1
|
Yang Y, Tan S, Wang Q, Wang F, Zhang Y. Key amino acids in odorant-binding protein OBP7 enable Bradysia odoriphaga to recognize host plant volatiles. Int J Biol Macromol 2025; 284:138179. [PMID: 39615723 DOI: 10.1016/j.ijbiomac.2024.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a devastating underground pest that can cause serious economic losses. Odorant binding proteins (OBPs) are crucial components of the insect olfactory system, playing key roles in locating host plants, oviposition sites, and mates. Therefore, they are considered potential targets for pest control. Here, we obtained one OBP gene (BodoOBP7) from the antennal transcriptome of B. odoriphaga, and observed that the expression level of BodoOBP7 was primarily in the antennae of both sexes, with significantly higher expression level in females than in males. Fluorescence competitive binding assays indicated that BodoOBP7 exhibited strong binding affinities for the six host plant volatiles, including propyl disulfide, dipropyl trisulfide, dimethyl trisulfide, 2-tridecanone, 2-undecanone and alpha-ionone. Subsequently, homology modeling, molecular docking and site-directed mutagenesis revealed that four key amino acid residues (Phe79, Phe99, Ile96, Leu100) participate in the binding of BodoOBP7 with six host plant volatiles. Our results demonstrate that BodoOBP7 is involved in olfactory recognition in B. odoriphaga. These findings may enhance our understanding of the interaction mechanisms between host plants and B. odoriphaga, potentially offering new perspectives for the development of effective green control strategies.
Collapse
Affiliation(s)
- Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China.
| | - Shunyang Tan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Qinli Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Fu Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei 434000, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
2
|
Sassù F, Vomáčková Kykalová B, Vieira CS, Volf P, Loza Telleria E. Stability and suitability of housekeeping genes in phlebotomine sand flies. Sci Rep 2024; 14:23353. [PMID: 39375431 PMCID: PMC11458623 DOI: 10.1038/s41598-024-74776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection. Six genes were evaluated: actin, α-tubulin, GAPDH, 60 S ribosomal proteins L8 and L32 (RiboL8 and RiboL32), and elongation factor 1-α (EF1-α). EF1-α was among the most stably expressed along with RiboL8 in L. longipalpis larvae and RiboL32 in adults. In P. papatasi, EF1-α and RiboL32 were the top in larvae, while EF1-α and actin were the most stable in adults. RiboL8 and actin were the most stable genes in dissected tissues and infected guts. Additionally, five primer pairs designed for L. longipalpis or P. papatasi were effective in PCR with Lutzomyia migonei, Phlebotomus duboscqi, Phlebotomus perniciosus, and Sergentomyia schwetzi cDNA. Furthermore, L. longipalpis RiboL32 and P. papatasi α-tubulin primers were suitable for qPCR with cDNA from the other four species. Our research provides tools to enhance relative gene expression studies in sand flies, facilitating the selection of endogenous control for qPCR.
Collapse
Affiliation(s)
- Fabiana Sassù
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Barbora Vomáčková Kykalová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic.
| |
Collapse
|
3
|
Gong Z, Zhang J, Chen Q, Li H, Zhang Z, Duan Y, Jiang Y, Li T, Miao J, Wu Y. Comprehensive Screening and Validation of Stable Internal Reference Genes for Accurate qRT-PCR Analysis in Holotrichia parallela under Diverse Biological Conditions and Environmental Stresses. INSECTS 2024; 15:661. [PMID: 39336629 PMCID: PMC11432719 DOI: 10.3390/insects15090661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Holotrichia parallela is among the world's most destructive pests. For accurate qPCR and gene expression studies, the selection of stable and appropriate reference genes is crucial. However, a thorough evaluation of potential reference genes for use in H. parallela research is lacking. In this study, 11 reference genes (GAPDH, RPL32, RPL7A, RPS18, RPL13a, RPL18, Actin, RPS7, RPS3, VATB,and EF1A) were evaluated under different biological conditions and environmental stresses. The stability of 11 potential reference gene transcripts was evaluated through various computational tools, including geNorm, BestKeeper, NormFinder, theΔCt method, and the RefFinder program. Under various developmental stages and RNAi conditions, RPL18 and RPL13a exhibited the greatest stability. RPL13a, RPL18, and RPL32 were the most stable genes in both male and female adults. Under differing tissue conditions, RPL13a and RPS3 stood out as the most reliable. Moreover, under varying photoperiod conditions, RPL13a, RPS3 and RPL32 were the most stable genes. Lastly, Actin and RPL13a were the most stable genes across different temperatures. These findings offer essential criteria for selecting suitable reference genes across diverse experimental settings, thereby establishing a solid basis for accurate gene expression studies in H. parallela using RT-qPCR.
Collapse
Affiliation(s)
- Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Jing Zhang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe 462300, China
| | - Huiling Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Ziqi Zhang
- Institute of Plant Protection, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471027, China
| | - Yun Duan
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Yueli Jiang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Tong Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Jin Miao
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.G.)
| |
Collapse
|
4
|
Dalai M, Jagota A. Identification of specific reference gene for normalization of RT-qPCR data in rhythmic gene expression studies of the effect of developmental hormone antagonist in postembryonic development in Bombyx mori. FRONTIERS IN INSECT SCIENCE 2024; 4:1362473. [PMID: 39006940 PMCID: PMC11239437 DOI: 10.3389/finsc.2024.1362473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Bombyx mori is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in B. mori and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, Translational initiation factor 3 subunit 4 (TI3S4), Translational initiation factor 3 subunit 5 (TI3S5), Ribosomal protein subunit 7 (RPs7), TATA-binding protein association factor (TAF13), Translational initiation factor 4 A (TI4A), Ribosomal protein (RPL32), Elongation factor 1 (EF1), and Arginine kinase (AK), were assessed in the CNS of B. mori. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of B. mori (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.
Collapse
Affiliation(s)
- Minurani Dalai
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Xie L, Wu X, Li X, Chen M, Zhang N, Zong S, Yan Y. Impacts of climate change and host plant availability on the potential distribution of Bradysia odoriphaga (Diptera: Sciaridae) in China. PEST MANAGEMENT SCIENCE 2024; 80:2724-2737. [PMID: 38372475 DOI: 10.1002/ps.7977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Chinese chives (Allium tuberosum Rottler ex Sprengel) are favored by consumers because of its delicious taste and unique fragrance. Bradysia odoriphaga (Diptera: Sciaridae) is a main pest that severely harms Chinese chives and other Liliaceae's production. Climate change may change the future distribution of B. odoriphaga in China. In this study, the CLIMEX was employed to project the potential distribution of B. odoriphaga in China, based on China's historical climate data (1987-2016) and forecast climate data (2021-2100). RESULTS Bradysia odoriphaga distributed mainly between 19.8° N-48.3° N and 74.8° E-134.3° E, accounting for 73.25% of the total mainland area of China under historical climate conditions. Among them, the favorable and highly favorable habitats accounted for 30.64% of the total potential distribution. Under future climate conditions, B. odoriphaga will be distributed mainly between 19.8° N-49.3° N and 73.8° E-134.3° E, accounting for 84.89% of China's total mainland area. Among them, the favorable and highly favorable habitats will account for 35.23% of the total potential distribution, indicating an increase in the degree of fitness. Areas with relatively appropriate temperature and humidity will be more suitable for the survival of B. odoriphaga. Temperature was a more important determinant of the climatic suitability of the pest B. odoriphaga than humidity. Host plants (Liliaceae) availability also had impact on climate suitability in some regions. CONCLUSIONS These projected potential distributions will provide supportive information for monitoring and early forecasting of pest outbreaks, and to reduce future economic and ecological losses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Xie
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xinran Wu
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xue Li
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Menglei Chen
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Na Zhang
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Yi Yan
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
6
|
Wei H, Zhang J, Yang M, Li Y, Guo K, Qiao H, Xu R, Liu S, Xu C. Selection and Validation of Reference Genes for Gene Expression in Bactericera gobica Loginova under Different Insecticide Stresses. Int J Mol Sci 2024; 25:2434. [PMID: 38397109 PMCID: PMC10889791 DOI: 10.3390/ijms25042434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Insecticide resistance has long been a problem in crop pest control. Bactericera gobica is a major pest on the well-known medicinal plants Lycium barbarum L. Investigating insecticide resistance mechanisms of B. gobica will help to identify pesticide reduction strategies to control the pest. Gene expression normalization by RT-qPCR requires the selection and validation of appropriate reference genes (RGs). Here, 15 candidate RGs were selected from transcriptome data of B. gobica. Their expression stability was evaluated with five algorithms (Delta Ct, GeNorm, Normfinder, BestKeeper and RefFinder) for sample types differing in response to five insecticide stresses and in four other experimental conditions. Our results indicated that the RGs RPL10 + RPS15 for Imidacloprid and Abamectin; RPL10 + AK for Thiamethoxam; RPL32 + RPL10 for λ-cyhalothrin; RPL10 + RPL8 for Matrine; and EF2 + RPL32 under different insecticide stresses were the most suitable RGs for RT-qPCR normalization. EF1α + RPL8, EF1α + β-actin, β-actin + EF2 and β-actin + RPS15 were the optimal combination of RGs under odor stimulation, temperature, developmental stages and both sexes, respectively. Overall, EF2 and RPL8 were the two most stable RGs in all conditions, while α-TUB and RPL32 were the least stable RGs. The corresponding suitable RGs and one unstable RG were used to normalize a target cytochrome P450 CYP6a1 gene between adult and nymph stages and under imidacloprid stress. The results of CYP6a1 expression were consistent with transcriptome data. This study is the first research on the most stable RG selection in B. gobica nymphs exposed to different insecticides, which will contribute to further research on insecticide resistance mechanisms in B. gobica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (H.W.); (J.Z.); (M.Y.); (Y.L.); (K.G.); (H.Q.); (R.X.)
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (H.W.); (J.Z.); (M.Y.); (Y.L.); (K.G.); (H.Q.); (R.X.)
| |
Collapse
|
7
|
Wang L, Liu Q, Guo P, Gao Z, Chen D, Zhang T, Ning J. Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis in the Bean Bug, Riptortus pedestris (Hemiptera: Alydidae). INSECTS 2023; 14:960. [PMID: 38132633 PMCID: PMC10743553 DOI: 10.3390/insects14120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely accepted as a precise and convenient method for quantitatively analyzing the expression of functional genes. The data normalization strongly depends upon stable reference genes. The bean bug, Riptortus pedestris (Hemiptera: Alydidae), is a significant pest of leguminous crops and broadly distributed across Southeast Asia. In this study, a total of 16 candidate reference genes (RPL32, RPS23, SDHA, UBQ, UCCR, GST, TATA-box, HSP70, GAPDH, RPL7A, SOD, RPS3, Actin, α-tubulin, AK, and EF1) were carefully chosen in R. pedestris, and their expression levels were assessed across various conditions, including different developmental stages, diverse tissues, temperature treatments, adult age, molting time, and mating status. Following this, the stability of these reference genes was evaluated using four algorithms (ΔCt, GeNorm, NormFinder, and BestKeeper). Ultimately, the comprehensive rankings were determined using the online tool RefFinder. Our results demonstrate that the reference gene for qRT-PCR analysis in R. pedestris is contingent upon the specific experimental conditions. RPL7A and EF1 are optimal reference genes for developmental stages. Furthermore, α-tubulin and EF1 exhibit the most stable expression across various adult tissues. RPL32 and RPL7A exhibit the most stable expression for adult age. For nymph age, RPL32 and SOD display the most stable expression. For temperature conditions, RPS23 and RPL7A were identified as the most suitable for monitoring gene expression. Lastly, we verified the practicability of evaluating expression levels of odorant-binding protein 37 (RpedOBP37) and cytochrome P450 6a2 (RpedCYP6) throughout developmental stages, tissues, and temperature conditions. These findings are a significant addition to the qRT-PCR analysis studies on R. pedestris, serving as a fundamental groundwork for future investigations on stable reference genes in R. pedestris as well as other organisms.
Collapse
Affiliation(s)
- Liuyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| | - Qingyu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| | - Pei Guo
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Zhanlin Gao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Dan Chen
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| |
Collapse
|
8
|
Jiang C, Zhou L, Zhao Q, Wang M, Shen S, Zhao T, Cui K, He L. Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. Int J Mol Sci 2023; 24:15198. [PMID: 37894879 PMCID: PMC10607518 DOI: 10.3390/ijms242015198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Reference genes are important for the accuracy of gene expression profiles using reverse-transcription quantitative PCR (RT-qPCR). However, there are no available reference genes reported for Sclerotium rolfsii; it actually has a pretty diverse and wide host range. In this study, seven candidate reference genes (UBC, β-TUB, 28S, 18S, PGK, EF1α and GAPDH) were validated for their expression stability in S. rolfsii under conditions of different developmental stages, populations, fungicide treatments, photoperiods and pHs. Four algorithm programs (geNorm, Normfinder, Bestkeeper and ΔCt) were used to evaluate the gene expression stability, and RefFinder was used to integrate the ranking results of four programs. Two reference genes were recommended by RefFinder for RT-qPCR normalization in S. rolfsii. The suitable reference genes were GAPDH and UBC across developmental stages, PGK and UBC across populations, GAPDH and PGK across fungicide treatments, EF1α and PGK across photoperiods, β-TUB and EF1α across pHs and PGK and GAPDH across all samples. Four target genes (atrB, PacC, WC1 and CAT) were selected for the validation of the suitability of selected reference genes. However, using one or two reference genes in combination to normalize the expression of target genes showed no significant difference in S. rolfsii. In short, this study provided reliable reference genes for studying the expression and function of genes in S. rolfsii.
Collapse
Affiliation(s)
- Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sirui Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
9
|
Kaur R, Ahlawat S, Choudhary V, Kumari A, Kumar A, Kaur M, Arora R, Sharma R, Vijh RK. Validation of stable reference genes in peripheral blood mononuclear cells for expression studies involving vector-borne haemoparasitic diseases in bovines. Ticks Tick Borne Dis 2023; 14:102168. [PMID: 36940645 DOI: 10.1016/j.ttbdis.2023.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Normalization of gene expression data using appropriate reference genes is critical to diminish any technical bias in an experiment involving quantitative real-time PCR (qPCR). To the best of our knowledge, this is the first report offering a systematic assessment of 14 potential reference genes (RPLP0, ACTB, RPS28, YWHAZ, SDHA, PPIA, RPS9, RPS15, UXT, GAPDH, B2M, BACH1, HMBS, and PPIB) for the identification of the most stable normalizers for qPCR of target genes in peripheral blood mononuclear cells (PBMCs) of bovines for vector-borne haemoparasitic diseases such as anaplasmosis, babesiosis, theileriosis, and trypanosomiasis. A total of 38 blood samples were collected from healthy as well as diseased cattle and buffaloes representing different haemoparasitic diseases. RNA isolated from the PBMCs was subjected to qPCR for the 14 prospective internal control genes. The comprehensive ranking of the genes was accomplished by the RefFinder tool that integrates the results of three algorithms (geNorm, NormFinder, and BestKeeper) and the comparative CT method. RPS15, B2M, and GAPDH were ranked to be the most stable genes, whereas, PPIA and HMBS emerged to be the least suitable genes. Validation of the selected reference genes by the qPCR analysis of two immunity genes, ISG15 and GPX7 was congruent with the observations of this study. We recommend that a panel of three reference genes including RPS15, B2M, and GAPDH could prove useful in delineating the transcriptional landscape of PBMCs for vector-borne haemoparasitic diseases in bovines.
Collapse
Affiliation(s)
- Rashmeet Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India; ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Vikas Choudhary
- Department of Animal Husbandry and Dairying, District Disease Diagnostic Laboratory, Karnal, Haryana, India
| | - Anisha Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
10
|
Wei H, Qiao H, Liu S, Yuan X, Xu C. Transcriptome-Based Selection and Validation of Reference Genes for Gene Expression in Goji Fruit Fly ( Neoceratitis asiatica Becker) under Developmental Stages and Five Abiotic Stresses. Int J Mol Sci 2022; 24:ijms24010451. [PMID: 36613890 PMCID: PMC9820723 DOI: 10.3390/ijms24010451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting molecular mechanisms of infestation and host selection of N. asiatica will contribute to the determination of best management practices for pest fly control. Gene expression normalization by Real-time quantitative PCR (qPCR) requires the selection and validation of appropriate reference genes (RGs). Hence, 15 candidate RGs were selected from transcriptome data of N. asiatica. Their expression stability was evaluated with five algorithms (∆Ct, Normfinder, GeNorm, BestKeeper, and RefFinder) for sample types differing in the developmental stage, sex, tissue type, and in response to five different abiotic stresses. Our results indicated that the RGs β-Actin + GST for sex, RPL32 + EF1α for tissue type, RPS13+ EF1α for developmental stages along with odor stimulation, color induction, and starvation-refeeding stresses, EF1α + GAPDH under insecticide stress, RPS13 + RPS18 under temperature stress, respectively, were selected as the most suitable RGs for qPCR normalization. Overall, RPS18 and EF1α were the two most stable RGs in all conditions, while RPS15 and EF1β were the least stable RGs. The corresponding suitable RGs and one unstable RG were used to normalize a target odorant-binding protein OBP56a gene in male and female antennae, different tissues, and under odor stimulation. The results of OBP56a expression were consistent with transcriptome data. Our study is the first research on the most stable RGs selection in N. asiatica, which will facilitate further studies on the mechanisms of host selection and insecticide resistance in N. asiatica.
Collapse
|
11
|
Xie L, Song Y, Petersen K, Solhaug KA, Lind OC, Brede DA, Salbu B, Tollefsen KE. Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157457. [PMID: 35868377 DOI: 10.1016/j.scitotenv.2022.157457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Karina Petersen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| |
Collapse
|
12
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
13
|
Hasanpur K, Hosseinzadeh S, Mirzaaghayi A, Alijani S. Investigation of chicken housekeeping genes using next-generation sequencing data. Front Genet 2022; 13:827538. [PMID: 36176302 PMCID: PMC9514876 DOI: 10.3389/fgene.2022.827538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate normalization of the gene expression assays, using housekeeping genes (HKGs), is critically necessary. To do so, selection of a proper set of HKGs for a specific experiment is of great importance. Despite many studies, there is no consensus about the suitable set of HKGs for implementing in the quantitative real-time PCR analyses of chicken tissues. A limited number of HKGs have been widely used. However, wide utilization of a little number of HKGs for all tissues is challenging. The emergence of high-throughput gene expression RNA-seq data has enabled the simultaneous comparison of the stability of multiple HKGs. Therefore, employing the average coefficient of variations of at least three datasets per tissue, we sorted all reliably expressed genes (REGs; with FPKM ≥ 1 in at least one sample) and introduced the top 10 most suitable and stable reference genes for each of the 16 chicken tissues. We evaluated the consistency of the results of five tissues using the same methodology on other datasets. Furthermore, we assessed 96 previously widely used HKGs (WU-HKGs) in order to challenge the accuracy of the previous studies. The New Tuxedo software suite was used for the main analyses. The results revealed novel, different sets of reference genes for each of the tissues with 17 common genes among the top 10 genes lists of 16 tissues. The results did disprove the suitability of WU-HKGs such as Actb, Ldha, Scd, B2m, and Hprt1 for any of the tissues examined. On the contrary, a total of 6, 13, 14, 23, and 32 validated housekeeping genes (V-HKGs) were discovered as the most stable and suitable reference genes for muscle, spleen, liver, heart, and kidney tissues, respectively. Although we identified a few new HKGs usable for multiple tissues, the selection of suitable HKGs is required to be tissue specific. The newly introduced reference genes from the present study, despite lacking experimental validation, will be able to contribute to the more accurate normalization for future expression analysis of chicken genes.
Collapse
|
14
|
Zhang Y, Zhang Z, Ren M, Liu X, Zhou X, Yang J. Selection of Reference Genes for RT-qPCR Analysis in the Hawthorn Spider Mite, Amphitetranychus viennensis (Acarina: Tetranychidae), Under Acaricide Treatments. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:662-670. [PMID: 35297479 DOI: 10.1093/jee/toac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 05/26/2023]
Abstract
Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ∆Ct methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhonghuan Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY,USA
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
15
|
Li X, Li X, Yan W, Coates B, Zhou X, Wang C, Haifeng G, Zhang Y, Zhu X. Selection of Reference Genes for RT-qPCR Analysis of Wing Dimorphism in English Grain Aphid, Sitobion avenae (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:313-324. [PMID: 34850027 DOI: 10.1093/jee/toab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The English grain aphid, Sitobion avenae (Fabricius), exhibits classic and dramatic phenotypic plasticity in wing development. Both genetic and environmental inputs contribute to the wing polyphenism in aphids, an extreme form of phenotypic plasticity in which a single genotype produces discrete winged and wingless morphs. Validated reference genes are needed to accurately normalize temporal and spatial variation in gene expression estimates by RT-qPCR. In this research, the stability of 11 candidate reference genes selected from S. avenae transcriptomes was evaluated under an array of abiotic and biotic conditions relevant to wing development. RefFinder, a comprehensive software integrating rankings from delta Ct, BestKeeper, NormFinder, and geNorm, offered a series of reference genes for every experimental condition. Overall, helicase (HEL) and ubiquitin ribosomal protein S27A fusion protein (RpS27) are suited for most of the conditions examined in this study, although exceptions do exist. Specifically, NADH dehydrogenase (Ap-NADH) and 28S ribosomal RNA (28S) are recommended for insecticide and antibiotic treatments, while ribosomal RNA L14 (RPL14) and 18S ribosomal RNA (18S) are selected for density treatment, respectively. This study provides a suite of reference genes to investigate the wing polyphenism in S. avenae, and is important for application of RT-qPCR in future experiments of novel tactics to control aphids.
Collapse
Affiliation(s)
- Xiangrui Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Weiwei Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Chao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gao Haifeng
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, Xinjiang, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Ding Q, Xu X, Sang Z, Wang R, Ullah F, Gao X, Song D. Characterization of the insecticide detoxification carboxylesterase Boest1 from Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae). PEST MANAGEMENT SCIENCE 2022; 78:591-602. [PMID: 34596943 DOI: 10.1002/ps.6667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In insects, carboxylesterases (CarEs) are enzymes involved in the detoxification of insecticides. However, the molecular mechanism of CarE-mediated insecticide metabolism in Bradysia odoriphaga, a serious agricultural pest, remains unclear. The aim of this study is to investigate the detoxification process of malathion, bifenthrin, and imidacloprid by B. odoriphaga carboxylesterase (Boest1). RESULTS An alpha class CarE gene Boest1 was cloned from B. odoriphaga. The results of real-time quantitative polymerase chain reaction showed that Boest1 is up-regulated with age during the larval stage, and the level of transcription of Boest1 is higher in the midgut and Malpighian tubule than in other tissues. The expression level of Boest1 was significantly increased after exposure to malathion and bifenthrin. Recombinant BoEST1 expressed in vitro showed high catalytic activity toward α-naphthyl acetate, which was substantially inhibited by malathion and triphenyl phosphate. The in vitro metabolism assays showed that BoEST1 demonstrates hydrolytic capacity toward malathion and bifenthrin but not imidacloprid. The binding free energy analysis indicates that BoEST1 has a higher affinity for malathion and bifenthrin than imidacloprid. CONCLUSION These results suggest that BoEST1 plays a role in the breakdown of insecticides and may be involved in the development of resistance in the Chinese chive pest B. odoriphaga; our findings also provide data for better pest management and perspectives for new pesticides development. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Ding
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiao Xu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zitong Sang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ruijie Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Farman Ullah
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Fu H, Huang T, Yin C, Xu Z, Li C, Liu C, Wu T, Song F, Feng F, Yang F. Selection and Validation of Reference Genes for RT-qPCR Normalization in Bradysia odoriphaga (Diptera: Sciaridae) Under Insecticides Stress. Front Physiol 2022; 12:818210. [PMID: 35087425 PMCID: PMC8786907 DOI: 10.3389/fphys.2021.818210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.
Collapse
Affiliation(s)
- Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Tubiao Huang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Cheng Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhenhua Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chao Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunguang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
18
|
Zhao X, Geng Y, Hu T, Zhao Y, Yang S, Hao D. Evaluation of Optimal Reference Genes for qRT-PCR Analysis in Hyphantria cunea (Drury). INSECTS 2022; 13:97. [PMID: 35055939 PMCID: PMC8778541 DOI: 10.3390/insects13010097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The relative quantification of gene expression is mainly achieved through reverse transcription-quantitative PCR (qRT-PCR); however, its reliability and precision rely on proper data normalization using one or more optimal reference genes. Hyphantria cunea (Drury) has been an invasive pest of forest trees, ornamental plants, and fruit trees in China for many years. Currently, the molecular physiological role of reference genes in H. cunea is unclear, which hinders functional gene study. Therefore, eight common reference genes, RPS26, RPL13, UBI, AK, RPS15, EIF4A, β-actin, α-tub, were selected to evaluate levels of gene expression stability when subjected to varied experimental conditions, including developmental stage and gender, different tissues, larvae reared on different hosts and different larval density. The geNorm, BestKeeper, ΔCt method, and NormFinder statistical algorithms were used to normalize gene transcription data. Furthermore, the stability/suitability of these candidates was ranked overall by RefFinder. This study provides a comprehensive evaluation of reference genes in H. cunea and could help select reference genes for other Lepidoptera species.
Collapse
Affiliation(s)
- Xudong Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yishu Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tianyi Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongang Zhao
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Suling Yang
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Rashid M, Shah SG, Natu A, Verma T, Rauniyar S, Gera PB, Gupta S. RPS13, a potential universal reference gene for normalisation of gene expression in multiple human normal and cancer tissue samples. Mol Biol Rep 2021; 48:7967-7974. [PMID: 34657252 DOI: 10.1007/s11033-021-06828-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Reference genes are considered stable genes and are used for normalizing the gene expression profile across different cell types; as well as, in normal and diseased samples. However, these gene associates with different biological processes, and hence expression vary in different pathological conditions. Therefore, in the present study, eight different reference genes were used and compared to identify common reference gene usable for an array of different cell types and human cancers. METHODS AND RESULTS The expression stability of the eight reference genes across eleven normal and cancerous tissues was confirmed through real time-qPCR. Ribosomal protein S13 (RPS13) was found to be a common and stable reference gene across intra- and inter-comparison between various normal and tumor tissue types. Further, TCGA data analysis across and between normal and tumor tissue types also showed minimum deviation in expression of RPS13 gene out of eight routinely used reference genes. CONCLUSION RPS13 is the common stable reference gene in normalization for gene expression based analysis in cancer research.
Collapse
Affiliation(s)
- Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
20
|
Han H, Sun D, Cheng J, Yang Y, Xia J, Xie W, Xu B, Wu Q, Wang S, Guo Z, Zhang Y. The Thermoperiod Alters Boper Gene Expression and Thereby Regulates the Eclosion Rhythm of Bradysia odoriphaga (Diptera: Sciaridae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:1241-1247. [PMID: 34387308 DOI: 10.1093/ee/nvab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
In most organisms, various physiological and behavioral functions are expressed rhythmically. Previous studies have shown that thermoperiod is an important factor affecting circadian clock-related genes that regulate insect locomotor activity. Bradysia odoriphaga Yang & Zhang is an underground pest that attacks more than 30 crops but is especially damaging to Chinese chives. In this study, we analyzed the adult eclosion time and period (Boper) gene expression in B. odoriphaga as affected by temperature (cycling vs constant temperature), insect stage, and tissue specific. We found that the eclosion time and expression of the Boper gene changed during the temperature cycle but not under a constant temperature. Silencing of Boper expression significantly decreased the adult eclosion rate and significantly increased adult mortality and malformation. The findings indicate that thermoperiod alters Boper expression and regulates the eclosion rhythm.
Collapse
Affiliation(s)
- Haolin Han
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxu Cheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Zhou L, Meng JY, Ruan HY, Yang CL, Zhang CY. Expression stability of candidate RT-qPCR housekeeping genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21831. [PMID: 34240760 DOI: 10.1002/arch.21831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is commonly used to quantify gene expression. For normalization, the expression of each gene is compared with a reference "housekeeping" gene that is stably expressed under relevant stress. Unfortunately, there have been no reports on the stability of such reference genes under various treatments of the Spodoptera frugiperda. In this study, we used five tools (RefFinder, GeNorm, NormFinder, BestKeeper, and ΔCt methods) to evaluate the stability of 12 candidate reference genes (RPS18, β-tubulin, GAPDH, RPS7, RPS15, RPL7, RPL32, Actin-5C, EF1-α, EF1-γ, RPL27, and ACE) in different instars, tissues, and treatments (high and low temperature, UV-A, and emamectin benzoate). Several ribosomal proteins (RPS7, RPS15, RPL32, RPS18, and RPL7), GAPDH, Actin-5C, and β-tubulin, were relatively stable, suggesting that they are ideal housekeeping genes for various treatments. ACE was extremely unstable under various experimental treatments, rendering it unsuitable as an internal reference. This study identified the reference housekeeping genes stably expressed by S. frugiperda under different treatments, thus setting a foundation for further exploration of the physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Lv Zhou
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Hong-Yun Ruan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Chang-Li Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Chang-Yu Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
22
|
Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1509-1516. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Odorant-binding proteins (OBPs) capture and transport semiochemicals to olfactory receptors (OR) and function in the first step in insect olfaction. In the present study, we cloned a full-length cDNA sequence of BodoOBP5 from the insect pest Bradysia odoriphaga (Diptera: Sciaridae). Real-time PCR (qRT-PCR) analysis revealed that BodoOBP5 was expressed at higher levels in female adults than in other developmental stages. In the different tissues, BodoOBP5 was highly expressed in the female antennae, whereas low levels were expressed in the head and the male antennae, expression was negligible in other tissues. The recombinant protein of BodoOBP5 was successfully expressed with a bacterial system. Competitive binding assays with nine host plant volatiles and a putative sex pheromone revealed that purified BodoOBP5 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide); the corresponding dissolution constants (Ki) were 10.38 and 9.23 μM, respectively. Molecular docking indicated that Leu99, Leu103, Ala143, Tyr107, Phe142, and Trp144 in the hydrophobic cavity of BodoOBP5 are the key residues mediating the interaction of BodoOBP5 with methyl allyl disulfide and diallyl disulfide. RNAi-based Y-tube olfactometer assay indicated that there is no significant difference in methyl allyl disulfide and diallyl disulfide. The results of this study increase our understanding of the binding of BodoOBP5 with plant volatiles, facilitating the development of novel ways to control B. odoriphaga.
Collapse
Affiliation(s)
- Yang Yuting
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Hua Dengke
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Shi Caihua
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Xie Wen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Youjun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Li M, Li X, Wang C, Li Q, Zhu S, Zhang Y, Li X, Yang F, Zhu X. Selection and Validation of Reference Genes For qRT-PCR Analysis of Rhopalosiphum padi (Hemiptera: Aphididae). Front Physiol 2021; 12:663338. [PMID: 33935809 PMCID: PMC8079785 DOI: 10.3389/fphys.2021.663338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Rhopalosiphum padi (L.) (Hemiptera: Aphididae) is an important cosmopolitan pest in cereal crops. Reference genes can significantly affect qRT-PCR results. Therefore, selecting appropriate reference genes is a key prerequisite for qRT-PCR analyses. This study was conducted to identify suitable qRT-PCR reference genes in R. padi. We systematically analyzed the expression profiles of 11 commonly used reference genes. The ΔCt method, the BestKeeper, NormFinder, geNorm algorithms, and the RefFinder online tool were used to evaluate the suitability of these genes under diverse experimental conditions. The data indicated that the most appropriate sets of reference genes were β-actin and GAPDH (for developmental stages), AK and TATA (for populations), RPS18 and RPL13 (for tissues), TATA and GAPDH (for wing dimorphism), EF-1α and RPS6 (for antibiotic treatments), GAPDH and β-actin (for insecticide treatments), GAPDH, TATA, RPS18 (for starvation-induced stress), TATA, RPS6, and AK (for temperatures), and TATA and GAPDH (for all conditions). Our study findings, which revealed the reference genes suitable for various experimental conditions, will facilitate the standardization of qRT-PCR programs, while also improving the accuracy of qRT-PCR analyses, with implications for future research on R. padi gene functions.
Collapse
Affiliation(s)
- Mengyi Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Xinan Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Chao Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Qiuchi Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Saige Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Yunhui Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Fengshan Yang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xun Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| |
Collapse
|
24
|
Ding Q, Xu X, Wang X, Ullah F, Gao X, Song D. Characterization and functional analysis of two acetylcholinesterase genes in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104807. [PMID: 33838708 DOI: 10.1016/j.pestbp.2021.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Two acetylcholinesterase genes (Boace1 and Boace2) were cloned from Bradysia odoriphaga, a devastating soil pest that mainly damages Chinese chives. The Boace1 encodes BoAChE1 protein consisting of 696 amino acid residues, while Boace2 encodes BoAChE2 containing 638 amino acids. Phylogenetic analysis showed that Boace1 and Boace2 are appeared to be distinct clusters. The gene expression patterns at different development stages and various body parts tissues were examined, and their biological functions were characterized by RNA interference and analog docking prediction. The results showed that both Boace genes were expressed in all developmental stages and examined tissues. The transcript level of Boace2 was significantly higher than Boace1 in all tested samples, and Boace1 was found most abundant in the head while Boace2 was highly expressed in the fat body of B. odoriphaga. The silencing of Boace1 and Boace2 significantly decreased the AChE activity of 36.6% and 14.8% separately, and increased the susceptibility of B. odoriphaga to phoxim, with 60.8% and 44.7% mortality. Besides, overexpression and gene duplication of Boace1 were found in two field resistant populations, and two major mutations, A319S and G400V, were detected in Boace1. Moreover, the docking results revealed that BoAChE1 had a higher affinity towards organophosphorus than BoAChE2. It is concluded that Boace2 is the most abundant ace type in B. odoriphaga, while both Boace play vital roles. Boace1 might play a major neurological function and more likely be the prime target for insecticides, while Boace2 might play some important unidentified roles.
Collapse
Affiliation(s)
- Qian Ding
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiao Xu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiu Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Farman Ullah
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Li X, Gong P, Wang B, Wang C, Li M, Zhang Y, Li X, Gao H, Ju J, Zhu X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci Rep 2020; 10:21951. [PMID: 33319828 PMCID: PMC7738536 DOI: 10.1038/s41598-020-78974-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 11/05/2020] [Indexed: 11/09/2022] Open
Abstract
Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) is one of the most common aphid pests of winter cereals. To facilitate accurate gene expression analyses with qRT-PCR assays, the expression stability of candidate reference genes under specific experimental conditions must be verified before they can be used to normalize target gene expression levels. In this study, 10 candidate reference genes in M. dirhodum were analyzed by qRT-PCR under various experimental conditions. Their expression stability was evaluated with delta Ct, BestKeeper, geNorm, and NormFinder methods, and the final stability ranking was determined with RefFinder. The results indicate that the most appropriate sets of internal controls were SDHB and RPL8 across geographic population; RPL8, Actin, and GAPDH across developmental stage; SDHB and NADH across body part; RPL8 and Actin across wing dimorphism and temperature; RPL4 and EF1A across starvation stress; AK and RPL4 across insecticide treatments; RPL8 and NADH across antibiotic treatments; RPL8, RPL4, Actin, and NADH across all samples. The results of this study provide useful insights for establishing a standardized qRT-PCR procedure for M. dirhodum and may be relevant for identifying appropriate reference genes for molecular analyses of related insects.
Collapse
Affiliation(s)
- Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China.,School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Bingting Wang
- College of Life Science, Hebei Normal University, Road Nan er huan dong No.20, Shijiazhuang, 050024, Hebei, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Mengyi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Ürümqi, 830091, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Road Nan er huan dong No.20, Shijiazhuang, 050024, Hebei, China.
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
26
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Evaluation of reference genes for quantitative real-time PCR normalization in the scarab beetle Holotrichia oblita. PLoS One 2020; 15:e0240972. [PMID: 33085726 PMCID: PMC7577503 DOI: 10.1371/journal.pone.0240972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPT-PCR) is commonly used to analyze gene expression, however, the accuracy of the normalized results is affected by the expression stability of reference genes. Holotrichia oblita (Coleoptera: Scarabaeidae) causes serious damage to crops. Reliable reference genes in H. oblita are needed for qRT-PCR analysis. Therefore, we evaluated 13 reference genes under biotic and abiotic conditions. RefFinder provided a comprehensive stability ranking, and geNorm suggested the optimal number of reference genes for normalization. RPL13a and RPL18 were the most suitable reference genes for developmental stages, tissues, and temperature treatments; RPL13a and RPS3 were the most suitable for pesticide and photoperiod treatments; RPS18 and RPL18 were the most suitable for the two sexes. We validated the normalized results using odorant-binding protein genes as target genes in different tissues. Compared with the selected suitable reference genes, the expression of OBP1 in antennae, abdomen, and wings, and OBP2 in antennae and wings were overestimated due to the instability of ACTb. These results identified several reliable reference genes in H. oblita for normalization, and are valuable for future molecular studies.
Collapse
Affiliation(s)
- Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yongzhi Zhong
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wanli Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao, Shandong, China
| | - Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
27
|
Xie L, Solhaug KA, Song Y, Johnsen B, Olsen JE, Tollefsen KE. Effects of artificial ultraviolet B radiation on the macrophyte Lemna minor: a conceptual study for toxicity pathway characterization. PLANTA 2020; 252:86. [PMID: 33057834 PMCID: PMC7560917 DOI: 10.1007/s00425-020-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
UVB radiation caused irradiance-dependent and target-specific responses in non-UVB acclimated Lemna minor. Conceptual toxicity pathways were developed to propose causal relationships between UVB-mediated effects at multiple levels of biological organisation. Macrophytes inhabit waterways around the world and are used in hydroponics or aquaponics for different purposes such as feed and wastewater treatment and are thus exposed to elevated levels of UVB from natural and artificial sources. Although high UVB levels are harmful to macrophytes, mechanistic understanding of irradiance-dependent effects and associated modes of action in non-UVB acclimated plants still remains low. The present study was conducted to characterise the irradiance-dependent mechanisms of UVB leading to growth inhibition in Lemna minor as an aquatic macrophyte model. The L. minor were continuously exposed to UVB (0.008-4.2 W m-2) and constant UVA (4 W m-2) and photosynthetically active radiation, PAR (80 µmol m-2 s-1) for 7 days. A suite of bioassays was deployed to assess effects on oxidative stress, photosynthesis, DNA damage, and transcription of antioxidant biosynthesis, DNA repair, programmed cell death, pigment metabolism and respiration. The results showed that UVB triggered both irradiance-dependent and target-specific effects at multiple levels of biological organization, whereas exposure to UVA alone did not cause any effects. Inhibition of photosystem II and induction of carotenoids were observed at 0.23 W m-2, whereas growth inhibition, excessive reactive oxygen species, lipid peroxidation, cyclobutane pyrimidine dimer formation, mitochondrial membrane potential reduction and chlorophyll depletion were observed at 0.5-1 W m-2. Relationships between responses at different levels of biological organization were used to establish a putative network of toxicity pathways to improve our understanding of UVB effects in aquatic macrophytes under continuous UVB exposures. Additional studies under natural illuminations were proposed to assess whether these putative toxicity pathways may also be relevant for more ecologically relevant exposure scenarios.
Collapse
Affiliation(s)
- Li Xie
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Bjørn Johnsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Norwegian Radiation and Nuclear Safety Authority (DSA), 1361, Østerås, Norway
| | - Jorunn Elisabeth Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Faculty of Biosciences, Institute of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
28
|
Liang X, Chen Q, Wu C, Liu Y, Fang Y. Reference gene validation in Eotetranychus sexmaculatus (Acari: Tetranychidae) feeding on mite-susceptible and mite-resistant rubber tree germplasms. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:211-228. [PMID: 32886259 DOI: 10.1007/s10493-020-00542-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Reliable reference genes are quite important in calculating gene transcript levels by using real-time quantitative reverse transcription-PCR (RT-qPCR). Eotetranychus sexmaculatus is known as a dangerous mite causing significant yield reduction of rubber tree latex; however, selection of appropriate reference genes for validation of target gene expression in E. sexmaculatus has not been conducted yet. In the present study, nine candidate reference genes were analyzed for their expression stability in different life stages of E. sexmaculatus by using common algorithms including comparative ΔCq method, geNorm, NormFinder and BestKeeper. In addition, a comprehensive analysis software (RefFinder) was used to assign an overall final rank for each candidate gene. The results showed that β-actin and β-TUB were the best two reference genes and were subjected to evaluate expression of two protective enzyme genes (EsCu/ZnSOD and EsCAT1) in E. sexmaculatus. We found that the expression of EsCu/ZnSOD and EsCAT1 in E. sexmaculatus feeding on mite-resistant rubber tree germplasm was significantly lower compared with those feeding on mite-susceptible germplasm. These results will facilitate research in revealing molecular mechanisms underlying rubber tree resistance to the spider mite.
Collapse
Affiliation(s)
- Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China.
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
29
|
Shan T, Zhang H, Chen C, Chen A, Shi X, Gao X. Low expression levels of nicotinic acetylcholine receptor subunits Boα1 and Boβ1 are associated with imidacloprid resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2020; 76:3038-3045. [PMID: 32285608 DOI: 10.1002/ps.5854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neonicotinoid insecticide imidacloprid acts on insect nicotinic acetylcholine receptors (nAChRs). The mechanisms of insect resistance to imidacloprid include target-site alteration and increased detoxification metabolism. In Bradysia odoriphaga, cytochrome P450 monooxygenase has been found involved in metabolic resistance to imidacloprid. However, the situation of target-site related resistance to imidacloprid in B. odoriphaga is still unknown. RESULTS Nine field-collected B. odoriphaga populations showed various sensitivities to imidacloprid compared with the susceptible (SS) strain, including susceptibility, decreased susceptibility, low resistance, moderate resistance and high resistance. Seven nAChR subunit genes including α1, α2, α3, α7, α8, β1 and β3, were examined for site mutation and changes in transcription levels in field populations. No nAChR polymorphism potentially related to the resistant phenotypes was found. However, differential expression of nAChR subunit genes was found in imidacloprid resistant field population. In high imidacloprid resistant population LC-2 (93.14-fold resistance), the transcription levels of α1, α2 and β1 subunits were significantly down-regulated, while the transcription levels of α3 and α8 subunits were significantly up-regulated, compared with that in SS strain. In addition, imidacloprid acute exposure induced differential expression of nAChR subunit genes in B. odoriphaga. Furthermore, RNA interference (RNAi) suppressed the transcriptional expression of Boα1 and Boβ1, and decreased mortality of B. odoriphaga by 23.03% and 18.69%, respectively, when treated with imidacloprid. CONCLUSION These results indicated that, although no target-site mutation was found in imidacloprid resistant B. odoriphaga population, the reduced expression of α1 and β1 subunits contributed to B. odoriphaga resistance to imidacloprid. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Huihui Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Shi CH, Hu JR, Zhang YJ. The Effects of Temperature and Humidity on a Field Population of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1927-1932. [PMID: 32484541 DOI: 10.1093/jee/toaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 06/11/2023]
Abstract
The production of Chinese chives is reduced throughout China due to a root-feeding dipteran pest Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae), therefore deciphering the conditions influencing its growth and development are important in developing ecological control strategies. A study was conducted from 2014 to 2017 to determine the relationship between the abundance of B. odoriphaga and temperature (atmospheric and soil), soil water content, and atmospheric humidity in a Chinese chive field in Beijing City, China. Numbers of adults peaked in March and October to November and were lowest in July to August and December to next February; numbers of larvae were highest in December to next February and lowest in July to August. From 2014 to 2017, the numbers of adults and larvae were significantly correlated with monthly mean atmospheric temperatures and soil temperatures, but were not significantly correlated with monthly mean atmospheric relative humidity and soil water content. However, for both adults and larvae, numbers were significantly greater with high soil water contents compared with drought treatment. The results of this study suggest that the very low soil water contents, high atmospheric temperatures, and high soil temperatures were critical for regulating field populations of B. odoriphaga.
Collapse
Affiliation(s)
- Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
31
|
Cui K, Zhao Y, He L, Ding J, Li B, Mu W, Liu F. Comparison of Transcriptome Profiles of the Fungus Botrytis cinerea and Insect Pest Bradysia odoriphaga in Response to Benzothiazole. Front Microbiol 2020; 11:1043. [PMID: 32655508 PMCID: PMC7325989 DOI: 10.3389/fmicb.2020.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Benzothiazole (BT) has a strong inhibitory effect on the growth and development of a wide spectrum of fungi and insects, such as Botrytis cinerea and Bradysia odoriphaga, that cause serious losses in agriculture. To investigate the underlying antifungal and insecticidal mechanisms of BT, RNA-seq analysis was performed for B. cinerea after BT treatment for 12, 24, and 48 h and for B. odoriphaga after BT treatment for 6 and 24 h. In B. cinerea, the pectin degradation process was inhibited, suggesting a low utilization of carbohydrate sources. As the treatment time was extended, the cell walls of B. cinerea thickened, and increases in melanin synthesis and ion transport were observed. In B. odoriphaga, signaling pathways including MAPK, insulin, adipocytokine, forkhead box class O, and peroxisome proliferator-activated receptor were activated at 6 h, and phosphoenolpyruvate carboxykinase was the core gene in the signal transduction pathways that responded to BT; digestive system and melanogenesis genes were obviously altered at 24 h. In addition, we identified several insecticidal target genes, such as trypsin, aminopeptidase N, and tyrosinase. Benzothiazole significantly affected nutrient metabolism, especially carbohydrate metabolism, in both species, and the pentose and glucuronate interconversions pathway was shared by both species, although the individual genes were different in each species. Overall, our results suggested that BT was a melanogenesis disrupter for the insect but an activator for the fungus. Our findings are helpful for deeply exploring the genes targeted by BT and for developing new pesticide compounds with unique mechanisms of action.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yunhe Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jinfeng Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
32
|
Reference Gene Selection for Expression Analyses by qRT-PCR in Dendroctonus valens. INSECTS 2020; 11:insects11060328. [PMID: 32471281 PMCID: PMC7349367 DOI: 10.3390/insects11060328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022]
Abstract
Dendroctonus valens is the main pest of the genus Pinus. To facilitate gene expression analyses, suitable reference genes for adults and mature larvae of D. valens under different temperature conditions were determined. In particular, we obtained the sequences of candidate reference genes, ACT, TUB, SHDA, PRS18, 18S rRNA, and CYP4G55, from transcriptome data. Real-time quantitative PCR was used to analyze gene expression, and geNorm, NormFinder, and BestKeeper were used to evaluate expression stability. Under different temperature conditions, the expression levels of 18S rRNA, PRS18, and TUB were stable in adults, in which 18S rRNA > PRS18 > TUB. In mature larvae, the expression levels of TUB, 18S rRNA, and SDHA were stable, in which TUB > 18S rRNA > SDHA. The combination of 18S rRNA and PRS18 is recommended for studies of gene expression in adults and the combination of 18S rRNA and TUB is effective for studies of gene expression in mature larvae of D. valens under different temperature conditions.
Collapse
|
33
|
Shan T, Chen C, Ding Q, Chen X, Zhang H, Chen A, Shi X, Gao X. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104563. [PMID: 32359542 DOI: 10.1016/j.pestbp.2020.104563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Bradysia odoriphaga is a destructive insect pest, damaging more than 30 crop species. Nicotinic acetylcholine receptors (nAChRs) mediating fast excitatory transmission in the central nervous system in insects are the molecular targets of some economically important insecticides including imidacloprid, which has been widely used to control B. odoriphaga in China since 2013. However, the clear characterization about nAChRs in B. odoriphaga is still unknown. Hence, our objective is to identify and characterize the nAChR gene family in B. odoriphaga based on the transcriptome database and sequence, phylogenetic and expression profiles analysis. In this study, we cloned seven nAChR subunit genes from B. odoriphaga, including Boα1, Boα2, Boα3, Boα7, Boα8, Boβ1 and Boβ3. Sequence analysis revealed that the seven nAChR subunits of B. odoriphaga shared the typical structural features with Drosophila melanogaster nAChR α1 subunit, including an extracellular N-terminal domain containing six functional loops (loop A-F), a signature Cys-loop with two disulfide bond-forming cysteines separated by 13 amino acid residues, and four typical transmembrane helices (TM1-TM4) in the C-terminal region. Phylogenetic analysis suggested that seven nAChR subunit genes in B. odoriphaga are evolutionarily conserved among four model insects, including D. melanogaster, Bombyx mori, Apis mellifera and Tribolium castaneum. Meanwhile, nAChR α4, α5, α6 and β2 subunit genes may potentially exist in B. odoriphaga, which need further study. Furthermore, quantitative real-time PCR analysis revealed the specific expression pattern of nAChR subunits in three body parts including head, thorax and abdomen, and developmental expression pattern of nAChR subunits throughout the B. odoriphaga life cycle. These results provided necessary information for further investigating the diverse functions of nAChRs in B. odoriphaga.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qian Ding
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Huihui Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China..
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Shi C, Zhang S, Hu J, Zhang Y. Effects of Non-Lethal High-Temperature Stress on Bradysia odoriphaga (Diptera: Sciaridae) Larval Development and Offspring. INSECTS 2020; 11:E159. [PMID: 32121534 PMCID: PMC7142861 DOI: 10.3390/insects11030159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/18/2022]
Abstract
Throughout China, the dipteran pest Bradysia odoriphaga significantly reduces Chinese chive production; therefore, identifying conditions that influence its growth and development is crucial for developing ecological regulation strategies. In this study, different non-lethal high temperatures and treatment durations were used to stress the third-instar larvae of B. odoriphaga, and the effects of this treatment on their growth and offspring were recorded and analyzed. The results showed that the average larval mortality increased with increased temperature and prolonged exposure times. After stress treatment at 40 °C for 2 h, 100% of larvae died within 5 days, which was not significantly different from the 5-day average larval mortality (90.66%) after stress at 37 °C for 4 h, but significantly higher than the 5-day average larval mortality (72.00%) after stress at 40 °C for 1 h. After 5 days, all still-living larvae could pupate, and there was no significant difference in average pupal period after pupation. However, the eclosion rate of subsequent pupae decreased with increased temperature and prolonged exposure times, and were only 43.00% and 42.73% after larvae were stressed at 37 °C for 4 h and 40 °C for 1 h, respectively. After eclosion into adults, there was no significant difference in the lifespan of unmated female adults, while the lifespan of unmated male adults was significantly reduced to 1.67 d and 2 d after larvae were stressed at 37 °C for 4 h and 40 °C for 1 h, respectively. However, there was no significant difference in male and female adult longevity after mating. There was no significant difference in oviposition or egg hatchability. This indicates that non-lethal high temperature at 37 °C for 4 h can hinder development and allow control of B. odoriphaga. There is great potential for non-lethal high temperature to be applied in the field to control agricultural pests.
Collapse
Affiliation(s)
- Caihua Shi
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Seng Zhang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Jingrong Hu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
35
|
Zhao Y, Cui K, Li H, Ding J, Mu W, Zhou C. Identification and Expression Analysis of Chemosensory Receptor Genes in Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:435-450. [PMID: 31687766 DOI: 10.1093/jee/toz286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 06/10/2023]
Abstract
The chive midge, Bradysia odoriphaga, is a major insect pest affecting Chinese chive production in China. Its adult life stage is nonfeeding and has a short life span. Hence, the perception of chemical stimuli is important for its adult behavior and reproductive success. To better understand its chemosensory process at the molecular level, chemosensory receptor genes were identified based on transcriptomes of B. odoriphaga. In total, 101 chemosensory genes were identified from the antenna and body transcriptomes, including 71 odorant receptors (ORs), 18 ionotropic receptors (IRs), 5 gustatory receptors (GRs), and 7 sensory neuron membrane proteins (SNMPs). Phylogenetic analysis indicated that most of these genes have homologs among other Dipteran insects. A transcript abundance comparison based on FPKM values was conducted to analyze the sex- and tissue-specific expression profiles of these chemosensory genes. Moreover, quantitative real-time PCR of OR transcripts was performed on different tissues (female antennae, male antennae, heads, and legs) to verify the transcriptional expression levels of ORs in the transcriptomes. This analysis suggested that 44 ORs showed significantly higher expression in the female antennae, while 16 OR transcripts were most highly expressed in the male antennae and may play significant roles in sex pheromone detection. In addition, some IRs and GRs might be involved in CO2 and sugar detection and temperature sensing. In the present study, 101 chemosensory genes were identified, and their putative functions were predicted. This work could provide a basis to facilitate functional clarification of these chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Kaidi Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Huan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Chenggang Zhou
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
36
|
Shang Y, Ren L, Yang L, Wang S, Chen W, Dong J, Ma H, Qi X, Guo Y. Differential Gene Expression for Age Estimation of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae) Intrapuparial. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:65-77. [PMID: 31504655 DOI: 10.1093/jme/tjz137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/10/2023]
Abstract
Sarcophaga peregrina is an important flesh fly species for estimating the minimum postmortem interval (PMImin) in forensic entomology. The accurate determination of the developmental age is a crucial task for using necrophagous sarcophagids to estimate PMImin. During larval development, the age determination is straight forward by the morphological changes and variation of length, weight, and width; however, the age estimation of sarcophagid intrapuparial is more difficult due to anatomical and morphological changes not being visible. The analysis of differentially expressed genes (DEGs) during sarcophagid metamorphosis is a potential method for age estimation of intrapuparial. In the present study, real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the differential gene expression level of S. peregrina intrapuparial in different constant temperatures (35°C, 25°C, and 15°C). In addition, the appropriate reference genes of S. peregrina were selected in the intrapuparial and at different temperatures to obtain reliable and valid gene expression profiles. The results indicated that two candidate genes (18S rRNA and 28S rRNA) were the most reliable reference genes, and four DEGs (Hsp90, A-alpha, AFP, AFBP) have the potential to be used to more accuracy estimate the age of S. peregrina intrapuparial.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University, Ürümqi, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jianan Dong
- XiangYa school of Medicine, Central South University, Changsha, Hunan, China
| | - Hongming Ma
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Xuan Qi
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Wang Z, Meng Q, Zhu X, Sun S, Liu A, Gao S, Gou Y. Identification and Evaluation of Reference Genes for Normalization of Gene Expression in Developmental Stages, Sexes, and Tissues of Diaphania caesalis (Lepidoptera, Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5700579. [PMID: 31925425 PMCID: PMC6954454 DOI: 10.1093/jisesa/iez130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 05/04/2023]
Abstract
Diaphania caesalis (Walker) is an important boring insect mainly distributed in subtropical and tropical areas and attacked tropical woody grain crops, such as starchy plants of Artocarpus. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful approach for investigating target genes expression profiles at the transcriptional level. However, the identification and selection of internal reference genes, which is often overlooked, is the most vital step before the analysis of target gene expression by qRT-PCR. So far, the reliable internal reference genes under a certain condition of D. caesalis have not been investigated. Therefore, this study evaluated the expression stability of eight candidate reference genes including ACT, β-TUB, GAPDH, G6PDH, RPS3a, RPL13a, EF1α, and EIF4A in different developmental stages, tissues and sexes using geNorm, NormFinder and BestKeeper algorithms. To verify the stability of the recommended internal reference genes, the expression levels of DcaeOBP5 were analyzed under different treatment conditions. The results indicated that ACT, RPL13a, β-TUB, RPS3a, and EF1α were identified as the most stable reference genes for further studies on target gene expression involving different developmental stages of D. caesalis. And ACT and EIF4A were recommended as stable reference genes for different tissues. Furthermore, ACT, EF1α, and RPS3a were ranked as the best reference genes in different sexes based on three algorithms. Our research represents the critical first step to normalize qRT-PCR data and ensure the accuracy of expression of target genes involved in phylogenetic and physiological mechanism at the transcriptional level in D. caesalia.
Collapse
Affiliation(s)
- Zheng Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Qianqian Meng
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Corresponding author, e-mail:
| | - Xi Zhu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shiwei Sun
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Aiqin Liu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shengfeng Gao
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Yafeng Gou
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
38
|
Hu JR, Xie C, Shi CH, Wang SL, Wu QJ, Li CR, Zhang YJ. Effect of Sex and Air Temperature on the Flight Capacity of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2161-2166. [PMID: 31165857 DOI: 10.1093/jee/toz152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Bradysia odoriphaga Yang & Zhang (Diptera: Sciaridae) is an important pest of Chinese chives. Information on the effects of biotic and abiotic factors on the flight performance of B. odoriphaga is crucial for understanding the pest's ability to disperse and migrate. In this study, the effects of sex and air temperature on the flight performance of B. odoriphaga imagoes were assessed by tethering individual imagoes to computerized flight mills for a 10-h experiment. The results showed that the percentage of imagoes that flew a particular distance gradually decreased as flight distance increased. The percentage of imagoes was significantly higher for males than females when the flight distance was <300 m. Sex and air temperature significantly affected average flight time (which ranged from 14.6 to 68.3 min) and average flight distance (which ranged from 10.4 to 107.2 m), but did not significantly affect average flight speed (which ranged from 3.8 to 6.4 m/min). For both females and males, the average flight distance and flight time were shortest at 18°C and longest at 22°C; the interaction between air temperature and sex was not significant. The results suggest that B. odoriphaga has a poor potential for long-distance migration. These findings will be helpful for developing forecasting and management systems for B. odoriphaga.
Collapse
Affiliation(s)
- Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Chao Xie
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Qing-Jun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Chuan-Ren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| |
Collapse
|
39
|
Singh S, Gupta M, Pandher S, Kaur G, Goel N, Rathore P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Sci Rep 2019; 9:13710. [PMID: 31548628 PMCID: PMC6757040 DOI: 10.1038/s41598-019-49997-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Phenacoccus solenopsis is one of the major polyphagous crop pests in India. Inadequate genomic or transcriptomic resources have limited the molecular studies in this insect despite its huge economic importance. The existing molecular sequence resources of this insect were supplemented through RNA sequencing, de novo transcriptome assembly and analysis, which generated 12, 925 CDS from 23,643 contigs with an average size of 1077.5 bp per CDS and 85.1% positive BLAST hits with NCBI Non redundant (nr) database. Twenty three genes involved in RNAi machinery identified through BLASTx search against NCBI nr database suggested the existence of robust RNAi in mealybug. RNAi in P. solenopsis was demonstrated through knockdown of IAP (Inhibitor of Apoptosis), AQP (Aquaporin), CAL (Calcitonin), VATPase (V-type proton ATPase subunit F 1), bursicon, chitin synthase, SNF7 and α-amylase by injecting sequence specific dsRNA of respective genes in adult female. Additionally, feeding RNAi has been demonstrated in 2nd instar nymph through dsRNA uptake in plant. The knockdown of core RNAi machinery genes such as Dicer, Argonaute and Staufen significantly hampered RNAi efficiency in this insect. However, downregulation of dsRNases improved RNAi efficiency. Sequential studies for understanding RNAi in P. solenopsis using transcriptome sequences have also been reported. The present study provides a base for future research on developing RNAi as strategy for management of this pest.
Collapse
Affiliation(s)
- Satnam Singh
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India.
| | - Mridula Gupta
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Suneet Pandher
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Gurmeet Kaur
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Neha Goel
- Forest Research Institute, Dehradun, Uttaranchal, India
| | - Pankaj Rathore
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| |
Collapse
|
40
|
Adeyinka OS, Tabassum B, Nasir IA, Yousaf I, Sajid IA, Shehzad K, Batcho A, Husnain T. Identification and validation of potential reference gene for effective dsRNA knockdown analysis in Chilo partellus. Sci Rep 2019; 9:13629. [PMID: 31541183 PMCID: PMC6754392 DOI: 10.1038/s41598-019-49810-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Chilo partellus is an invasive polyphagous pest that has not been effectively managed with chemical pesticides. To select potential dsRNAs for use in an alternate control strategy, it is crucial to identify and evaluate stable reference genes for knockdown expression studies. This study evaluates the expression stability of seven candidate reference genes in C. partellus larvae fed on crude bacterially-expressed dsRNAs and purified dsRNAs at different time intervals, as well as the developmental stages and sexes. The expression stabilities of the reference genes were evaluated with different software programmes, such as BestKeeper, NormFinder, deltaCt, geNorm, and RefFinder. The overall results rank ELF as the most stably expressed reference gene when larvae were fed with crude bacteria-induced dsRNAs and purified dsRNA. However, Tubulin and HSP70 were more stable under different developmental stages and sexes. The expression levels of larvae that were fed crude bacteria-induced dsRNAs of Chitinase and Acetylcholinesterase were normalized with the four most stable reference genes (ELF, HSP70, V-ATPase and Tubulin) and the least stable reference gene (18S and HSP70) based on the geNorm algorithm. The least stable reference gene showed inconsistent knockdown expression, thereby confirming that the validation of a suitable reference gene is crucial to improve assay accuracy for dsRNA-targeted gene selection in C. partellus.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Iqra Yousaf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Imtiaz Ahmad Sajid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | | | - Anicet Batcho
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
41
|
Wang Z, Meng Q, Zhu X, Sun S, Gao S, Gou Y, Liu A. Evaluation and Validation of Reference Genes for Quantitative Real-Time PCR in Helopeltis theivora Waterhouse (Hemiptera: Miridae). Sci Rep 2019; 9:13291. [PMID: 31527603 PMCID: PMC6746731 DOI: 10.1038/s41598-019-49479-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Helopeltis theivora Waterhouse is a predominant sucking pest in many tropic economic crops, such as tea, cocoa and coffee. Quantitative real-time PCR (qRT-PCR) is one of the most powerful tools to analyze the gene expression level and investigate the mechanism of insect physiology at transcriptional level. Gene expression studies utilizing qRT-PCR have been applied to numerous insects so far. However, no universal reference genes could be used for H. theivora. To obtain accurate and reliable normalized data in H. theivora, twelve candidate reference genes were examined under different tissues, developmental stages and sexes by using geNorm, NormFinder, BestKeeper, Delta Ct and RefFinder algorithms, respectively. The results revealed that the ideal reference genes differed across the treatments, and the consensus rankings generated from stability values provided by these programs suggested a combination of two genes for normalization. To be specific, RPS3A and Actin were the best suitable reference genes for tissues, RPL13A and GAPDH were suitable for developmental stages, EF1α and RPL13A were suitable for sexes, and RPL13A and RPS3A were suitable for all samples. This study represents the first systematic analysis of reference genes for qRT-PCR experiments in H. theivora, and the results can provide a credible normalization for qRT-PCR data, facilitating transcript profiling studies of functional genes in this insect.
Collapse
Affiliation(s)
- Zheng Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Qianqian Meng
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Xi Zhu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China.,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shiwei Sun
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Shengfeng Gao
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Yafeng Gou
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Aiqin Liu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China. .,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
42
|
Yang Y, Su Q, Shi L, Chen G, Zeng Y, Shi C, Zhang Y. Electrophysiological and behavioral responses of Bradysia odoriphaga (Diptera: Sciaridae) to volatiles from its Host Plant, Chinese Chives (Allium tuberosum Rottler ex Spreng). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1638-1644. [PMID: 31220284 DOI: 10.1093/jee/toz057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Bradysia odoriphaga Yang et Zhang is a serious belowground pest of Chinese chives (Allium tuberosum). Our previous studies have indicated that B. odoriphaga females prefer to oviposit near the roots of Chinese chives rather than the roots of other plants, and that the performance (longevity and fecundity) of B. odoriphaga offspring was better on Chinese chives than on Lettuce (var. ramosa Hort.), Onion (Allium cepa) and Potato (Solanum tuberosum) but little is known about how the volatiles released by Chinese chives affect the host-finding and oviposition behaviors of B. odoriphaga. Here, we used gas chromatography-mass spectrometry and determined that Chinese chives releases the following volatiles: methyl allyl disulfide, β-myrcene, cis-ocimene, diallyl disulfide, nonane, n-dodecane, n-tetradecane, and n-hexadecane; quantities released were highest for methyl allyl disulfide and diallyl disulfide. In addition to eliciting strong responses in females in electroantennography assays, the latter two sulfur compounds and their mixtures attracted females in Y-tube olfactometer assays. The addition of methyl allyl disulfide, diallyl disulfide, or a mixture of the two compounds at a 1:5 ratio to chive plants increased oviposition when compared to control plants. These results indicate that methyl allyl disulfide and diallyl disulfide, either alone or in combination, influence the host-seeking behavior of B. odoriphaga.
Collapse
Affiliation(s)
- Yuting Yang
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Linlin Shi
- Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihua Shi
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Kaur R, Gupta M, Singh S, Pandher S. Evaluation and validation of experimental condition-specific reference genes for normalization of gene expression in Asia II-I Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Gene Expr Patterns 2019; 34:119058. [PMID: 31185291 DOI: 10.1016/j.gep.2019.119058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Functional genomics in whitefly, Bemisia tabaci is gaining impetus due to its polyphagous nature, worldwide distribution and recently sequenced whole genome. These studies require an in-depth evaluation and validation of reference genes in different development stages and variable experimental setups. Normalization with reference genes is an essential step in the gene expression studies. Rather than selecting a reference gene empirically, the suitability of these genes must be validated for an individual organism, its specific stage or even for particular experimental conditions. The Quantitative real-time polymerase chain reaction (RT-qPCR) has evolved as an efficient and widely used technique for precise monitoring of gene expression. The prime focus of this study was to identify candidate reference genes in different developmental stages (adults, nymphs, eggs), sex (male and female), hosts (Gossypium hirsutum, G. arboreum), and under insecticidal and starvation stress. Expression stability of these genes in different experimental samples was evaluated by employing five different computational algorithms such as NormFinder, BestKeeper, Comparative delta-CT, geNorm and RefFinder. Our results identified a different set of reference genes under each experimental setup such as electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), ubiquitin (UBIQ) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as best reference genes in adult whitefly. In addition, glutathione S-transferase (GST) in eggs, cyclophilin (CYCLOPH) in red eyed nymph, GAPDH in third instar, tubulin (Tub) in female, ubiquitin ribosomal protein S27 (UBIRPS2) in male, succinate dehydrogenase complex subunit B (SDHB) under insecticidal stress, ETF-QO under starvation stress, UBIRPS2 under host influence were the top most stable genes. Our studies report the importance of selection of specific reference genes for accurate gene expression studies under various experimental setups in B. tabaci.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Mridula Gupta
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| | - Satnam Singh
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India.
| | - Suneet Pandher
- Punjab Agricultural University, Regional Research Station, Faridkot, 151203, Punjab, India
| |
Collapse
|
44
|
Tu C, Du T, Ye X, Shao C, Xie J, Shen Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg Med (Tokyo) 2019; 38:51-57. [PMID: 30986695 DOI: 10.1016/j.legalmed.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
In our previous study, we evaluated the stability of multi-RNA markers in heart, liver and skeletal muscle tissues of mice within 8 days after death and concluded that microRNAs (miRNAs) and circular (circRNAs) were more stable as reference genes in dead bodies than other kinds of RNAs. Based on their tissue-specific expression, we obtained reference genes for three kinds of tissues: miR-122, miR-133a and 18S in heart tissues; LC-Ogdh, circ-AFF1 and miR-122 in liver tissues; and miR-133a, circ-AFF1 in skeletal muscle tissues. For the estimation of post mortem interval (PMI), we also selected suitable biomarkers, which exhibited the best correlation coefficient with PMI. In our stability analysis of multi-RNA markers, Gapdh, Rps18, U6 and β-actin were unstable and selected as candidate target biomarkers. By analyzing the correlation between the expression levels of candidate target biomarkers and PMI, we obtained suitable target biomarkers for the three kinds of tissues, respectively. Finally, we established mathematical models of PMI estimation using the above selected reference genes and target biomarkers. The low estimated error in the validated samples demonstrated that PMI in advanced stage could be accurately predicted by real-time quantitative polymerase chain reaction (qPCR) through systematically selected effective reference genes and target biomarkers. Besides, combining the estimated results of various tissues and multi-biomarkers could improve the accuracy of PMI estimation.
Collapse
Affiliation(s)
- Chunyan Tu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Tieshuai Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
45
|
Bin S, Pu X, Shu B, Kang C, Luo S, Tang Y, Wu Z, Lin J. Selection of Reference Genes for Optimal Normalization of Quantitative Real-Time Polymerase Chain Reaction Results for Diaphorina citri Adults. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:355-363. [PMID: 30289505 DOI: 10.1093/jee/toy297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), can cause direct damage to citrus trees and is the main vector for the devastating disease, citrus greening disease or huanglongbing. Most molecular studies on this important insect pest use real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to quantify gene expression, including analyzing molecular basis for insecticide resistance in field populations. One critical factor to cause inaccuracy in RT-qPCR results is the lack of appropriate internal reference genes for optimal data normalization. In this study, the expression levels of 10 selected reference genes were evaluated in different tissue samples of psyllid adults and in the insects treated with different temperatures and insecticides. Data were analyzed using different computational algorithms, including Delta Ct, BestKeeper, NormFinder, geNorm, and RefFinder. According to our results, at least two reference genes should be used for the normalization of RT-qPCR data in this insect. The best choices of reference genes for different samples are as follows: ACT1 and Ferritin for different tissue samples, RPS20 and Ferritin for samples treated with different temperatures, TBP and EF1α for samples treated with imidacloprid, and Ferritin and TBP for samples treated with beta-cypermethrin. The reference genes identified in this study should be useful for future studies to analyze the expression patterns of target genes, especially for genes linked with temperature adaptability and insecticide resistance in this insect species in the future.
Collapse
Affiliation(s)
- Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Cong Kang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Shaoming Luo
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Yu Tang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| |
Collapse
|
46
|
Lü J, Yang C, Zhang Y, Pan H. Selection of Reference Genes for the Normalization of RT-qPCR Data in Gene Expression Studies in Insects: A Systematic Review. Front Physiol 2018; 9:1560. [PMID: 30459641 PMCID: PMC6232608 DOI: 10.3389/fphys.2018.01560] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 02/03/2023] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying expression levels of targeted genes during various biological processes in numerous areas of clinical and biological research. Selection of appropriate reference genes for RT-qPCR normalization is an elementary prerequisite for reliable measurements of gene expression levels. Here, by analyzing datasets published between 2008 and 2017, we summarized the current trends in reference gene selection for insect gene expression studies that employed the most widely used SYBR Green method for RT-qPCR normalization. We curated 90 representative papers, mainly published in 2013–2017, in which a total of 78 insect species were investigated in 100 experiments. Furthermore, top five journals, top 10 frequently used reference genes, and top 10 experimental factors have been determined. The relationships between the numbers of the reference genes, experimental factors, analysis tools on the one hand and publication date (year) on the other hand was investigated by linear regression. We found that the more recently the paper was published, the more experimental factors it tended to explore, and more analysis tools it used. However, linear regression analysis did not reveal a significant correlation between the number of reference genes and the study publication date. Taken together, this meta-analysis will be of great help to researchers that plan gene expression studies in insects, especially the non-model ones, as it provides a summary of appropriate reference genes for expression studies, considers the optimal number of reference genes, and reviews the average number of experimental factors and analysis tools per study.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Selection and evaluation of reference genes for expression analysis using quantitative real-time PCR in the Asian Ladybird Harmonia axyridis (Coleoptera: Coccinellidae). PLoS One 2018; 13:e0192521. [PMID: 29889877 PMCID: PMC5995347 DOI: 10.1371/journal.pone.0192521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/28/2017] [Indexed: 01/31/2023] Open
Abstract
Harmonia axyridis (Coleoptera: Coccinellidae) is a polyphagous insect that is an important biological agent used to control agricultural and forestry pests. The role of functional genes in H. axyridis based on quantitative real-time PCR (qRT-PCR) is increasingly well understood to investigate biology, physiology, feeding behavior and the role of important genes in physiological processes. Quantitative real-time PCR (qRT-PCR) is a powerful and reliable technique to quantify gene expression. Using qRT-PCR, expression levels of target genes are determined based on the levels of internal reference genes; therefore, reference genes need to be stably expressed under specific experimental conditions. However, there have been no studies on the stability of reference genes used in H. axyridis. In this study, we systematically investigated expression profiles of nine candidate reference genes from H. axyridis, including β-actin (ACTIN); elongation factor 1 α (EF1A); ribosomal proteins L10, L18, L28, S13, and S15 (RPL10, RPL18, RPL28, RPS13 and RPS15); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); and superoxide dismutase (SOD). Four analytical methods (geNorm, BestKeeper, NormFinder, and the ΔCt method) were used to evaluate the suitability of these genes as internal reference genes for three biotic factors (developmental stage, tissue, and sex) and two abiotic treatments (temperature and photoperiod). RefFinder, a comprehensive evaluation platform integrating the four analytical methods, was used to rank the overall stability of these reference genes. Among the nine candidate genes, different reference genes were identified as having the most stable expression across biotic and abiotic factors. Genes encoding ribosomal proteins typically had the most stable expression, though EF1A was the most stable across developmental stages and photoperiods. To validate the suitability of these reference genes, heat shock protein 90 (HSP90) was chosen as a target. Significant up-regulation in HSP90 expression level in response to both low and high temperature was observed when using the most suitable reference genes but not when using an arbitrarily selected reference gene. The reference genes identified in this study will provide the basis for future functional genomics research in H. axyridis and will also facilitate the establishment of a standardized qRT-PCR program for other related insects.
Collapse
|
48
|
Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol 2018; 14:194-201. [DOI: 10.1007/s12024-018-9973-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2018] [Indexed: 12/18/2022]
|
49
|
Shu B, Zhang J, Cui G, Sun R, Sethuraman V, Yi X, Zhong G. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions. Front Physiol 2018; 9:372. [PMID: 29695976 PMCID: PMC5904281 DOI: 10.3389/fphys.2018.00372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 12/03/2022] Open
Abstract
Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.
Collapse
Affiliation(s)
- Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Veeran Sethuraman
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Li HB, Dai CG, Zhang CR, He YF, Ran HY, Chen SH. Screening potential reference genes for quantitative real-time PCR analysis in the oriental armyworm, Mythimna separata. PLoS One 2018; 13:e0195096. [PMID: 29617430 PMCID: PMC5884543 DOI: 10.1371/journal.pone.0195096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/18/2018] [Indexed: 11/19/2022] Open
Abstract
The oriental armyworm, Mythimna separata, is a major insect pest in China and other Asian countries. Unfortunately, suitable reference genes for quantitative real-time PCR (qRT-PCR) have not been previously identified in M. separata for normalizing target gene expression. In this study, we evaluated the expression stability of eight candidate genes (18S, ACT, EF1-α, GAPDH, RPS7, RPS13, RPL32 and TUB) in M. separata using the comparative ΔCt method, BestKeeper, Normfinder geNorm and ReFinder, a comprehensive software platform. The results indicated that the appropriate reference gene varied depending on the experimental conditions. We found that ACTIN, EF1-α and TUB were optimal for different developmental stages; TUB, RPS13 and EF1-α showed the most stable expresssion in different tissues; RPS13 and 18S were the best reference genes for monitoring expression under high temperature conditions; TUB, RPS13 and RPS7 exhibited the most stable expression under larval-crowding conditions; RPS7, EF1-α, RPL32 and GAPDH were the best for pesticide exposure experiments. This study provides tools for reliable normalization of qRT-PCR data and forms a foundation for functional studies of target gene expression in M. separata.
Collapse
Affiliation(s)
- Hong-Bo Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
- * E-mail: (HBL); (YFH)
| | - Chang-Geng Dai
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Chang-Rong Zhang
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Yong-Fu He
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
- * E-mail: (HBL); (YFH)
| | - Hai-Yan Ran
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Shi-Hong Chen
- Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, China
| |
Collapse
|