1
|
Carstens PS, Brendel H, Villar-Ballesteros ML, Mittag J, Hengst C, Birdir C, Taylor PD, Poston L, Morawietz H. Characterization of human placental fetal vessels in gestational diabetes mellitus. Pflugers Arch 2024:10.1007/s00424-024-03028-6. [PMID: 39384641 DOI: 10.1007/s00424-024-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Gestational diabetes mellitus is one of the most common complications during pregnancy. Its prevalence is rapidly increasing worldwide. Gestational diabetes mellitus is leading to an elevated risk for the development of endothelial dysfunction and cardiovascular diseases both in the mother and the child in later life. The underlying pathophysiological mechanisms are not well-understood. Therefore, we aimed to characterize the endothelial function in fetal placental vessels from mothers with gestational diabetes mellitus. In this study, we distinguished between insulin-treated and diet-controlled gestational diabetes mothers and compared them to a normoglycemic control group. The clinical data confirmed pre-conceptional overweight as a risk factor in women with insulin-treated gestational diabetes mellitus. The insulin-treated gestational diabetes group was also characterized by a recent family history of diabetes compared to mothers of the control or diet-controlled gestational diabetes group. Analyses of blood serum from umbilical cords suggested a reduced fetal insulin metabolism in the insulin-treated gestational diabetes group. Vascular function analysis in fetal placental vessels revealed an altered substance P-induced vasorelaxation in vessels from patients with insulin-dependent gestational diabetes. Inhibition of nitric oxide synthase affected only fetal vessel segments from the control group or diet-controlled gestational diabetes group, but not from insulin-dependent gestational diabetes. Finally, we found a significantly decreased substance P receptor (TACR1) mRNA expression in fetal vessel segments from patients with insulin-treated gestational diabetes. In conclusion, we provide evidence that different pathophysiological mechanisms might be responsible for the development of insulin-treated versus diet-controlled gestational diabetes. Only in fetal vessels from patients with insulin-treated gestational diabetes were we able to detect an endothelial dysfunction and a reduced fetal insulin conversion. This provides novel insights into the pathophysiology of the subtypes of gestational diabetes.
Collapse
Affiliation(s)
- Philine S Carstens
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - M Leyre Villar-Ballesteros
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Clara Hengst
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Center for Feto/Neonatal Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paul D Taylor
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Origüela V, Ferrer-Aguilar P, Gázquez A, Pérez-Cruz M, Gómez-Roig MD, Gómez-Llorente C, Larqué E. Placental MFSD2A expression in fetal growth restriction and maternal and fetal DHA status. Placenta 2024; 150:31-38. [PMID: 38583303 DOI: 10.1016/j.placenta.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) may affect placental transfer of key nutrients to the fetus, such as the fatty acid docosahexaenoic acid (DHA). Major facilitator superfamily domain containing 2A (MFSD2A) has been described as a specific DHA carrier in placenta, but its expression has not been studied in FGR. The aim of this study was to evaluate for the first time the placental MFSD2A levels in late-FGR pregnancies and the maternal and cord plasma DHA. METHODS 87 pregnant women from a tertial reference center were classified into late-FGR (N = 18) or control (N = 69). Fatty acid profile was determined in maternal and cord venous plasma, as well as placental levels of MFSD2A and of insulin mediators like phospho-protein kinase B (phospho-AKT) and phospho-extracellular regulated kinase (phospho-ERK). RESULTS Maternal fatty acid profile did not differ between groups. Nevertheless, late-FGR cord vein presented higher content of saturated fatty acids than control, producing a concomitant decrease in the percentage of some unsaturated fatty acids. In the late-FGR group, a lower DHA fetal/maternal ratio was observed when using percentages, but not with concentrations. No alterations were found in the expression of MFSD2A in late-FGR placentas, nor in phospho-AKT or phospho-ERK. DISCUSSION MFSD2A protein expression was not altered in late-FGR placentas, in line with no differences in cord DHA concentration between groups. The increase in the saturated fatty acid content of late-FGR cord might be a compensatory mechanism to ensure fetal energy supply, decreasing other fatty acids percentage. Future studies are warranted to elucidate if altered saturated fatty acid profile in late-FGR fetuses might predispose them to postnatal catch-up and to long-term health consequences.
Collapse
Affiliation(s)
- Valentina Origüela
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain
| | - Patricia Ferrer-Aguilar
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antonio Gázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Miriam Pérez-Cruz
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carolina Gómez-Llorente
- Institute of Biosanitary Research ibs.GRANADA, 18012, Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, 18071, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, 18100, Granada, Spain; Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), CB12/03/30038, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Yi Y, Wang T, Xu W, Zhang SH. Epigenetic modifications of placenta in women with gestational diabetes mellitus and their offspring. World J Diabetes 2024; 15:378-391. [PMID: 38591094 PMCID: PMC10999040 DOI: 10.4239/wjd.v15.i3.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development. As a bridge between the mother and the fetus, the placenta has nutrient transport functions, endocrine functions, etc., and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status. Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus. There are many reports on the placental pathophysiological changes associated with GDM, the impacts of GDM on the growth and development of offspring, and the prevalence of GDM in offspring after birth. Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases. This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.
Collapse
Affiliation(s)
- Yan Yi
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wei Xu
- Department of Ultrasonography, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - San-Hong Zhang
- Department of Pediatric, Xiantao First People’s Hospital, Xiantao 433000, Hubei Province, China
| |
Collapse
|
4
|
Ren Y, Zeng Y, Wu Y, Yu J, Zhang Q, Xiao X. The Role of Gut Microbiota in Gestational Diabetes Mellitus Affecting Intergenerational Glucose Metabolism: Possible Mechanisms and Interventions. Nutrients 2023; 15:4551. [PMID: 37960204 PMCID: PMC10648599 DOI: 10.3390/nu15214551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The incidence of type 2 diabetes is increasing every year and has become a serious public health problem. In addition to genetic factors, environmental factors in early life development are risk factors for diabetes. There is growing evidence that the gut microbiota plays an important role in glucose metabolism, and the gut microbiota of pregnant women with gestational diabetes mellitus (GDM) differs significantly from that of healthy pregnant women. This article reviews the role of maternal gut microbiota in offspring glucose metabolism. To explore the potential mechanisms by which the gut microbiota affects glucose metabolism in offspring, we summarize clinical studies and experimental animal models that support the hypothesis that the gut microbiota affects glucose metabolism in offspring from dams with GDM and discuss interventions that could improve glucose metabolism in offspring. Given that adverse pregnancy outcomes severely impact the quality of survival, reversing the deleterious effects of abnormal glucose metabolism in offspring through early intervention is important for both mothers and their offspring.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
- State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
5
|
Anam AK, Cooke KM, Dratver MB, O'Bryan JV, Perley LE, Guller SM, Hwang JJ, Taylor HS, Goedeke L, Kliman HJ, Vatner DF, Flannery CA. Insulin increases placental triglyceride as a potential mechanism for fetal adiposity in maternal obesity. Mol Metab 2022; 64:101574. [PMID: 35970449 PMCID: PMC9440306 DOI: 10.1016/j.molmet.2022.101574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Maternal obesity increases the incidence of excess adiposity in newborns, resulting in lifelong diabetes risk. Elevated intrauterine fetal adiposity has been attributed to maternal hyperglycemia; however, this hypothesis does not account for the increased adiposity seen in newborns of mothers with obesity who have euglycemia. We aimed to explore the placental response to maternal hyperinsulinemia and the effect of insulin-like growth factor 2 (IGF-2) in promoting fetal adiposity by increasing storage and availability of nutrients to the fetus. METHODS We used placental villous explants and isolated trophoblasts from normal weight and obese women to assess the effect of insulin and IGF-2 on triglyceride content and insulin receptor signaling. Stable isotope tracer methods were used ex vivo to determine effect of hormone treatment on de novo lipogenesis (DNL), fatty acid uptake, fatty acid oxidation, and esterification in the placenta. RESULTS Here we show that placentae from euglycemic women with normal weight and obesity both have abundant insulin receptor. Placental depth and triglyceride were greater in women with obesity compared with normal weight women. In syncytialized placental trophoblasts and villous explants, insulin and IGF-2 activate insulin receptor, induce expression of lipogenic transcription factor SREBP-1 (sterol regulatory element-binding protein 1), and stimulate triglyceride accumulation. We demonstrate elevated triglyceride is attributable to increased esterification of fatty acids, without contribution from DNL and without an acceleration of fatty acid uptake. CONCLUSIONS Our work reveals that obesity-driven aberrations in maternal metabolism, such as hyperinsulinemia, alter placental metabolism in euglycemic conditions, and may explain the higher prevalence of excess adiposity in the newborns of obese women.
Collapse
Affiliation(s)
- Anika K Anam
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katherine M Cooke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Milana Bochkur Dratver
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jane V O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lauren E Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Seth M Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Janice J Hwang
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Daniel F Vatner
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clare A Flannery
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Watkins OC, Cracknell-Hazra VKB, Pillai RA, Selvam P, Yong HEJ, Sharma N, Patmanathan SN, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-Inositol Moderates Glucose-Induced Effects on Human Placental 13C-Arachidonic Acid Metabolism. Nutrients 2022; 14:nu14193988. [PMID: 36235641 PMCID: PMC9572372 DOI: 10.3390/nu14193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal hyperglycemia is associated with disrupted transplacental arachidonic acid (AA) supply and eicosanoid synthesis, which contribute to adverse pregnancy outcomes. Since placental inositol is lowered with increasing glycemia, and since myo-inositol appears a promising intervention for gestational diabetes, we hypothesized that myo-inositol might rectify glucose-induced perturbations in placental AA metabolism. Term placental explants (n = 19) from women who underwent a mid-gestation oral glucose-tolerance-test were cultured with 13C-AA for 48 h in media containing glucose (5, 10 or 17 mM) and myo-inositol (0.3 or 60 µM). Newly synthesized 13C-AA-lipids were quantified by liquid-chromatography-mass-spectrometry. Increasing maternal fasting glycemia was associated with decreased proportions of 13C-AA-phosphatidyl-ethanolamines (PE, PE-P), but increased proportions of 13C-AA-triacylglycerides (TGs) relative to total placental 13C-AA lipids. This suggests altered placental AA compartmentalization towards storage and away from pools utilized for eicosanoid production and fetal AA supply. Compared to controls (5 mM glucose), 10 mM glucose treatment decreased the amount of four 13C-AA-phospholipids and eleven 13C-AA-TGs, whilst 17 mM glucose increased 13C-AA-PC-40:8 and 13C-AA-LPC. Glucose-induced alterations in all 13C-AA lipids (except PE-P-38:4) were attenuated by concurrent 60 µM myo-inositol treatment. Myo-inositol therefore rectifies some glucose-induced effects, but further studies are required to determine if maternal myo-inositol supplementation could reduce AA-associated pregnancy complications.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sathya Narayanan Patmanathan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- Correspondence: ; Tel.: +65-67-722-672
| |
Collapse
|
7
|
Nguyen-Ngo C, Perkins AV, Lappas M. Selenium Prevents Inflammation in Human Placenta and Adipose Tissue In Vitro: Implications for Metabolic Diseases of Pregnancy Associated with Inflammation. Nutrients 2022; 14:nu14163286. [PMID: 36014792 PMCID: PMC9416138 DOI: 10.3390/nu14163286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity are significant metabolic complications increasingly prevalent in pregnancy. Of major concern, both GDM and maternal obesity can have long-term detrimental impacts on the health of both mother and offspring. Recent research has shown that increased inflammation and oxidative stress are two features central to the pathophysiology of these metabolic conditions. Evidence suggests selenium supplementation may be linked to disease prevention in pregnancy; however, the specific effects of selenium on inflammation and oxidative stress associated with GDM and maternal obesity are unknown. Therefore, this study aimed to investigate the effect of selenium supplementation on an in vitro model of GDM and maternal obesity. Human placental tissue, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were stimulated with either the bacterial product lipopolysaccharide (LPS) or the pro-inflammatory cytokine TNF-α. Selenium pre-treatment blocked LPS and TNF-α induced mRNA expression and secretion of pro-inflammatory cytokines and chemokines, while increasing anti-inflammatory cytokine and antioxidant mRNA expression in placenta, VAT and SAT. Selenium pre-treatment was also found to inhibit LPS- and TNF-α induced phosphorylation of ERK in placenta, VAT and SAT. These findings indicate that selenium may be able to prevent inflammation and oxidative stress associated with GDM and maternal obesity. Additional in vivo studies are required to identify the efficacy of selenium supplementation in preventing inflammatory pathways activated by GDM and maternal obesity and to elucidate the mechanism involved.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| | - Anthony V. Perkins
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Adelaide 9726, Australia
- Correspondence:
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| |
Collapse
|
8
|
Song L, Wang N, Peng Y, Sun B, Cui W. Placental lipid transport and content in response to maternal overweight and gestational diabetes mellitus in human term placenta. Nutr Metab Cardiovasc Dis 2022; 32:692-702. [PMID: 35109996 DOI: 10.1016/j.numecd.2021.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Placental lipid transport is altered in women with high prepregnancy body mass index (pre-BMI) or gestational diabetes (GDM), which consequently affects foetal growth. However, the interaction of maternal overweight (OW) and GDM on placental lipid metabolism and possible adaptations are less studied. We aimed to examine whether maternal OW or GDM is the main factor disrupting placental lipid processing in human term placenta. METHODS AND RESULTS A total of 152 lean (18.5 ≤ pre-BMI ≤ 23.9 kg/m2) and OW (24 ≤ pre-BMI ≤ 27.9 kg/m2) pregnant women with or without GDM with a scheduled delivery by caesarean section were recruited. Maternal venous blood samples were used to measure metabolic parameters during pregnancy. Term placentas and cord blood were collected at delivery to determine placental lipid metabolism and foetal circulating lipid levels. Maternal OW significantly increased the placental mRNA expression of genes involved in lipid metabolism (FAT/CD36, FATP1, FATP4, FATP6, and PPAR-α), elevated placental lipid content (triglyceride, cholesterol), enhanced placental mTORC1-rpS6 and ERK1/2 signalling, increased cord blood insulin levels and birth weight. Neonatal birth weight was positively correlated with maternal pre-BMI, placental ERK1/2 signalling and cord blood insulin. There was an interaction between OW and GDM in regulating key placental fuel transport and storage gene expression (LPL, FATP6, FABP7, PPAR-α, PPAR-β, PPAR-γ, IR-β, GLUT1, SNAT2, SNAT4, and LAT1). CONCLUSION Maternal OW mainly affects placental lipid metabolism, which may contribute to foetal overgrowth and may impact long-term offspring health. GDM plays a less significant role in affecting placental lipid transfer and other mechanisms may be involved.
Collapse
Affiliation(s)
- Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanqi Peng
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Dimas A, Politi A, Papaioannou G, Barber TM, Weickert MO, Grammatopoulos DK, Kumar S, Kalantaridou S, Valsamakis G. The Gestational Effects of Maternal Appetite Axis Molecules on Fetal Growth, Metabolism and Long-Term Metabolic Health: A Systematic Review. Int J Mol Sci 2022; 23:ijms23020695. [PMID: 35054881 PMCID: PMC8776066 DOI: 10.3390/ijms23020695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increased maternal food intake is considered a normal pregnancy adjustment. However, the overavailability of nutrients may lead to dysregulated fetal development and increased adiposity, with long-lasting effects on offspring in later life. Several gut-hormone molecules regulate maternal appetite, with both their orexigenic and anorectic effects being in a state of sensitive equilibrium. The aim of this manuscript is to systematically review literature on the effects of maternal gut-hormone molecules on fetal growth and metabolism, birth weight and the later metabolic health of offspring. Maternal serum ghrelin, leptin, IGF-1 and GLP-1 appear to influence fetal growth; however, a lack of consistent and strong correlations of maternal appetite axis hormones with birth weight and the concomitant correlation with fetal and birth waist circumference may suggest that these molecules primarily mediate fetal energy deposition mechanisms, preparing the fetus for survival after birth. Dysregulated intrauterine environments seem to have detrimental, sex-dependent effects on fetal energy stores, affecting not only fetal growth, fat mass deposition and birth weight, but also future metabolic and endocrine wellbeing of offspring.
Collapse
Affiliation(s)
- Angelos Dimas
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
- Correspondence:
| | - Anastasia Politi
- Nephrology Department, University Hospital of Ioannina, Stavros Niarchos Ave., 45500 Ioannina, Greece;
| | - George Papaioannou
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Dimitris K. Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, Pathology, University Hospitals Coventry and Warwickshire (UHCW) NHS Trust, Coventry CV2 2DX, UK; (D.K.G.); (G.V.)
| | - Sudhesh Kumar
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Sophia Kalantaridou
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
- Reproductive Endocrinology Unit, 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, 12462 Athens, Greece
| | - Georgios Valsamakis
- Institute of Precision Diagnostics and Translational Medicine, Pathology, University Hospitals Coventry and Warwickshire (UHCW) NHS Trust, Coventry CV2 2DX, UK; (D.K.G.); (G.V.)
- 2nd University Department of Obstetrics & Gynecology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece
| |
Collapse
|
10
|
Hung TH, Wu CP, Chen SF. Differential Changes in Akt and AMPK Phosphorylation Regulating mTOR Activity in the Placentas of Pregnancies Complicated by Fetal Growth Restriction and Gestational Diabetes Mellitus With Large-For-Gestational Age Infants. Front Med (Lausanne) 2021; 8:788969. [PMID: 34938752 PMCID: PMC8685227 DOI: 10.3389/fmed.2021.788969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Dysregulation of placental mechanistic target of rapamycin (mTOR) activity has been implicated in the pathophysiology of pregnancies complicated by idiopathic fetal growth restriction (FGR) and gestational diabetes mellitus (GDM) with large-for-gestational-age (LGA) infants. However, the underlying mechanisms remain unclear. Methods: We obtained placentas from women with normal pregnancies (n = 11) and pregnancies complicated by FGR (n = 12) or GDM with LGA infants (n = 12) to compare the levels of total and phosphorylated forms of Akt, AMPK, TSC2, and mTOR among the three groups and used primary cytotrophoblast cells isolated from 30 normal term placentas to study the effects of oxygen–glucose deprivation (OGD) and increasing glucose concentrations on the changes of these factors in vitro. Results: Placentas from FGR pregnancies had lower phosphorylated Akt (p-Akt) levels (P < 0.05), higher p-AMPKα levels (P < 0.01), and lower mTOR phosphorylation (P < 0.05) compared to that of normal pregnant women. Conversely, women with GDM and LGA infants had higher p-Akt (P < 0.001), lower p-AMPKα (P < 0.05), and higher p-mTOR levels (P < 0.05) in the placentas than normal pregnant women. Furthermore, primary cytotrophoblast cells subjected to OGD had lower p-Akt and p-mTOR (both P < 0.05) and higher p-AMPKα levels (P < 0.05) than those cultured under standard conditions, but increasing glucose concentrations had opposite effects on the respective levels. Administering compound C, an AMPK inhibitor, did not significantly affect Akt phosphorylation but partially reversed mTOR phosphorylation. Administering LY294002, an Akt inhibitor, decreased p-mTOR levels, but did not change the levels of total and phosphorylated AMPKα. Conclusion: These results suggest that Akt and AMPK are involved in the regulation of trophoblast mTOR activity in the placentas of pregnancies complicated by FGR and GDM with LGA infants.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
12
|
Phoswa WN. The Role of HIV Infection in the Pathophysiology of Gestational Diabetes Mellitus and Hypertensive Disorders of Pregnancy. Front Cardiovasc Med 2021; 8:613930. [PMID: 34055923 PMCID: PMC8149620 DOI: 10.3389/fcvm.2021.613930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose of the Review: The main objective of this study is to investigate mechanisms associated with gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP) in HIV infected pregnant women by looking how placental hormones such as (progesterone and prolactin) and basic haemostatic parameters are regulated in HIV infected pregnancies. Recent Findings: HIV/AIDS are a major global obstetric health burden that lead to increased rate of morbidity and mortality. HIV/AIDS has been associated with the pathophysiology of GDM and HDP. Increased risk of GDM due to highly active antiretroviral therapy (HAART) usage has been reported in HIV infected pregnancies, which causes insulin resistance in both pregnant and non-pregnant individuals. HAART is a medication used for lowering maternal antepartum viral load and pre-exposure and post-exposure prophylaxis of the infant. In pregnant women, HAART induces diabetogenic effect by causing dysregulation of placental hormones such as (progesterone and prolactin) and predispose HIV infected women to GDM. In addition to HIV/AIDS and GDM, Studies have indicated that HIV infection causes haemostatic abnormalities such as hematological disorder, deregulated haematopoiesis process and the coagulation process which results in HDP. Summary: This study will help on improving therapeutic management and understanding of the pathophysiology of GDM and HDP in the absence as well as in the presence of HIV infection by reviewing studies reporting on these mechanism.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Florida, South Africa
| |
Collapse
|
13
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
14
|
Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J 2021; 289:336-354. [PMID: 33529475 DOI: 10.1111/febs.15745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal mortality and morbidity worldwide, impacting the long-term health of both mother and offspring. PE has long been characterized by deficient trophoblast invasion into the uterus and consequent placental hypoperfusion, yet the upstream causative factors and effective interventional targets for PE remain unknown. Alterations in the metabolism of preeclamptic placentas are thought to result from placental ischemia, while disturbances of the metabolism and of metabolites in PE pathogenesis are largely ignored. In fact, as one of the largest fetal organs at birth, the placenta consumes a considerable amount of glucose and fatty acid. Increasing evidence suggests glucose and fatty acid exist as energy substrates and regulate placental development through bioactive derivates. Moreover, recent findings have revealed that the placental metabolism adapts readily to environmental changes, altering its response to nutrients and endocrine signals; this adaptability optimizes pregnancy outcomes by diversifying available carbon sources for energy production, hormone synthesis, angiogenesis, immune activation, and tolerance, and fetoplacental growth. These observations raise the possibility that carbohydrate and lipid metabolism abnormalities play a role in both the etiology and clinical progression of PE, sparking a renewed interest in the interrelationship between PE and metabolic dysregulation. This review will focus on key metabolic substrates and regulatory molecules in the placenta and aim to provide novel insights with respect to the metabolism's role in modulating placental development and functions. Further investigations from this perspective are poised to decipher the etiology of PE and suggest potential therapies.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
15
|
Zhou J, Bai J, Guo Y, Fu L, Xing J. Higher Levels of Triglyceride, Fatty Acid Translocase, and Toll-Like Receptor 4 and Lower Level of HDL-C in Pregnant Women with GDM and Their Close Correlation with Neonatal Weight. Gynecol Obstet Invest 2021; 86:48-54. [PMID: 33486480 DOI: 10.1159/000510032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 07/09/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES In this study, we aimed to compare the levels of maternal blood lipids, placental and venous blood lipid transporters, and inflammatory factor receptors in pregnant women with and without gestational diabetes mellitus (GDM). We also aimed to figure out the relationship between these values and neonatal weight. METHODS Fifty pregnant women with GDM under blood glucose control belong to the case group, and 50 pregnant women with normal glucose tolerance in concurrent delivery belong to the control group. Fasting venous blood of these pregnant women was taken 2 weeks before delivery, and umbilical cord blood was collected after delivery. The levels of triglyceride (TG), serum total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (HDL-C) in maternal blood and umbilical cord blood were tested in the laboratory department of our hospital. The level of toll-like receptor 4 (TLR4) in serum of umbilical veins was detected by the double-antibody sandwich ELISA. Western blot and RT-PCR were used to detect the protein and mRNA expressions of TLR4, LPL, and FAT/CD36 in the placenta. RESULTS The level of TG in maternal blood in the case group was remarkably higher than that in the control group, which was opposite to the level of HDL-C. In the umbilical cord blood of women with GDM, the expression of TLR4 increased and was closely correlated with neonatal weight. In the placenta of women with GDM, the expressions of FAT/CD36 and TLR4 increased, and both of them were closely correlated with neonatal weight. Besides, TLR4 in umbilical cord blood increased and was closely correlated with neonatal weight. Although the expression of LPL in the placenta decreased, it had no obvious correlation with neonatal weight. CONCLUSIONS TG in maternal blood, TLR4 in the placenta and umbilical cord blood, and FAT/CD36 in the placenta were positively correlated with neonatal weight. However, HDL-C in maternal blood was negatively correlated with neonatal weight. Although the expression of LPL in the placenta reduced due to GDM, it had no correlation with neonatal weight.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jie Bai
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yanjuan Guo
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Lijun Fu
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jun Xing
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, China,
| |
Collapse
|
16
|
Dearden L, Bouret SG, Ozanne SE. Nutritional and developmental programming effects of insulin. J Neuroendocrinol 2021; 33:e12933. [PMID: 33438814 DOI: 10.1111/jne.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM.
Collapse
Affiliation(s)
- Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, Lille, France
- University of Lille, Lille, France
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| |
Collapse
|
17
|
Tumminia A, Scalisi NM, Milluzzo A, Ettore G, Vigneri R, Sciacca L. Maternal Diabetes Impairs Insulin and IGF-1 Receptor Expression and Signaling in Human Placenta. Front Endocrinol (Lausanne) 2021; 12:621680. [PMID: 33776919 PMCID: PMC7988311 DOI: 10.3389/fendo.2021.621680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maternal high blood glucose during pregnancy increases the risk for both maternal and fetal adverse outcomes. The mechanisms underlying the regulator effects of hyperglycemia on placental development and growth have not been fully illustrated yet. The placenta expresses high amounts of both insulin receptor (IR) and insulin-like growth factor receptor (IGF-1R). It has been reported that the placenta of diabetic women has structural and functional alterations and the insulin/IGF system is likely to play a role in these changes. The aim of the present study was to measure the content of IR and IGF-1R and their phosphorylation in the placenta of women with type 1 diabetes mellitus (T1D) or with gestational diabetes mellitus (GDM) compared to women with normal glucose tolerance (NGT) during pregnancy. METHODS Placental tissues were obtained from 80 Caucasian women with a singleton pregnancy. In particular, we collected placenta samples from 20 T1D patients, 20 GDM patients and 40 NGT women during pregnancy. Clinical characteristics and anthropometric measures of all women as well as delivery and newborn characteristics were recorded. Patients were also subdivided on the basis of peripartum glycemia either ≥90 mg/dl or <90 mg/dl, regardless of the diagnosis. RESULTS In T1D patients, a higher rate of adverse outcomes was observed. Compared to the GDM women, the T1D group showed significantly higher average capillary blood glucose levels at the third trimester of pregnancy and at peripartum, and higher third-trimester HbA1c values. In both T1D and GDM women, HbA1c values during pregnancy correlated with glucose values in the peripartum period (R-squared 0.14, p=0.02). A positive correlation was observed between phosphorylation of placental IR and the glucose levels during the third trimester of GDM and T1D pregnancy (R-squared 0.21, p=0.003). In the placenta of T1D patients, IGF-1R phosphorylation and IR isoform A (IR-A) expression were significantly increased (p=0.006 and p=0.040, respectively), compared to the NGT women. Moreover, IGF-1R phosphorylation was significantly increased (p<0.0001) in the placenta of patients with peripartum glucose >90 mg/dl, while IR-A expression was increased in those with peripartum blood glucose higher than 120 mg/dl (p=0.046). CONCLUSIONS To the best of our knowledge, our study represents the first one in which an increased maternal blood glucose level during pregnancy is associated with an increased IGF-1R phosphorylation and IR-A expression in the placenta. Both these mechanisms can promote an excessive fetal growth.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania Medical School, Catania, Italy
| | - Nunzio M. Scalisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania Medical School, Catania, Italy
| | - Agostino Milluzzo
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania Medical School, Catania, Italy
| | - Giuseppe Ettore
- Obstetrics and Gynecology Unit, Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS) Garibaldi, Catania, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania Medical School, Catania, Italy
- Catania Section, Institute of Crystallography, National Research Council, CNR, Catania, Italy
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania Medical School, Catania, Italy
- *Correspondence: Laura Sciacca,
| |
Collapse
|
18
|
Tang L, Li P, Li L. Whole transcriptome expression profiles in placenta samples from women with gestational diabetes mellitus. J Diabetes Investig 2020; 11:1307-1317. [PMID: 32174045 PMCID: PMC7477506 DOI: 10.1111/jdi.13250] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 01/04/2023] Open
Abstract
AIMS/INTRODUCTION Non-coding ribonucleic acids (ncRNAs) have recently been shown to be involved in various biological processes. However, most of these ncRNAs are of unknown function or without annotation. This study first investigated the whole transcriptome profiles of placentas to identify the potential functions that ncRNAs exerted in gestational diabetes mellitus (GDM). MATERIALS AND METHODS Six placenta samples from healthy pregnant women (n = 3) and GDM (n = 3) were collected to analyze the whole transcriptome profiles by high-throughput sequencing. Differentially expressed ncRNAs were further validated by quantitative real-time polymerase chain reaction on an independent set of normal (n = 20) and GDM (n = 20) placenta samples. RESULTS A total of 2,817 microRNAs (miRNAs), 23,339 long non-coding RNAs (lncRNAs) and 9,513 circular RNAs (circRNAs) were identified. There were 290 differentially expressed ncRNAs in GDM placentas compared with the placentas of healthy pregnant women. Two miRNAs, 86 lncRNAs and 55 circRNAs were upregulated, while two miRNAs, 86 lncRNAs and 59 circRNAs were downregulated in GDM. The expression of the selected ncRNAs, which were further validated by quantitative real-time polymerase chain reaction, was consistent with the sequencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the major targets of these ncRNAs were associated with insulin resistance, and abnormal glucose and lipid metabolism. A GDM-related competing endogenous RNA network suggested the interactions between lncRNAs, circRNAs, messenger RNAs and miRNAs. CONCLUSIONS The whole transcriptome profiles significantly differed in GDM placentas compared with the placentas of healthy pregnant women, which might be valuable for detecting novel ncRNAs, and providing new research insights into exploring the pathogenic mechanisms of GDM.
Collapse
Affiliation(s)
- Lei Tang
- Department of EndocrinologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ping Li
- Department of EndocrinologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ling Li
- Department of EndocrinologyShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Province Key Laboratory of Endocrine DiseasesShenyangChina
| |
Collapse
|
19
|
Mate A, Blanca AJ, Salsoso R, Toledo F, Stiefel P, Sobrevia L, Vázquez CM. Insulin Therapy in Pregnancy Hypertensive Diseases and its Effect on the Offspring and Mother Later in Life. Curr Vasc Pharmacol 2020; 17:455-464. [PMID: 30426902 DOI: 10.2174/1570161117666181114125109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| | - Antonio J Blanca
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Rocío Salsoso
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Unidad de Enfermedades Coronarias Agudas, Instituto del Corazón, Escuela de Medicina, Universidad de Sao Paulo, Sao Paulo 05403-000 Brazil
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Pablo Stiefel
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| | - Carmen M Vázquez
- Departamento de Fisiologia, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/ Universidad de Sevilla, E- 41013 Sevilla, Spain
| |
Collapse
|
20
|
Role of adipose tissue in regulating fetal growth in gestational diabetes mellitus. Placenta 2020; 102:39-48. [PMID: 33218577 DOI: 10.1016/j.placenta.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a global health issue with significant short and long-term complications for both mother and baby. There is a strong need to identify an effective therapeutic that can prevent the development of GDM. A better understanding of the pathophysiology of GDM and the relationship between the adipose tissue, the placenta and fetal growth is required. The placenta regulates fetal growth by modulating nutrient transfer of glucose, amino acids and fatty acids. Various factors secreted by the adipose tissue, such as adipokines, adipocytokines and more recently identified extracellular vesicles, can influence inflammation and interact with placental nutrient transport. In this review, the role of the placental nutrient transporters and the adipose-derived factors that can influence their function will be discussed. A better understanding of these factors and their relationship may make a potential target for therapeutic interventions to prevent the development of GDM and its consequences.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review outlines recent advances in placental lipid transport in relation to maternal metabolic status and pregnancy outcome. A particular focus of this review will be on the way these findings may influence our understanding of placental transfer of the essential fatty acid docosahexaenoic acid (DHA) which is crucial for fetal neurodevelopment and of lipid transfer as a predisposing factor for childhood obesity. RECENT FINDINGS Placental metabolism may determine the quantity and composition of fatty acids delivered to the fetus. Maternal factors, such as obesity, appear to regulate placental lipid metabolism and may influence fatty acids delivery to the fetus. Although the role of placental metabolism is now recognized, new evidence also suggests important roles for nontraditional fatty acid transporters such as Mfsd2a which facilitates transfer of DHA. SUMMARY Placental lipid metabolism is likely to be a determinant of placental transfer of fatty acids to the fetus. Maternal conditions, such as obesity, have now been shown to regulate placental lipid metabolism and thus may influence fatty acid transfer and fetal development. However, it is not yet clear how regulation of placental lipid metabolism affects fatty acid delivery to the fetus and its long-term health.
Collapse
Affiliation(s)
- Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton General Hospital, England, UK
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz
| | | |
Collapse
|
22
|
Therapies for gestational diabetes and their implications for maternal and offspring health: Evidence from human and animal studies. Pharmacol Res 2018; 130:52-73. [PMID: 29421161 DOI: 10.1016/j.phrs.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 01/21/2023]
Abstract
Obesity prior to and during pregnancy is associated with an increased risk of complications during pregnancy. One of the most common complications of pregnancy is gestational diabetes mellitus (GDM), a condition characterized by hyperglycemia and insulin resistance that is diagnosed in the third trimester of pregnancy. GDM predisposes both mothers and their children to increased obesity and cardiometabolic disorders, namely type 2 diabetes and cardiovascular disease. Current treatments include lifestyle changes and insulin injections, but oral anti-diabetic drugs such as metformin and glyburide are increasingly prescribed as they do not require injections. However, the long-term implications of therapies for diabetes during pregnancy on mothers and their offspring are not fully understood. In this review, we describe current treatments for GDM, including the first line lifestyle interventions such as exercise as well as insulin, glyburides and metformin. We also review selected natural health products that are sometimes used by individuals during pregnancy that could also be an effective therapeutic in pregnancies characterized by obesity or GDM. We focus on both the short- and long-term effects of treatments on the health of mothers and their offspring. We review the current literature from clinical research and animal studies.
Collapse
|
23
|
Chavan-Gautam P, Rani A, Freeman DJ. Distribution of Fatty Acids and Lipids During Pregnancy. Adv Clin Chem 2018; 84:209-239. [PMID: 29478515 DOI: 10.1016/bs.acc.2017.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal fatty acid and lipid metabolism undergoes changes during pregnancy to facilitate fetal growth and development. Different types of fatty acids have different roles in maintaining a successful pregnancy and they are incorporated into different forms of lipids for the purpose of storage and transport. This chapter aims to provide an understanding of the distribution and metabolism of fatty acids and lipids in the maternal, placental, and fetal compartments. We further describe how this distribution is altered in maternal obesity, preterm birth, and pregnancy complications such as gestational diabetes mellitus, preeclampsia, and intrauterine growth restriction.
Collapse
Affiliation(s)
- Preeti Chavan-Gautam
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.
| | - Alka Rani
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Dilys J Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Castillo-Castrejon M, Powell TL. Placental Nutrient Transport in Gestational Diabetic Pregnancies. Front Endocrinol (Lausanne) 2017; 8:306. [PMID: 29163373 PMCID: PMC5682011 DOI: 10.3389/fendo.2017.00306] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM), defined as glucose intolerance first diagnosed in pregnancy (1). Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, Section of Neonatology, University of Colorado, Aurora, CO, United States
- *Correspondence: Theresa L. Powell,
| |
Collapse
|