1
|
Malik A, Javaid S, Malik MI, Qureshi S. Relationship between sarcopenia and metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Ann Hepatol 2024; 29:101544. [PMID: 39214253 DOI: 10.1016/j.aohep.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) formerly known as Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease. Identifying MASLD risk factors could help early intervention and reduce the burden of the disease. Previous studies investigated the association between sarcopenia and NAFLD. Several trials were published after the last meta-analysis with indecisive results. This is an updated meta-analysis which aims to assess the association between sarcopenia, MASLD, and MASLD-related fibrosis. MATERIALS AND METHODS Relevant trials published on PubMed, Web of Science, Scopus, and Cochrane Library databases until October 2022 were included. We included studies in which skeletal mass index (SMI) or sarcopenia was compared between patients with and without NAFLD now MASLD. Also, studies comparing fibrosis between MASLD patients with and without sarcopenia were included. Data were pooled as odds ratios (ORs) and 95 % confidence intervals (CIs) using Review Manager Software. RESULTS A total of 25 studies were included. The incidence of sarcopenia was significantly higher in MASLD than controls (OR, 1.25; 95 % CI, 1.08-1.44; P = 0.003). SMI odds showed no significant difference between MASLD patients and controls (OR, 1.02; 95 % CI, 0.91-1.15; P = 0.7). MASLD patients with sarcopenia had higher odds of fibrosis than MASLD patients without sarcopenia (OR, 1.49; 95 % CI, 1.03-2.14; P = 0.03). CONCLUSIONS Sarcopenia increased MASLD's probability and was associated with a higher probability of liver fibrosis in MASLD patients. However, SMI had no predictive value of MASLD occurrence.
Collapse
Affiliation(s)
- Adnan Malik
- Mountain Vista Medical Center, Mesa Arizona, USA.
| | | | | | | |
Collapse
|
2
|
Mahmoudi A, Jalili A, Butler AE, Aghaee-Bakhtiari SH, Jamialahmadi T, Sahebkar A. Exploration of the Key Genes Involved in Non-alcoholic Fatty Liver Disease and Possible MicroRNA Therapeutic Targets. J Clin Exp Hepatol 2024; 14:101365. [PMID: 38433957 PMCID: PMC10904918 DOI: 10.1016/j.jceh.2024.101365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Background MicroRNAs (miRNAs) are promising therapeutic agents for non-alcoholic fatty liver disease (NAFLD). This study aimed to identify key genes/proteins involved in NAFLD pathogenesis and progression and to evaluate miRNAs influencing their expression. Methods Gene expression profiles from datasets GSE151158, GSE163211, GSE135251, GSE167523, GSE46300, and online databases were analyzed to identify significant NAFLD-related genes. Then, protein-protein interaction networks and module analysis identified hub genes/proteins, which were validated using real-time PCR in oleic acid-treated HepG2 cells. Functional enrichment analysis evaluated signaling pathways and biological processes. Gene-miRNA interaction networks identified miRNAs targeting critical NAFLD genes. Results The most critical overexpressed hub genes/proteins included: TNF, VEGFA, TLR4, CYP2E1, ACE, SCD, FASN, SREBF2, and TGFB1 based on PPI network analysis, of which TNF, TLR4, SCD, FASN, SREBF2, and TGFB1 were up-regulated in oleic acid-treated HepG2 cells. Functional enrichment analysis for biological processes highlighted programmed necrotic cell death, lipid metabolic process response to reactive oxygen species, and inflammation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the highest adjusted P-value signaling pathways encompassed AGE-RAGE in diabetic complications, TNF, and HIF-1 signaling pathways. In gene-miRNA network analysis, miR-16 and miR-124 were highlighted as the miRNAs exerting the most influence on important NAFLD-related genes. Conclusion In silico analyses identified NAFLD therapeutic targets and miRNA candidates to guide further experimental investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Seyed H. Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Almohaid S, Akhtar S. Diet, lifestyle factors, comorbidities, and hepatocellular carcinoma risk in a middle eastern country: a case-control study. BMC Cancer 2024; 24:694. [PMID: 38844890 PMCID: PMC11157712 DOI: 10.1186/s12885-024-12409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) can be classified as one of the most common malignancies worldwide. There is scarcity of the published data on the risk factors for HCC in the Gulf Cooperation Council countries specifically Kuwait. Therefore, this case-control study sought to examine the risk factors associated with HCC in Kuwait. METHODS Fifty-three histopathologically confirmed HCC cases were recruited from the Kuwait Cancer Control Center Registry. One hundred ninety-six controls (1:4 ratio) were selected from medical and/ or surgical outpatient's clinics at all six public hospitals of Kuwait. A structured questionnaire was used to collect the data both from cases and controls through face-to-face interviews. A multivariable logistic regression model was fitted to the case-control data. Adjusted odds ratios (ORadj) and their 95% confidence intervals (CI) were computed using the parameters' estimates of the final model and used for interpretation of the model. RESULTS The HCC cases compared with the controls were 41.6 times more likely to have had the history of non-alcoholic fatty liver disease (NAFLD) (ORadj = 41.6; 95% CI: 8.9-193.5; p < 0.001). The cases compared with the controls were more likely to have reported the history of heavy alcohol drinking (ORadj = 14.2; 95% CI: 1.2-173.4; p = 0.038). Furthermore, compared with the controls, the HCC cases tended to frequently consume milk and/or milk substitutes (≥ 3 glass/ week) (ORadj = 7.2; 95% CI: 1.2-43.4). Conversely however, there was a significant protective effect if the participants reportedly have had regularly used olive oil in their routine diet as a source of fat (ORadj = 0.17; 95% CI: 0.04-0.80) or regularly used non-steroid anti-inflammatory drugs (NSAIDs) (ORadj = 0.20; 95% CI: 0.05-0.71). CONCLUSIONS This study showed that heavy alcohol consumption, NAFLD history, and excessive consumption of milk/ milk substitutes were associated with a significantly increased HCC risk. Conversely however, regular use of olive oil in the diet as a source of fat or regular use of NSAIDs had a significantly protective effect against HCC risk. Adapting healthy dietary habits and preventing/ treating NAFLD may minimize the HCC risk. Future research with a larger sample size may contemplate validating the results of this study and unraveling additional risk factors contributing to HCC risk. The resultant data may help design and implement evidence-based educational programs for the prevention of HCC in this and other similar settings.
Collapse
Affiliation(s)
- Shaimaa Almohaid
- Department of Community Medicine and Behavioural Sciences, College of Medicine, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Saeed Akhtar
- Department of Community Medicine and Behavioural Sciences, College of Medicine, Kuwait University, PO Box 24923, Safat, 13110, Kuwait.
| |
Collapse
|
4
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Mahmoudi A, Jalili A, Aghaee-Bakhtiari SH, Oskuee RK, Butler AE, Rizzo M, Sahebkar A. Analysis of the therapeutic potential of miR-124 and miR-16 in non-alcoholic fatty liver disease. J Diabetes Complications 2024; 38:108722. [PMID: 38503000 DOI: 10.1016/j.jdiacomp.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFβ-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Calixto-Tlacomulco S, Luna-Reyes I, Delgado-Coello B, Gutiérrez-Vidal R, Reyes-Grajeda JP, Mas-Oliva J. CETP-derived Peptide Seq-1, the Key Component of HB-ATV-8 Vaccine Prevents Stress Responses, and Promotes Downregulation of Pro-Fibrotic Genes in Hepatocytes and Stellate Cells. Arch Med Res 2024; 55:102937. [PMID: 38301446 DOI: 10.1016/j.arcmed.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-β, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-β genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
| | - Ismael Luna-Reyes
- Cellular Physiology Institute, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Delgado-Coello
- Cellular Physiology Institute, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roxana Gutiérrez-Vidal
- Researchers Program for Mexico CONAHCYT, Mexico City, Mexico; Laboratory of Metabolic Diseases, Cinvestav Unidad Monterey, Apodaca, Nuevo León, Mexico
| | | | - Jaime Mas-Oliva
- Cellular Physiology Institute, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
7
|
Gallagher K, Bernstein I, Collings C, Main D, Ahmad G, Naughton S, Daddam J, Mavangira V, Vandehaar M, Zhou Z. Abomasal infusion of branched-chain amino acids or branched-chain keto-acids alter lactation performance and liver triglycerides in fresh cows. J Anim Sci Biotechnol 2024; 15:13. [PMID: 38281954 PMCID: PMC10823655 DOI: 10.1186/s40104-023-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Dairy cows are at high risk of fatty liver disease in early lactation, but current preventative measures are not always effective. Cows with fatty liver have lower circulating branched-chain amino acid (BCAA) concentrations whereas cows with high circulating BCAA levels have low liver triglyceride (TG). Our objective was to determine the impact of BCAA and their corresponding ketoacids (branched-chain ketoacids, BCKA) on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum. METHODS Thirty-six multiparous Holstein cows were used in a randomized block design experiment. Cows were abomasally infused for the first 21 d postpartum with solutions of 1) saline (CON, n = 12); 2) BCA (67 g valine, 50 g leucine, and 34 g isoleucine, n = 12); and 3) BCK (77 g 2-ketovaline calcium salt, 57 g 2-ketoleucine calcium salt, and 39 g 2-ketoisoleucine calcium salt, n = 12). All cows received the same diet. Treatment effects were determined using PROC GLIMMIX in SAS. RESULTS No differences were detected for body weight, body condition score, or dry matter intake averaged over the first 21 d postpartum. Cows receiving BCK had significantly lower liver TG concentrations compared to CON (6.60% vs. 4.77%, standard error of the mean (SEM) 0.49) during the first 3 weeks of lactation. Infusion of BCA increased milk yield (39.5 vs. 35.3 kg/d, SEM 1.8), milk fat yield (2.10 vs. 1.69 kg/d, SEM 0.08), and lactose yield (2.11 vs. 1.67 kg/d, SEM 0.07) compared with CON. Compared to CON, cows receiving BCA had lower plasma glucose (55.0 vs. 59.2 mg/dL, SEM 0.86) but higher β-hydroxybutyrate (9.17 vs. 6.00 mg/dL, SEM 0.80). CONCLUSIONS Overall, BCAA supplementation in this study improved milk production, whereas BCKA supplementation reduced TG accumulation in the liver of fresh cows.
Collapse
Affiliation(s)
- Kristen Gallagher
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Isabelle Bernstein
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Cynthia Collings
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - David Main
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Ghayyoor Ahmad
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Sarah Naughton
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Jayasimha Daddam
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Vengai Mavangira
- Department of Veterinary Diagnostic and Production Animal Medicine, Ames, 50011, USA
| | - Mike Vandehaar
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA.
| |
Collapse
|
8
|
Yang H, Zhang T, Song W, Peng Z, Zhu Y, Huang Y, Li X, Zhang Z, Tang M, Yang W. Dietary inflammatory potential is associated with higher odds of hepatic steatosis in US adults: a cross-sectional study. Public Health Nutr 2023; 26:2936-2944. [PMID: 37807893 PMCID: PMC10755422 DOI: 10.1017/s1368980023001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Inflammation plays a critical role in the progression of chronic liver diseases, and diet can modulate inflammation. Whether an inflammatory dietary pattern is associated with higher risk of hepatic steatosis or fibrosis remains unclear. We aimed to investigate the associations between inflammatory dietary pattern and the odds of hepatic steatosis and fibrosis. DESIGN In this nationwide cross-sectional study, diet was measured using two 24-h dietary recalls. Empirical dietary inflammatory pattern (EDIP) score was derived to assess the inflammatory potential of usual diet, which has been validated to highly predict inflammation markers in the study population. Controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) were derived from FibroScan to define steatosis and fibrosis, respectively. SETTING US National Health and Nutrition Examination Survey. PARTICIPANTS 4171 participants aged ≥18 years. RESULTS A total of 1436 participants were diagnosed with S1 steatosis (CAP ≥ 274 dB/m), 255 with advanced fibrosis (LSM ≥ 9·7 kPa). Compared with those in the lowest tertile of EDIP-adherence scores, participants in the highest tertile had 74 % higher odds of steatosis (OR: 1·74, 95 % CI (1·26, 2·41)). Such positive association persisted among never drinkers, or participants who were free of hepatitis B and/or C. Similarly, EDIP was positively associated with CAP in multivariate linear model (P < 0·001). We found a non-significant association of EDIP score with advanced fibrosis or LSM (P = 0·837). CONCLUSIONS Our findings suggest that a diet score that is associated with inflammatory markers is associated with hepatic steatosis. Reducing or avoiding pro-inflammatory diets intake might be an attractive strategy for fatty liver disease prevention.
Collapse
Affiliation(s)
- Hu Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People’s Republic of China
| | - Tengfei Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| | - Wen Song
- Department of Interventional Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhaohong Peng
- Department of Interventional Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yu Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| | - Yong Huang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| | - Xiude Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| | - Min Tang
- Department of Gastroenterology and Hepatology and Clinical Nutrition, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230032, People’s Republic of China
| |
Collapse
|
9
|
Solanki N, Patel R. Unraveling the mechanisms of trans-cinnamic acid in ameliorating non-alcoholic fatty liver disease. Am J Transl Res 2023; 15:5747-5756. [PMID: 37854239 PMCID: PMC10579026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing significantly due to high amounts of fat and fructose in the diet. Phytochemicals present in herbal plants and nutrients present in food play vital roles in the management of NAFLD. One of these is trans-cinnamic acid (TCA). We are evaluate the role of TCA in NAFLD induced by a high-fat, high-fructose diet. METHODOLOGY Rats fed a high-fat, high-fructose (HFHF) diet for ten weeks exhibited distinct signs of NAFLD. Rats were given TCA (10 mg/kg, 20 mg/kg, and 40 mg/kg) and pioglitazone (10 mg/kg) for four weeks along with a HFHF diet. At the end, body weight, food intake, liver, lipid measurements, TNF-α, antioxidants, and histopathology were evaluated. RESULTS TCA significantly decreased serum glutamic-oxaloacetic transaminase and glutamic pyruvic transaminase in rats. Serum cholesterol, triglyceride, and low-density lipid levels were substantially decreased in TCA-treated rats compared to diseased controls. Superoxide dismutase, glutathione, and malondialdehyde were significantly decreased in rats treated with a high dose of TCA (40 mg/kg) compared to HFFD-fed rats. HFFD-fed rats exhibited fatty liver alterations, whereas rats treated with TCA exhibited significantly fewer morphologic changes associated with fatty liver disease. TCA at a high dose exhibited decreased TNF-α levels, thereby decreasing hepatic inflammation. CONCLUSION TCA proved its role in the treatment of NAFLD by substantially reducing liver enzymes, pro-inflammatory markers (TNF-α), and lipid markers. Inclusion of TCA as a therapeutic regimen alongside diet-based treatment undoubtedly has therapeutic potential in NAFLD and related diseases.
Collapse
Affiliation(s)
- Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus Changa 388421, Gujarat, India
| | - Riya Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus Changa 388421, Gujarat, India
| |
Collapse
|
10
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
11
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
12
|
Tejada Nunes V, Gonçalves IL, Martinez Oliveira P, Lima Feksa D, Muller de Moura Sarmento S, Erminda Schreiner G, Klock C, Casanova Petry C, da Costa Escobar Piccoli J, Manfredini V, Casagrande Denardin C. Aqueous extract of pummelo pulp (Citrus maxima) improves the biochemical profile and reduces the inflammation process in Wistar rats with non-alcoholic fatty liver disease. Food Chem Toxicol 2023; 178:113933. [PMID: 37419271 DOI: 10.1016/j.fct.2023.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
This study investigated the effect of pummelo extract (Citrus maxima) on biochemical, inflammatory, antioxidant and histological changes in NAFLD rats. Forty male Wistar rats divided into four groups were used: (1) control group; (2) fructose associated with high-fat diet - DHF; (3) normal diet + pummelo extract (50 mg/kg); and (4) FHD + pummelo extract. This was administered at dose of 50 mg/kg of the animal's weight, by gavage, for 45 days. Significant improvement in lipid profile, liver and kidney function, inflammation, oxidative stress markers was identified in group 4 compared to group 2. Regarding TNF-α and IL-1β, group 2 showed higher values (respectively 142, 5 ± 0.7 and 560.5 ± 2.7 pg/mg protein) compared to group 4 (respectively 91.4 ± 0.9 and 402.1.4 ± 0.9 pg/mg protein), p < 0.05. Significant increases were found in SOD and CAT activities, respectively 0.10 ± 0.06 and 8.62 ± 1.67 U/mg protein for group 2 and respectively 0.28 ± 0.08 and 21.52 ± 2.28 U/mg of protein for group 4. Decreases in triglycerides, hepatic cholesterol and fat droplets in hepatic tissue were observed in group 4 compared to group 2. Results highlight that pummelo extract may be useful for prevent the development of NAFLD.
Collapse
Affiliation(s)
- Vinícius Tejada Nunes
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil.
| | - Itamar Luís Gonçalves
- Faculdade de Medicina, Universidade Regional Integrada Alto Uruguai e Missões, Sete de Setembro Avenue, 1621, Erechim, Rio Grande do Sul, Brazil
| | - Patricia Martinez Oliveira
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Denise Lima Feksa
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Sílvia Muller de Moura Sarmento
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Gênifer Erminda Schreiner
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Clóvis Klock
- Grupo Infolaudo e Medicina Diagnóstica, Erechim, Rio Grande do Sul, Brazil
| | | | | | - Vanusa Manfredini
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Cristiane Casagrande Denardin
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Shatta MA, El-Derany MO, Gibriel AA, El-Mesallamy HO. Rhamnetin ameliorates non-alcoholic steatosis and hepatocellular carcinoma in vitro. Mol Cell Biochem 2023; 478:1689-1704. [PMID: 36495373 PMCID: PMC10267014 DOI: 10.1007/s11010-022-04619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver (NAFLD) is a widespread disease with various complications including Non-alcoholic steatohepatitis (NASH) that could lead to cirrhosis and ultimately hepatocellular carcinoma (HCC). Up till now there is no FDA approved drug for treatment of NAFLD. Flavonoids such as Rhamnetin (Rhm) have been ascribed effective anti-inflammatory and anti-oxidative properties. Thus, Rhm as a potent flavonoid could target multiple pathological cascades causing NAFLD to prevent its progression into HCC. NAFLD is a multifactorial disease and its pathophysiology is complex and is currently challenged by the 'Multiple-hit hypothesis' that includes wider range of comorbidities rather than previously established theory of 'Two-hit hypothesis'. Herein, we aimed at establishing reliable in vitro NASH models using different mixtures of variable ratios and concentrations of oleic acid (OA) and palmitic acid (PA) combinations using HepG2 cell lines. Moreover, we compared those models in the context of oil red staining, triglyceride levels and their altered downstream molecular signatures for genes involved in de novo lipogenesis, inflammation, oxidative stress and apoptotic machineries as well. Lastly, the effect of Rhm on NASH and HCC models was deeply investigated. Over the 10 NASH models tested, PA 500 µM concentration was the best model to mimic the molecular events of steatosis induced NAFLD. Rhm successfully ameliorated the dysregulated molecular events caused by the PA-induced NASH. Additionally, Rhm regulated inflammatory and oxidative machinery in the HepG2 cancerous cell lines. In conclusion, PA 500 µM concentration is considered an effective in vitro model to mimic NASH. Rhm could be used as a promising therapeutic modality against both NASH and HCC pathogenesis.
Collapse
Affiliation(s)
- Mahmoud A Shatta
- Department of Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Abdullah A Gibriel
- Department of Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Hala O El-Mesallamy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Dean of Faculty of Pharmacy, Sinai University, North Sinai, 45518, Egypt
| |
Collapse
|
14
|
Athesh K, Agnel Arul John N, Sridharan G, Brindha P, Alanazi AM, Rengasamy KRR, Balamuralikrishnan B, Liu WC, Vijaya Anand A. Protective Effect of Dolichos biflorus Seed Extract on 3T3-L1 Preadipocyte Differentiation and High-Fat Diet-Induced Obesity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1-14. [DOI: 10.1155/2023/6251200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Obesity is known to be one of the severe health issues worldwide, as its prevalence continues to rise as well as its association with other chronic diseases worsens. Even though various approaches have been underway to prevent or treat obesity, alternative approaches are in need to combat this chronic condition because of the unsatisfactory effectiveness and adverse side effects of the existing approaches. Dolichos biflorus L. seeds have been employed as a weight-loss treatment in folk medicine. Considering the necessity to develop a safe alternative remedy to rising obesity, the current investigation has been set up to assess the antiobesity potential and the mode of action of the aqueous seed extract of D. biflorus (ASEDB) in a cell line (3T3-L1) and high-fat diet (HFD)-induced rats. For in-vitro studies, 3T3-L1 cell lines were cultured in Dulbecco’s modified Eagle medium (DMEM) augmented with adipogenic-inducing medium and the influence of the extract (10 µg/mL–500 µg/mL) on 3T3-L1 adipocyte viability, adipogenesis, and lipolysis was assessed. An in-vitro study revealed maintenance of cell viability, reduced triglycerides (TG) accumulation, and promoted lipolysis in 3T3-L1 cells by ASEDB. Following in-vitro analysis, the HFD-induced obese rats were treated with ASEDB at different concentrations (100 mg/kg, 200 mg/kg, and 300 mg/kg) for 60 days and the effect was evaluated through various anthropometric and biochemical parameters. The findings revealed a significant decrement in total body weight, organ weights, fat pad weights, and restoration of abnormal levels of glucose, leptin, insulin, lipid markers, and antioxidant system to normal by ASEDB treatment. Also, pancreatic lipase inhibition analysis of ASEDB revealed a modest level of inhibition with an IC50 value of 213.3 µg/mL. All these findings exposed that ASEDB possesses pronounced antiobesity potential and exhibits its protective effect by suppressing food intake, reducing fat digestion and absorption, limiting adipogenesis, enhancing lipolysis, and alleviating oxidative stress.
Collapse
Affiliation(s)
- Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamil Nadu, India
| | - Nayagam Agnel Arul John
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamil Nadu, India
| | - Pemiah Brindha
- The Centre for Advanced Research in Indian Systems of Medicine (CARISM), SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Amer M. Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kannan R. R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
15
|
Chen Y, Wang Y, Cui Z, Liu W, Liu B, Zeng Q, Zhao X, Dou J, Cao J. Endocrine disrupting chemicals: A promoter of non-alcoholic fatty liver disease. Front Public Health 2023; 11:1154837. [PMID: 37033031 PMCID: PMC10075363 DOI: 10.3389/fpubh.2023.1154837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder. With the improvement in human living standards, the prevalence of NAFLD has been increasing in recent years. Endocrine-disrupting chemicals (EDCs) are a class of exogenous chemicals that simulate the effects of hormones in the body. There has been growing evidence regarding the potential effects of EDCs on liver health, especially in NAFLD. This paper aims to summarize the major EDCs that contribute to the growing burden of NAFLD and to raise public awareness regarding the hazards posed by EDCs with the objective of reducing the incidence of NAFLD.
Collapse
|
16
|
Yu L, Zhao R, Wang C, Zhang C, Chu C, Zhao J, Zhang H, Zhai Q, Chen W, Zhang H, Tian F. Effects of garlic supplementation on non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Manoppo JIC, Pateda V, Prayogo C, Langi FLFG, Nurkolis F, Tsopmo A. Relationships of 25-hydroxyvitamin D levels and non-alcoholic fatty liver disease in obese children: A possible strategy to promote early screening of NAFLD. Front Nutr 2022; 9:1025396. [PMID: 36407527 PMCID: PMC9667029 DOI: 10.3389/fnut.2022.1025396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 09/29/2023] Open
Affiliation(s)
- Jeanette Irene Christiene Manoppo
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Vivekenanda Pateda
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Cindy Prayogo
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | | | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, Indonesia
| | | |
Collapse
|
18
|
Saponaro C, Sabatini S, Gaggini M, Carli F, Rosso C, Positano V, Armandi A, Caviglia GP, Faletti R, Bugianesi E, Gastaldelli A. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int 2022; 42:2418-2427. [PMID: 35900229 DOI: 10.1111/liv.15377] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disorder, but the factors that determine this heterogeneity remain poorly understood. Adipose tissue dysfunction is causally linked to NAFLD since it causes intrahepatic triglyceride (IHTG) accumulation through increased hepatic lipid flow, due to insulin resistance and pro-inflammatory adipokines release. While many studies in NAFLD have looked at total adiposity (i.e. mainly subcutaneous fat, SC-AT), it is still unclear the possible impact of visceral fat (VF). Thus, we investigated how VF versus SC-AT was related to NAFLD severity in lean, overweight and obese individuals versus lean controls. METHODS Thirty-two non-diabetic NAFLD with liver biopsy (BMI 21.4-34.7 kg/m2 ) and eight lean individuals (BMI 19.6-22.8 kg/m2 ) were characterized for fat distribution (VF, SC-AT and IHTG by magnetic resonance imaging), lipolysis and insulin resistance by tracer infusion, free fatty acids (FFAs) and triglyceride (TAG) concentration and composition (by mass spectrometry). RESULTS Intrahepatic triglyceride was positively associated with lipolysis, adipose tissue insulin resistance (Adipo-IR), TAG concentrations, and increased saturated/unsaturated FFA ratio. Compared to controls VF was higher in NAFLD (including lean individuals), increased with fibrosis stage and associated with insulin resistance in liver, muscle and adipose tissue, increased lipolysis and decreased adiponectin levels. Collectively, our results suggest that VF accumulation, given its location close to the liver, is one of the major risk factors for NAFLD. CONCLUSIONS These findings propose VF as an early indicator of NAFLD progression independently of BMI, which may allow for evidence-based prevention and intervention strategies.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy.,University of Lille, CHU Lille, Inserm U1190, EGID, Lille, France
| | - Silvia Sabatini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Angelo Armandi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
19
|
Asaoka R, Obana A, Murata H, Fujino Y, Omoto T, Aoki S, Muto S, Takayanagi Y, Inoue T, Tanito M. The Association Between Age and Systemic Variables and the Longitudinal Trend of Intraocular Pressure in a Large-Scale Health Examination Cohort. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36301531 PMCID: PMC9624273 DOI: 10.1167/iovs.63.11.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The detailed effects of age and systemic factors on intraocular pressure (IOP) have not been fully understood because of the lack of a large-scale longitudinal investigation. This study aimed to investigate the effect of various systemic factors on the longitudinal change of IOP. Methods There were a total of 20,909 eyes of 10,471 subjects from a health checkup cohort that were followed up for systemic factors: (i) age at baseline, (ii) sex, (iii) time series body mass index (BMI), (iv) time series smoking habits, (v) time series systolic and diastolic blood pressures (SBP and DBP), and (vi) time series 19 blood examinations (all of the time series data was acquired at each annual visit), along with IOP annually for at least 8 years. Then the longitudinal effect of the systemic factors on the change of IOP was investigated. Results IOP significantly decreased by −0.084 mm Hg/year. BMI, SBP, DBP, smoking habits, total triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and glycosylated hemoglobin A1c were not significantly associated with the change of IOP. Higher values of age, aspartate aminotransferase, hemoglobin, platelet, and calcium were suggested to be significantly associated with the decrease of IOP, whereas higher alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and female gender were significantly associated with the increase of IOP. Conclusions Age, aspartate aminotransferase, hemoglobin, platelet, calcium, alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and gender were the systemic variables significantly associated with the change of IOP.
Collapse
Affiliation(s)
- Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Seirei Christopher University, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka Japan
| | - Akira Obana
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Hamamatsu BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yuri Fujino
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takashi Omoto
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Shuichiro Aoki
- Department of Ophthalmology, Sapporo City General Hospital, Sapporo, Japan
| | - Shigetaka Muto
- Seirei Center for Health Promotion and Preventive Medicine, Shizuoka, Hamamatsu, Japan
| | - Yuji Takayanagi
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
20
|
Shen K, Singh AD, Modaresi Esfeh J, Wakim-Fleming J. Therapies for non-alcoholic fatty liver disease: A 2022 update. World J Hepatol 2022; 14:1718-1729. [PMID: 36185717 PMCID: PMC9521452 DOI: 10.4254/wjh.v14.i9.1718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rapidly increasing and lifestyle interventions to treat this disease by addressing the underlying metabolic syndrome are often limited. Many pharmacological interventions are being studied to slow or even reverse NAFLD progression. This review for hepatologists aims to provide an updated understanding of the pathogenesis of NAFLD, current recommended therapies, and the most promising treatment options that are currently under development.
Collapse
Affiliation(s)
- Katie Shen
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Achintya D Singh
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Jamile Wakim-Fleming
- Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| |
Collapse
|
21
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Moretti R, Giuffré M, Crocè LS, Gazzin S, Tiribelli C. Nonalcoholic Fatty Liver Disease and Altered Neuropsychological Functions in Patients with Subcortical Vascular Dementia. J Pers Med 2022; 12:jpm12071106. [PMID: 35887603 PMCID: PMC9323787 DOI: 10.3390/jpm12071106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
NAFLD is the most common cause of abnormality in liver function tests. NAFLD is considered a potential cardiovascular risk factor and is linked to cardiovascular risk factors such as obesity, hypertension, type 2 diabetes, and dyslipidemia. Few previous studies have investigated whether NAFLD could be independently associated with cognitive impairment. The current study aims to find a possible role of NAFLD in the development of subcortical vascular dementia (sVaD). We considered NAFLD as a possible independent vascular risk factor or, considering its metabolic role, associated with other commonly accepted sVaD risk factors, i.e., lack of folate, vitamin B12, and vitamin D-OH25, and increased levels of homocysteine. We studied 319 patients diagnosed with sVaD. All patients underwent an abdominal ultrasound examination to classify steatosis into four levels (1-none up to 4-severe). sVaD patients were divided into two groups according to the presence or absence of NAFLD. Our results demonstrated a strong correlation between NAFLD and sVaD. Patients with the two comorbidities had worse neuropsychological outcomes and a worse metabolic profile. We also found a robust relationship between NAFLD and severe vitamin B12, folate, vitamin D hypovitaminosis, and higher hyperhomocysteinemia levels. This way, it is evident that NAFLD contributes to a more severe metabolic pathway. However, the strong relationship with the three parameters (B12, folate and vitamin D, and homocysteinemia) suggests that NAFLD can contribute to a proinflammatory condition.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.M.); (L.S.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.M.); (L.S.C.)
- Italian Liver Foundation, Centro Studi Fegato, 34149 Trieste, Italy; (S.G.); (C.T.)
- Correspondence: ; Tel.: +39-0403-994-044
| | - Lory Saveria Crocè
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.M.); (L.S.C.)
- Italian Liver Foundation, Centro Studi Fegato, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Silvia Gazzin
- Italian Liver Foundation, Centro Studi Fegato, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Centro Studi Fegato, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
23
|
Gravina AG, Romeo M, Pellegrino R, Tuccillo C, Federico A, Loguercio C. Just Drink a Glass of Water? Effects of Bicarbonate–Sulfate–Calcium–Magnesium Water on the Gut–Liver Axis. Front Pharmacol 2022; 13:869446. [PMID: 35837275 PMCID: PMC9274271 DOI: 10.3389/fphar.2022.869446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Fonte Essenziale® water is a bicarbonate–sulfate–calcium–magnesium water, low in sodium, recognized by the Italian health care system in hydropinotherapy and hepatobiliary dyspepsia therapy. We wanted to explore its effects on the gut–liver axis and microbiota in non-alcoholic fatty liver disease patients. Patients and Methods: We considered enrollment for 70 patients, of which four were excluded. We finally enrolled 55 patients with ultrasound-documented steatosis (SPs+) and 11 patients without it (SPs−). They then drank 400 ml of water for 6 months in the morning on an empty stomach. Routine hematochemical and metabolic parameters, oxidative stress parameters, gastrointestinal hormone levels, and fecal parameters of the gut microbiota were evaluated at three different assessment times, at baseline (T0), after 6 months (T6), and after a further 6 months of water washout (T12). We lost, in follow-up, 4 (T6) and 22 (T12) patients. Results: Between T0–T6, we observed a significant Futuin A and Selenoprotein A decrease and a GLP-1 and PYY increase in SPs+ and the same for Futuin A and GLP-1 in SPs−. Effects were lost at T12. In SPs+, between T0–T12 and T6–12, a significant reduction in Blautia was observed; between T0–T12, a reduction of Collinsella unc. was observed; and between T0–T12 and T6–12, an increase in Subdoligranulum and Dorea was observed. None of the bacterial strains we analyzed varied significantly in the SPs− population. Conclusion: These results indicate beneficial effects of water on gastrointestinal hormones and hence on the gut–liver axis in the period in which subjects drank water both in SPs− and in SPs+.
Collapse
|
24
|
Identification of the Potential Molecular Mechanisms Linking RUNX1 Activity with Nonalcoholic Fatty Liver Disease, by Means of Systems Biology. Biomedicines 2022; 10:biomedicines10061315. [PMID: 35740337 PMCID: PMC9219880 DOI: 10.3390/biomedicines10061315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease; nevertheless, no definitive diagnostic method exists yet, apart from invasive liver biopsy, and nor is there a specific approved treatment. Runt-related transcription factor 1 (RUNX1) plays a major role in angiogenesis and inflammation; however, its link with NAFLD is unclear as controversial results have been reported. Thus, the objective of this work was to determine the proteins involved in the molecular mechanisms between RUNX1 and NAFLD, by means of systems biology. First, a mathematical model that simulates NAFLD pathophysiology was generated by analyzing Anaxomics databases and reviewing available scientific literature. Artificial neural networks established NAFLD pathophysiological processes functionally related to RUNX1: hepatic insulin resistance, lipotoxicity, and hepatic injury-liver fibrosis. Our study indicated that RUNX1 might have a high relationship with hepatic injury-liver fibrosis, and a medium relationship with lipotoxicity and insulin resistance motives. Additionally, we found five RUNX1-regulated proteins with a direct involvement in NAFLD motives, which were NFκB1, NFκB2, TNF, ADIPOQ, and IL-6. In conclusion, we suggested a relationship between RUNX1 and NAFLD since RUNX1 seems to regulate NAFLD molecular pathways, posing it as a potential therapeutic target of NAFLD, although more studies in this field are needed.
Collapse
|
25
|
Baars T, Gieseler RK, Patsalis PC, Canbay A. Towards harnessing the value of organokine crosstalk to predict the risk for cardiovascular disease in non-alcoholic fatty liver disease. Metabolism 2022; 130:155179. [PMID: 35283187 DOI: 10.1016/j.metabol.2022.155179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Importantly, NAFLD increases the risk for cardiovascular disease (CVD). A causal relationship has been substantiated. Given the pandemic proportions of NAFLD, a reliable scoring system for predicting the risk of NAFLD-associated CVD is an urgent medical need. We here review cumulative evidence suggesting that systemically released organokines - especially certain adipokines, hepatokines, and cardiokines - may serve this purpose. The underlying rationale is that these signalers directly communicate between white adipose tissue, liver, and heart as key players in the pathogenesis of NAFLD and resultant CVD events. Moreover, evidence suggests that these organ-specific cytokines are secreted in a biologically predetermined, cascade-like pattern. Consequently, upon pinpointing organokines of relevance, we sketch requirements to establish an algorithm predictive of the CVD risk in patients with NAFLD. Such an algorithm, as to be consolidated in the form of an applicable equation, may be improved continuously by machine learning. To the best of our knowledge, such an option has not yet been considered. Establishing and implementing a reliable algorithm for determining the NAFLD-associated CVD risk has the potential to save many NAFLD patients from life-threatening CVD events.
Collapse
Affiliation(s)
- Theodor Baars
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Metabolic and Preventive Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Robert K Gieseler
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Laboratory of Immunology and Molecular Biology, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Polykarpos C Patsalis
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Cardiology and Internal Emergency Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; Section of Hepatology and Gastroenterology, University Hospital, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany.
| |
Collapse
|
26
|
Boulouta A, Aggeletopoulou I, Kanaloupitis S, Tsounis EP, Issaris V, Papantoniou K, Apostolos A, Tsaplaris P, Pastras P, Sotiropoulos C, Tsintoni A, Diamantopoulou G, Thomopoulos K, Michalaki M, Triantos C. The impact of metabolic health on non-alcoholic fatty liver disease (NAFLD). A single center experience. Clin Res Hepatol Gastroenterol 2022; 46:101896. [PMID: 35227957 DOI: 10.1016/j.clinre.2022.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The role of patients' metabolic clinical and biochemical profile in NAFLD has not been extensively explored. AIMS The aim of the study was to assess the role of metabolic health in NAFLD patients and to examine liver disease progression in these populations. METHODS The medical charts of 569 patients diagnosed with fatty liver were thoroughly reviewed; 344 patients were excluded because of other chronic liver diseases. Metabolically healthy people were defined as those who met none of the following criteria: blood pressure ≥ 130/85 mmHg or under hypertension treatment, fasting glucose ≥ 100 mg/dl or under diabetes treatment, serum triglycerides > 150 mg/dl, high density lipoprotein-cholesterol <40/50 mg/dl for men/women. Study participants were followed-up over a median period of 22 months. RESULTS The present observational case-control study included 225 NAFLD patients; 14 (6.2%) were metabolically healthy. Metabolically healthy participants were younger (p = 0.006), had lower age at diagnosis (p = 0.002), lower levels of γ-GT (p = 0.013), fasting glucose (p <0.001) and triglycerides (p <0.001) and higher HDL-cholesterol (p = 0.005) compared to metabolically non-healthy. By the last follow up assessment, 8 metabolically healthy patients had developed dyslipidemia; 1 patient (14.4%) had presented liver disease progression compared to 8 patients (10.5%) from the unhealthy group (p = 0.567). In multivariate analysis, diabetes mellitus (p = 0.017) and hemoglobin levels (p = 0.009) were the sole independent predictors of disease progression. No significant difference was observed in liver disease progression-free survival rates among the two patient groups (p = 0.503). CONCLUSIONS Metabolically healthy NAFLD patients presented with a favorable biochemical profile; however, they were diagnosed with NAFLD at a younger age and the liver disease progression risk was similar to that of metabolically unhealthy patients. These findings suggest that metabolically healthy NAFLD may not constitute a benign condition and patients could potentially be at increased risk of metabolic syndrome and liver disease progression.
Collapse
Affiliation(s)
- Anna Boulouta
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Stavros Kanaloupitis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Vasileios Issaris
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Konstantinos Papantoniou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Anastasios Apostolos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Paraskevas Tsaplaris
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Ploutarchos Pastras
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Christos Sotiropoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Aggeliki Tsintoni
- Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Georgia Diamantopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Marina Michalaki
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece.
| |
Collapse
|
27
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
28
|
Akbari S, Sohouli MH, Ebrahimzadeh S, Ghanaei FM, Hosseini AF, Aryaeian N. Effect of rosemary leaf powder with weight loss diet on lipid profile, glycemic status, and liver enzymes in patients with nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. Phytother Res 2022; 36:2186-2196. [PMID: 35318738 DOI: 10.1002/ptr.7446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Experimental and some clinical studies have shown beneficial effects of rosemary leaf on liver function and biochemical parameters. The present study aimed to examine the impact of rosemary leaf powder with a weight loss diet in patients with nonalcoholic fatty liver disease. In a randomized double-blinded clinical trial, 110 patients were randomly assigned to receive either 4 g rosemary leaf or placebo (starch) powders for 8 weeks. In addition, all participants in the study were given weight loss diet and physical activity recommendations. Compared with baseline, alanine aminotransferase (p < .001), aspartate aminotransferase (p < .001), alkaline phosphatase (p < .001), gamma glutamyltransferase (p < .001), fasting blood glucose (p < .001), fasting insulin (p < .001), insulin resistance (p < .001), total cholesterol (p = .003), triglyceride (p < .001), low-density lipoprotein cholesterol (p < .001), and anthropometric indices (weight, body mass index, and waist circumferences) decreased significantly in the rosemary and placebo group with weight loss. However, after 8 weeks, no significant difference between the rosemary and placebo groups was detected in the variables as mentioned above except homeostasis model assessment of β-cell dysfunction (p = .014). The findings of the current clinical trial study revealed that rosemary group did produce changes, but they were not statistically different from those produced by the diet/activity intervention alone.
Collapse
Affiliation(s)
- Shayan Akbari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Ebrahimzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Agha Fatemeh Hosseini
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13680. [PMID: 34519030 PMCID: PMC9285505 DOI: 10.1111/eci.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS This narrative review is based on literature search using PubMed. RESULTS From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.
Collapse
Affiliation(s)
- Inês Mateus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Carina Prip-Buus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| |
Collapse
|
30
|
Khalifa O, Al-Akl NS, Errafii K, Arredouani A. Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/-catenin signaling pathway. Sci Rep 2022; 12:2226. [PMID: 35140289 PMCID: PMC8828858 DOI: 10.1038/s41598-022-06143-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating the cells with 400 µM oleic acid (OA) overnight. Further treatment with 200 nM Ex-4 for 3 h significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of β-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/β-catenin pathway. Additionally, after β-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake and transport via FABP1 downregulation.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Neyla S Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
31
|
Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci 2022; 23:ijms23010498. [PMID: 35008925 PMCID: PMC8745668 DOI: 10.3390/ijms23010498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, and enlargement of the diameter of hepatocytes (ballooning hepatocytes), with or without fibrosis. It affects 20% of patients with non-alcoholic fatty liver disease (NAFLD). Due to liver dysfunction and the numerous metabolic changes that commonly accompany the condition (obesity, insulin resistance, type 2 diabetes, and metabolic syndrome), the secretion of organokines is modified, which may contribute to the pathogenesis or progression of the disease. In this sense, this study aimed to perform a review of the role of organokines in NASH. Thus, by combining descriptors such as NASH, organokines, oxidative stress, inflammation, insulin resistance, and dyslipidemia, a search was carried out in the EMBASE, MEDLINE-PubMed, and Cochrane databases of articles published in the last ten years. Insulin resistance, inflammation and mitochondrial dysfunction, fructose, and intestinal microbiota were factors identified as participating in the genesis and progression of NASH. Changes in the pattern of organokines secretion (adipokines, myokines, hepatokines, and osteokines) directly or indirectly contribute to aggravating the condition or compromise homeostasis. Thus, further studies involving skeletal muscle, adipose, bone, and liver tissue as endocrine organs are essential to better understand the modulation of organokines involved in the pathogenesis of NASH to advance in the treatment of this disease.
Collapse
|
32
|
Beger HG, Mayer B, Vasilescu C, Poch B. Long-term Metabolic Morbidity and Steatohepatosis Following Standard Pancreatic Resections and Parenchyma-sparing, Local Extirpations for Benign Tumor: A Systematic Review and Meta-analysis. Ann Surg 2022; 275:54-66. [PMID: 33630451 DOI: 10.1097/sla.0000000000004757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess metabolic dysfunctions and steatohepatosis after standard and local pancreatic resections for benign and premalignant neoplasms. SUMMARY OF BACKGROUND DATA Duodenopancreatectomy, hemipancreatectomy, and parenchyma-sparing, limited pancreatic resections are currently in use for nonmalignant tumors. METHODS Medline, Embase, and Cochrane libraries were searched for studies reporting measured data of metabolic functions following PD, pancreatic left resection (PLR), duodenum-sparing pancreatic head resection (DPPHR), pancreatic middle segment resection (PMSR), and tumor enucleation (TEN). Forty cohort studies comprising data of 2729 patients were eligible. RESULTS PD for benign tumor was associated in 46 of 327 patients (14.1%) with postoperative new onset of diabetes mellitus (pNODM) and in 109 of 243 patients (44.9%) with postoperative new onset of pancreatic exocrine insufficiency measured after a mean follow-up of 32 months. The meta-analysis displayed pNODM following PD in 32 of 204 patients (15.7%) and in 10 of 200 patients (5%) after DPPHR [P < 0.01; OR: 0.33; (95%-CI: 0.15-0.22)]. PEI was found in 77 of 174 patients following PD (44.3%) and in 7 of 104 patients (6.7%) following DPPHR (P < 0.01;OR: 0.15; 95%-CI: 0.07-0.32). pNODM following PLR was reported in 107 of 459 patients (23.3%) and following PMSR 23 of 412 patients (5.6%) (P < 0.01; OR: 0.20; 95%-CI: 0.12-0.32). Postoperative new onset of pancreatic exocrine insufficiency was found in 17% following PLR and in 8% following PMSR (P < 0.01). pNODM following PPPD and tumor enucleation was observed in 19.7% and 5.7% (P < 0.03) of patients, respectively. Following PD/PPPD, 145 of 608 patients (23.8%) developed a nonalcoholic fatty liver disease after a mean follow-up of 30.4 months. Steatohepatosis following DPPHR developed in 2 of 66 (3%) significantly lower than following PPPD (P < 0.01). CONCLUSION Standard pancreatic resections for benign tumor carry a considerable high risk for a new onset of diabetes, pancreatic exocrine insufficiency and following PD for steatohepatosis. Parenchyma-sparing, local resections are associated with low grade metabolic dysfunctions.
Collapse
Affiliation(s)
- Hans G Beger
- c/o University of Ulm, Ulm, Germany
- Center for Oncologic, Endocrine and Minimal Invasive Surgery, Donau-Klinikum, Neu-Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, University of Ulm, Germany
| | - Catalin Vasilescu
- Fundeni Clinical Institute; Department of General Surgery, Bucharest, Romania
| | - Bertram Poch
- Center for Oncologic, Endocrine and Minimal Invasive Surgery, Donau-Klinikum, Neu-Ulm, Germany
| |
Collapse
|
33
|
Serum concentration of fatty acids in children with obesity and nonalcoholic fatty liver disease. Nutrition 2021; 94:111541. [PMID: 34974284 DOI: 10.1016/j.nut.2021.111541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES It has been suggested that circulating fatty acids (FAs) take part in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) in children with obesity. The aims of this study were to evaluate the serum FA concentration in this pediatric population. METHODS The prospective study included 80 children with obesity and suspected liver disease. Patients with viral hepatitis, autoimmune, toxic, and selected metabolic liver diseases were excluded. Criteria for NAFLD diagnosis included liver steatosis in ultrasound as well as elevated alanine transaminase (ALT) serum activity. The total intrahepatic lipid content (TILC) was assessed by magnetic resonance proton spectroscopy (1H-MRS). Fasting serum FA concentrations were measured in all children using gas-liquid chromatography. RESULTS NAFLD was diagnosed in 31 children. Total FA concentration was significantly higher (P < 0.01) in all obese children as well as in obese children with NAFLD compared with controls. In children with NAFLD, a significant, positive correlation was found between total FA concentration and cholesterol (R = 0.47, P < 0.01), triacylglycerols (R = 0.78, P < 0.001), and insulin (R = 0.45, P < 0.011). In a group of children with obesity, TILC correlated positively with saturated FA concentration (R = 0.23, P < 0.05). CONCLUSION Data from the present study do support the hypothesis that FAs are potentially involved in the pathogenesis of NAFLD in children with obesity.
Collapse
|
34
|
Mertens J, De Block C, Spinhoven M, Driessen A, Francque SM, Kwanten WJ. Hepatopathy Associated With Type 1 Diabetes: Distinguishing Non-alcoholic Fatty Liver Disease From Glycogenic Hepatopathy. Front Pharmacol 2021; 12:768576. [PMID: 34759828 PMCID: PMC8573337 DOI: 10.3389/fphar.2021.768576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune destruction of pancreatic β-cells results in the permanent loss of insulin production in type 1 diabetes (T1D). The daily necessity to inject exogenous insulin to treat hyperglycemia leads to a relative portal vein insulin deficiency and potentiates hypoglycemia which can induce weight gain, while daily fluctuations of blood sugar levels affect the hepatic glycogen storage and overall metabolic control. These, among others, fundamental characteristics of T1D are associated with the development of two distinct, but in part clinically similar hepatopathies, namely non-alcoholic fatty liver disease (NAFLD) and glycogen hepatopathy (GlyH). Recent studies suggest that NAFLD may be increasingly common in T1D because more people with T1D present with overweight and/or obesity, linked to the metabolic syndrome. GlyH is a rare but underdiagnosed complication hallmarked by extremely brittle metabolic control in, often young, individuals with T1D. Both hepatopathies share clinical similarities, troubling both diagnosis and differentiation. Since NAFLD is increasingly associated with cardiovascular and chronic kidney disease, whereas GlyH is considered self-limiting, awareness and differentiation between both condition is important in clinical care. The exact pathogenesis of both hepatopathies remains obscure, hence licensed pharmaceutical therapy is lacking and general awareness amongst physicians is low. This article aims to review the factors potentially contributing to fatty liver disease or glycogen storage disruption in T1D. It ends with a proposal for clinicians to approach patients with T1D and potential hepatopathy.
Collapse
Affiliation(s)
- Jonathan Mertens
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Maarten Spinhoven
- Department of Radiology, Antwerp University Hospital, Edegem, Belgium
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium.,CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Wilhelmus J Kwanten
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
35
|
Rezaei S, Tabrizi R, Nowrouzi-Sohrabi P, Jalali M, Shabani-Borujeni M, Modaresi S, Gholamalizadeh M, Doaei S. The Effects of Vitamin D Supplementation on Anthropometric and Biochemical Indices in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Front Pharmacol 2021; 12:732496. [PMID: 34803681 PMCID: PMC8595299 DOI: 10.3389/fphar.2021.732496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Vitamin D was reported to be associated with non-alcoholic fatty liver disease (NAFLD). This systematic review and meta-analysis aimed to investigate the effects of the vitamin D supplementation on anthropometric and biochemical indices in patient with NAFLD. Methods: PubMed, Web of science, Scopus, and Embase databases were explored to identify all randomized controlled trial (RCT) investigating the effects of vitamin D supplementation on anthropometric and biochemical indices in patients with NAFLD. A random-effects model was used to pool weighted mean difference (WMD) and corresponding 95% confidence intervals (CIs). The statistical heterogeneity among the studies was assessed using I2 statistic (high ≥ 50%, low < 50%) and Cochran's Q-test. Results: Sixteen RCTs were included in this meta-analysis. The results identified that high-density lipoprotein-cholesterol (HDL-C) level significantly increased following vitamin D supplementation (P = 0.008). Vitamin D reduced body weight (P = 0.007), body mass index (P = 0.002), waist circumstance (WC) (P = 0.02), serum alanine transaminase (ALT) (P = 0.01), fasting blood sugar (FBS) (P = 0.01), homeostatic model assessment for insulin resistance (HOMA-IR) (P = 0.004), and calcium (P = 0.01). No significant changes were found on body fat, triglyceride (TG), total cholesterol, low-density lipoprotein-cholesterol (LDL-C), aspartate transaminase, alkaline phosphatase, gamma-glutamyl transferase, and adiponectin following vitamin D supplementation. Conclusion: Vitamin D had significant effects on anthropometric and biochemical indices including HDL-C, body weight, BMI, WC, serum ALT, serum FBS, HOMA-IR, and calcium. Vitamin D supplementation can be considered as an effective strategy in management of patients with NAFLD. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Shahla Rezaei
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Peyman Nowrouzi-Sohrabi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Nutrition Research Center, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shabani-Borujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Modaresi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Enviroment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
36
|
The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes. Processes (Basel) 2021. [DOI: 10.3390/pr9111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our body composition is enormously influenced by our lifestyle choices, which affect our health and longevity. Nutrition and physical activities both impact overall metabolic condition, thus, a positive energy balance causes oxidative stress and inflammation, hastening the development of metabolic syndrome. With this knowledge, boosting endogenous and exogenous antioxidants has emerged as a therapeutic strategy for combating metabolic disorders. One of the promising therapeutic inventions is the use of alkaline reduced water (ARW). Aside from its hydrating and non-caloric properties, ARW has demonstrated strong antioxidant and anti-inflammatory properties that can help stabilize physiologic turmoil caused by oxidative stress and inflammation. This review article is a synthesis of studies where we elaborate on the intra- and extracellular effects of drinking ARW, and relate these to the pathophysiology of common metabolic disorders, such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, and some cancers. Highlighting the health-promoting benefits of ARW, we also emphasize the importance of maintaining a healthy lifestyle by incorporating exercise and practicing a balanced diet as forms of habit.
Collapse
|
37
|
Sohrabi M, Gholami A, Amir Kalali B, Khoonsari M, Sahraei R, Nasiri Toosi M, Zamani F, Keyvani H. Are Serum Levels of Nuclear Factor Kappa B and Forkhead Box Protein P3 in Patients with Non-Alcoholic Fatty Liver Disease Related to Severity of Fibrosis? Middle East J Dig Dis 2021; 13:356-362. [PMID: 36606010 PMCID: PMC9489454 DOI: 10.34172/mejdd.2021.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Inflammation has a significant impact on the development and progression of fatty liver diseases.In this study, we aimed to investigate the relation between serum levels of nuclear factor kappa B (NFkB) and Forkhead box protein P3 (FOXP3)with fibrosis severity among patients with non-alcoholic fatty liver disease(NAFLD). METHODS In a prospective study, the patients suspicios of havingfatty liver were enrolled. The exclusion criteria lack of viral hepatitis, autoimmune hepatitis, Wilson's or other known liver diseases,history of liver or biliary surgery,bariatric surgery, and medications that influence liver metabolism. The participantsunderwent liver fibroscan. According to liver fibrosis, the patients weredivided into two groups; 1)fibrosis less than 7.2 KP,2)advanced NAFLD, fibrosis ≥7.3 KP. A10 cc fasting blood sample was taken from each patient for laboratory assessments.The variables between the two groups were compared using Chi-square or Fisher's exact test.The independence of cytokines was assessed by a logistic regression test. RESULTS Totally 90 patients were enrolled.The mean age was 42.21 ± 11 years. Of them, 50 and 47 participants were allocated to groups 1 and 2, respectively. In the univariate analysis, we revealed asignificant difference between age, body mass index (BMI), fasting blood glucose, liver enzymes, total cholesterol, andtriglyceride levels. Also, there was a significant difference betweenthe levels of NFKB and FOXP3 in group one compared with group two of the participants,as FOXP3(9.17 ± 10.0 vs. 18.63 ± 12.9; p < 0.001) and NFKB (1.70 ± 1.70; p < 0.01). After excluding the confounding factors, we observed a significant association between fibrosis level and cytokine levels in logistic regression. CONCLUSION Serum levels of NFKB and FOXP3 increased by advancing liver fibrosis in patients with NAFLD.This is an independent association. The identification of intermediary regulatory factors would be necessary.
Collapse
Affiliation(s)
- Masoudreza Sohrabi
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
,Department of Epidemiology & Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Bahareh Amir Kalali
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
| | - Mahmoodreza Khoonsari
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
| | - Roghieh Sahraei
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
| | - Mohsen Nasiri Toosi
- Liver transplantation Research Center. Imam Khomeini Hospital, Tehran University of Medical Sciences.Tehran iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Disease Research Center (GILDRC), Iran University of Medical Sciences,Tehran, Iran
,Department of Virology, Iran University of Medical Sciences, Tehran, IR Iran
,Corresponding Author: Hossein Keyvani, PhD Department of Virology, Iran University of Medical Sciences, Tehran, IR Iran. Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, IR Iran. Tel : + 98 21 88941831 Fax : + 98 21 88941831
| |
Collapse
|
38
|
Aguiar AJFC, de Queiroz JLC, Santos PPA, Camillo CS, Serquiz AC, Costa IS, Oliveira GS, Gomes AFT, Matias LLR, Costa ROA, Passos TS, Morais AHA. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int J Mol Sci 2021; 22:9968. [PMID: 34576130 PMCID: PMC8470918 DOI: 10.3390/ijms22189968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies have sought new therapies for obesity and liver diseases. This study investigated the effect of the trypsin inhibitor isolated from tamarind seeds (TTI), nanoencapsulated in chitosan and whey protein isolate (ECW), on the liver health status of the Wistar rats fed with a high glycemic index (HGLI) diet. The nanoformulations without TTI (CW) and ECW were obtained by nanoprecipitation technique, physically and chemically characterized, and then administered to the animals. The adult male Wistar rats (n = 20) were allocated to four groups: HGLI diet + water; standard diet + water; HGLI diet + ECW (12.5 mg/kg); and HGLI diet + CW (10.0 mg/kg), 1 mL per gagave, for ten days. They were evaluated using biochemical and hematological parameters, Fibrosis-4 Index for Liver Fibrosis (FIB-4), AST to Platelet Ratio Index (APRI) scores, and liver morphology. Both nanoparticles presented spherical shape, smooth surface, and nanometric size [120.7 nm (ECW) and 136.4 nm (CW)]. In animals, ECW reduced (p < 0.05) blood glucose (17%), glutamic oxalacetic transaminase (39%), and alkaline phosphatase (24%). Besides, ECW reduced (p < 0.05) APRI and FIB-4 scores and presented a better aspect of hepatic morphology. ECW promoted benefits over a liver injury caused by the HGLI diet.
Collapse
Affiliation(s)
- Ana J. F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Jaluza L. C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Alexandre C. Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59.014-545, RN, Brazil;
| | - Izael S. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Course, Potiguar University, Natal 59.056-000, RN, Brazil
| | - Gerciane S. Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Ana F. T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Lídia L. R. Matias
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Rafael O. A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| | - Ana H. A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| |
Collapse
|
39
|
Phytotherapy as Multi-Hit Therapy to Confront the Multiple Pathophysiology in Non-Alcoholic Fatty Liver Disease: A Systematic Review of Experimental Interventions. ACTA ACUST UNITED AC 2021; 57:medicina57080822. [PMID: 34441028 PMCID: PMC8400978 DOI: 10.3390/medicina57080822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is a metabolic condition distinguished by fat deposition in the hepatocytes. It has a prevalence of about 25% worldwide and is associated with other conditions such as diabetes mellitus, obesity, hypertension, etc. Background and Objectives: There is currently no approved drug therapy for NAFLD. Current measures in the management of NAFLD include lifestyle modification such as an increase in physical activity or weight loss. Development of NAFLD involves a number of parallel hits: including genetic predisposition, insulin resistance, disordered lipid metabolism, mitochondrial dysfunction, lipotoxicity, oxidative stress, etc. Herbal therapy may have a role to play in the treatment of NAFLD, due to their numerous bioactive constituents and the multiple pharmacological actions they exhibit. Therefore, this systematic review aims to investigate the potential multi-targeting effects of plant-derived extracts in experimental models of NAFLD. Materials and Methods: We performed a systematic search on databases and web search engines from the earliest available date to 30 April 2021, using relevant keywords. The study included articles published in English, assessing the effects of plant-derived extracts, fractions, or polyherbal mixtures in the treatment of NAFLD in animal models. These include their effects on at least disordered lipid metabolism, insulin resistance/type 2 diabetes mellitus (T2DM), and histologically confirmed steatosis with one or more of the following: oxidative stress, inflammation, hepatocyte injury, obesity, fibrosis, and cardiometabolic risks factors. Results: Nine articles fulfilled our inclusion criteria and the results demonstrated the ability of phytomedicines to simultaneously exert therapeutic actions on multiple targets related to NAFLD. Conclusions: These findings suggest that herbal extracts have the potential for effective treatment or management of NAFLD.
Collapse
|
40
|
Landini L, Rebelos E, Honka MJ. Green Tea from the Far East to the Drug Store: Focus on the Beneficial Cardiovascular Effects. Curr Pharm Des 2021; 27:1931-1940. [PMID: 33138757 DOI: 10.2174/1381612826666201102104902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Evidence from observational and randomized controlled studies showing the potential benefits of green tea on lowering CVD risk has been emerging rapidly during the past few decades. These benefits include reduced risk for major cardiovascular events, lowering of blood pressure, decreased LDL cholesterol levels and weight loss. At the same time, the understanding of the physiological mechanisms behind these alterations is advancing. Consumption of green tea originated from China thousands of years ago, but since then, it expanded all over the world. Recent advances in understanding the role of tea polyphenols, mainly catechins, as mediators of tea's health benefits, have caused the emergence of various types of green tea extracts (GTE) on the market. While taking green tea is generally considered safe, there are concerns about the safety of using tea extracts. The present article reviews the current evidence of green tea consumption leading to reduced CVD risk, its potential biological mechanisms and the safety of using GTE.
Collapse
Affiliation(s)
- Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Sestri Levante GEI, Italy
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | |
Collapse
|
41
|
Leal Yepes FA, Mann S, Overton TR, Behling-Kelly E, Nydam DV, Wakshlag JJ. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J Dairy Sci 2021; 104:10324-10337. [PMID: 34176626 DOI: 10.3168/jds.2021-20265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Essential amino acids (EAA) are critical for multiple physiological processes. Branched-chain amino acid (BCAA) supplementation provides energy substrates, promotes protein synthesis, and stimulates insulin secretion in rodents and humans. Most dairy cows face a protein and energy deficit during the first weeks postpartum and utilize body reserves to counteract this shortage. The objective was to evaluate the effect of rumen-protected BCAA (RP-BCAA; 375 g of 27% l-leucine, 85 g of 48% l-isoleucine, and 91 g of 67% l-valine) with or without oral propylene glycol (PG) administration on markers of liver health status, concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in plasma, and liver triglycerides (TG) during the early postpartum period in dairy cows. Multiparous Holstein cows were enrolled in blocks of 3 and randomly assigned to either the control group or 1 of the 2 treatments from calving until 35 d postpartum. The control group (n = 16) received 200 g of dry molasses per cow/d; the RP-BCAA group (n = 14) received RP-BCAA mixed with 200 g of dry molasses per cow/d; the RP-BCAA plus PG (RP-BCAAPG) group (n = 16) received RP-BCAA mixed with 200 g of dry molasses per cow/d, plus 300 mL of PG, once daily from calving until 7 d in milk (DIM). The RP-BCAA and RP-BCAAGP groups, on average (± standard deviation), were predicted to receive a greater supply of metabolizable protein in the form of l-Leu 27.4 ± 3.5 g/d, l-Ile 15.2 ± 1.8 g/d, and l-Val 24.2 ± 2.4 g/d compared with the control cows. Liver biopsies were collected at d 9 ± 4 prepartum and at 5 ± 1 and 21 ± 1 DIM. Blood was sampled 3 times per week from calving until 21 DIM. Milk yield, dry matter intake, NEFA, BHB, EAA blood concentration, serum chemistry, insulin, glucagon, and liver TG and protein abundance of total and phosphorylated branched-chain ketoacid dehydrogenase E1α (p-BCKDH-E1α) were analyzed using repeated measures ANOVA. Cows in the RP-BCAA and RP-BCAAPG groups had lower liver TG and lower activities of aspartate aminotransferase and glutamate dehydrogenase during the first 21 DIM, compared with control. All cows, regardless of treatment, showed an upregulation of p-BCKDH-E1α at d 5 postpartum, compared with levels at 21 d postpartum. Insulin, Met, and Glu blood concentration were greater in RP-BCAA and RP-BCAAPG compared with control during the first 35 DIM. Therefore, the use of RP-BCAA in combination with PG might be a feasible option to reduce hepatic lipidosis in dairy cows during early lactation.
Collapse
Affiliation(s)
- F A Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853.
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - E Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
42
|
Morelli MC, Rendina M, La Manna G, Alessandria C, Pasulo L, Lenci I, Bhoori S, Messa P, Biancone L, Gesualdo L, Russo FP, Petta S, Burra P. Position paper on liver and kidney diseases from the Italian Association for the Study of Liver (AISF), in collaboration with the Italian Society of Nephrology (SIN). Dig Liver Dis 2021; 53 Suppl 2:S49-S86. [PMID: 34074490 DOI: 10.1016/j.dld.2021.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Liver and kidney are strictly connected in a reciprocal manner, in both the physiological and pathological condition. The Italian Association for the Study of Liver, in collaboration with the Italian Society of Nephrology, with this position paper aims to provide an up-to-date overview on the principal relationships between these two important organs. A panel of well-recognized international expert hepatologists and nephrologists identified five relevant topics: 1) The diagnosis of kidney damage in patients with chronic liver disease; 2) Acute kidney injury in liver cirrhosis; 3) Association between chronic liver disease and chronic kidney disease; 4) Kidney damage according to different etiology of liver disease; 5) Polycystic kidney and liver disease. The discussion process started with a review of the literature relating to each of the five major topics and clinical questions and related statements were subsequently formulated. The quality of evidence and strength of recommendations were graded according to the GRADE system. The statements presented here highlight the importance of strong collaboration between hepatologists and nephrologists for the management of critically ill patients, such as those with combined liver and kidney impairment.
Collapse
Affiliation(s)
- Maria Cristina Morelli
- Internal Medicine Unit for the treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy, Via Albertoni 15, 40138, Bologna, Italy
| | - Maria Rendina
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Policlinic Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, Città della Salute e della Scienza Hospital, University of Torino, Corso Bramante 88, 10126, Torino, Italy
| | - Luisa Pasulo
- Gastroenterology and Transplant Hepatology, "Papa Giovanni XXIII" Hospital, Piazza OMS 1, 24127, Bergamo, Italy
| | - Ilaria Lenci
- Department of Internal Medicine, Hepatology Unit, Tor Vergata University, Rome Viale Oxford 81, 00133, Rome, Italy
| | - Sherrie Bhoori
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Università degli Studi di Milano, Via Commenda 15, 20122, Milano, Italy; Nephrology, Dialysis and Renal Transplant Unit-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Via Commenda 15, 20122 Milano, Italy
| | - Luigi Biancone
- Division of Nephrology Dialysis and Transplantation, Department of Medical Sciences, Città Della Salute e della Scienza Hospital, University of Turin, Corso Bramante, 88-10126, Turin, Italy
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Paolo Russo
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Piazza delle Cliniche, 2 90127, Palermo, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | | |
Collapse
|
43
|
Maier S, Wieland A, Cree-Green M, Nadeau K, Sullivan S, Lanaspa MA, Johnson RJ, Jensen T. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord 2021; 22:351-366. [PMID: 33389543 PMCID: PMC8893229 DOI: 10.1007/s11154-020-09621-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheila Maier
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Wieland
- Division of Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen Nadeau
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelby Sullivan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Jensen
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Endocrinology, University of Colorado, Denver, Denver, CO, USA.
| |
Collapse
|
44
|
Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:4807. [PMID: 34062716 PMCID: PMC8125512 DOI: 10.3390/ijms22094807] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.
Collapse
Affiliation(s)
- Raquel Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - José L. Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile;
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Nereida Josefina Valero-Cedeño
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Teresa Isabel Véliz Castro
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - María P. Díaz Albornoz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Gabriel Cano
- Insitute für Pharmazie, Freie Universitänt Berlin, Königin-Louise-Strabe 2-4, 14195 Berlin, Germany;
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| |
Collapse
|
45
|
Utility of Fatty Liver Index to predict reversion to normoglycemia in people with prediabetes. PLoS One 2021; 16:e0249221. [PMID: 33822783 PMCID: PMC8023449 DOI: 10.1371/journal.pone.0249221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/12/2021] [Indexed: 01/05/2023] Open
Abstract
Background Fatty Liver Index (FLI) is strongly associated with changes in glycemic status and incident Type 2 Diabetes (T2D). The probability of reverting to normoglycemia from a state prediabetes could be determined by FLI, however such relationship remains poorly understood. Aim To determine the clinical interest of using FLI to estimate prediabetes reversion at 5 years in patients with impaired fasting plasma glucose at baseline, and identify those factors associated with changes in FLI, that could contribute to the reversion of prediabetes. Methods This 5-year cohort study included 16,648 Spanish working adults with prediabetes. Prediabetes was defined as fasting plasma glucose (FPG) between 100 and 125 mg/dl according to the ADA criteria, while prediabetes reversion was defined as a FPG <100 mg/dL. The population was classified as: FLI <30 (no hepatic steatosis), FLI 30–59 (intermediate status), and FLI ≥60 (hepatic steatosis). Results At 5 years follow-up, 33.7% of subjects reverted to normoglycemia (annual rate of 6.7%). The adjusted binomial logistic regression model showed that scoring FLI <30 (OR 1.544; 95% CI 1.355–1.759), performing at least 150 min/week of physical activity (OR 4.600; 95% CI 4.088–5.177) and consuming fruits and vegetables daily (OR 1.682; 95% CI 1.526–1.855) were associated with the probability of reverting form prediabetes to normoglycemia. The ROC curve for prediction of reversion showed that FLI (AUC 0.774;95% CI 0.767–0.781) was a better predictor than FPG (AUC 0.656; 95% CI 0.648–0.664). Conclusions Regular physical activity, healthy dietary habits and absence of hepatic steatosis are independently associated with the probability of reversion to normoglycemia in adult workers with prediabetes at baseline. Low FLI values (especially FLI< 30) may be useful to predict the probability of prediabetes reversion, especially in active subjects with healthy eating habits, and thus identify those who might benefit from early lifestyle intervention.
Collapse
|
46
|
Chehrehgosha H, Sohrabi MR, Ismail-Beigi F, Malek M, Reza Babaei M, Zamani F, Ajdarkosh H, Khoonsari M, Fallah AE, Khamseh ME. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther 2021; 12:843-861. [PMID: 33586120 PMCID: PMC7882235 DOI: 10.1007/s13300-021-01011-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION To evaluate the efficacy of empagliflozin compared to pioglitazone in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM). METHODS In this prospective randomized, double-blind, placebo-controlled trial, we assigned 106 patients with NAFLD and T2DM to receive empagliflozin 10 mg (n = 35), pioglitazone 30 mg (n = 34), or placebo (n = 37) for 24 weeks. Liver fat content and liver stiffness were measured using fibroscans. Body composition assessment was performed by dual-energy x-ray absorptiometry (DEXA) scans. The primary end point was change from baseline in liver steatosis, using the controlled attenuation parameter (CAP) score. RESULTS A borderline significant decrease in CAP score was observed with empagliflozin compared to placebo, mean difference: - 29.6 dB/m (- 39.5 to - 19.6) versus - 16.4 dB/m (- 25.0 to - 7.8), respectively; p = 0.05. Using multivariate analysis, we observed a significant reduction in the placebo-corrected change in liver stiffness measurement (LSM) with empagliflozin compared to pioglitazone: - 0.77 kPa (- 1.45, - 0.09), p = 0.02, versus 0.01 kPa (95% CI - 0.70, 0.71, p = 0.98), p for comparison = 0.03. Changes in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), fasting insulin, homeostatic model assessment for insulin resistance (HOMA-IR), HOMA2-IR, fibrosis-4 index (FIB4 index), NAFLD fibrosis score, aspartate aminotransferase to platelet ratio index (APRI), android/gynecoid ratio (A/G ratio), and skeletal muscle index (SMI) were comparable between the two treatment groups, while significant reductions of the body weight and visceral fat area were observed only in the empagliflozin group (p < 0.001 and p = 0.01, respectively) and both were increased in the placebo and pioglitazone groups. There were no serious adverse events in either group. CONCLUSION Treatment for 24 weeks with empagliflozin, in contrast to pioglitazone, was associated with improvement of liver steatosis and fibrosis in patients with NAFLD and T2DM. In addition, body weight and abdominal fat area were decreased in the empagliflozin group. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT), IRCT20190122042450N3.
Collapse
Affiliation(s)
- Haleh Chehrehgosha
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmood Khoonsari
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Afshin Eshghi Fallah
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
47
|
Kim A, Krishnan A, Hamilton JP, Woreta TA. The Impact of Dietary Patterns and Nutrition in Nonalcoholic Fatty Liver Disease. Gastroenterol Clin North Am 2021; 50:217-241. [PMID: 33518166 DOI: 10.1016/j.gtc.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic liver disease worldwide. The prevalence of NAFLD has grown proportionally with the rise in obesity, sedentary lifestyle, unhealthy dietary patterns, and metabolic syndrome. Currently, in the absence of approved pharmacologic treatment, the keystone of treatment is lifestyle modification focused on achieving a weight loss of 7%-10%, cardiovascular exercise, and improving insulin sensitivity. The primary aim of this review is to outline the effect of different dietetic approaches against NAFLD and highlight the important micronutrient components in the management of NAFLD.
Collapse
Affiliation(s)
- Ahyoung Kim
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arunkumar Krishnan
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tinsay A Woreta
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
48
|
Guirguis E, Grace Y, Bolson A, DellaVecchia MJ, Ruble M. Emerging therapies for the treatment of nonalcoholic steatohepatitis: A systematic review. Pharmacotherapy 2021; 41:315-328. [PMID: 33278029 DOI: 10.1002/phar.2489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
To describe the mechanism, efficacy, and safety of novel agents that have reached phase 3 clinical trials for the treatment of biopsy-proven nonalcoholic steatohepatitis (NASH). A literature search was conducted using the PRISMA guidelines of MEDLINE databases (1990 to October 2020) with the following MeSH terms: NASH, nonalcoholic liver disease, fatty liver, liver diseases, steatohepatitis, liver fibrosis; combined with obeticholic acid, FXR agonist, cenicriviroc, CCR5 receptor antagonist, elafibranor, PPAR, selonsertib, ASK-1 inhibitor, resmetirom, THR-β receptor, arachidyl amido cholanoic acid (Aramchol™), and SCD-1 modulator. Results were verified via clinicaltrials.gov, Google Scholar, and Google. Articles were included if the medications of interest had ongoing or completed phase 3 trials in biopsy-proven NASH with outcomes directly related to NASH resolution. Eleven studies were identified involving obeticholic acid (OCA), elafibranor, cenicriviroc, Aramchol, and resmetirom. Two agents have reported data from phase 3 trials: OCA and elafibranor. OCA demonstrated safety and efficacy in NASH with a primary end point of improvement or NASH resolution; a new drug approval has been submitted. Elafibranor failed to show efficacy in NASH in the preliminary report from the RESOLVE-IT trial; however, the study is being extended to reassess outcomes. The remaining agents demonstrated positive results in phase 2b studies and have initiated phase 3 trials. With projections for increased prevalence of patients with NASH and the current lack of treatment options, novel agents with targeted mechanisms could potentially change the treatment landscape. The manufacturer of OCA is first to submit a new drug application for the treatment of NASH. These novel agents may fill a pharmacotherapy gap in patients with NASH and possibly prevent progression to advanced liver disease.
Collapse
Affiliation(s)
- Erenie Guirguis
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Yasmin Grace
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Anthony Bolson
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Matthew J DellaVecchia
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Melissa Ruble
- Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
49
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Non-alcoholic fatty liver disease: An overview of risk factors, pathophysiological mechanisms, diagnostic procedures, and therapeutic interventions. Life Sci 2021; 271:119220. [PMID: 33592199 DOI: 10.1016/j.lfs.2021.119220] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of excessive fat accumulation in the liver, known as steatosis, without alcohol overconsumption. NAFLD can either manifest as simple steatosis or steatohepatitis, known as non-alcoholic steatohepatitis (NASH), which is accompanied by inflammation and possibly fibrosis. Furthermore, NASH might progress to hepatocellular carcinoma. NAFLD and NASH prevalence is in a continuous state of growth, and by 2018, NAFLD became a devastating metabolic disease with a global pandemic prevalence. The pathophysiology of NAFLD and NASH is not fully elucidated, but is known to involve the complex interplay between different metabolic, environmental, and genetic factors. In addition, unhealthy dietary habits and pre-existing metabolic disturbances together with other risk factors predispose NAFLD development and progression from simple steatosis to steatohepatitis, and eventually to fibrosis. Despite their growing worldwide prevalence, to date, there is no FDA-approved treatment for NAFLD and NASH. Several off-label medications are used to target disease risk factors such as obesity and insulin resistance, and some medications are used for their hepatoprotective effects. Unfortunately, currently used medications are not sufficiently effective, and research is ongoing to investigate the beneficial effects of different drugs and phytochemicals in NASH. In this review article, we outline the different risk factors and pathophysiological mechanisms involved in NAFLD, diagnostic procedures, and currently used management techniques.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt.
| |
Collapse
|
50
|
Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients 2021; 13:nu13020351. [PMID: 33503878 PMCID: PMC7910956 DOI: 10.3390/nu13020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity continues to grow rapidly worldwide, posing many public health challenges of the 21st century. Obese subjects are at major risk for serious diet-related noncommunicable diseases, including type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease. Understanding the mechanisms underlying obesity pathogenesis is needed for the development of effective treatment strategies. Dysregulation of incretin secretion and actions has been observed in obesity and related metabolic disorders; therefore, incretin-based therapies have been developed to provide new therapeutic options. Incretin mimetics present glucose-lowering properties, together with a reduction of appetite and food intake, resulting in weight loss. In this review, we describe the physiology of two known incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and their role in obesity and related cardiometabolic disorders. We also focus on the available and incoming incretin-based medications that can be used in the treatment of the above-mentioned conditions.
Collapse
|