1
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Zhao K, Zhang H, Ding W, Yu X, Hou Y, Liu X, Li X, Wang X. Adipokines regulate the development and progression of MASLD through organellar oxidative stress. Hepatol Commun 2025; 9:e0639. [PMID: 39878681 PMCID: PMC11781772 DOI: 10.1097/hc9.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.
Collapse
Affiliation(s)
- Ke Zhao
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Heng Zhang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyu Ding
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoshuai Yu
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanli Hou
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xinhua Li
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaolei Wang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- First school of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
4
|
Pan L, Wang L, Ma H, Ding F. Relevance of combined influence of nutritional and inflammatory status on non-alcoholic fatty liver disease and advanced fibrosis: A mediation analysis of lipid biomarkers. J Gastroenterol Hepatol 2024; 39:2853-2862. [PMID: 39392197 DOI: 10.1111/jgh.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM This study aimed to investigate the relationship between advanced lung cancer inflammation index (ALI) and non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF). METHODS A total of 5642 individuals from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020 were examined. Limited cubic spline regression model, and weighted logistic regression were employed to determine if ALI levels were related to the prevalence of NAFLD and AF. Additionally, a mediating analysis was conducted to investigate the role of lipid biomarkers, such as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), in the effects of ALI on the prevalence of NAFLD and AF. RESULTS After adjusting for potential confounders, a significant positive association was found between ALI with NAFLD and AF prevalence. Compared with those in ALI Tertile 1, participants in Tertile 3 had higher odds of NAFLD prevalence (odds ratio [OR]: 3.16; 95% confidence interval [CI]: 2.52-3.97) and AF (OR: 3.17; 95% CI: 2.30-4.36). Participants in both Tertile 2 and Tertile 3 had lower odds of developing AF (P for trend = 0.005). Moreover, we discovered a nonlinear association between ALI and NAFLD. An inflection point of 74.25 for NAFLD was identified through a two-segment linear regression model. Moreover, TC and HDL-C levels mediated the association between ALI and NAFLD by 10.2% and 4.2%, respectively (both P < 0.001). CONCLUSION Our findings suggest that higher ALI levels are positively associated with an increased prevalence of NAFLD and AF, partly mediated by lipid biomarkers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of physiology, Hebei Medical University, Shijiazhuang, China
| | - Fan Ding
- Hubei Jingmen Maternal and Child Health Hospital, Jingmen, China
| |
Collapse
|
5
|
González Hernández MA, Verschuren L, Caspers MPM, Morrison MC, Venhorst J, van den Berg JT, Coornaert B, Hanemaaijer R, van Westen GJP. Identifying patient subgroups in MASLD and MASH-associated fibrosis: molecular profiles and implications for drug development. Sci Rep 2024; 14:23362. [PMID: 39375498 PMCID: PMC11458909 DOI: 10.1038/s41598-024-74098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The incidence of MASLD and MASH-associated fibrosis is rapidly increasing worldwide. Drug therapy is hampered by large patient variability and partial representation of human MASH fibrosis in preclinical models. Here, we investigated the mechanisms underlying patient heterogeneity using a discovery dataset and validated in distinct human transcriptomic datasets, to improve patient stratification and translation into subgroup specific patterns. Patient stratification was performed using weighted gene co-expression network analysis (WGCNA) in a large public transcriptomic discovery dataset (n = 216). Differential expression analysis was performed using DESeq2 to obtain differentially expressed genes (DEGs). Ingenuity Pathway analysis was used for functional annotation. The discovery dataset showed relevant fibrosis-related mechanisms representative of disease heterogeneity. Biological complexity embedded in genes signature was used to stratify discovery dataset into six subgroups of various sizes. Of note, subgroup-specific DEGs show differences in directionality in canonical pathways (e.g. Collagen biosynthesis, cytokine signaling) across subgroups. Finally, a multiclass classification model was trained and validated in two datasets. In summary, our work shows a potential alternative for patient population stratification based on heterogeneity in MASLD-MASH mechanisms. Future research is warranted to further characterize patient subgroups and identify protein targets for virtual screening and/or in vitro validation in preclinical models.
Collapse
Affiliation(s)
- Manuel A González Hernández
- Computational Drug Discovery, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Lars Verschuren
- Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands
| | - Martien P M Caspers
- Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands
| | - Martine C Morrison
- Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands
| | - Jennifer Venhorst
- Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands
| | - Jelle T van den Berg
- Computational Drug Discovery, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | - Roeland Hanemaaijer
- Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Wang J, Li H, Wang X, Shi R, Hu J, Zeng X, Luo H, Yang P, Luo H, Cao Y, Cai X, Chen S, Wang D. Association between triglyceride to high-density lipoprotein cholesterol ratio and nonalcoholic fatty liver disease and liver fibrosis in American adults: an observational study from the National Health and Nutrition Examination Survey 2017-2020. Front Endocrinol (Lausanne) 2024; 15:1362396. [PMID: 39081791 PMCID: PMC11286417 DOI: 10.3389/fendo.2024.1362396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/28/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This study investigated the link between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in American adults. Methods Information for 6495 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2020.03 was used for this cross-sectional study. The link between TG/HDL-C ratios and NAFLD and liver fibrosis was assessed by multiple linear regression before evaluating nonlinear correlations based on smoothed curve fitting models. Stratification analysis was then applied to confirm whether the dependent and independent variables displayed a stable association across populations. Results TG/HDL-C ratios were positively correlated with NAFLD, with higher ratios being linked to increased prevalence of NAFLD. After adjusting for potential confounders, the odds ratios (OR) for NAFLD patients in the fourth TG/HDL-C quartile were 3.61 (95% confidence interval [CI], 2.94-4.38) (P for trend < 0.001) in comparison with those in the first quartile after adjusting for clinical variables. However, no statistical significance was noted for the ratio for liver fibrosis after adjusting for potential confounders (P for trend = 0.07). A nonlinear correlation between TG/HDL-C ratios and NAFLD was observed based on smoothed curve fitting models. However, a nonlinear relationship between the ratios and liver fibrosis was not established. In subgroup analyses, there was an interaction between smoking status and TG/HDL-C ratio in relation to the prevalence of liver fibrosis (P for interaction < 0.001). Conclusions Among American adults, the TG/HDL-C ratio was noted to be nonlinearly positively associated with the prevalence of NAFLD; however, this relationship was not present in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Han Li
- Department of Cardiology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junchao Hu
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sirui Chen
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
7
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
8
|
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, Tilg H. Apelin and the gut microbiome: Potential interaction in human MASLD. Dig Liver Dis 2024; 56:932-940. [PMID: 38087672 DOI: 10.1016/j.dld.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS Investigating the role of APLN in MASLD. METHODS Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Etzion O, Bareket-Samish A, Yardeni D, Fishman P. Namodenoson at the Crossroad of Metabolic Dysfunction-Associated Steatohepatitis and Hepatocellular Carcinoma. Biomedicines 2024; 12:848. [PMID: 38672201 PMCID: PMC11047856 DOI: 10.3390/biomedicines12040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Namodenoson (CF102) is a small, orally available, anti-inflammatory, and anti-cancer drug candidate currently in phase 2B trial for the treatment of metabolic dysfunction-associated steatohepatitis (MASH; formerly known as non-alcoholic steatohepatitis (NASH)) and in phase 3 pivotal clinical trial for the treatment of hepatocellular carcinoma (HCC). In both MASH and HCC, the mechanism-of-action of namodenoson involves targeting the A3 adenosine receptor (A3AR), resulting in deregulation of downstream signaling pathways and leading to inhibition of inflammatory cytokines (TNF-α, IL-1, IL-6, and IL-8) and stimulation of positive cytokines (G-CSF and adiponectin). Subsequently, inhibition of liver inflammation, steatosis, and fibrosis were documented in MASH experimental models, and inhibition of HCC growth was observed in vitro, in vivo, and in clinical studies. This review discusses the evidence related to the multifaceted mechanism of action of namodenoson, and how this mechanism is reflected in the available clinical data in MASH and HCC.
Collapse
Affiliation(s)
- Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Sorkoa University Medical Center, Beer Sheva 84101, Israel; (O.E.); (D.Y.)
| | | | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Sorkoa University Medical Center, Beer Sheva 84101, Israel; (O.E.); (D.Y.)
| | | |
Collapse
|
10
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Zhong H, Dong J, Zhu L, Mao J, Dong J, Zhao Y, Zou Y, Guo M, Ding G. Non-alcoholic fatty liver disease: pathogenesis and models. Am J Transl Res 2024; 16:387-399. [PMID: 38463579 PMCID: PMC10918142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease characterized by a massive accumulation of lipids in the liver, with a continuous progression of simple steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Non-alcoholic fatty liver disease is associated with obesity, insulin resistance, and metabolic syndrome; it is a severe public health risk and is currently the most common liver disease of the world. In addition to the fatty infiltration of the liver in non-alcoholic fatty liver disease patients, the field of liver transplantation faces similar obstacles. NAFLD and NASH primarily involve lipotoxicity, inflammation, oxidative stress, and insulin resistance. However, the precise mechanisms and treatments remain unclear. Therapeutic approaches encompass exercise, weight control, as well as treatments targeting antioxidants and anti-inflammatory pathways. The role of animal models in research has become crucial as a key tool to explore the molecular mechanisms and potential treatments for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Here, we summarized the current understanding of the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis and discussed animal models commonly used in recent years.
Collapse
Affiliation(s)
- Hanxiang Zhong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Jiayong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Liye Zhu
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Jiaxi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Junfeng Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Yuanyu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - You Zou
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Guoshan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| |
Collapse
|
12
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
13
|
Zhang H, Axinbai M, Zhao Y, Wei J, Qu T, Kong J, He Y, Zhang L. Bioinformatics analysis of ferroptosis-related genes and immune cell infiltration in non-alcoholic fatty liver disease. Eur J Med Res 2023; 28:605. [PMID: 38115130 PMCID: PMC10729346 DOI: 10.1186/s40001-023-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The morbidity and mortality rates of patients with non-alcoholic fatty liver disease (NAFLD) have been steadily increasing in recent years. Previous studies have confirmed the important role of ferroptosis in NAFLD development; however, the precise mechanism through which ferroptosis influences NAFLD occurrence remains unclear. The present study aimed to identify and validate ferroptosis-related genes involved in NAFLD pathogenesis and to investigate the underlying molecular mechanisms of NAFLD. METHODS We downloaded microarray datasets GSE72756 and GSE24807 to identify differentially expressed genes (DEGs) between samples from healthy individuals and patients with NAFLD. From these DEGs, we extracted ferroptosis-related DEGs. GSE89632, another microarray dataset, was used to validate the expression of ferroptosis-related genes. A protein-protein interaction (PPI) network of ferroptosis-related genes was then constructed. The target genes were also subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, competing endogenous RNA networks were constructed. We used the CIBERSORT package to evaluate the infiltration of immune cells infiltration in NAFLD. RESULTS Five ferroptosis-related genes (SCP2, MUC1, DPP4, SLC1A4, and TF) were identified as promising diagnostic biomarkers for NAFLD. Enrichment analyses revealed that these genes are mainly involved in metabolic processes. NEAT1-miR-1224-5p-SCP2, NEAT1-miR-485-5p-MUC1, MALAT1-miR-485-5p-MUC1, and CNOT6-miR-145-5p-SLC1A4 are likely to be the potential RNA regulatory pathways that affect NAFLD development. Principal component analysis indicated significant differences in immune cell infiltration between the two groups. CONCLUSIONS This study identified five ferroptosis-related genes as potential biomarkers for diagnosing NAFLD. The correlations between the expression of ferroptosis-related genes and immune cell infiltration might shed light on the study of the molecular mechanism underlying NAFLD development.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Malina Axinbai
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Xinjiang Medical University, Urumqi, China
| | - Yuqing Zhao
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaoyang Wei
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Tongshuo Qu
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingmin Kong
- Department of Emergency, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Yongqiang He
- Department of Digestion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Liping Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
14
|
Wu W, Zhang Z, Qi Y, Zhang H, Zhao Y, Li J. Association between dietary inflammation index and hypertension in participants with different degrees of liver steatosis. Ann Med 2023; 55:2195203. [PMID: 37036742 PMCID: PMC10088928 DOI: 10.1080/07853890.2023.2195203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The prevalence of hypertension (HTN) is higher in patients with non-alcoholic fatty liver disease (NAFLD). Inflammation is the key link between HTN and NAFLD. Systemic inflammation can be dramatically increased by inflammatory diet intake. However, whether controlling the inflammatory diet intake in NAFLD patients could affect the occurrence of HTN still remains unknown. Our aim here is to evaluate the effect of the dietary inflammatory index (DII) on blood pressure in patients with different grades of hepatic steatosis. MATERIALS AND METHODS The data were collected from the National Health and Nutrition Examination Survey (NHANES) (2017-2018). DII was calculated based on the data of 24-h dietary recall interviews. The severity of liver steatosis was assessed by a controlled attenuation parameter. Multivariable logistic regression, multivariable linear regression and subgroup analyses were conducted to determine the association between DII and blood pressure in patients with different degrees of hepatic steatosis. RESULTS A total of 5449 participants were included in this analysis. In male participants with severe liver steatosis (S3), the highest DII tertile group was more likely to have higher systolic blood pressure (SBP) compared with the lowest tertile group (Tertile1: 128.31(125.31,131.31), Tertile3: 133.12(129.40,136.85), P for trend =0.03551). DII was positively correlated with SBP and the prevalence of HTN in males with hepatic steatosis grade S3 (≥ 67% steatosis) (SBP: P for trend = 0.011, HTN: P for trend = 0.039). Regarding the association of DII with SBP and HTN, the tests for interaction were significant for hepatic steatosis (SBP: interaction for p = 0.0015, HTN: interaction for p = 0.0202). CONCLUSIONS In the present study, we demonstrated that DII was a risk factor for increased SBP and the prevalence of HTN in males with severe hepatic steatosis S3, indicating that anti-inflammatory dietary management should be considered in these individuals to reduce the risk of developing HTN.
Collapse
Affiliation(s)
- Wenhao Wu
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Shanxi Medical University
| | - Zhuoya Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University
| | - Yan Qi
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Shanxi Medical University
| | - Hua Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Shanxi Medical University
| | - Yuan Zhao
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Shanxi Medical University
| | - Jin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Shanxi Medical University
| |
Collapse
|
15
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
17
|
Meng F, Song C, Liu J, Chen F, Zhu Y, Fang X, Cao Q, Ma D, Wang Y, Zhang C. Chlorogenic Acid Modulates Autophagy by Inhibiting the Activity of ALKBH5 Demethylase, Thereby Ameliorating Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15073-15086. [PMID: 37805933 DOI: 10.1021/acs.jafc.3c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/10/2023]
Abstract
Chlorogenic acid (CGA) is a naturally occurring plant component with the purpose of alleviating hepatic lipid deposition biological activities. However, the molecular mechanism behind this ability of CGA remains unelucidated. Consequently, we investigated the effect of CGA on hepatic lipid accumulation and elucidated its underlying mechanism. Our study used a high-fat diet (HFD)-induced mouse nonalcoholic fatty liver disease (NAFLD) model in mice to investigate the impact of CGA on hepatic lipid accumulation. The results revealed that the oral administration of CGA can ameliorate HFD-induced hepatic lipid deposition, reduce the NAFLD activity score (NAS), enhance liver autophagy, mitigate liver cell structural damage, and inhibit the MAPK/ERK signaling pathway. Meanwhile, CGA treatment increased the LC3B:LC3B ratio and decreased P62 expression. Cell experiments demonstrated that autophagy contributes to the ability of CGA to alleviate lipid deposition. Further analysis revealed that CGA specifically binds to ALKBH5 and inhibits its m6A methylase activity. The inhibition of ALKBH5 activity significantly reduces AXL mRNA stability in liver cells. The AXL downregulation resulted in suppressing ERK signaling pathway activation. Overall, this study demonstrates that CGA can alleviate hepatic steatosis by regulating autophagy through the inhibition of ALKBH5 activity inhibition.
Collapse
Affiliation(s)
- Fantong Meng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Chengchuang Song
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Jia Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Fang Chen
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - YuHua Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xingtang Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Qinghe Cao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province 221004, China
| | - Daifu Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province 221004, China
| | - Yanhong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Chunlei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| |
Collapse
|
18
|
Martínez–Sánchez C, Bassegoda O, Deng H, Almodóvar X, Ibarzabal A, de Hollanda A, Martínez García de la Torre R, Blaya D, Ariño S, Jiménez-Esquivel N, Aguilar-Bravo B, Vallverdú J, Montironi C, Osorio-Conles O, Fundora Y, Sánchez Moreno FJ, Gómez-Valadés AG, Aguilar-Corominas L, Soria A, Pose E, Juanola A, Cervera M, Perez M, Hernández-Gea V, Affò S, Swanson KS, Ferrer-Fàbrega J, Balibrea JM, Sancho-Bru P, Vidal J, Ginès P, Smith AM, Graupera I, Coll M. Therapeutic targeting of adipose tissue macrophages ameliorates liver fibrosis in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100830. [PMID: 37701336 PMCID: PMC10494470 DOI: 10.1016/j.jhepr.2023.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims : The accumulation of adipose tissue macrophages (ATMs) in obesity has been associated with hepatic injury. However, the contribution of ATMs to hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Herein, we investigate the relationship between ATMs and liver fibrosis in patients with patients with NAFLD and evaluate the impact of modulation of ATMs over hepatic fibrosis in an experimental non-alcoholic steatohepatitis (NASH) model. Methods Adipose tissue and liver biopsies from 42 patients with NAFLD with different fibrosis stages were collected. ATMs were characterised by immunohistochemistry and flow cytometry and the correlation between ATMs and liver fibrosis stages was assessed. Selective modulation of the ATM phenotype was achieved by i.p. administration of dextran coupled with dexamethasone in diet-induced obesity and NASH murine models. Chronic administration effects were evaluated by histology and gene expression analysis in adipose tissue and liver samples. In vitro crosstalk between human ATMs and hepatic stellate cells (HSCs) and liver spheroids was performed. Results Patients with NAFLD presented an increased accumulation of pro-inflammatory ATMs that correlated with hepatic fibrosis. Long-term modulation of ATMs significantly reduced pro-inflammatory phenotype and ameliorated adipose tissue inflammation. Moreover, ATMs modulation was associated with an improvement in steatosis and hepatic inflammation and significantly reduced fibrosis progression in an experimental NASH model. In vitro, the reduction of the pro-inflammatory phenotype of human ATMs with dextran-dexamethasone treatment reduced the secretion of inflammatory chemokines and directly attenuated the pro-fibrogenic response in HSCs and liver spheroids. Conclusions Pro-inflammatory ATMs increase in parallel with fibrosis degree in patients with NAFLD and their modulation in an experimental NASH model improves liver fibrosis, uncovering the potential of ATMs as a therapeutic target to mitigate liver fibrosis in NAFLD. Impact and implications We report that human adipose tissue pro-inflammatory macrophages correlate with hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD). Furthermore, the modulation of adipose tissue macrophages (ATMs) by dextran-nanocarrier conjugated with dexamethasone shifts the pro-inflammatory phenotype of ATMs to an anti-inflammatory phenotype in an experimental murine model of non-alcoholic steatohepatitis. This shift ameliorates adipose tissue inflammation, hepatic inflammation, and fibrosis. Our results highlight the relevance of adipose tissue in NAFLD pathophysiology and unveil ATMs as a potential target for NAFLD.
Collapse
Affiliation(s)
- Celia Martínez–Sánchez
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Octavi Bassegoda
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Hongping Deng
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Xènia Almodóvar
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Ainitze Ibarzabal
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana de Hollanda
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Delia Blaya
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Silvia Ariño
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Natalia Jiménez-Esquivel
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Julia Vallverdú
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carla Montironi
- Molecular Biology Core & Pathology Department, Hospital Clínic of Barcelona, Spain
| | - Oscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Yiliam Fundora
- Department of General and Digestive Surgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Laia Aguilar-Corominas
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Anna Soria
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Adrià Juanola
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Marta Cervera
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Martina Perez
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Virginia Hernández-Gea
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Affò
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Kelly S. Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joana Ferrer-Fàbrega
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Barcelona Clínic Liver Cancer Group (BCLC), IDIBAPS, Barcelona, Spain
- Hepatic Oncology Unit, Hospital Clínic, Barcelona, Spain
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, Institute Clínic of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Jose Maria Balibrea
- Endocrine, Metabolic & Bariatric Surgery Unit, Germans Trias i Pujol Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Josep Vidal
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere Ginès
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of General and Digestive Surgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Andrew M. Smith
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel Graupera
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mar Coll
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Ali Zarie A, Osman MA, Alshammari GM, Hassan AB, ElGasim Ahmed Yagoub A, Abdo Yahya M. Saudi date cultivars' seed extracts inhibit developing hepatic steatosis in rats fed a high-fat diet. Saudi J Biol Sci 2023; 30:103732. [PMID: 37588573 PMCID: PMC10425400 DOI: 10.1016/j.sjbs.2023.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
This research aim was to assess the impact of the seed extracts of the date cultivars (Qatara, Barhi, and Ruthana) on rat's liver steatosis, oxidative stress, and inflammation triggered by feeding a high-fat diet (HFD). The experimental design was based on random partitioning into two groups; one that received the standard diet and another that received the HFD diet. The HFD rats were orally administered Lipitor or date seed extracts at 300 or 600 mg/kg/day for 4 weeks. Accordingly, feeding rats HFD significantly increased body and liver weights, hepatic and serum lipid levels, glucose, insulin, HOMA-IR, liver function enzymes, and inflammation markers, and decreased oxidative stress enzymes. Oral administration of Barhi and Ruthana date seed extracts significantly decreased body and liver weights. Serum and liver total cholesterol TC, Triglycerides TGs, and free fatty acids FFAs were also decreased as were AST, ALT, MAD, leptin, and CRP, with a concomitant increase in SOD, GSH, and CAT. Furthermore, similar to Lipitor, oral administration of the extracts reduced inflammation markers such as TNF-α, serum CRP, IL-6, IL-1β, and leptin while increasing IL-10 and adiponectin levels. Histological observation revealed that extract administration improved hepatocyte and parenchymal structures and decreased lipid deposition. In conclusion, both Barhi and Ruthana seed extracts showed strong hepatoprotective, anti-inflammatory, and antioxidant effects against HFD-induced liver steatosis. And date seeds have other beneficial potential for prevention and treatment of various diseases, which can be studied in the future.
Collapse
Affiliation(s)
- Arwa Ali Zarie
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Magdi A. Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Kim Y, Chang Y, Ryu S, Park S, Cho Y, Sohn W, Kang J, Wild SH, Byrne CD. Nonalcoholic fatty liver disease and risk of incident young-onset hypertension: Effect modification by sex. Nutr Metab Cardiovasc Dis 2023; 33:1608-1616. [PMID: 37357078 DOI: 10.1016/j.numecd.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND AIMS Although nonalcoholic fatty liver disease (NAFLD) and hypertension are increasingly common among young adults, it is uncertain if NAFLD affects incidence of young-onset hypertension, and if the association is modified by sex. We investigated potential effect modification by sex on the association between NAFLD and incident hypertension in young adults (<40 years). METHOD AND RESULTS This cohort study comprised 85,789 women and 67,553 men aged <40 years without hypertension at baseline. Hepatic steatosis was assessed by liver ultrasound and classified as mild or moderate/severe. Hypertension was defined as blood pressure (BP) ≥130/80 mmHg; self-reported history of physician-diagnosed hypertension; or current use of BP-lowering medications. Cox proportional hazard models were used to estimate hazard ratios (HRs; 95% confidence intervals [CIs]) for incident hypertension by NAFLD status (median follow-up 4.5 years). A total of 25,891 participants developed incident hypertension (incidence rates per 103 person-years: 15.6 for women and 63.5 for men). Multivariable-adjusted HRs (95% CIs) for incident hypertension comparing no NAFLD (reference) with mild or moderate/severe NAFLD were 1.68 (1.56-1.80) and 1.83 (1.60-2.09) for women and 1.21 (1.17-1.25) and 1.23 (1.17-1.30) for men, respectively. Stronger associations were consistently observed between NAFLD and incident hypertension in women, regardless of obesity/central obesity (all p-values for interaction by sex <0.001). CONCLUSIONS NAFLD is a potential risk factor for young-onset hypertension with a relatively greater impact in women and in those with more severe hepatic steatosis.
Collapse
Affiliation(s)
- Yejin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Soyoung Park
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yoosun Cho
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jeonggyu Kang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| |
Collapse
|
22
|
Guo Z, Du H, Guo Y, Jin Q, Liu R, Yun Z, Zhang J, Li X, Ye Y. Association between leptin and NAFLD: a two-sample Mendelian randomization study. Eur J Med Res 2023; 28:215. [PMID: 37400922 DOI: 10.1186/s40001-023-01147-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The etiology of nonalcoholic fatty liver disease (NAFLD) involves a complex interaction of genetic and environmental factors. Previous observational studies have revealed that higher leptin levels are related to a lower risk of developing NAFLD, but the causative association remains unknown. We intended to study the causal effect between leptin and NAFLD using the Mendelian randomization (MR) study. METHODS We performed a two-sample Mendelian randomization (TSMR) analysis using summary GWAS data from leptin (up to 50,321 individuals) and NAFLD (8,434 cases and 770,180 controls) in a European population. Instrumental variables (IVs) that satisfied the three core assumptions of Mendelian randomization were selected. The TSMR analysis was conducted using the inverse variance weighted (IVW) method, MR-Egger regression method, and weighted median (WM) method. To ensure the accuracy and stability of the study results, heterogeneity tests, multiple validity tests, and sensitivity analyses were conducted. RESULTS The findings of the TSMR correlation analysis between NAFLD and leptin were as follows: IVW method (odds ratio (OR) 0.6729; 95% confidence interval (95% CI) 0.4907-0.9235; P = 0.0142), WM method (OR 0.6549; 95% CI 0.4373-0.9806; P = 0.0399), and MR-Egger regression method (P = 0.6920). Additionally, the findings of the TSMR correlation analysis between NAFLD and circulating leptin levels adjusted for body mass index (BMI) were as follows: IVW method (OR 0.5876; 95% CI 0.3781-0.9134; P = 0.0181), WM method (OR 0.6074; 95% CI 0.4231-0.8721; P = 0.0069), and MR-Egger regression method (P = 0.8870). It has also been shown that higher levels of leptin are causally linked to a lower risk of developing NAFLD, suggesting that leptin may serve as a protective factor for NAFLD. CONCLUSIONS Using TSMR analysis and the GWAS database, we investigated the genetic relationship between elevated leptin levels and lowered risk of NAFLD in this study. However, further research is required to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhangjun Yun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
23
|
Li YQ, Xin L, Zhao YC, Li SQ, Li YN. Role of vascular endothelial growth factor B in nonalcoholic fatty liver disease and its potential value. World J Hepatol 2023; 15:786-796. [PMID: 37397934 PMCID: PMC10308292 DOI: 10.4254/wjh.v15.i6.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to fatty liver disease caused by liver injury factors other than alcohol. The disease is characterized by diffuse fat infiltration, including simple steatosis (no inflammatory fat deposition), nonalcoholic fatty hepatitis, liver fibrosis, and so on, which may cause liver cirrhosis, liver failure, and even liver cancer in the later stage of disease progression. At present, the pathogenesis of NAFLD is still being studied. The "two-hit" theory, represented by lipid metabolism disorder and inflammatory reactions, is gradually enriched by the "multiple-hit" theory, which includes multiple factors, such as insulin resistance and adipocyte dysfunction. In recent years, vascular endothelial growth factor B (VEGFB) has been reported to have the potential to regulate lipid metabolism and is expected to become a novel target for ameliorating metabolic diseases, such as obesity and type 2 diabetes. This review summarizes the regulatory role of VEGFB in the onset and development of NAFLD and illustrates its underlying molecular mechanism. In conclusion, the signaling pathway mediated by VEGFB in the liver may provide an innovative approach to the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| | - Lei Xin
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Yu-Chi Zhao
- Department of Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Shang-Qi Li
- The First School of Clinical Medicine, Binzhou Medical University, Yantai 264000, Shandong, China, Yantai 264000, Shandong Province, China
| | - Ya-Nuo Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| |
Collapse
|
24
|
Novi S, Vestuto V, Campiglia P, Tecce N, Bertamino A, Tecce MF. Anti-Angiogenic Effects of Natural Compounds in Diet-Associated Hepatic Inflammation. Nutrients 2023; 15:2748. [PMID: 37375652 DOI: 10.3390/nu15122748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common causes of chronic liver disease and are increasingly emerging as a global health problem. Such disorders can lead to liver damage, resulting in the release of pro-inflammatory cytokines and the activation of infiltrating immune cells. These are some of the common features of ALD progression in ASH (alcoholic steatohepatitis) and NAFLD to NASH (non-alcoholic steatohepatitis). Hepatic steatosis, followed by fibrosis, lead to a continuous progression accompanied by angiogenesis. This process creates hypoxia, which activates vascular factors, initiating pathological angiogenesis and further fibrosis. This forms a vicious cycle of ongoing damage and progression. This condition further exacerbates liver injury and may contribute to the development of comorbidities, such as metabolic syndrome as well as hepatocellular carcinoma. Increasing evidence suggests that anti-angiogenic therapy may have beneficial effects on these hepatic disorders and their exacerbation. Therefore, there is a great interest to deepen the knowledge of the molecular mechanisms of natural anti-angiogenic products that could both prevent and control liver diseases. In this review, we focus on the role of major natural anti-angiogenic compounds against steatohepatitis and determine their potential therapeutic benefits in the treatment of liver inflammation caused by an imbalanced diet.
Collapse
Affiliation(s)
- Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Nicola Tecce
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
25
|
Stiglund N, Hagström H, Stål P, Cornillet M, Björkström NK. Dysregulated peripheral proteome reveals NASH-specific signatures identifying patient subgroups with distinct liver biology. Front Immunol 2023; 14:1186097. [PMID: 37342340 PMCID: PMC10277514 DOI: 10.3389/fimmu.2023.1186097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. The prognosis may vary from simple steatosis to more severe outcomes such as nonalcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. The understanding of the biological processes leading to NASH is limited and non-invasive diagnostic tools are lacking. Methods The peripheral immunoproteome in biopsy-proven NAFL (n=35) and NASH patients (n=35) compared to matched, normal-weight healthy controls (n=15) was studied using a proximity extension assay, combined with spatial and single cell hepatic transcriptome analysis. Results We identified 13 inflammatory serum proteins that, independent of comorbidities and fibrosis stage, distinguished NASH from NAFL. Analysis of co-expression patterns and biological networks further revealed NASH-specific biological perturbations indicative of temporal dysregulation of IL-4/-13, -10, -18, and non-canonical NF-kβ signaling. Of the identified inflammatory serum proteins, IL-18 and EN-RAGE as well as ST1A1 mapped to hepatic macrophages and periportal hepatocytes, respectively, at the single cell level. The signature of inflammatory serum proteins further permitted identification of biologically distinct subgroups of NASH patients. Conclusion NASH patients have a distinct inflammatory serum protein signature, which can be mapped to the liver parenchyma, disease pathogenesis, and identifies subgroups of NASH patients with altered liver biology.
Collapse
Affiliation(s)
- Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Hagström
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
28
|
Gu X, Tang D, Xuan Y, Shen Y, Lu LQ. Association between nonalcoholic fatty liver disease and peripheral neuropathy in US population, a cross-sectional study. Sci Rep 2023; 13:5304. [PMID: 37002268 PMCID: PMC10066263 DOI: 10.1038/s41598-023-32115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an important risk of type 2 diabetes mellitus (T2DM). Peripheral neuropathy (PN) is regarded as one of the main microvascular complications of diabetes. But the association of NAFLD with PN is still unclear. We aimed to investigate the association between NAFLD and PN in US population by conducting a cross-sectional study. We enrolled 3029 participants aged 40-85 years from National Health and Nutrition Examination Survey (NHANES) 1999-2004. NAFLD was defined as a US Fatty Liver Index (FLI) score ≥ 30, and PN was defined as having one or more insensate areas on either foot. Participants were divided into two groups (with or without PN). We performed multivariate logistic regression models to evaluate the association between NAFLD and PN. Subgroup analyses were used to find out whether the association was stable in different stratified groups. Sensitivity analyses were conducted to assess the robustness of the results. All the analyses were weighted. Among the individuals, 524 (17.3%) had PN and 1250 (41.27%) had NAFLD. In the multivariate logistic regression models, NAFLD was associated with an increased risk of PN (OR 1.44 [1.03 ~ 2.02]) after fully adjusting for covariates. In the subgroup analyses, NAFLD was significantly associated with PN in the age group (40-64 years), compared with those in the age group (65-85 years), (P for interaction: 0.004). The results of association of NAFLD with PN were stable in sensitivity analyses. In this cross-sectional study among US adults aged 40-85 years old, NAFLD was associated with an increased likelihood of prevalent PN.
Collapse
Affiliation(s)
- Xi Gu
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, No. 149 Chongqing South Road, Shanghai, China
| | - Dou Tang
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, No. 149 Chongqing South Road, Shanghai, China
| | - Yan Xuan
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, No. 149 Chongqing South Road, Shanghai, China
| | - Ying Shen
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, No. 149 Chongqing South Road, Shanghai, China.
| | - Lei Qun Lu
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, No. 149 Chongqing South Road, Shanghai, China.
| |
Collapse
|
29
|
Yang Y, Reid MA, Hanse EA, Li H, Li Y, Ruiz BI, Fan Q, Kong M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat Commun 2023; 14:1368. [PMID: 36914647 PMCID: PMC10011557 DOI: 10.1038/s41467-023-36809-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Inhibition of AMPK is tightly associated with metabolic perturbations upon over nutrition, yet the molecular mechanisms underlying are not clear. Here, we demonstrate the serine/threonine-protein phosphatase 6 regulatory subunit 3, SAPS3, is a negative regulator of AMPK. SAPS3 is induced under high fat diet (HFD) and recruits the PP6 catalytic subunit to deactivate phosphorylated-AMPK, thereby inhibiting AMPK-controlled metabolic pathways. Either whole-body or liver-specific deletion of SAPS3 protects male mice against HFD-induced detrimental consequences and reverses HFD-induced metabolic and transcriptional alterations while loss of SAPS3 has no effects on mice under balanced diets. Furthermore, genetic inhibition of AMPK is sufficient to block the protective phenotype in SAPS3 knockout mice under HFD. Together, our results reveal that SAPS3 is a negative regulator of AMPK and suppression of SAPS3 functions as a guardian when metabolism is perturbed and represents a potential therapeutic strategy to treat metabolic syndromes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yuanding Li
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bryan I Ruiz
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Expression and Function of BMP and Activin Membrane-Bound Inhibitor (BAMBI) in Chronic Liver Diseases and Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24043473. [PMID: 36834884 PMCID: PMC9964332 DOI: 10.3390/ijms24043473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) is a transmembrane pseudoreceptor structurally related to transforming growth factor (TGF)-β type 1 receptors (TGF-β1Rs). BAMBI lacks a kinase domain and functions as a TGF-β1R antagonist. Essential processes such as cell differentiation and proliferation are regulated by TGF-β1R signaling. TGF-β is the best-studied ligand of TGF-βRs and has an eminent role in inflammation and fibrogenesis. Liver fibrosis is the end stage of almost all chronic liver diseases, such as non-alcoholic fatty liver disease, and at the moment, there is no effective anti-fibrotic therapy available. Hepatic BAMBI is downregulated in rodent models of liver injury and in the fibrotic liver of patients, suggesting that low BAMBI has a role in liver fibrosis. Experimental evidence convincingly demonstrated that BAMBI overexpression is able to protect against liver fibrosis. Chronic liver diseases have a high risk of hepatocellular carcinoma (HCC), and BAMBI was shown to exert tumor-promoting as well as tumor-protective functions. This review article aims to summarize relevant studies on hepatic BAMBI expression and its role in chronic liver diseases and HCC.
Collapse
|
31
|
Hall RL, George ES, Tierney AC, Reddy AJ. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:475-499. [PMID: 36796436 DOI: 10.1016/j.advnut.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease from simple steatosis to nonalcoholic steatohepatitis, with inflammatory cytokines and adipokines identified as drivers of disease progression. Poor dietary patterns are known to promote an inflammatory milieu, although the effects of specific diets remain largely unknown. This review aimed to gather and summarize new and existing evidence on the effect of dietary intervention on inflammatory markers in patients with NAFLD. The electronic databases MEDLINE, EMBASE, CINAHL, and Cochrane were searched for clinical trials which investigated outcomes of inflammatory cytokines and adipokines. Eligible studies included adults >18 y with NAFLD, which compared a dietary intervention with an alternative diet or control (no intervention) group or were accompanied by supplementation or other lifestyle interventions. Outcomes for inflammatory markers were grouped and pooled for meta-analysis where heterogeneity was allowed. Methodological quality and risk of bias were assessed using the Academy of Nutrition and Dietetics Criteria. Overall, 44 studies with a total of 2579 participants were included. Meta-analyses indicated intervention with an isocaloric diet plus supplement was more effective in reducing C-reactive protein (CRP) [standard mean difference (SMD): 0.44; 95% CI: 0.20, 0.68; P = 0.0003] and tumor necrosis factor-alpha (TNF-α) (SMD: 0.74; 95% CI: 0.02, 1.46; P = 0.03) than an isocaloric diet alone. No significant weighting was shown between a hypocaloric diet with or without supplementation for CRP (SMD: 0.30; 95% CI: -0.84, 1.44; P = 0.60) and TNF-α (SMD: 0.01; 95% CI: -0.43, 0.45; P = 0.97). In conclusion, hypocaloric and energy-restricted diets alone or with supplementation, and isocaloric diets with supplementation were shown to be most effective in improving the inflammatory profile of patients with NAFLD. To better determine the effectiveness of dietary intervention alone on a NAFLD population, further investigations of longer durations, with larger sample sizes are required.
Collapse
Affiliation(s)
- Renate L Hall
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| | - Elena S George
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Audrey C Tierney
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; School of Allied Health, Health Implementation Science and Technology Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Anjana J Reddy
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia.
| |
Collapse
|
32
|
Cruz Hernández JH, Rosado Lomán WN, Gómez-Crisóstomo NP, De la Cruz-Hernández EN, Guzmán García LM, Gómez Gómez M, Hernández Del Ángel NA, Aguilar Gamas CF, Cruz Hernández VS, Martinez-Abundis E. High sugar but not high fat diet consumption induces hepatic metabolic disruption and up-regulation of mitochondrial fission-associated protein Drp1 in a model of moderate obesity. Arch Physiol Biochem 2023; 129:233-240. [PMID: 32880477 DOI: 10.1080/13813455.2020.1812666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Identification of new modifications and the association with diet patterns are essential for the prevention of non-alcoholic fatty liver disease (NAFLD). To address this problem, we feed rats with high caloric diets based on high sucrose (HSD) and high fat (HFD) and analysed metabolic and mitochondrial alterations. Both diets induce moderated obesity and fat accumulation in the liver after 8, 10 and 12 months of diet. The HSD induces both hyperleptinemia and hyperinsulinemia, as well as up-regulation of transcription factors SRBEP1 and PPARγ along slight increase nitrosylation of proteins and increased mitochondrial fission. In contrast, HFD induced hyperleptinemia without changes in neither insulin levels nor oxidative stress, SREBP1, PPARγ, or mitochondrial dynamics. In conclusion, chronic consumption of high sucrose content diets induces more pathological and metabolic alteration in liver in comparison with consumption of high-fat content diets, although both induces obesity and liver steatosis in these animal models.
Collapse
Affiliation(s)
- Jarumi Hishel Cruz Hernández
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Wendy Natalia Rosado Lomán
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Nancy Patricia Gómez-Crisóstomo
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Erick Natividad De la Cruz-Hernández
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Luz María Guzmán García
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Montserrat Gómez Gómez
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Nadia Arely Hernández Del Ángel
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Carlos Francisco Aguilar Gamas
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Vania Sherel Cruz Hernández
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Eduardo Martinez-Abundis
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| |
Collapse
|
33
|
Dietrich CG, Geier A, Merle U. Non-alcoholic fatty liver disease and COVID-19: Harmless companions or disease intensifier? World J Gastroenterol 2023; 29:367-377. [PMID: 36687116 PMCID: PMC9846932 DOI: 10.3748/wjg.v29.i2.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The pandemics of coronavirus disease 2019 (COVID-19) and non-alcoholic fatty liver disease (NAFLD) coexist. Elevated liver function tests are frequent in COVID-19 and may influence liver damage in NAFLD, while preexisting liver damage from NAFLD may influence the course of COVID-19. However, the prognostic relevance of this interaction, though, is unclear. Obesity is a risk factor for the presence of NAFLD as well as a severe course of COVID-19. Cohort studies reveal conflicting results regarding the influence of NAFLD presence on COVID-19 illness severity. Striking molecular similarities of cytokine pathways in both diseases, including postacute sequelae of COVID-19, suggest common pathways for chronic low-activity inflammation. This review will summarize existing data regarding the interaction of both diseases and discuss possible mechanisms of the influence of one disease on the other.
Collapse
Affiliation(s)
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Uta Merle
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
34
|
Pan J, Li Q, Sun Y, Gu Y, Ding Y, Pang N, Zhou Y, Pei L, Gao M, Ma S, Xiao Y, Wu F, Hu D, Chen YM, Yang L. Increased Serum Adipsin Correlates with MAFLD and Metabolic Risk Abnormalities. Diabetes Metab Syndr Obes 2023; 16:187-200. [PMID: 36760590 PMCID: PMC9882414 DOI: 10.2147/dmso.s396335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
PURPOSE A panel of international experts proposed a new definition of fatty liver in 2020, namely metabolic dysfunction-associated fatty liver disease (MAFLD). As an adipokine, adipsin is closely related to metabolic-related diseases. In this study, we aimed to evaluate the relationship among MAFLD, serum adipsin, and metabolic risk abnormalities. METHODS Our study was a cross-sectional study based on the first follow-up of the Guangzhou Nutrition and Health Study (GNHS). A total of 908 patients with hepatic steatosis were involved in our study. Detailed data of patients were collected based upon questionnaire information, physical examination, and blood biochemical test. RESULTS Among the 908 patients, 789 patients were diagnosed with MAFLD. The levels of serum adipsin in the MAFLD group and non-MAFLD group were (3543.00 (3187.94-3972.50) ng/mL) and (3095.33 (2778.71-3354.77) ng/mL) (P < 0.001), respectively. After adjusting for potential confounders, adipsin levels were found to be associated with MAFLD. The OR was 3.46 (95% CI: 1.57-7.64) for adipsin when comparing subjects in the highest tertile with those in the lowest tertile. With the increase in the number of metabolic risk abnormalities, both the levels of serum adipsin and the proportion of moderate to severe fatty liver increased (all p-trend < 0.001). CONCLUSION Increased serum adipsin correlates with MAFLD. Both adipsin levels as well as fatty liver severity increase with higher numbers of metabolic risk abnormalities.
Collapse
Affiliation(s)
- Jie Pan
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiuyan Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yan Sun
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yingying Gu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yijie Ding
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lei Pei
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mengqi Gao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Sixi Ma
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ying Xiao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Feilong Wu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - De Hu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu-Ming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Lili Yang, Department of Nutrition, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People’s Republic of China, Tel +86-20-87330625, Email
| |
Collapse
|
35
|
Badr AM, Sherif IO, Mahran YF, Attia HA. Role of Renin-Angiotensin System in the Pathogenesis and Progression of Non-alcoholic Fatty Liver. THE RENIN ANGIOTENSIN SYSTEM IN CANCER, LUNG, LIVER AND INFECTIOUS DISEASES 2023:179-197. [DOI: 10.1007/978-3-031-23621-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2023]
|
36
|
Wiering L, Tacke F. Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 2023; 256:JOE-22-0194. [PMID: 36259984 DOI: 10.1530/joe-22-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) with its more progressive form non-alcoholic steatohepatitis (NASH) has become the most common chronic liver disease, thereby representing a great burden for patients and healthcare systems. Specific pharmacological therapies for NAFLD are still missing. Inflammation is an important driver in the pathogenesis of NASH, and the mechanisms underlying inflammation in NAFLD represent possible therapeutic targets. In NASH, various intra- and extrahepatic triggers involved in the metabolic injury typically lead to the activation of different immune cells. This includes hepatic Kupffer cells, i.e. liver-resident macrophages, which can adopt an inflammatory phenotype and activate other immune cells by releasing inflammatory cytokines. As inflammation progresses, Kupffer cells are increasingly replaced by monocyte-derived macrophages with a distinct lipid-associated and scar-associated phenotype. Many other immune cells, including neutrophils, T lymphocytes - such as auto-aggressive cytotoxic as well as regulatory T cells - and innate lymphoid cells balance the progression and regression of inflammation and subsequent fibrosis. The detailed understanding of inflammatory cell subsets and their activation pathways prompted preclinical and clinical exploration of potential targets in NAFLD/NASH. These approaches to target inflammation in NASH include inhibition of immune cell recruitment via chemokine receptors (e.g. cenicriviroc), neutralization of CD44 or galectin-3 as well as agonism to nuclear factors like peroxisome proliferator-activated receptors and farnesoid X receptor that interfere with the activation of immune cells. As some of these approaches did not demonstrate convincing efficacy as monotherapies, a rational and personalized combination of therapeutic interventions may be needed for the near future.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
37
|
Noh DJ, Yoon GA. Mulberry ( Morus alba L.) ethanol extract attenuates lipid metabolic disturbance and adipokine imbalance in high-fat fed rats. Nutr Res Pract 2022; 16:716-728. [PMID: 36467763 PMCID: PMC9702542 DOI: 10.4162/nrp.2022.16.6.716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND/OBJECTIVES An imbalanced adipokine profile in obesity increases the susceptibility to obesity-related cardiometabolic alterations, including type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease. The mulberry plant has been reported to have health benefits, such as hypolipidemic and hepatoprotective effects. This study examined the effects of a mulberry (Morus alba L.) fruit ethanol extract (MBEE) on dyslipidemia, liver steatosis, and adipokine imbalance in response to a high-fat diet. MATERIALS/METHODS Male Sprague-Dawley rats were assigned to one of 4 groups containing 6 rats each and fed either a control diet (CON), a high-fat diet (HFD), or a high-fat diet with MBEE of 150 mg/kg/day (LMB) or 300 mg/kg/day (HMB). The triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured spectrophotometrically. The leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were determined by an enzyme-linked immunosorbent assay. RESULTS The plasma TG levels were similar in the 4 groups. Plasma cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and TC/HDL-C ratio increased in the HFD group compared with the CON group, whereas those values decreased in the LMB group (P < 0.05), indicating that MBEE had a plasma lipid-lowering effect. HDL-C decreased in the HFD group, but MBEE did not affect the HDL-C level. The HFD rats significantly increased hepatic TG and cholesterol levels and plasma ALT and AST activities compared to the CON group. The hepatic TG level and ALT and AST activities were reduced markedly by the MBEE treatment. The HFD group showed a higher PAI-1 level, whereas MBEE treatment, especially in the HMB group, significantly reduced leptin level, and leptin/adiponectin and PAI-1/adiponectin ratios. These findings suggest that MBEE altered the imbalance between the pro- and anti-inflammatory adipokines to a more anti-inflammatory state. CONCLUSIONS MBEE could protect against abnormal lipid metabolism and hepatic steatosis induced by a high-fat diet, lowering plasma cholesterol, LDL-C and TC/HDL-C, and hepatic TG. These findings are associated with the regulating effect of MBEE on the leptin/adiponectin and PAI-1/adiponectin ratios.
Collapse
Affiliation(s)
- Da-jung Noh
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences and Human Ecology, Dongeui University, Busan 47340, Korea
| | - Gun-Ae Yoon
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences and Human Ecology, Dongeui University, Busan 47340, Korea
| |
Collapse
|
38
|
Associations between subcutaneous adipocyte hypertrophy and nonalcoholic fatty liver disease. Sci Rep 2022; 12:20519. [PMID: 36443373 PMCID: PMC9705525 DOI: 10.1038/s41598-022-24482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Adipocyte hypertrophy and expression of adipokines in subcutaneous adipose tissue (SAT) have been linked to steatosis, nonalcoholic steatohepatitis (NASH) and fibrosis in morbidly obese (BMI ≥ 40 kg/m2) subjects. It is unknown if this is also true for subjects with NAFLD with lesser degrees of obesity (BMI < 35 kg/m2). Thirty-two subjects with biopsy-proven NAFLD and 15 non-diabetic controls matched for BMI underwent fine-needle biopsies of SAT. Adipocyte volume was calculated. RNA-sequencing of SAT was performed in a subset of 20 NAFLD patients. Adipocyte volume and gene expression levels were correlated to the presence of NASH or significant fibrosis. Subjects with NAFLD had larger adipocyte volume compared with controls, (1939 pL, 95% CI 1130-1662 vs. 854 pL, 95% CI 781-926, p < 0.001). There was no association between adipocyte volume and the presence of NASH. Gene expression of adipokines previously described to correlate with NASH in morbid obesity, was not associated with NASH or fibrosis. Our results suggest that persons with NAFLD have larger SAT adipocytes compared with controls and that adipocytes are involved in the pathophysiology of hepatic steatosis in NAFLD. However, adipocyte volume was not associated with NASH or fibrosis in NAFLD subjects with varying degrees of obesity.
Collapse
|
39
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
40
|
Yang B, Lu L, Zhou D, Fan W, Barbier-Torres L, Steggerda J, Yang H, Yang X. Regulatory network and interplay of hepatokines, stellakines, myokines and adipokines in nonalcoholic fatty liver diseases and nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:1007944. [PMID: 36267567 PMCID: PMC9578007 DOI: 10.3389/fendo.2022.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.
Collapse
Affiliation(s)
- Bing Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Zhou
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Justin Steggerda
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Gong Y, Guo Y, Jiang Y, Xing Z, Zhang H, Wang H, Gong Y. Intracerebroventricular injection of ghrelin receptor antagonist alleviated NAFLD via improving hypothalamic insulin resistance. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1117-1122. [PMID: 36246070 PMCID: PMC9526889 DOI: 10.22038/ijbms.2022.64792.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of clinical metabolic syndrome. Insulin resistance is an important factor in the pathogenesis of NAFLD. Ghrelin, widely distributed in peripheral tissues and the central nervous system, plays a vital role in regulating food intake, energy balance, and substance metabolism. In this study, the effect of intracerebroventricular (ICV) injection of ghrelin receptor antagonist on NAFLD was explored. MATERIALS AND METHODS A rat model of NAFLD was established by feeding a high-fat diet, and a selective ghrelin receptor antagonist [D-Lys-3]-GHRP-6 was injected via ventricular intubation implantation. The serum total cholesterol (TC), triglycerides (TGs), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and hepatic TGs were measured using the colorimetric method. Fasting plasma glucose (FPG) and fasting plasma insulin (FPI) were determined to calculate homeostatic model assessment insulin resistance (HOMA-IR). Hematoxylin-eosin (HE) and Oil Red O staining were conducted to observe the pathological changes and lipid accumulation in the liver. Hosphatidylinositide3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway protein expressions were measured using western blot analysis. RESULTS ICV injection of [D-Lys-3]-GHRP-6 significantly reduced serum lipids, transaminase, and HOMA-IR, improved liver injury, and inhibited lipid accumulation in the liver of NAFLD rats. Moreover, ICV injection of [D-Lys-3]-GHRP-6 significantly up-regulated the phosphorylation levels of PI3K/Akt/mTOR signaling protein expressions in the hypothalamus, indicating a significant improvement in hypothalamic insulin resistance. CONCLUSION Blockade of central ghrelin receptor can treat NAFLD possibly via the hypothalamic PI3K/Akt/mTOR signaling pathway to improve insulin resistance.
Collapse
Affiliation(s)
- Yating Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yaoyao Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yiming Jiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhiyang Xing
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Heng Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hongbo Wang
- Gastrointestinal Surgery Department, Jimo District People’s Hospital, Qingdao, China ,Corresponding authors: Hongbo Wang. Gastrointestinal Surgery Department, Jimo District People’s Hospital, Qingdao, China. ; Yanling Gong. Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China ,Corresponding authors: Hongbo Wang. Gastrointestinal Surgery Department, Jimo District People’s Hospital, Qingdao, China. ; Yanling Gong. Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
42
|
Takahashi Y, Konishi T, Nishimura M, Nishihira J. Dietary supplementation of deoxyribonucleic acid derived from chum salmon milt improves liver function in healthy Japanese individuals: a placebo-controlled, randomised, double-blind, parallel-group clinical trial. Food Funct 2022; 13:9383-9390. [PMID: 35959802 DOI: 10.1039/d2fo01149b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
A placebo-controlled, randomised, double-blind, parallel-group comparative study was conducted to investigate the effect of continuous intake of salmon milt (SM) DNA for 12 weeks on the improvement of liver function in 50 healthy Japanese participants aged 30 to 70 years with alanine aminotransferase (ALT) levels of 25-87 U L-1 in men, 22-66 U L-1 in women, of BMI 22.1-29.4 kg m-2. Comparative analysis of hepatic functions and several other parameters, including anthropometric parameters in placebo and SM DNA administered groups, revealed no significant differences in serum ALT level. SM DNA significantly improved the liver-to-spleen (L/S) ratio, body weight, and BMI in the main group. In addition to these parameters, in the BMI < 25 kg m-2 subgroup, the leptin level was significantly reduced. No adverse reactions or abnormal changes, symptoms, or findings in the clinical examination after intake of the test food containing SM DNA were observed. Furthermore, no significant difference in uric acid levels between SM DNA and placebo groups indicated the safety of using SM DNA as a food supplement. These results demonstrated the potential fatty liver improvement and anti-obesity action of continuous intake of SM DNA for 12 weeks without any significant adverse effects.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki, 300-4295, Japan.
| | - Tatsuya Konishi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki, 300-4295, Japan.
| | - Mie Nishimura
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi-nopporo, Ebetsu, Hokkaido, 069-8585, Japan.
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi-nopporo, Ebetsu, Hokkaido, 069-8585, Japan.
| |
Collapse
|
43
|
Takahashi Y, Konishi T, Nishimura M, Nishihira J. Evaluation of the efficacy and safety of chum salmon milt deoxyribonucleic acid for improvement of hepatic functions: a placebo-controlled, randomised, double-blind, and parallel-group, pilot clinical trial. Food Funct 2022; 13:9372-9382. [PMID: 35959845 DOI: 10.1039/d2fo01145j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
The increased prevalence of nonalcoholic fatty liver disease (NAFLD) is a critical public health concern. Deoxyribonucleic acid (DNA) from chum salmon (Oncorhynchus keta) milt (salmon milt DNA; SM DNA), a by-product obtained during industrial processing of the pharmaceutical raw material protamine, ameliorates hepatosteatosis in animals. This randomised, double-blind, parallel-group comparative study evaluated the effects of SM DNA on hepatic function in healthy Japanese participants with slightly decreased liver function and high alanine aminotransferase level and body mass index. Fifty participants were included in the study. The participants were divided into the placebo (n = 24) and SM DNA (n = 26) groups and administered equal doses of placebo (dextrin) and SM DNA (530 mg day-1), respectively. No significant alleviating effects of SM DNA were observed on the primary (hepatic functions and liver-to-spleen ratio), and secondary (NAFLD fibrosis score, serum protein levels, blood glucose, blood lipids, inflammatory markers, adipokines, cytokines, fatigue scoring, and skin conditions) endpoints. Subsequently, a sex-based subgroup analysis revealed a significant improvement in the primary and secondary outcomes in males ingesting SM DNA compared with those in males who were administered placebo. However, no such effect was observed in females. Overall, this clinical study demonstrated the anti-obesity potential of SM DNA and suggested that SM DNA can benefit hepatic function in males.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki, 300-4295, Japan.
| | - Tatsuya Konishi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki, 300-4295, Japan.
| | - Mie Nishimura
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi-nopporo, Ebetsu Hokkaido, 069-8585, Japan.
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi-nopporo, Ebetsu Hokkaido, 069-8585, Japan.
| |
Collapse
|
44
|
Pohl R, Eichelberger L, Feder S, Haberl EM, Rein-Fischboeck L, McMullen N, Sinal CJ, Bruckmann A, Weiss TS, Beck M, Höring M, Krautbauer S, Liebisch G, Wiest R, Wanninger J, Buechler C. Hepatocyte expressed chemerin-156 does not protect from experimental non-alcoholic steatohepatitis. Mol Cell Biochem 2022; 477:2059-2071. [PMID: 35449483 PMCID: PMC9237010 DOI: 10.1007/s11010-022-04430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine–choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Laura Eichelberger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, 93053, Regensburg, Germany
| | - Michael Beck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010, Bern, Switzerland
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
45
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
46
|
A Decreased Response to Resistin in Mononuclear Leukocytes Contributes to Oxidative Stress in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2022; 67:3006-3016. [PMID: 34156590 DOI: 10.1007/s10620-021-07105-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deregulation of immune response and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD) pathogenesis. Resistin is a physiological modulator of inflammation and redox homeostasis of different cell types. Increased resistin serum concentration and the direct association between resistin hepatic expression and NAFLD severity suggest that resistin participates in NAFLD pathogenesis. AIMS To evaluate resistin-induced regulation of redox homeostasis in mononuclear leukocytes from NAFLD patients and controls. METHODS We evaluated basal and resistin-mediated modulation of reactive oxygen species (ROS) and glutathione content by flow cytometry, and antioxidant enzyme activities by spectrophotometry. RESULTS Peripheral blood mononuclear cells (PBMC) from NAFLD patients showed higher ROS content and glutathione peroxidase activity and lower glutathione content, superoxide dismutase and glutathione reductase activities than control PBMC. Resistin decreased ROS levels and superoxide dismutase activity and increased glutathione reductase and catalase activities in PBMC from controls but not from patients. Resistin decreased glutathione content in PBMC from control and NAFLD patients, with greater effect on patient cells. Basal and resistin-modulated ROS levels were directly associated with obesity-related risk factors for NAFLD. Hepatic myeloid cells and T-lymphocytes from NAFLD patients showed higher basal ROS content than cells from controls. Resistin decreased ROS levels in hepatic T-lymphocytes from controls but not from patients. CONCLUSIONS Resistin regulates redox homeostasis in mononuclear leukocytes. A decreased response to resistin in leukocytes from NAFLD patients is associated with an impaired redox homeostasis.
Collapse
|
47
|
Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. LIVER RESEARCH 2022; 6:72-83. [PMID: 39958625 PMCID: PMC11791825 DOI: 10.1016/j.livres.2022.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the accumulation of excessive intrahepatic fat, is a leading metabolic disorder also considered as the hepatic manifestation of metabolic syndrome (MS). Though more commonly observed in obese individuals and those with metabolic risk factors, it also develops in a considerable number of non-obese individuals as well as participants without having any component of MS. The basic mechanism involved in the development of fatty liver is the imbalance between lipid uptake, synthesis, and metabolism in the liver, normally controlled by several mechanisms to maintain lipid homeostasis. As a complex progressive liver disorder, the NAFLD pathogenesis is multifactorial, and several new pathogenic phenomena were discovered over time. The available literature suggests the role of both genetic and environmental factors and associated metabolic factors; however, the mechanism of progression is not completely understood. In this review, we discuss different pathogenic mechanisms and their interplay to provide an elaborate idea regarding NAFLD development and progression. Better understanding of pathogenic mechanisms will be useful in finding new treatment for patients with NAFLD.
Collapse
Affiliation(s)
- Aamir Bashir
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Mehta
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
48
|
Ji L, Li Q, He Y, Zhang X, Zhou Z, Gao Y, Fang M, Yu Z, Rodrigues RM, Gao Y, Li M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: a promising drug Potentilla discolor Bunge. Acta Pharm Sin B 2022; 12:3529-3547. [PMID: 36176915 PMCID: PMC9513494 DOI: 10.1016/j.apsb.2022.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid metabolism and reversal of insulin resistance. In this review, we summarize potential therapeutic effects of TCM formulas for the treatment of NAFLD, focusing on the medicinal properties of natural active compounds from PDB and their underlying mechanisms. We point out that PDB can be classified as a novel candidate for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Qian Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Robim M. Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium
- Corresponding authors.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
49
|
Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022; 43:1103-1119. [PMID: 35217817 PMCID: PMC9061718 DOI: 10.1038/s41401-022-00880-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.
Collapse
Affiliation(s)
- Ting-Ying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-di Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Ghezelbash B, Shahrokhi N, Khaksari M, Asadikaram G, Shahrokhi M, Shirazpour S. Protective Roles of Shilajit in Modulating Resistin, Adiponectin, and Cytokines in Rats with Non-alcoholic Fatty Liver Disease. Chin J Integr Med 2022; 28:531-537. [PMID: 35258780 DOI: 10.1007/s11655-022-3307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the effect of Shilajit, a medicine of Ayurveda, on the serum changes in cytokines and adipokines caused by non-alcoholic fatty liver disease (NAFLD). METHODS After establishing fatty liver models by feeding a high-fat diet (HFD) for 12 weeks, 35 Wistar male rats were randomly divided into 5 groups, including control (standard diet), Veh (HFD + vehicle), high-dose Shilajit [H-Sh, HFD + 250 mg/(kg·d) Shilajit], low-dose Shilajit [L-Sh, HFD + 150 mg/(kg·d) Shilajit], and pioglitazone [HFD + 10 mg/(kg·d) pioglitazone] groups, 7 rats in each group. After 2-week of gavage administration, serum levels of glucose, insulin, interleukin 1beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), adiponectin, and resistin were measured, and insulin resistance index (HOMA-IR) was calculated. RESULTS After NAFLD induction, the serum level of IL-10 significantly increased and serum IL-1β, TNF-α levels significantly decreased by injection of both doses of Shilajit and pioglitazone (P<0.05). Increases in serum glucose level and homeostasis model of HOMA-IR were reduced by L-Sh and H-Sh treatment in NAFLD rats (P<0.05). Both doses of Shilajit increased adiponectin and decreased serum resistin levels (P<0.05). CONCLUSION The probable protective role of Shilajit in NAFLD model rats may be via modulating the serum levels of IL-1β, TNF-α, IL-10, adipokine and resistin, and reducing of HOMA-IR.
Collapse
Affiliation(s)
- Baran Ghezelbash
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| | - Mohammad Khaksari
- Endocrinology, and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Maryam Shahrokhi
- Department of Medical Science, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, 713414336, Iran
| | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| |
Collapse
|