nuclear staining. The expression of zfNLRC5 isoform was inducible in response to bacterial and viral infections. During SVCV infection, the in vitro and in vivo studies found that zfNLRC5d overexpression increased protection against viral infection; however zfNLRC5a overexpression had no significant effect on antiviral activity. Interestingly, zfNLRC5 isoforms but not zfNLRC5 were involved in transcriptional regulation of TLRs and NF-κB signaling. Overexpression of zfNLRC5 isoforms also contributed to negative regulation of antibacterial immune response, with the decreased expression of nfkbiaa (IκBα). All together, these results firstly demonstrate the function of NLRC5 isoforms in antiviral and antibacterial immune responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China.
| |
Collapse
|
49
|
Dery KJ, Silver C, Yang L, Shively JE. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1. J Biol Chem 2018; 293:9277-9291. [PMID: 29720400 DOI: 10.1074/jbc.ra117.001507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly71-Gly89 and Ala38-Gly89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC (deleted in colorectal carcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer.
Collapse
Affiliation(s)
- Kenneth J Dery
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Craig Silver
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, and
| | - Lu Yang
- The Integrative Genomics and Bioinformatics Core, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010,
| |
Collapse
|
50
|
Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018; 19:ijms19020632. [PMID: 29473878 PMCID: PMC5855854 DOI: 10.3390/ijms19020632] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.
Collapse
|