1
|
Hussein MH, Alameen AA, Ansari MA, AlSharari SD, Ahmad SF, Attia MSM, Sarawi WS, Nadeem A, Bakheet SA, Attia SM. Semaglutide ameliorated autism-like behaviors and DNA repair efficiency in male BTBR mice by recovering DNA repair gene expression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111091. [PMID: 39032854 DOI: 10.1016/j.pnpbp.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.
Collapse
Affiliation(s)
- Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Alhusain AF, Mahmoud MA, Alhamami HN, Ebrahim Alobid S, Ansari MA, Ahmad SF, Nadeem A, Bakheet SA, Harisa GI, Attia SM. Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism. Saudi Pharm J 2024; 32:102187. [PMID: 39493830 PMCID: PMC11530837 DOI: 10.1016/j.jsps.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Autism is a neurodevelopmental disorder distinguished by impaired social interaction and repetitive behaviors. Global estimates indicate that autism affects approximately 1.6% of children, with the condition progressively becoming more prevalent over time. Despite noteworthy progress in autism research, the condition remains untreatable. This serves as a driving force for scientists to explore new approaches to disease management. Autism is linked to elevated levels of oxidative stress and disturbances in the DNA repair mechanism, which may potentially play a role in its comorbidities development. The current investigation aimed to evaluate the beneficial effect of the naturally occurring flavonoid proanthocyanidins on the behavioral characteristics and repair efficacy of autistic BTBR mice. Moreover, the mechanisms responsible for these effects were clarified. The present findings indicate that repeated administration of proanthocyanidins effectively reduces altered behavior in BTBR animals without altering motor function. Proanthocyanidins decreased oxidative DNA strand breaks and accelerated the rate of DNA repair in autistic animals, as evaluated by the modified comet test. In addition, proanthocyanidins reduced the elevated oxidative stress and recovered the disrupted DNA repair mechanism in the autistic animals by decreasing the expressions of Gadd45a and Parp1 levels and enhancing the expressions of Ogg1, P53, and Xrcc1 genes. This indicates that proanthocyanidins have significant potential as a new therapeutic strategy for alleviating autistic features.
Collapse
Affiliation(s)
- Abdulelah F. Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saad Ebrahim Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Stahl A, Heider J, Wüst R, Fallgatter AJ, Schenke-Layland K, Volkmer H, Templin MF. Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia. BMC Psychiatry 2024; 24:757. [PMID: 39482642 PMCID: PMC11526604 DOI: 10.1186/s12888-024-06127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. METHODS Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. RESULTS SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. CONCLUSIONS Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.
Collapse
Affiliation(s)
- Aaron Stahl
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| | - Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| |
Collapse
|
4
|
Martins D, Abbasi M, Egas C, Arrais JP. Enhancing schizophrenia phenotype prediction from genotype data through knowledge-driven deep neural network models. Genomics 2024; 116:110910. [PMID: 39111546 DOI: 10.1016/j.ygeno.2024.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This article explores deep learning model design, drawing inspiration from the omnigenic model and genetic heterogeneity concepts, to improve schizophrenia prediction using genotype data. It introduces an innovative three-step approach leveraging neural networks' capabilities to efficiently handle genetic interactions. A locally connected network initially routes input data from variants to their corresponding genes. The second step employs an Encoder-Decoder to capture relationships among identified genes. The final model integrates knowledge from the first two and incorporates a parallel component to consider the effects of additional genes. This expansion enhances prediction scores by considering a larger number of genes. Trained models achieved an average AUC of 0.83, surpassing other genotype-trained models and matching gene expression dataset-based approaches. Additionally, tests on held-out sets reported an average sensitivity of 0.72 and an accuracy of 0.76, aligning with schizophrenia heritability predictions. Moreover, the study addresses genetic heterogeneity challenges by considering diverse population subsets.
Collapse
Affiliation(s)
- Daniel Martins
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Maryam Abbasi
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, Portugal; Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra, Portugal.
| | - Conceição Egas
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Biocant - Transfer Technology Association, Cantanhede, Portugal; CNC - CNC Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
6
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
7
|
Grassi L, McFarland D, Riba M. The Risk and The Course of Cancer Among People with Severe Mental Illness. Clin Pract Epidemiol Ment Health 2023; 19:e174501792301032. [PMID: 38659632 PMCID: PMC11037550 DOI: 10.2174/17450179-v17-e211208-2021-ht2-1910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 04/26/2024]
Abstract
The paucity of data regarding patients with Serious Mental Illness (SMI) and cancer is alarming given the fact that people with SMI, especially schizophrenia, bipolar disorders and severe depressive disorders, have in general poorer access to physical health care and higher morbidity and mortality because of physical illnesses. The aims of this review were to examine the current evidence from existing literature on the risk of developing cancer and its course among people with SMI. Equivocal results emerge regarding the risk of developing some kind of cancer among people with SMI, with contrasting data on a possible higher, similar or lower risk in comparison with the general population. In contrast, a series of studies have pointed out that patients with SMI who develop cancer are less likely to receive standard levels of cancer care, both in terms of screening, diagnosis and treatment. Also, the mortality for cancer has been confirmed to be higher than the general population. A global sensitization about these problems is mandatory in an era in which community psychiatry has been developed in all countries and that policies of prevention, treatment, follow up, and palliative care should regard all the segments of the population, including people with SMI, through an interdisciplinary approach.
Collapse
Affiliation(s)
- Luigi Grassi
- Department of Neuroscience and Rehabilitation, DInstitute of Psychiatry, University of Ferrara and University Hospital Psychiatric Unit, Ferrara, Italy
| | - Daniel McFarland
- Department of Medicine, Hofstra University, Northwell Health, Lenox Hill Hospital, New York, NY, US
| | - Michelle Riba
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Psycho-oncology Program, University of Michigan Depression Center and Rogel Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Akouchekian M, Alizadeh R, Beiranvandi F, Dehghan Manshadi M, Taherizadeh F, Hakim Shooshtari M. Evaluation of DNA repair capacity in parents of pediatric patients diagnosed with autism spectrum disorder using the comet assay procedure. IBRO Neurosci Rep 2023; 15:304-309. [PMID: 37885831 PMCID: PMC10598524 DOI: 10.1016/j.ibneur.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is characterized by impairments in social communication, limited repetitive behaviors, impaired language development, and interest or activity patterns, which include a group complex neurodevelopmental syndrome with diverse phenotypes that reveal considerable etiological and clinical heterogeneity and are also considered one of the most heritable disorders (over 90%). Genetic, epigenetic, and environmental factors play a role in the development of ASD. Aim This study was designed to investigate the extent of DNA damage in parents of autistic children by treating peripheral blood mononuclear cells (PBMCs) with bleomycin and hydrogen peroxide (H2O2). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll method and treated with a specific concentration of bleomycin and H2O2 for 30 min and 5 min, respectively. Then, the degree of DNA damage was analyzed by the alkaline comet assay or single cell gel electrophoresis (SCGE), an effective way to measure DNA fragmentation in eukaryotic cells. Results Our findings revealed that there is a significant difference in the increase of DNA damage in parents with affected children compared to the control group, which can indicate the inability of the DNA molecule repair system. Furthermore, our study showed a significant association between fathers' occupational difficulties (exposed to the influence of environmental factors), as well as family marriage, and suffering from ASD in offspring. Conclusion Our results suggested that the influence of environmental factors on parents of autistic children may affect the development of autistic disorder in their offspring. Subsequently, based on our results, investigating the effect of environmental factors on the amount of DNA damage in parents with affected children requires more studies.
Collapse
Affiliation(s)
- Mansoureh Akouchekian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Alizadeh
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiranvandi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taherizadeh
- Department of Information and Communication, Faculty 3, Hanover University of Applied Sciences and Arts, Hanover, Germany
| | - Mitra Hakim Shooshtari
- Mental Health Research Center, Tehran Institute of Psychiatry – School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hitomi M, Venegas J, Kang SC, Eng C. Differential cell cycle checkpoint evasion by PTEN germline mutations associated with dichotomous phenotypes of cancer versus autism spectrum disorder. Oncogene 2023; 42:3698-3707. [PMID: 37907589 DOI: 10.1038/s41388-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Individuals with a PTEN germline mutation receive the molecular diagnosis of PTEN hamartoma tumor syndrome (PHTS). PHTS displays a complex spectrum of clinical phenotypes including harmartomas, predisposition to cancers, and autism spectrum disorder (ASD). Clear-cut genotype-phenotype correlations are yet to be established due to insufficient information on the PTEN function being impacted by mutations. To fill this knowledge gap, we compared functional impacts of two selected missense PTEN mutant alleles, G132D and M134R, each respectively being associated with distinct clinical phenotype, ASD or thyroid cancer without ASD using gene-edited human induced pluripotent stem cells (hiPSCs). In homozygous hiPSCs, PTEN expression was severely reduced by M134R mutation due to shortened protein half-life. G132D suppressed PTEN expression to a lesser extent than Μ134R mutation without altering protein half-life. When challenged with γ-irradiation, G132D heterozygous cells exited radiation-induced G2 arrest earlier than wildtype and M134R heterozygous hiPSCs despite the similar DNA damage levels as the latter two. Immunoblotting analyses suggested that γ-irradiation induced apoptosis in G132D heterozygous cells to lesser degrees than in the hiPSCs of other genotypes. These data suggest that ASD-associated G132D allele promotes genome instability by premature cell cycle reentry with incomplete DNA repair.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Juan Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
10
|
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1649-1664. [PMID: 37039888 DOI: 10.1007/s00406-023-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
11
|
Briguglio S, Cambria C, Albizzati E, Marcello E, Provenzano G, Frasca A, Antonucci F. New Views of the DNA Repair Protein Ataxia-Telangiectasia Mutated in Central Neurons: Contribution in Synaptic Dysfunctions of Neurodevelopmental and Neurodegenerative Diseases. Cells 2023; 12:2181. [PMID: 37681912 PMCID: PMC10486624 DOI: 10.3390/cells12172181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.
Collapse
Affiliation(s)
- Sabrina Briguglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Elena Albizzati
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, MI, Italy;
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Via Sommarive 9, 38068 Trento, TN, Italy;
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| |
Collapse
|
12
|
Alshamrani AA, Alwetaid MY, Al-Hamamah MA, Attia MSM, Ahmad SF, Algonaiah MA, Nadeem A, Ansari MA, Bakheet SA, Attia SM. Aflatoxin B1 Exacerbates Genomic Instability and Apoptosis in the BTBR Autism Mouse Model via Dysregulating DNA Repair Pathway. TOXICS 2023; 11:636. [PMID: 37505601 PMCID: PMC10384561 DOI: 10.3390/toxics11070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood. Aflatoxin B1 (AFB1) is a potent food pollutant carcinogen. The effects of AFB1 on genomic instability in autism have not yet been investigated. Hence, we have aimed to investigate whether repeated exposure to AFB1 causes alterations in genomic stability, a hallmark of cancer and apoptosis in the BTBR autism mouse model. The data revealed increased micronuclei generation, oxidative DNA strand breaks, and apoptosis in BTBR animals exposed to AFB1 when compared to unexposed animals. Lipid peroxidation in BTBR mice increased with a reduction in glutathione following AFB1 exposure, demonstrating an exacerbated redox imbalance. Furthermore, the expressions of some of DNA damage/repair- and apoptosis-related genes were also significantly dysregulated. Increases in the redox disturbance and dysregulation in the DNA damage/repair pathway are thus important determinants of susceptibility to AFB1-exacerbated genomic instability and apoptosis in BTBR mice. This investigation shows that AFB1-related genomic instability can accelerate the risk of cancer development. Moreover, approaches that ameliorate the redox balance and DNA damage/repair dysregulation may mitigate AFB1-caused genomic instability.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed A Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Gevezova M, Sbirkov Y, Sarafian V, Plaimas K, Suratanee A, Maes M. Autistic spectrum disorder (ASD) - Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment. Brain Behav Immun Health 2023; 30:100646. [PMID: 37334258 PMCID: PMC10275703 DOI: 10.1016/j.bbih.2023.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-α signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Michael Maes
- Research Institute at MU-Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
14
|
Arora A, Becker M, Marques C, Oksanen M, Li D, Mastropasqua F, Watts ME, Arora M, Falk A, Daub CO, Lanekoff I, Tammimies K. Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep 2023; 13:10519. [PMID: 37386098 PMCID: PMC10310850 DOI: 10.1038/s41598-023-37488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Research continues to identify genetic variation, environmental exposures, and their mixtures underlying different diseases and conditions. There is a need for screening methods to understand the molecular outcomes of such factors. Here, we investigate a highly efficient and multiplexable, fractional factorial experimental design (FFED) to study six environmental factors (lead, valproic acid, bisphenol A, ethanol, fluoxetine hydrochloride and zinc deficiency) and four human induced pluripotent stem cell line derived differentiating human neural progenitors. We showcase the FFED coupled with RNA-sequencing to identify the effects of low-grade exposures to these environmental factors and analyse the results in the context of autism spectrum disorder (ASD). We performed this after 5-day exposures on differentiating human neural progenitors accompanied by a layered analytical approach and detected several convergent and divergent, gene and pathway level responses. We revealed significant upregulation of pathways related to synaptic function and lipid metabolism following lead and fluoxetine exposure, respectively. Moreover, fluoxetine exposure elevated several fatty acids when validated using mass spectrometry-based metabolomics. Our study demonstrates that the FFED can be used for multiplexed transcriptomic analyses to detect relevant pathway-level changes in human neural development caused by low-grade environmental risk factors. Future studies will require multiple cell lines with different genetic backgrounds for characterising the effects of environmental exposures in ASD.
Collapse
Affiliation(s)
- Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Cátia Marques
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Michelle Evelyn Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Division of Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Carsten Oliver Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
15
|
Porokhovnik LN, Pisarev VM, Chumachenko AG, Chudakova JM, Ershova ES, Veiko NN, Gorbachevskaya NL, Mamokhina UA, Sorokin AB, Basova AY, Lapshin MS, Izhevskaya VL, Kostyuk SV. Association of NEF2L2 Rs35652124 Polymorphism with Nrf2 Induction and Genotoxic Stress Biomarkers in Autism. Genes (Basel) 2023; 14:genes14030718. [PMID: 36980990 PMCID: PMC10048604 DOI: 10.3390/genes14030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Increased oxidative/genotoxic stress is known to impact the pathophysiology of ASD (autism spectrum disorder). Clinical studies, however, reported limited, heterogeneous but promising responses to treatment with antioxidant remedies. We determined whether the functional polymorphism of the Nrf2 gene, master regulator of anti-oxidant adaptive reactions to genotoxic stress, links to the genotoxic stress responses and to an in vitro effect of a NRF2 inductor in ASD children. Oxidative stress biomarkers, adaptive responses to genotoxic/oxidative stress, levels of master antioxidant regulator Nrf2 and its active form pNrf2 before and after inducing by dimethyl fumarate (DMF), and promotor rs35652124 polymorphism of NFE2L2 gene encoding Nrf2 were studied in children with ASD (n = 179). Controls included healthy adults (n = 101). Adaptive responses to genotoxicity as indicated by H2AX and cytoprotection by NRF2 contents positively correlated in ASD children with a Spearman coefficient of R = 0.479 in T+, but not CC genotypes. ASD children with NRF2 rs35652124 CC genotype demonstrated significantly higher H2AX content (0.652 vs. 0.499 in T+) and pNrf2 induction by DMF, lowered 8-oxo-dG concentration in plasma and higher cfDNA/plasma nuclease activity ratio. Our pilot findings suggest that in ASD children the NEF2L2 rs35652124 polymorphism impacts adaptive responses that may potentially link to ASD severity. Our data warrant further studies to reveal the potential for NEF2L2 genotype-specific and age-dependent repurposing of DMF and/or other NRF2-inducing drugs.
Collapse
Affiliation(s)
- Lev N. Porokhovnik
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| | - Vladimir M. Pisarev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Street, 107031 Moscow, Russia
- Correspondence:
| | - Anastasia G. Chumachenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Street, 107031 Moscow, Russia
| | - Julia M. Chudakova
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| | - Natalia N. Veiko
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| | | | - Uliana A. Mamokhina
- Federal Resource Center for Organization of Comprehensive Support to Children with Autism Spectrum Disorders, 29 Sretenka Street, 127051 Moscow, Russia
| | - Alexander B. Sorokin
- Federal Resource Center for Organization of Comprehensive Support to Children with Autism Spectrum Disorders, 29 Sretenka Street, 127051 Moscow, Russia
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA
| | - Anna Ya. Basova
- G.E. Sukhareva Research and Practical Center of Children and Adolescents Mental Health, 21A Fifth Donskoy Drive, 119334 Moscow, Russia
| | - Mikhail S. Lapshin
- G.E. Sukhareva Research and Practical Center of Children and Adolescents Mental Health, 21A Fifth Donskoy Drive, 119334 Moscow, Russia
| | - Vera L. Izhevskaya
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics, 1 Moskvorechie Street, 115478 Moscow, Russia
| |
Collapse
|
16
|
Wang Y, Singh A, Li G, Yue S, Hertel K, Wang ZJ. Opioid induces increased DNA damage in prefrontal cortex and nucleus accumbens. Pharmacol Biochem Behav 2023; 224:173535. [PMID: 36907467 DOI: 10.1016/j.pbb.2023.173535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Opioid use disorder (OUD) is a chronic disease characterized by compulsive opioid taking and seeking, affecting millions of people worldwide. The high relapse rate is one of the biggest challenges in treating opioid addiction. However, the cellular and molecular mechanisms underlying relapse to opioid seeking are still unclear. Recent studies have shown that DNA damage and repair processes are implicated in a broad spectrum of neurodegenerative diseases as well as in substance use disorders. In the present study, we hypothesized that DNA damage is related to relapse to heroin seeking. To test our hypothesis, we aim to examine the overall DNA damage level in prefrontal cortex (PFC) and nucleus accumbens (NAc) after heroin exposure, as well as whether manipulating DNA damage levels can alter heroin seeking. First, we observed increased DNA damage in postmortem PFC and NAc tissues from OUD individuals compared to healthy controls. Next, we found significantly increased levels of DNA damage in the dorsomedial PFC (dmPFC) and NAc from mice that underwent heroin self-administration. Moreover, increased accumulation of DNA damage persisted after prolonged abstinence in mouse dmPFC, but not in NAc. This persistent DNA damage was ameliorated by the treatment of reactive oxygen species (ROS) scavenger N-acetylcysteine, along with attenuated heroin-seeking behavior. Furthermore, intra-PFC infusions of topotecan and etoposide during abstinence, which trigger DNA single-strand breaks and double-strand breaks respectively, potentiated heroin-seeking behavior. These findings provide direct evidence that OUD is associated with the accumulation of DNA damage in the brain (especially in the PFC), which may lead to opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Guohui Li
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Kegan Hertel
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
17
|
Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, Morikawa M, Inada T, Ishizuka K, Torii Y, Nakamura Y, Tanaka S, Imaeda M, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Ogawa N, Iritani S, Hayashi Y, Lo T, Otgonbayar G, Furuta S, Iwata N, Ikeda M, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Itokawa M, Arai M, Miyashita M, Toriumi K, Ohi K, Shioiri T, Kitaichi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Sasaki T, Tochigi M, Nishimura F, Yamasue H, Kuwabara H, Wakuda T, Kato TA, Kanba S, Horikawa H, Usami M, Kodaira M, Watanabe K, Yoshikawa T, Toyota T, Yokoyama S, Munesue T, Kimura R, Funabiki Y, Kosaka H, Jung M, Kasai K, Ikegame T, Jinde S, Numata S, Kinoshita M, Kato T, Kakiuchi C, Yamakawa K, Suzuki T, Hashimoto N, Ishikawa S, Yamagata B, Nio S, Murai T, Son S, Kunii Y, Yabe H, Inagaki M, Goto YI, Okumura Y, Ito T, Arioka Y, Mori D, Ozaki N. Cross-Disorder Analysis of Genic and Regulatory Copy Number Variations in Bipolar Disorder, Schizophrenia, and Autism Spectrum Disorder. Biol Psychiatry 2022; 92:362-374. [PMID: 35667888 DOI: 10.1016/j.biopsych.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS In genic CNVs, we found an increased burden of smaller (<100 kb) exonic deletions in BD, which contrasted with the highest burden of larger (>500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25-0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disorders, National Institute of Mental Health National Center of Neurology and Psychiatry, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- National Hospital Organization Higashi Owari National Hospital, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Integrated Health Sciences, Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Okehazama Hospital Brain Research Institute, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan; Department of Psychiatry, Takatsuki Hospital, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Japan Depression Center, Tokyo, Japan; Kyushu University, Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Horikawa Hospital, Kurume, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Mental Health, Aiiku Clinic, Tokyo, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Kyoto University, Kyoto, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Cognitive Science Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Hokkaido, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masumi Inagaki
- Department of Pediatrics, Tottori Prefecture Rehabilitation Center, Tottori, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuto Okumura
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Ito
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
18
|
Shi W, Fan L, Wang H, Liu B, Li W, Li J, Cheng L, Chu C, Song M, Sui J, Luo N, Cui Y, Dong Z, Lu Y, Ma Y, Ma L, Li K, Chen J, Chen Y, Guo H, Li P, Lu L, Lv L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. Two subtypes of schizophrenia identified by an individual-level atypical pattern of tensor-based morphometric measurement. Cereb Cortex 2022; 33:3683-3700. [PMID: 36005854 DOI: 10.1093/cercor/bhac301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Difficulties in parsing the multiaspect heterogeneity of schizophrenia (SCZ) based on current nosology highlight the need to subtype SCZ using objective biomarkers. Here, utilizing a large-scale multisite SCZ dataset, we identified and validated 2 neuroanatomical subtypes with individual-level abnormal patterns of the tensor-based morphometric measurement. Remarkably, compared with subtype 1, which showed moderate deficits of some subcortical nuclei and an enlarged striatum and cerebellum, subtype 2, which showed cerebellar atrophy and more severe subcortical nuclei atrophy, had a higher subscale score of negative symptoms, which is considered to be a core aspect of SCZ and is associated with functional outcome. Moreover, with the neuroimaging-clinic association analysis, we explored the detailed relationship between the heterogeneity of clinical symptoms and the heterogeneous abnormal neuroanatomical patterns with respect to the 2 subtypes. And the neuroimaging-transcription association analysis highlighted several potential heterogeneous biological factors that may underlie the subtypes. Our work provided an effective framework for investigating the heterogeneity of SCZ from multilevel aspects and may provide new insights for precision psychiatry.
Collapse
Affiliation(s)
- Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Jun Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.,Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China.,Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China.,Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl Psychiatry 2022; 12:320. [PMID: 35941129 PMCID: PMC9360026 DOI: 10.1038/s41398-022-02069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.
Collapse
|
20
|
Mueller FS, Amport R, Notter T, Schalbetter SM, Lin HY, Garajova Z, Amini P, Weber-Stadlbauer U, Markkanen E. Deficient DNA base-excision repair in the forebrain leads to a sex-specific anxiety-like phenotype in mice. BMC Biol 2022; 20:170. [PMID: 35907861 PMCID: PMC9339204 DOI: 10.1186/s12915-022-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neuropsychiatric disorders, such as schizophrenia (SZ) and autism spectrum disorder (ASD), are common, multi-factorial and multi-symptomatic disorders. Ample evidence implicates oxidative stress, deficient repair of oxidative DNA lesions and DNA damage in the development of these disorders. However, it remains unclear whether insufficient DNA repair and resulting DNA damage are causally connected to their aetiopathology, or if increased levels of DNA damage observed in patient tissues merely accumulate as a consequence of cellular dysfunction. To assess a potential causal role for deficient DNA repair in the development of these disorders, we behaviourally characterized a mouse model in which CaMKIIa-Cre-driven postnatal conditional knockout (KO) of the core base-excision repair (BER) protein XRCC1 leads to accumulation of unrepaired DNA damage in the forebrain. Results CaMKIIa-Cre expression caused specific deletion of XRCC1 in the dorsal dentate gyrus (DG), CA1 and CA2 and the amygdala and led to increased DNA damage therein. While motor coordination, cognition and social behaviour remained unchanged, XRCC1 KO in the forebrain caused increased anxiety-like behaviour in males, but not females, as assessed by the light–dark box and open field tests. Conversely, in females but not males, XRCC1 KO caused an increase in learned fear-related behaviour in a cued (Pavlovian) fear conditioning test and a contextual fear extinction test. The relative density of the GABA(A) receptor alpha 5 subunit (GABRA5) was reduced in the amygdala and the dorsal CA1 in XRCC1 KO females, whereas male XRCC1 KO animals exhibited a significant reduction of GABRA5 density in the CA3. Finally, assessment of fast-spiking, parvalbumin-positive (PV) GABAergic interneurons revealed a significant increase in the density of PV+ cells in the DG of male XRCC1 KO mice, while females remained unchanged. Conclusions Our results suggest that accumulation of unrepaired DNA damage in the forebrain alters the GABAergic neurotransmitter system and causes behavioural deficits in relation to innate and learned anxiety in a sex-dependent manner. Moreover, the data uncover a previously unappreciated connection between BER deficiency, unrepaired DNA damage in the hippocampus and a sex-specific anxiety-like phenotype with implications for the aetiology and therapy of neuropsychiatric disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01377-1.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - René Amport
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Tina Notter
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Faculty of Science, University of Zurich, 8057, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Tian C, Duan L, Fu C, He J, Dai J, Zhu G. Study on the Correlation Between Iris Characteristics and Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:811-820. [PMID: 35431547 PMCID: PMC9005354 DOI: 10.2147/ndt.s361614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recently, researchers have conducted many studies on the potential contribution of the retina and other eye structures on schizophrenia. This study aimed to evaluate differences in iris characteristics between patients with schizophrenia and healthy individuals so as to find more easily accessible and easily measurable biomarkers with a view to improving clinical assessments and furthering our understanding of the disease. METHODS Overall, 80 patients with schizophrenia and 52 healthy individuals were included in the case group and the control group, respectively. Iris images were collected from all subjects to compare differences in the structure and color of the iris. The Positive and Negative Symptom Scale (PANSS) and the Modified Overt Aggression Scale (MOAS) were used to evaluate the clinical symptoms and characteristics of 45 first-episode untreated schizophrenics, and analyzed correlations between iris characteristics and schizophrenia symptoms. RESULTS There were significant differences in iris crypts (P<0.05) and pigment spots (P<0.01) between the case and control group, but no significant difference was found in iris wrinkles (P<0.05). The logistic regression analysis demonstrated that the total iris crypts [odds ratio (OR) 1.166, 95% confidence interval (CI) 1.022-1.330] and total iris pigment spots (OR 1.815, 95% CI 1.186-2.775) increased the risk of suffering from schizophrenia. Furthermore, it was demonstrated that the number of iris crypts was positively associated with the MOAS score (r=0.474, P<0.01). Moreover, the number of the iris pigment spots (r=0.395, P<0.01) and wrinkles (r=0.309, P<0.05) were positively correlated with the subjects' negative symptom scores, respectively. CONCLUSION Iris crypts and pigment spots were identified as potential biomarkers for detecting schizophrenia. In patients with first-episode untreated schizophrenia, iris characteristics may help psychiatrists to identify the illness and its severity, and to detect characteristic clinical symptoms.
Collapse
Affiliation(s)
- Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Shenyang Mental Health Center, Shenyang, 110168, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,School of Nursing, Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Juan He
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiali Dai
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
22
|
Durmus H, Mertoğlu E, Sticht H, Ceylaner S, Kulaksızoğlu IB, Hashemolhosseini S, Uçar EÖ, Parman Y. Episodic psychosis, ataxia, motor neuropathy with pyramidal signs (PAMP syndrome) caused by a novel mutation in ADPRHL2 (AHR3). Neurol Sci 2021; 42:3871-3878. [PMID: 33528672 DOI: 10.1007/s10072-021-05100-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The protein "ADP-Ribosylarginine Hydrolase-Like Protein 2" is encoded by ADPRHL2 and reverses ADP-ribosylation. Recently, mutations in ADPRHL2 were found to be associated with a very rare childhood onset severe neurodegeneration syndrome with episodic, stress-induced seizures, ataxia, and axonal neuropathy. In this study, we evaluate a novel mutation in ADPRHL2 leading to an unknown adult onset syndrome "episodic psychosis, ataxia, motor neuropathy with pyramidal signs (PAMP syndrome)." DESIGN/METHODS Four patients with episodic psychosis, ataxia, and motor neuropathy with pyramidal signs were included in this study. RESULTS An index patient presented ataxia, postural tremor in the hands, and hallucinations at age 20 years, which had started after a viral infection. She improved within 3 months without any treatment. Her neurological exam revealed mild distal weakness, brisk DTRs, bilateral Babinski sign, impaired vibration sensation, position, and ataxia. Pes cavus and hammer toes were also noted. EMG revealed neurogenic changes in distal muscles and normal sensory nerve conduction studies. Cranial MRI was normal. She had three more severe episodes in recent years, and her neurologic findings got progressively worse. Two of her older sisters had much milder phenotypes. The phenotype of the fourth patient from an unrelated family was identical with the index patient. All affected patients had homozygous novel NM_017825.3:c.838G>A (p.Ala280Thr) mutations in a highly conserved region of ADPRHL2. Western blot analyses demonstrated that ADPRHL2 was not expressed in these patients. CONCLUSIONS Here, we describe a novel mutation in ADPRHL2, which further expands the phenotypic and genetic spectrum of the patients harboring these mutations.
Collapse
Affiliation(s)
- Hacer Durmus
- Department of Neurology, Faculty of Medicine, Istanbul University, 34390, Capa, Istanbul, Turkey.
| | - Elif Mertoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | | | - Said Hashemolhosseini
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Yesim Parman
- Department of Neurology, Faculty of Medicine, Istanbul University, 34390, Capa, Istanbul, Turkey
| |
Collapse
|
23
|
Wen X, Xu X, Luo X, Yin J, Liang C, Zhu J, Nong X, Zhu X, Ning F, Gu S, Xiong S, Fu J, Zhu D, Dai Z, Lv D, Lin Z, Lin J, Li Y, Ma G, Wang Y. Nucks1 gene polymorphism rs823114 is associated with the positive symptoms and neurocognitive function of patients with schizophrenia in parts of southern China. Psychiatr Genet 2021; 31:119-125. [PMID: 34030174 PMCID: PMC8265546 DOI: 10.1097/ypg.0000000000000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/23/2021] [Indexed: 01/14/2023]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (nucks1) are considered a potential susceptibility gene for certain neurological diseases, such as Parkinson's disease (PD). In our study, we genotyped three single nucleotide polymorphisms (SNPs) (rs4951261, rs823114 and rs951366) of the nucks1 gene in 774 schizophrenic patients and 819 healthy controls using the improved multiplex ligation detection reaction (imLDR) technique. Furthermore, we also studied the relationship between the above SNPs and the clinical psychiatric symptoms and neurocognitive function of the patients. Genotype distributions and allele frequencies of these SNPs showed no significant differences and were found between patients and healthy controls. However, in an analysis of the positive symptom score of rs823114 among male patients, we found that the score of the A/A genotype was lower than that of the G/A+G/G genotypes (P = 0.001, P(corr) = 0.003]. Additionally, we also found that among the female patients, G allele carriers with rs823114 had lower semantic fluency scores than subjects with the A/A genotype (P = 0.010, P(corr) = 0.030]. Our data show for the first time that rs823114 polymorphism of nucks1 may affect positive symptoms and neurocognitive function in patients with schizophrenia in parts of southern China.
Collapse
Affiliation(s)
- Xia Wen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xusan Xu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jinwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | | | | | - Xiudeng Zhu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Fan Ning
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Shanshan Gu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Yajun Wang
- Medical Genetics Laboratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
24
|
Goh XX, Tang PY, Tee SF. 8-Hydroxy-2'-Deoxyguanosine and Reactive Oxygen Species as Biomarkers of Oxidative Stress in Mental Illnesses: A Meta-Analysis. Psychiatry Investig 2021; 18:603-618. [PMID: 34340273 PMCID: PMC8328836 DOI: 10.30773/pi.2020.0417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mental illnesses may be caused by genetic and environmental factors. Recent studies reported that mental illnesses were accompanied by higher oxidative stress level. However, the results were inconsistent. Thus, present meta-analysis aimed to analyse the association between oxidative DNA damage indicated by 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which has been widely used as biomarker of oxidative stress, and mental illnesses, including schizophrenia, bipolar disorder and depression. As oxidative DNA damage is caused by reactive oxygen species (ROS), systematic review and meta-analysis were also conducted to analyse the relationship between ROS and these three mental illnesses. METHODS Studies from 1964 to 2020 (for oxidative DNA damage) and from 1907 to 2021 (for ROS) in Pubmed and Scopus databases were selected and analysed using Comprehensive Meta-Analysis version 2 respectively. Data were subjected to meta-analysis for examining the effect sizes of the results. Publication bias assessments, heterogeneity assessments and subgroup analyses based on biological specimens, patient status, illness duration and medication history were also conducted. RESULTS This meta-analysis revealed that oxidative DNA damage was significantly higher in patients with schizophrenia and bipolar disorder based on random-effects models whereas in depressed patients, the level was not significant. Since heterogeneity was present, results based on random-effects model was preferred. Our results also showed that oxidative DNA damage level was significantly higher in lymphocyte and urine of patients with schizophrenia and bipolar disorder respectively. Besides, larger effect size was observed in inpatients and those with longer illness duration and medication history. Significant higher ROS was also observed in schizophrenic patients but not in depressive patients. CONCLUSION The present meta-analysis found that oxidative DNA damage was significantly higher in schizophrenia and bipolar disorder but not in depression. The significant association between deoxyguanosines and mental illnesses suggested the possibility of using 8-OHdG or 8-oxodG as biomarker in measurement of oxidative DNA damage and oxidative stress. Higher ROS level indicated the involvement of oxidative stress in schizophrenia. The information from this study may provide better understanding on pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
25
|
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, Eichler EE. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med 2021; 13:63. [PMID: 33874999 PMCID: PMC8056596 DOI: 10.1186/s13073-021-00870-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Jill Rosenfeld
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bert B A De Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Agnese Scatigno
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Department of Pediatrics, Fondazione MBBM S. Gerardo Hospital, Monza, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Micah Pepper
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | - Heena Panjwani
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | | | - Farida Abid
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paldeep Atwal
- The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA
| | - Carlos A Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Meredith S Wright
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Clinique de Génétique, Hôpital Jeanne de Flandre, Bâtiment Modulaire, CHU, 59037, Lille Cedex, France
| | - Sophie Mathieu
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Celenie K Christensen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kerry M White
- Department of Medical and Molecular Genetics, IU Health, Indianapolis, IN, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Ashdod, Israel.,Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Edward J Espineli
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA.,The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.,Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shuang Yan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kory Keller
- Oregon Health & Science University, Corvallis, OR, USA
| | - Boris Keren
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alice Basinger
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Mary Kukolich
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Meredith Philips
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Lucia Ortega
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | | | - Mathilde Lauridsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kristina Sorensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital and BC Women's Hospital, Vancouver, BC, Canada
| | | | - Elena Lopez-Rangel
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre for Children, Vancouver, BC, Canada
| | - Paul Levy
- Department of Pediatrics, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Lotze
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jodie Vento
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA
| | | | - Shane Mckee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Candace Muss
- Al Dupont Hospital for Children, Wilmington, DE, USA
| | - John Pappas
- NYU Grossman School of Medicine, Department of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | | | | | - Marleen E H Simon
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kara Simpson
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Robert Stratton
- Department of Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Sabeen Syed
- Department of Pediatric Gastroenterology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Julien Thevenon
- Àrea de Genètica Clínica i Molecular, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Antonio Vitobello
- UF Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne and INSERM UMR1231 GAD, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie Bournez
- Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Rachel K Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Raphael A Bernier
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Spatiotemporal 7q11.23 protein network analysis implicates the role of DNA repair pathway during human brain development. Sci Rep 2021; 11:8246. [PMID: 33859276 PMCID: PMC8050238 DOI: 10.1038/s41598-021-87632-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Recurrent deletions and duplications of chromosome 7q11.23 copy number variants (CNVs) are associated with several psychiatric disorders. Although phenotypic abnormalities have been observed in patients, causal genes responsible for CNV-associated diagnoses and traits are still poorly understood. Furthermore, the targeted human brain regions, developmental stages, protein networks, and signaling pathways, influenced by this CNV remain unclear. Previous works showed GTF2I involved in Williams-Beuren syndrome, but pathways affected by GTF2I are indistinct. We first constructed dynamic spatiotemporal networks of 7q11.23 genes by combining data from the brain developmental transcriptome with physical interactions of 7q11.23 proteins. Topological changes were observed in protein-protein interaction (PPI) networks throughout different stages of brain development. Early and late fetal periods of development in the cortex, striatum, hippocampus, and amygdale were observed as the vital periods and regions for 7q11.23 CNV proteins. CNV proteins and their partners are significantly enriched in DNA repair pathway. As a driver gene, GTF2I interacted with PRKDC and BRCA1 to involve in DNA repair pathway. The physical interaction between GTF2I with PRKDC was confirmed experimentally by the liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified that early and late fetal periods are crucial for 7q11.23 genes to affect brain development. Our results implicate that 7q11.23 CNV genes converge on the DNA repair pathway to contribute to the pathogenesis of psychiatric diseases.
Collapse
|
27
|
Zhang S, Zhang X, Purmann C, Ma S, Shrestha A, Davis KN, Ho M, Huang Y, Pattni R, Hung Wong W, Bernstein JA, Hallmayer J, Urban AE. Network Effects of the 15q13.3 Microdeletion on the Transcriptome and Epigenome in Human-Induced Neurons. Biol Psychiatry 2021; 89:497-509. [PMID: 32919612 PMCID: PMC9359316 DOI: 10.1016/j.biopsych.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 15q13.3 microdeletion is associated with several neuropsychiatric disorders, including autism and schizophrenia. Previous association and functional studies have investigated the potential role of several genes within the deletion in neuronal dysfunction, but the molecular effects of the deletion as a whole remain largely unknown. METHODS Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and 3 control subjects, were generated and converted into induced neurons. We analyzed the effects of the 15q13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene expression changes in induced neurons with CRISPR (clustered regularly interspaced short palindromic repeats) knockouts of individual 15q13.3 microdeletion genes. RESULTS In both induced pluripotent stem cells and induced neurons, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and epigenome, with disruptions in several neuropsychiatric disorder-associated pathways and gene families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins. Individual gene knockouts mirrored many of the observed changes in an overlapping fashion between knockouts. CONCLUSIONS Our multiomics analysis of the 15q13.3 microdeletion revealed downstream effects in pathways previously associated with neuropsychiatric disorders and indications of interactions between genes within the deletion. This molecular systems analysis can be applied to other chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Shining Ma
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Anima Shrestha
- School of Medicine, Stanford University, and Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Wing Hung Wong
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Jonathan A Bernstein
- Department of Human Biology, School of Humanities and Science, Stanford University, Stanford, California
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Alexander E Urban
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California.
| |
Collapse
|
28
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
In Vitro Modulation of Endogenous Antioxidant Enzyme Activities and Oxidative Stress in Autism Lymphoblastoid Cell Line (ALCL) by Stingless Bee Honey Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4539891. [PMID: 33335642 PMCID: PMC7723473 DOI: 10.1155/2020/4539891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
Autism has been associated with a low antioxidant defense mechanism, while honey has been known for decades for its antioxidant and healing properties. Determination of stingless bee honey (KH) effects on antioxidant enzyme activities and oxidative damage in Autism Lymphoblastoid Cell Line (ALCL) was performed. ALCL and its normal sibling pair (NALCL) were cultured in RPMI-1640 medium at 37°C and 5% CO2. ALCL was treated with 400 μg/mL KH (24 h), and oxidative stress marker, malondialdehyde (MDA), and antioxidant enzyme activities (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) were measured via enzyme-linked immunosorbent assay (ELISA), while deoxyribonucleic acid (DNA) damage was determined via comet assay. Low SOD activity (p < 0.05) and high MDA level (p < 0.05) were observed in ALCL compared to NALCL. Higher grade (Grades 2 and 3) of DNA damage was highly observed (p < 0.05) in ALCL compared to NALCL, whereas lower grade (Grades 0 and 1) DNA damage was highly detected (p < 0.05) in NALCL compared to ALCL. KH treatment caused a significant increase in SOD and GPx activities (p < 0.05) in ALCL compared to untreated ALCL. Correspondingly, KH treatment reduced the Grade 2 DNA damage (p < 0.05) in ALCL compared to untreated ALCL. CAT activity showed no significant difference between all three groups, while the MDA level showed no significant difference between treated and untreated ALCL. In conclusion, KH treatment significantly reduced the oxidative stress in ALCL by increasing the SOD and GPx antioxidant enzyme activities, while reducing the DNA damage.
Collapse
|
30
|
Grassi L, Riba M. Cancer and severe mental illness:
Bi‐directional
problems and potential solutions. Psychooncology 2020; 29:1445-1451. [DOI: 10.1002/pon.5534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Luigi Grassi
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences University of Ferrara Ferrara Italy
| | - Michelle Riba
- Department of Psychiatry University of Michigan Ann Arbor Michigan USA
- University of Michigan Depression Center Ann Arbor Michigan USA
- Psycho‐oncology Program University of Michigan Rogel Cancer Center Ann Arbor Michigan USA
| |
Collapse
|
31
|
Clementi E, Inglin L, Beebe E, Gsell C, Garajova Z, Markkanen E. Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biol 2020; 18:36. [PMID: 32228693 PMCID: PMC7106853 DOI: 10.1186/s12915-020-00771-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Base-excision repair (BER) is a central DNA repair mechanism responsible for the maintenance of genome integrity. Accordingly, BER defects have been implicated in cancer, presumably by precipitating cellular transformation through an increase in the occurrence of mutations. Hence, tight adaptation of BER capacity is essential for DNA stability. However, counterintuitive to this, prolonged exposure of cells to pro-inflammatory molecules or DNA-damaging agents causes a BER deficiency by downregulating the central scaffold protein XRCC1. The rationale for this XRCC1 downregulation in response to persistent DNA damage remains enigmatic. Based on our previous findings that XRCC1 downregulation causes wide-ranging anabolic changes, we hypothesised that BER depletion could enhance cellular survival under stress, such as nutrient restriction. RESULTS Here, we demonstrate that persistent single-strand breaks (SSBs) caused by XRCC1 downregulation trigger the integrated stress response (ISR) to promote cellular survival under nutrient-restricted conditions. ISR activation depends on DNA damage signalling via ATM, which triggers PERK-mediated eIF2α phosphorylation, increasing translation of the stress-response factor ATF4. Furthermore, we demonstrate that SSBs, induced either through depletion of the transcription factor Sp1, responsible for XRCC1 levels, or through prolonged oxidative stress, trigger ISR-mediated cell survival under nutrient restriction as well. Finally, the ISR pathway can also be initiated by persistent DNA double-strand breaks. CONCLUSIONS Our results uncover a previously unappreciated connection between persistent DNA damage, caused by a decrease in BER capacity or direct induction of DNA damage, and the ISR pathway that supports cell survival in response to genotoxic stress with implications for tumour biology and beyond.
Collapse
Affiliation(s)
- Elena Clementi
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Larissa Inglin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Corina Gsell
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
32
|
Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol Neurobiol 2020; 57:2244-2262. [PMID: 32002787 DOI: 10.1007/s12035-020-01884-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5.
Collapse
|
33
|
Yin L, Chau CKL, Sham PC, So HC. Integrating Clinical Data and Imputed Transcriptome from GWAS to Uncover Complex Disease Subtypes: Applications in Psychiatry and Cardiology. Am J Hum Genet 2019; 105:1193-1212. [PMID: 31785786 PMCID: PMC6904812 DOI: 10.1016/j.ajhg.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Classifying subjects into clinically and biologically homogeneous subgroups will facilitate the understanding of disease pathophysiology and development of targeted prevention and intervention strategies. Traditionally, disease subtyping is based on clinical characteristics alone, but subtypes identified by such an approach may not conform exactly to the underlying biological mechanisms. Very few studies have integrated genomic profiles (e.g., those from GWASs) with clinical symptoms for disease subtyping. Here we proposed an analytic framework capable of finding complex diseases subgroups by leveraging both GWAS-predicted gene expression levels and clinical data by a multi-view bicluster analysis. This approach connects SNPs to genes via their effects on expression, so the analysis is more biologically relevant and interpretable than a pure SNP-based analysis. Transcriptome of different tissues can also be readily modeled. We also proposed various evaluation metrics for assessing clustering performance. Our framework was able to subtype schizophrenia subjects into diverse subgroups with different prognosis and treatment response. We also applied the framework to the Northern Finland Birth Cohort (NFBC) 1966 dataset and identified high and low cardiometabolic risk subgroups in a gender-stratified analysis. The prediction strength by cross-validation was generally greater than 80%, suggesting good stability of the clustering model. Our results suggest a more data-driven and biologically informed approach to defining metabolic syndrome and subtyping psychiatric disorders. Moreover, we found that the genes "blindly" selected by the algorithm are significantly enriched for known susceptibility genes discovered in GWASs of schizophrenia or cardiovascular diseases. The proposed framework opens up an approach to subject stratification.
Collapse
Affiliation(s)
- Liangying Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carlos K L Chau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, University of Hong Kong, Hong Kong SAR, China; State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
34
|
Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B leads to increased R-loop formation and genome instability. Open Biol 2019; 9:190222. [PMID: 31795919 PMCID: PMC6936252 DOI: 10.1098/rsob.190222] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology.
Collapse
Affiliation(s)
- Tao Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Services, Royal Hobart Hospital, Hobart, Tasmania 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vida Petrovic
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Jackie Challis
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Damien F. Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| |
Collapse
|
35
|
Al-Mazroua HA, Alomar HA, Ahmad SF, Attia MSA, Nadeem A, Bakheet SA, Alsaad AMS, Alotaibi MR, Attia SM. Assessment of DNA repair efficiency in the inbred BTBR T +tf/J autism spectrum disorder mouse model exposed to gamma rays and treated with JNJ7777120. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:189-196. [PMID: 30959085 DOI: 10.1016/j.pnpbp.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/03/2023]
Abstract
Information regarding DNA repair in autism is limited to a few studies, which have reported inconsistent results. Therefore, we designed a study to determine whether DNA repair efficiency is altered in autism and to investigate whether the H4 ligand JNJ7777120 can enhance DNA repair efficiency in BTBR T+tf/J (BTBR) mice; we also attempted to elucidate the mechanism(s) underlying this amelioration. Evaluation of DNA damage using the comet assay on bone marrow cells showed increased levels of DNA damage in BTBR mice compared with age-matched control C57BL/6J mice. Conversely, BTBR animals pretreated with 20 mg/kg JNJ7777120 for five days exhibited significant decreases in DNA damage compared with that of control BTBR mice. Our results also indicated higher sensitivity of BTBR mice exposed to gamma rays to DNA damage generation. A marked difference was observed between BTBR and C57BL/6J mice at different sampling times after irradiation, with BTBR mice showing a higher percentage of DNA damage and slower repair rate than that of C57BL/6J mice. JNJ7777120 led to enhanced repair of the DNA damage induced by radiation when administered to BTBR mice five days prior to radiation. Additionally, oxidative stress in BTBR mice was significantly elevated with a reduced GSH/GSSG ratio; significant amelioration was subsequently observed in JNJ7777120-pretreated BTBR mice. Furthermore, repetitive behaviors were also attenuated in BTBR mice by JNJ7777120 treatment without altering locomotor activity. Our results suggest that JNJ7777120 can be developed for use as a therapeutic agent to enhance DNA repair efficiency in autism spectrum disorder.
Collapse
Affiliation(s)
- H A Al-Mazroua
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - H A Alomar
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - S F Ahmad
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - M S A Attia
- College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - A Nadeem
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - S A Bakheet
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - A M S Alsaad
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - M R Alotaibi
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - S M Attia
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia; College of Pharmacy, Department of Pharmacology and Toxicology, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
36
|
Wu X, Dai H, Xu C, Liu L, Li S. Citric acid modification of a polymer exhibits antioxidant and anti‐inflammatory properties in stem cells and tissues. J Biomed Mater Res A 2019; 107:2414-2424. [DOI: 10.1002/jbm.a.36748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan China
| | - Chao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan China
| | - Langlang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan China
| |
Collapse
|
37
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
38
|
Forés-Martos J, Catalá-López F, Sánchez-Valle J, Ibáñez K, Tejero H, Palma-Gudiel H, Climent J, Pancaldi V, Fañanás L, Arango C, Parellada M, Baudot A, Vogt D, Rubenstein JL, Valencia A, Tabarés-Seisdedos R. Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Mol Autism 2019; 10:17. [PMID: 31007884 PMCID: PMC6454734 DOI: 10.1186/s13229-019-0262-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported. Methods Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between them. Results Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD. Conclusions Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain, kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand, lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of specific biological processes underlie these associations which include several pathways previously implicated in both cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer. Electronic supplementary material The online version of this article (10.1186/s13229-019-0262-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaume Forés-Martos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Ferrán Catalá-López
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain.,4Department of Health Planning and Economics, National School of Public Health/IMIENS, Institute of Health Carlos III, Madrid, Spain
| | | | | | - Héctor Tejero
- 7Structural Biology Program, Spanish National Cancer Research Program (CNIO), Madrid, Spain
| | - Helena Palma-Gudiel
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Joan Climent
- 3INCLIVA Health Research Institute, Valencia, Spain.,9Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Ramon y Cajal s/n 46115 Alfara del Patriarca, Valencia, Spain
| | - Vera Pancaldi
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Lourdes Fañanás
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Celso Arango
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Anaïs Baudot
- 11Aix-Marseille Univ, Inserm, MMG, Marseille Medical Genetics, Marseille, France
| | - Daniel Vogt
- 12Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824 USA
| | - John L Rubenstein
- 13Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158 USA.,14Department of Psychiatry, University of California, San Francisco, CA 94158 USA
| | - Alfonso Valencia
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain.,15Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael Tabarés-Seisdedos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain
| |
Collapse
|
39
|
Cawthorpe D. A 16-Year Cohort Analysis of Autism Spectrum Disorder-Associated Morbidity in a Pediatric Population. Front Psychiatry 2018; 9:635. [PMID: 30555361 PMCID: PMC6281889 DOI: 10.3389/fpsyt.2018.00635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Introduction: This chapter presents the analysis of physician-diagnosed International Classification of Diseases (ICD version 9) disorders and diseases associated with autism spectrum disorders (ASD) in a 16-year pediatric cohort. Materials and Methods: The sample (n = 47,180; 62% male) consisted of children in the Alberta Health Services Calgary Health Region catchment under the age of 3 years, who received any physician-assigned ICD 9 diagnosis before the age of three between April 1993 and December 31, 1994. There were 111 females and 609 males with ASD diagnosed at any time between 1993 and 2010. The results detail the 16-year odds ratio (OR) associations of ASD diagnosis within the major classes of international classification of diseases (ICD 9) stratified by age and sex in the cohort. Further, for those suffering from ASD and any other disorder or disease, the analysis presents by sex, age, and duration, the proportions of all index physician-assigned ICD diagnoses, arising significantly before and after the index ASD diagnosis. Results: The rate of treated ASD in the cohort was 1 in 65 and the 16-year population rate of ASD was 62 per 10,000. For males with an ASD over the 16 year period, the ORs were significantly greater than the value one for 15 of the 17 main ICD classes and for 10 of the main ICD classes for females. Different age strata presented a more specific account of the main ICD class OR profiles. More specifically, 28 ICD disorders significantly preceded and 95 ICD disorders significantly followed ASD for females. Thirty-eight ICD disorders significantly preceded and 234 ICD disorders significantly followed ASD for males. Conclusions: The results largely confirm past studies focusing on more constrained sets of ASD morbidity. The age-stratified ORs gauge the order of risk in time for the cohort. The proportions of specific ICD disorders arising before and after ASD may be useful in respect to informing basic ASD research and ASD clinical management. Limitations are discussed.
Collapse
Affiliation(s)
- David Cawthorpe
- Cumming School of Medicine, Departments of Psychiatry and Community Health Sciences, Institute for Child and Maternal Health, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
41
|
Pehlivan S, Yazici AB, Aydin N, Nursal AF, Kurnaz S, Ongel Atar A, Sever U, Kincir Z, Pehlivan M, Cetinay Aydin P. Possible association between DNA repair gene variants and cannabis dependence in a Turkish cohort: a pilot study. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1468615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University Education and Research Hospital, Sakarya, Turkey
| | - Nazan Aydin
- Department of Psychiatry, Bakırkoy Prof Dr. Mazhar Osman Mental Health and Neurological Disorders Education and Research Hospital, Istanbul, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Selin Kurnaz
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ayca Ongel Atar
- Department of Psychiatry, Bakırkoy Prof Dr. Mazhar Osman Mental Health and Neurological Disorders Education and Research Hospital, Istanbul, Turkey
| | - Ulgen Sever
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Zeliha Kincir
- Department of Psychiatry, Bakırkoy Prof Dr. Mazhar Osman Mental Health and Neurological Disorders Education and Research Hospital, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Haematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Pınar Cetinay Aydin
- Department of Psychiatry, Bakırkoy Prof Dr. Mazhar Osman Mental Health and Neurological Disorders Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
42
|
Amlie-Wolf A, Tang M, Mlynarski EE, Kuksa PP, Valladares O, Katanic Z, Tsuang D, Brown CD, Schellenberg GD, Wang LS. INFERNO: inferring the molecular mechanisms of noncoding genetic variants. Nucleic Acids Res 2018; 46:8740-8753. [PMID: 30113658 PMCID: PMC6158604 DOI: 10.1093/nar/gky686] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
The majority of variants identified by genome-wide association studies (GWAS) reside in the noncoding genome, affecting regulatory elements including transcriptional enhancers. However, characterizing their effects requires the integration of GWAS results with context-specific regulatory activity and linkage disequilibrium annotations to identify causal variants underlying noncoding association signals and the regulatory elements, tissue contexts, and target genes they affect. We propose INFERNO, a novel method which integrates hundreds of functional genomics datasets spanning enhancer activity, transcription factor binding sites, and expression quantitative trait loci with GWAS summary statistics. INFERNO includes novel statistical methods to quantify empirical enrichments of tissue-specific enhancer overlap and to identify co-regulatory networks of dysregulated long noncoding RNAs (lncRNAs). We applied INFERNO to two large GWAS studies. For schizophrenia (36,989 cases, 113,075 controls), INFERNO identified putatively causal variants affecting brain enhancers for known schizophrenia-related genes. For inflammatory bowel disease (IBD) (12,882 cases, 21,770 controls), INFERNO found enrichments of immune and digestive enhancers and lncRNAs involved in regulation of the adaptive immune response. In summary, INFERNO comprehensively infers the molecular mechanisms of causal noncoding variants, providing a sensitive hypothesis generation method for post-GWAS analysis. The software is available as an open source pipeline and a web server.
Collapse
Affiliation(s)
- Alexandre Amlie-Wolf
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell Tang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisabeth E Mlynarski
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zivadin Katanic
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debby Tsuang
- VA Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Christopher D Brown
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerard D Schellenberg
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li-San Wang
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders. Int J Mol Sci 2018; 19:ijms19051456. [PMID: 29757967 PMCID: PMC5983601 DOI: 10.3390/ijms19051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Collapse
|
44
|
Chien T, Weng YT, Chang SY, Lai HL, Chiu FL, Kuo HC, Chuang DM, Chern Y. GSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry 2018; 23:2375-2390. [PMID: 29298990 PMCID: PMC6294740 DOI: 10.1038/s41380-017-0007-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3β) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3β complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3β, thus dissociating the TRAX/DISC1/GSK3β complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3β by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3β binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3β by A2AR activation or a GSK3β inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3β complex) for future therapeutic development for mental disorders.
Collapse
Affiliation(s)
- Ting Chien
- 0000 0004 0634 0356grid.260565.2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ,0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Weng
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 2287 1366grid.28665.3fProgram in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Yung Chang
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - De-Maw Chuang
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
45
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review aims to provide a brief description of the complex etiology of autism spectrum disorders (ASD), with special emphasis on the recent findings of impaired redox control in ASD, and to suggest a possible model of oxidative stress-specific gene-environment interaction in this group of disorders. RECENT FINDINGS Recent findings point out to the significance of environmental, prenatal, and perinatal factors in ASD but, at the same time, are in favor of the potentially significant oxidative stress-specific gene-environment interaction in ASD. Available evidence suggests an association between both the identified environmental factors and genetic susceptibility related to the increased risk of ASD and the oxidative stress pathway. There might be a potentially significant specific gene-environment interaction in ASD, which is associated with oxidative stress. Revealing novel susceptibility genes (including those encoding for antioxidant enzymes), or environmental factors that might increase susceptibility to ASD in carriers of a specific genotype, might enable the stratification of individuals more prone to developing ASD and, eventually, the possibility of applying preventive therapeutic actions.
Collapse
|
47
|
Ignatov A, Bondarenko K, Makarova A. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Acta Naturae 2017; 9:12-26. [PMID: 29104772 PMCID: PMC5662270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a major cause of replication interruption, mutations, and cell death. DNA damage is removed by several types of repair processes. The involvement of specialized DNA polymerases in replication provides an important mechanism that helps tolerate persistent DNA damage. Specialized DNA polymerases incorporate nucleotides opposite lesions with high efficiency but demonstrate low accuracy of DNA synthesis. In this review, we summarize the types and mechanisms of formation and repair of non-bulky DNA lesions, and we provide an overview of the role of specialized DNA polymerases in translesion DNA synthesis.
Collapse
Affiliation(s)
- A.V. Ignatov
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
- Department of Molecular Biology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - K.A. Bondarenko
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| | - A.V. Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| |
Collapse
|
48
|
Sáez GT. DNA Damage and Repair in Degenerative Diseases 2016. Int J Mol Sci 2017; 18:E166. [PMID: 28275213 PMCID: PMC5297799 DOI: 10.3390/ijms18010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Guillermo T Sáez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, Instituto de Investigación Sanitaria, Hospital Clínico de Valencia (INCLIVA), Service of Clinical Analysis, University Hospital Dr. Peset. University of Valencia, Avda, Blasco Ibañez 15, 46010 Valencia, Spain.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This article evaluates the field of radiogenomics within recent developments in genomics and radiation biology. RECENT FINDINGS Many pediatric cancer survivors have undergone treatment with radiation, putting them at risk for long-term side-effects associated with this therapy, especially cardiac disease and secondary malignancies. Advancements in our understanding of radiation biology have led to the understanding that genetics plays a major role in determining a patient's susceptibility to developing long-term side-effects, leading to the field of 'radiogenomics'. Although initial candidate gene studies did not demonstrate replicable genetic variants that affected radiosensitivity, genome-wide association studies have recently begun to identify genes that may help explain some of the observed variation in radiosensitivity. As genomic sciences continues to progress and whole genome studies become more accessible, our understanding of the genes responsible for radiosensitivity will continue to progress. SUMMARY The field of radiogenomics continues to evolve with the availability and improved cost of genomic technologies allowing the study of an increasing fraction of the human genome. Studies into genetic factors influencing individual radiosensitivity will increase our understanding of radiobiology and improve our ability to counsel patients on the adverse effects they will likely experience.
Collapse
|
50
|
Abdel-Salam OM, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA. Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication. ASIAN PAC J TROP MED 2016; 9:1181-1194. [DOI: 10.1016/j.apjtm.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/19/2016] [Accepted: 09/18/2016] [Indexed: 11/16/2022] Open
|