1
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
S S, L.S. D, Rajendran P, N H, Singh S A. Exploring the potential of probiotics in Alzheimer's disease and gut dysbiosis. IBRO Neurosci Rep 2024; 17:441-455. [PMID: 39629018 PMCID: PMC11612366 DOI: 10.1016/j.ibneur.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Alzheimer's disease is a fatal neurodegenerative disorder that causes memory loss and cognitive decline in older people. There is increasing evidence suggesting that gut microbiota alteration is a cause of Alzheimer's disease pathogenesis. This review explores the link between gut dysbiosis and the development of Alzheimer's disease contributing to neuroinflammation, amyloid β accumulation, and cognitive decline. We examine the recent studies that illustrate the gut-brain axis (GBA) as a bidirectional communication between the gut and brain and how its alteration can influence neurological health. Furthermore, we discuss the potential of probiotic supplementation as a management approach to restore gut microbiota balance, and ultimately improve cognitive function in AD patients. Based on current research findings, this review aims to provide insights into the promising role of probiotics in Alzheimer's disease management and the need for further investigation into microbiota-targeted interventions.
Collapse
Affiliation(s)
- Sowmiya S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Dhivya L.S.
- Department of Pharmaceutical Chemistry, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Praveen Rajendran
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Harikrishnan N
- Department of pharmaceutical analysis, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Ankul Singh S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| |
Collapse
|
3
|
Pashaei KHA, Irankhah K, Namkhah Z, Sobhani SR. Edible mushrooms as an alternative to animal proteins for having a more sustainable diet: a review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:205. [PMID: 39616410 PMCID: PMC11608470 DOI: 10.1186/s41043-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND High protein sources especially animal protein is being used widely in people's diet. Ensuring a healthy and sustainable diet should be a global priority. Compared to diets rich in animal products, plant-based diets are more sustainable because they have less environmental impact. Aim of this article is to review mushroom's sustainability. MAIN BODY Using meat analogues like mushrooms seems to be a good option because their taste and texture are alike meat and they are sustainable healthy foods as they are good environmental choice due to their less water and land footprint but they are not a cost-benefit food. CONCLUSION Mushroom is a good nutritional and environmental meat substitute as it has less water and land footprint but not as a cost-benefit meat alternative. Therefore, the governments should make policies to use mushroom as an economical meat alternative and a source of protein for all consumers.
Collapse
Affiliation(s)
- Kimia Haji Ali Pashaei
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiyavash Irankhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Jeong SW, Yeo HJ, Ha NI, Kim KJ, Seo KS, Jin SW, Koh YW, Jeong HG, Park CH, Im SB. Metabolite Profiles and Biological Activities of Different Phenotypes of Beech Mushrooms ( Hypsizygus marmoreus). Foods 2024; 13:3325. [PMID: 39456387 PMCID: PMC11508092 DOI: 10.3390/foods13203325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Beech mushrooms (Hypsizygus marmoreus) are edible mushrooms commercially used in South Korea. They can be classified into white and brown according to their pigmentation. This study analyzed the metabolites and biological activities of these mushrooms. Specifically, 42 metabolites (37 volatiles, two phenolics, and three carbohydrates) were quantified in white beech mushrooms, and 47 (42 volatiles, two phenolics, and three carbohydrates) were detected in brown mushrooms. The major volatiles detected were hexanal, pentanal, 1-hexanol, and 1-pentanol. Brown mushrooms contained higher levels of hexanal (64%) than white mushrooms (35%), whereas white mushrooms had higher levels of pentanal (11%) and 1-pentanol (3%). Most volatiles were more abundant in white mushrooms than in brown mushrooms. Furthermore, brown beech mushrooms had a higher phenolic content than white mushrooms. Biological assays revealed that both types of mushroom demonstrated anti-microbial activities against bacterial and yeast pathogens and weak DPPH scavenging activity. The extracts from both mushrooms (50 μg/mL) also exhibited strong anti-inflammatory properties. Brown mushroom extracts showed higher antioxidant, anti-microbial, and anti-inflammatory properties than white mushroom extracts. This study reported that the differences in phenotype, taste, and odor were consistent with the metabolite differences between white and brown beech mushrooms, which have high nutritional and biofunctional values.
Collapse
Affiliation(s)
- Sang-Wook Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Neul-I Ha
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyoung-Sun Seo
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Seong Woo Jin
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Young-Woo Koh
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hee Gyeong Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Chang Ha Park
- Department of Smart Agriculture Management, Songho University, 210, Namsan-ro, Hoengseong-eup, Hoengseong-gun 24000, Republic of Korea
| | - Seung-Bin Im
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| |
Collapse
|
5
|
Wang J, Pan J, Zou J, Shi Y, Guo D, Zhai B, Zhao C, Luan F, Zhang X, Sun J. Isolation, structures, bioactivities, and utilizations of polysaccharides from Dictyophora species: A review. Int J Biol Macromol 2024; 278:134566. [PMID: 39116988 DOI: 10.1016/j.ijbiomac.2024.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Dictyophora species is an edible and medicinal fungus belonging to the Basidiomycotina, Gasteromycetes, Phallales, family Phallaceae, and genus Dictyophora, which is popular with consumers in China and across various Asian regions. Polysaccharides from Dictyophora species (DPs) are important bioactive macromolecules with multiple health benefits, according to published studies, including anti-tumor, antioxidative, anti-obesity, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory, regulation of gut microbiota, antibacterial, renoprotective, and other pharmacological effects. Based on their rich pharmacological activities, the preparation techniques, structural characteristics and pharmacological activities of DPs have been extensively studied. However, to the best of our knowledge, there is no dedicated review to shed light on recent advances in DPs. Therefore, in order to fill this gap, this review provides a comprehensive overview of the research on DPs, including the latest advances in extraction, isolation and purification, structural characteristics, pharmacological properties, safety assessment and potential utilizations, which will provide a theoretical basis for the research and development of subsequent DPs-related products.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Chongbo Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
6
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
7
|
Camilleri E, Blundell R, Baral B, Karpinski TM, Aruci E, Atrooz OM. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 2024; 10:e35638. [PMID: 39170453 PMCID: PMC11336990 DOI: 10.1016/j.heliyon.2024.e35638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This literature review offers an extensive exploration of Chaga mushrooms (Inonotus obliquus), focusing on their phytochemical composition, health-promoting attributes, and mechanisms of action. The aim was to provide an up-to-date overview of Chaga's significance in the medicinal sector, emphasizing its potential role in diverse health benefits. The review highlights Chaga's remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and immunomodulating properties. By synthesizing recent findings, this work underscores Chaga's importance in the medicinal industries and provides valuable insights into its pharmacological potential.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- University of Helsinki, Helsinki, Finland
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M. Karpinski
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
8
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
9
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Lv JH, Yang XM, Xiong MM, Yao L, Wang LA, Li Z, Zhang JX. Clypeasterol, a novel aromatic ergosterol skeleton from the mushroom Entoloma clypeatum. Nat Prod Res 2024:1-6. [PMID: 38949790 DOI: 10.1080/14786419.2024.2373962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Chemical investigation of the wild mushroom Entoloma clypeatum led to the isolation of one new A-nor B-aromatic C28 steroid (1), along with eight known compounds (2-9) from this mushroom. As far as we know, compound 1 represents an unprecedented type of natural product. The structure of the new compound was elucidated based on extensive spectroscopic data analysis of HR-ESI-MS, 1D, and 2D NMR, while the relative configuration was confirmed by NOESY correlations. In addition, the anti-inflammatory activity of compound 1 was evaluated against LPS induced NO production in RAW 264.7 macrophages. Compound 1 exhibited a moderate anti-inflammatory activity with an IC50 value of 24.56 ± 1.72 μM.
Collapse
Affiliation(s)
- Jian-Hua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Xiao-Min Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Miao-Miao Xiong
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Lan Yao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, PR China
| | - Li-An Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Zhuang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Jin-Xiu Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| |
Collapse
|
11
|
Gebru H, Faye G, Belete T. Antioxidant capacity of Pleurotus ostreatus (Jacq.) P. Kumm influenced by growth substrates. AMB Express 2024; 14:73. [PMID: 38878132 PMCID: PMC11180080 DOI: 10.1186/s13568-024-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
Functional constituents are the main concern in food production and consumption. Because foods rich in functional constituents have antioxidant capacity and are important in keeping consumers healthy. Pleurotus ostreatus is among foods rich in functional constituents. However, its functional constituents are affected by various factors. This study compared the antioxidant capacity of P. ostreatus grown on different substrates: straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4), and field pea (Trt5), sawdust (Trt6), and the mixture of the above with 1:1 w/w (Trt7). Trt7 had significantly higher radical scavenging activity (RSA) (73.27%), vitamin C (10.61 mg/100 g), and vitamin D (4.92 mg/100 g) compared to other treatments. Whereas the lowest values of RSA (44.24%), vitamin C (5.39 mg/100 g), and vitamin D (1.21 mg/100 g) were found in Trt2. The results indicated that mixed substrate may be a good growth substrate for functionally beneficial P. ostreatus and could be a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, P.O. Box 245, Fiche, Ethiopia.
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| |
Collapse
|
12
|
Yao H, Yang J, Li S, Cui SW, Tan H, Nie S. Effects of different fractions of polysaccharides from Dictyophora indusiata on high-fat diet-induced metabolic syndrome in mice. Int J Biol Macromol 2024; 272:132744. [PMID: 38834122 DOI: 10.1016/j.ijbiomac.2024.132744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
14
|
Camilleri E, Blundell R, Baral B, Karpiński TM, Aruci E, Atrooz OM. Unveiling the full spectrum of maitake mushrooms: A comprehensive review of their medicinal, therapeutic, nutraceutical, and cosmetic potential. Heliyon 2024; 10:e30254. [PMID: 38707308 PMCID: PMC11068609 DOI: 10.1016/j.heliyon.2024.e30254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
This literature review provides an up-to-date exploration of the multifaceted attributes of maitake mushrooms (Grifola frondosa), elucidating their bioactive phytochemicals and diverse health advantages, including their substantial role in supporting human health and potential incorporation into the medicinal industry. Carbohydrates and protein are the major constituents contributing to the dry weight of G. frondosa, taking up around 70-80 % and 13-21 %, respectively, with emerging research linking these constituents to various health benefits. By synthesising current research findings, this review emphasises the substantial role of maitake mushrooms in supporting human health and underscores their potential incorporation into the medicinal industry. To further advance our understanding, future research should delve into the mechanisms underlying their health-promoting effects, with a focus on conducting quantitative studies to elucidate physiological pathways and potential drug interactions. Additionally, exploring their integration into functional foods or nutraceuticals through quantitative assessments of bioavailability and efficacy will be crucial for maximising their therapeutic benefits. This review aims to provide comprehensive insights, catalysing further research and innovation in utilising maitake mushrooms for improved well-being and industry advancement.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- Institute of Biological Resources (IBR), Kathmandu, Nepal
- University of Helsinki, Helsinki, Finland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
15
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
Wu Z, Zhang R, Wang J, Li T, Zhang G, Zhang C, Ye H, Zeng X. Characteristics of exopolysaccharides from Paecilomyces hepiali and their simulated digestion and fermentation in vitro by human intestinal microbiota. Int J Biol Macromol 2024; 266:131198. [PMID: 38552700 DOI: 10.1016/j.ijbiomac.2024.131198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.
Collapse
Affiliation(s)
- Zhongwei Wu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Rongxian Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Jie Wang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Tenglong Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Guang Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Chaohui Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Atuahene D, Zuniga-Chaves I, Martello E, Stefanon B, Suen G, Balouei F, Meineri G. The Canine Gut Health: The Impact of a New Feed Supplement on Microbiota Composition. Animals (Basel) 2024; 14:1189. [PMID: 38672336 PMCID: PMC11047554 DOI: 10.3390/ani14081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to determine the impact of a novel formulation of a supplement composed of the natural ingredients, bromelain, quercetin, and Lentinula edodes, on the gut microbiota of healthy adult dogs. Adult healthy female dogs were administered either a placebo (CTR, n = 15) or the supplement (TRT, n = 15) over 28 days. Stool samples were collected for 16S rRNA sequencing before supplement administration (T0), at completion of supplement administration (T28), and one week after the end of supplement administration (T35) to characterize changes in the gut microbial communities. QIIME was used to determine both alpha- and beta-diversity, and ANCOM-BC was used to identify differences in taxonomic abundances before and after supplementation. We found a significant decrease in overall diversity in the CTR group but no significant differences in overall diversity in the TRT group over time. Furthermore, we found differences in the abundance of several taxa in both the CTR and TRT groups, but differences in the abundance of beneficial bacteria were more pronounced in the TRT group. Specifically, we found increases in the abundance of sequences belonging to the genera Bifidobacterium, Lactobacillus, and Pediococcus at T28 in the TRT group with significant increases in Bifidobacterium and Lactobacillus persisting at T35 when compared to T0. Importantly, members of these genera are considered important for their anti-inflammatory properties, vital for fostering a balanced and robust gut microbiota in dogs. The results of our study show the potential of our supplement to selectively enhance specific beneficial bacterial taxa, offering a targeted approach to modulating the gut microbiome without causing disruptions to the overall equilibrium.
Collapse
Affiliation(s)
- David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
| |
Collapse
|
18
|
De Giani A, Perillo F, Baeri A, Finazzi M, Facciotti F, Di Gennaro P. Positive modulation of a new reconstructed human gut microbiota by Maitake extract helpfully boosts the intestinal environment in vitro. PLoS One 2024; 19:e0301822. [PMID: 38603764 PMCID: PMC11008829 DOI: 10.1371/journal.pone.0301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Finazzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
19
|
de Souza Lopes L, da Silva JS, da luz JMR, de Cássia Soares da Silva M, Lima HS, Rocha GC, Mantovani HC, Kasuya MCM. Intestinal microbial diversity of swines fed with different sources of lithium. 3 Biotech 2024; 14:102. [PMID: 38464613 PMCID: PMC10917731 DOI: 10.1007/s13205-024-03938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
A drug that is widely used in the treatment of psychiatric disorder is lithium (Li) salts. The people who make therapeutic use of this drug develop a series of side effects. Through metataxonomic data, this study assessed the impacts of lithium, as Li carbonate or Li-enriched mushrooms, on the microbial composition of the ileum, colon, and feces of piglets. Employing Bray-Curtis metric, no differences were observed among the treatments evaluated. Nevertheless, the alpha diversity indices showed differences in the Simpson, Shannon, and Chao-1 indices in the colon and Chao-1 in the feces in the diets with Li compared with the diets without Li. The taxa with the highest relative abundance varied among the ileum, colon, and feces, with a predominance of the phyla Firmicutes, Bacteroidota, and Proteobacteria in diets with Li. Many groups of microorganisms that are important for the health of the host (e.g., Lactobacillus, Ruminococcaceae, Enterorhabdus, Muribaculaceae, and Coprococcus) had their relative abundance increased in animals that received diets with the recommended dose of lithium. Furthermore, there was an increase in the abundance of Prevotellaceae and Bacteroidales (in the diet with Li-enriched mushroom) and Clostridia, Ruminococcus, Burkholderia, and Bacteroidales (diets with Li carbonate) at the recommended dosages. This is the first study to show the effects of Li carbonate and Li-enriched mushrooms on the intestinal microbiota of piglets. Thus, the effects of lithium on the body may be related to its ability to change the composition of the intestinal microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03938-3.
Collapse
Affiliation(s)
- Leandro de Souza Lopes
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Juliana Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - José Maria Rodrigues da luz
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Helena Santiago Lima
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais 36570-900 Brazil
| | - Hilário Cuquetto Mantovani
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Maria Catarina Megumi Kasuya
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| |
Collapse
|
20
|
Gerardo DG, Maura TT. Mushrooms and Their Compounds with Potential Anticancer Activity: A Review. Int J Med Mushrooms 2024; 26:1-15. [PMID: 39093398 DOI: 10.1615/intjmedmushrooms.2024054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mushrooms produce many metabolites that show biological activity, which can be obtained from their fruiting body, mycelium or recovered from the culture broth when mushrooms are grown in submerged fermentation. Mushrooms are a source of natural pharmaceuticals; they have been reported to have potential inhibitory or preventive activity against some diseases, including different types of cancer. Cancer represents one of the main causes of death worldwide. It is worth mentioning that despite advances in pharmacological treatments, they still present side effects in patients. In this sense, the study of the use of mushrooms in complementary treatments against cancer is of great interest. Based on studies carried out in vitro and, in some cases, using animal models, it has been observed that mushrooms present preventive, corrective, and therapeutic properties against different types of cancer, by stimulating the immune system, due to their antioxidant, antimutagenic, and anti-inflammatory activities, as well as the regulation of the expression of some cellular processes, cell cycle arrest, and apoptosis, etc. Based on the above, this manuscript shows a review of scientific studies that support the anticancer activity of some mushrooms and/or their bioactive compounds.
Collapse
|
21
|
Fordjour E, Manful CF, Javed R, Galagedara LW, Cuss CW, Cheema M, Thomas R. Chaga mushroom: a super-fungus with countless facets and untapped potential. Front Pharmacol 2023; 14:1273786. [PMID: 38116085 PMCID: PMC10728660 DOI: 10.3389/fphar.2023.1273786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Charles F. Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman W. Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Chad W. Cuss
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Mumtaz Cheema
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Ba DM, Zhang S, Nishita Y, Tange C, Qiu T, Gao X, Muscat J, Otsuka R. Mushroom consumption and hyperuricemia: results from the National Institute for Longevity Sciences-Longitudinal Study of Aging and the National Health and Nutrition Examination Survey (2007-2018). Nutr J 2023; 22:62. [PMID: 37990262 PMCID: PMC10664361 DOI: 10.1186/s12937-023-00887-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Prior study reported that mushroom consumption was associated with a lower incidence of hyperuricemia, but there is limited evidence on this association. We conducted a collaborative study to investigate the association between mushroom intake and hyperuricemia in middle-aged and older populations. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES) in the U.S. (2007-2018) and the National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) in Japan (1997-2012). Consumption of mushroom (g/day) were measured by one- or two-day dietary recall in NHANES and by 3-day dietary records in the NILS-LSA. Hyperuricemia was defined using uric acid levels as > 420 μmol/L and > 350 μmol/L in NHANES for men and women, respectively; in the NILS-LSA, serum uric acid was repeatedly measured at baseline and follow-up surveys. Hyperuricemia was defined as uric acid levels > 416.4 μmol/L for men and ≥ 356.9 μmol/L for women. Logistic regression models in NHANES (cross-sectionally) and Generalized Estimation Equations in NILS-LSA (longitudinally) were performed. RESULTS A total of 5,778 NHANES participants (mean (SD) age: 53.2 (9.6) years) and 1,738 NILS-LSA (mean (SD) age: 53.5 (11.2) years) were included. Mushrooms were consumed by 5.7% of participants in NHANES and 81.2% in NILS-LSA. We did not observe a significant association between mushroom intakes and hyperuricemia in the NHANES men and women. However, in the NILS-LSA, compared to non-consumers, a higher mushroom intake was associated with a lower risk of incident hyperuricemia in men under 65 years old. The adjusted odds ratio (95% CI) for non-consumers, participants with middle, and the highest consumption of mushrooms were 1.00 (Ref.), 0.77 (0.44, 1.36), and 0.55 (0.31, 0.99), respectively (P-trend = 0.036). No association was found in women in NILS-LSA. CONCLUSIONS Mushroom consumption was associated with a lower risk of incident hyperuricemia in Japanese men.
Collapse
Affiliation(s)
- Djibril M Ba
- Department Public Health Sciences, Penn State College Medicine, Hershey, USA.
| | - Shu Zhang
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Tian Qiu
- Department Public Health Sciences, Penn State College Medicine, Hershey, USA
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University Shanghai, Shanghai, China
| | - Joshua Muscat
- Department Public Health Sciences, Penn State College Medicine, Hershey, USA
| | - Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
23
|
Zhang N, Liu Y, Tang FY, Yang LY, Wang JH. Structural characterization and in vitro anti-colon cancer activity of a homogeneous polysaccharide from Agaricus bisporus. Int J Biol Macromol 2023; 251:126410. [PMID: 37598827 DOI: 10.1016/j.ijbiomac.2023.126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Colon cancer is the third most prevalent cancer and the second most deadly cancer in the world. Anti-colon cancer activity of Agaricus bisporus polysaccharides has not been studied. In this paper, Agaricus bisporus polysaccharides were sequentially extracted by room temperature water, hot water, high pressure hot water, dilute alkaline solution and concentrated alkaline solution. A homogeneous polysaccharide (WAAP-1) was obtained using DEAE Cellulose-52 column. Physicochemical properties, structural characterization and anti-colon cancer activity of WAAP-1 were investigated. The results showed that WAAP-1 was a neutral polysaccharide with molecular weight of 10.1 kDa. The monosaccharide composition was glucose, mannose and galactose with a molar ratio of 84.95:8.97:4.50. The main chain was mainly composed of (1,4)-α-D-Glcp and (1,6)-β-D-Manp. In vitro anti-colon cancer results showed that WAAP-1 could significantly inhibit proliferation of colon cancer cell HT-29. It promoted apoptosis and inhibited epithelial mesenchymal transition of HT-29 by up-regulating the expression of Caspase-3, Bax and E-cadherin proteins and down-regulating the expression of Bcl-2 and Vimentin proteins. The results provided new potential possibilities for the development of novel functional foods or antitumor drugs.
Collapse
Affiliation(s)
- Ning Zhang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yong Liu
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Fang-Yuan Tang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Lin-Yuan Yang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jun-Hui Wang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
24
|
Aleman RS, Page R, Cedillos R, Montero-Fernández I, Fuentes JAM, Olson DW, Aryana K. Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells. Pharmaceuticals (Basel) 2023; 16:1511. [PMID: 38004377 PMCID: PMC10675128 DOI: 10.3390/ph16111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1β) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts' antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)-dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins' localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ricardo S. Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Ismael Montero-Fernández
- Department of Plant Biology, Ecology and Earth Sciencies, Faculty of Science, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain;
| | - Jhunior Abraham Marcia Fuentes
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Road to Dulce Nombre de Culmí, Km 215, Barrio El Espino, Catacamas 16201, Honduras;
| | - Douglas W. Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| |
Collapse
|
25
|
Sharif Swallah M, Bondzie-Quaye P, Wang H, Shao CS, Hua P, Alrasheed Bashir M, Benjamin Holman J, Sossah FL, Huang Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res Int 2023; 172:113161. [PMID: 37689913 DOI: 10.1016/j.foodres.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Owing to the recognized therapeutic characteristics of G. lucidum, it is one of the most extensively researched mushrooms as a chemopreventive agent and as a functional food. It is a known wood-degrading basidiomycete possessing numerous pharmacological functions and is termed a natural pharmacy store due to its rich number of active compounds which have proved to portray numerous therapeutic properties. This current review highlights studies on the potentialities of G. lucidum extracts as functional ingredients on organoleptic and nutritional properties of food products (e.g., dairy, wine, beverage, bakery, meat, and other products). In addition, the study delved into various aspects of encapsulated G. lucidum extracts, their morphological and rheological characteristics, prebiotic and immunomodulatory importance, the effects on apoptosis, autophagy, cancer therapy, inflammatory responses, oxidative stress, antioxidant activities, and safety concerns. These findings have significant implications for the development of new products in the food and pharmaceutical industries. On the other hand, the various active compounds extracted from G. lucidum exhibited no toxic or adverse effects, and the appeal for it as a dietary food, natural remedy, and health-fortifying food is drastically increasing as well as attracting the interest of both the industrial and scientific communities. Furthermore, the formation of functional foods based on G. lucidum appears to have actual promise and exciting prospects in nutrition, food, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Frederick Leo Sossah
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
26
|
Pei L, Liu W, Liu L, Wang X, Jiang L, Chen Z, Wang Q, Wang P, Xu H. Morel ( Morchella spp.) intake alters gut microbial community and short-chain fatty acid profiles in mice. Front Nutr 2023; 10:1237237. [PMID: 37810928 PMCID: PMC10556497 DOI: 10.3389/fnut.2023.1237237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Morels (Morchella spp.) are highly nutritious and consumed as both edible mushrooms and traditional Chinese medicine. This study aimed to investigate the effects of dietary supplementation with morel mushrooms on the gut bacterial microbiota and short-chain fatty acids (SCFAs) profiles in healthy mice. Healthy mice were randomly assigned to five groups: a control group (0% morel) and four intervention groups supplemented with different levels of morel mushrooms (5% for M5, 10% for M10, 15% for M15, and 20% for M20) over a period of 4 weeks. Fecal samples were collected at the end of the experiment to characterize the microbiota and assess the SCFAs levels. The morel intervention significantly altered the bacterial community composition, increasing Bacteroides, Lachnospiraceae NK4A136 group and Parabacteroides, while decreasing Staphylococcus and the Firmicutes to Bacteroidetes ratio (F/B ratio). Moreover, increased morel intake was associated with weight loss. All SCFAs content was upregulated in the morel-intervention groups. Potential SCFAs-producing taxa identified by regression analysis were distributed in the families Muribaculaceae, Lachnospiraceae, and in the genera Jeotgalicoccus, Gemella, Odoribacter, Tyzzerella 3 and Ruminococcaceae UCG-014. The functional categories involved with SCFAs-production or weight loss may contain enzymes such as beta-glucosidase (K05349), beta-galactosidase (K01190), and hexosaminidase (K12373) after morel intervention. The exploration of the impact of morel mushrooms on gut microbiota and metabolites contributes to the development of prebiotics for improving health and reducing obesity.
Collapse
Affiliation(s)
- Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Wei Liu
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, China
| | - Luping Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Luxi Jiang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | | | - Qiquan Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Peng Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Heng Xu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| |
Collapse
|
27
|
Cunha JRB, Wischral D, Peláez RDR, De Oliveira Magalhães P, Guimarães MB, de Jesus MA, Sales-Campos C, Mendes TD, Dias ES, Mendonça S, de Siqueira FG. Aqueous Extracts of Fermented Macrofungi Cultivated in Oilseed Cakes as a Carbon Source for Probiotic Bacteria and Potential Antibacterial Activity. Metabolites 2023; 13:854. [PMID: 37512561 PMCID: PMC10386005 DOI: 10.3390/metabo13070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria cultivation. Coriolopsis sp., Tyromyces sp., Panus lecomtei, and Pleurotus pulmonarius were cultivated in solid and submerged media. The aqueous extract of unfermented JSC was more efficient than glucose for the growth of all probiotic bacteria. Extracts from four macrofungi fermented in CSC favored Lactobacillus acidophilus growth. In solid fermentation, macrofungi extracts cultivated in JSC favored Bifidobacterium lactis growth. All fungi extracts showed more significant growth than carbohydrates among the four probiotic bacteria evaluated. Regarding antimicrobial activities, no fungal extract or bacterial supernatant showed a more significant inhibition halo for enteropathogenic bacteria than ampicillin (control). Extracts from P. lecomtei and Coriolopsis sp. in CSC showed inhibition halos for Salmonella enterica. Supernatants from L. acidophilus, B. lactis, and Lactobacillus rhamnosus resulted in more significant inhibition of Staphylococcus aureus than the control, which indicates possible antimicrobial activity. Unfermented JSC supernatant showed better results for bacterial growth, while supernatants and aqueous extracts from CSC fermentation can be used for probiotic bacteria culture.
Collapse
Affiliation(s)
- Joice Raísa Barbosa Cunha
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Brazil
| | - Daiana Wischral
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
| | - Rubén Darío Romero Peláez
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | - Pérola De Oliveira Magalhães
- Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | - Marina Borges Guimarães
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | | | - Ceci Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69067-375, Brazil
| | | | - Eustáquio Souza Dias
- Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Brazil
| | - Simone Mendonça
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
| | | |
Collapse
|
28
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
30
|
Liu J, Wu Y, Cai Y, Tan Z, Deng N. Long-term consumption of different doses of Grifola frondosa affects immunity and metabolism: correlation with intestinal mucosal microbiota and blood lipids. 3 Biotech 2023; 13:189. [PMID: 37193332 PMCID: PMC10183060 DOI: 10.1007/s13205-023-03617-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Grifola frondosa (GF) is an edible mushroom with hypoglycemic and hypolipidemic effects. In this study, the specific pathogen-free male mice were randomized into the normal (NM), low-dose GF (LGF), medium-dose GF (MGF), and high-dose GF (HGF) groups. The LGF, MGF, and HGF groups were fed with 1.425 g/(kg d), 2.85 g/(kg d), and 5.735 g/(kg d) of GF solution for 8 weeks. After feeding with GF solution, compared with the NM group, the thymus index was significantly increased in the LGF group, and TC, TG, and LDL of mice were significantly increased in the HGF group, while HDL was significantly decreased. Compared with the NM group, the uncultured Bacteroidales bacterium, Ligilactobacillus increased in the LGF group, and Candidatus Arthromitus increased in the MGF group. The characteristic bacteria of the HGF group included Christensenellaceae R7, unclassified Clostridia UCG 014, unclassified Eubacteria coprostanoligenes, and Prevotellaceae Ga6A1. Among them, Ligilactobacillus showed a negative correlation with HDL. Unclassified Eubacterium coprostanoligenes group and Ligilactobacillus showed a positive correlation with TG. In summary, our experiments evidenced that GF improves lipid metabolism disorders by regulating the intestinal microbiota, providing a new pathway for hypolipidemic using GF dietary.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|
31
|
Aleman RS, Cedillos R, Page R, Olson D, Aryana K. Physico-chemical, microbiological, and sensory characteristics of yogurt as affected by various ingredients. J Dairy Sci 2023; 106:3868-3883. [PMID: 37080788 DOI: 10.3168/jds.2022-22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
l-Glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate have been reported to help treat leaky gut. The purpose of this research was to explore the impact of these functional ingredients on the physico-chemical, microbiological, and sensory properties of yogurt. The milk from same source was equally divided into 9 pails and the 8 ingredients were randomly assigned to the 8 pails. The control had no ingredient. Milk was fermented to yogurt. The pH, titratable acidity, syneresis, viscosity, color (L*, a*, b*, C*, and h*), Streptococcus thermophilus counts, and Lactobacillus delbrueckii spp. bulgaricus counts of yogurts were determined on d 1, 7, 14, 21, 28, 35, and 42, whereas coliform counts, yeast and mold counts, and rheological characteristics were determined on d 1 and 42. The sensory study was performed on d 3 and particle size of the functional ingredients (powder form) was also determined. When compared with control, the incorporation of slippery elm bark into yogurts led to less syneresis. l-Glutamine increased pH and n' values (relaxation exponent derived from G') and lowered titratable acidity values. N-Acetyl-d-glucosamine incorporation resulted in higher n' and lower titratable acidity values, whereas maitake mushroom led to lower n' values. Incorporating quercetin increased the growth of L. bulgaricus. Adding maitake mushrooms increased the growth of S. thermophilus but lowered apparent viscosity values, whereas quercetin decreased its S. thermophilus counts. Quercetin decreased L* and a* values but increased b* values, and maitake mushroom increased a* values. Thixotropic behavior increased with the addition of licorice root and quercetin. Adding slippery elm bark, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate into yogurt did not affect the sensory properties, whereas yogurts with quercetin had the lowest sensory scores. Overall, most of these ingredients did not cause major changes to yogurt properties.
Collapse
Affiliation(s)
- Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Douglas Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803.
| |
Collapse
|
32
|
Jia D, Tang Y, Qin F, Liu B, Hu T, Chen W. Ganoderma lucidum polysaccharide alleviates Cd toxicity in common carp (Cyprinus carpio): Neuropeptide, growth performance and lipid accumulation. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109663. [PMID: 37263520 DOI: 10.1016/j.cbpc.2023.109663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is the most common heavy metal and is easily detected in aquatic environments on a global scale. Common carp (Cyprinus carpio) is a common cultural species in aquaculture. This study aimed the polysaccharide from Ganoderma lucidum in ameliorating Cd-induced toxicity in common carp. The study included a blank control group (CK, without Cd and GPL) and LGPL group (2 g/kg LGPL + 0.5 mg/L Cd) and HGPL group (4 g/kg HGPL + 0.5 mg/L Cd). The fish were sampled at 2 and 4 weeks, and bioaccumulation, neurotransmitters, lipid accumulation, and growth performance were measured. Ganoderma lucidum polysaccharide administration can significant protect against Cd toxicity by reducing Cd bioaccumulation in tissues, regulating neurotransmitters, decreasing lipid accumulation, and enhancing growth performance. Our results suggested that administering Ganoderma lucidum polysaccharides can alleviate waterborne Cd toxicity in common carp.
Collapse
Affiliation(s)
- Dongshu Jia
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Yujiao Tang
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Fengxian Qin
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Bei Liu
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China.
| | - Tiejun Hu
- Deer Industry Engineering Research Center, Changchun Sci-Tech University, Changchun 130600, China
| | - Wei Chen
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
33
|
Aleman RS, Paz D, Cedillos R, Tabora M, Olson DW, Aryana K. Attributes of Culture Bacteria as Influenced by Ingredients That Help Treat Leaky Gut. Microorganisms 2023; 11:microorganisms11040893. [PMID: 37110316 PMCID: PMC10144211 DOI: 10.3390/microorganisms11040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Consumers are becoming aware of functional ingredients such as medicinal herbs, polyphenols, mushrooms, amino acids, proteins, and probiotics more than ever before. Like yogurt and its probiotics, L-glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-D-glucosamine, licorice root, maitake mushrooms, and zinc orotate have demonstrated health benefits through gut microbiota. The impact of these ingredients on yogurt starter culture bacteria characteristics is not well known. The objective of this study was to determine the influence of these ingredients on the probiotic characteristics, tolerance to gastric juices and lysozyme, protease activity, and viability of Streptococcus thermophilus STI-06 and Lactobacillus bulgaricus LB-12. Acid tolerance was determined at 0, 30, 60, 90, and 120 min of incubation, whereas bile tolerance was analyzed at 0, 4, and 8 h. The microbial growth was determined at 0, 2, 4, 6, 8, 10, 12, 14, and 16 h of incubation, while protease activity was evaluated at 0, 12, and 24 h. The application of marshmallow root, licorice root, and slippery elm bark improved bile tolerance and acid tolerance of S. thermophilus. These ingredients did not impact the bile tolerance, acid tolerance, and simulated gastric juice tolerance characteristics of L. bulgaricus over 8 h and 120 min (respectively) of incubation. Similarly, the growth of S. thermophilus and L. bulgaricus was not affected by any of these functional ingredients. The application of marshmallow root, N-acetyl-D-glucosamine, and maitake mushroom significantly increased the protease activity of S. thermophilus, whereas the protease activity of L. bulgaricus was not affected by any ingredient. Compared to the control, marshmallow root and quercetin samples had higher mean log counts and log counts for S. thermophilus on the simulated gastric juice and lysozyme resistance in vitro test, respectively. For L. bulgaricus, licorice root, quercetin, marshmallow root, and slippery elm bark samples had higher log counts than the control samples.
Collapse
|
34
|
Rondanelli M, Moroni A, Zese M, Gasparri C, Riva A, Petrangolini G, Perna S, Mazzola G. Vitamin D from UV-Irradiated Mushrooms as a Way for Vitamin D Supplementation: A Systematic Review on Classic and Nonclassic Effects in Human and Animal Models. Antioxidants (Basel) 2023; 12:antiox12030736. [PMID: 36978984 PMCID: PMC10045067 DOI: 10.3390/antiox12030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Recent literature has shown that vitamin D, in addition to its well-known activity on the skeleton, has many positive effects on health. Unfortunately, it is not easy to meet intake needs solely with food. Mushrooms could provide a valid way to achieve this goal, because they are one of the few sources of vitamin D. The aim of this systematic review was to summarize what has been reported in the literature on the treatment of animal and human models with irradiated commercial mushrooms, with particular attention paid to the effects on clinical outcomes associated with the classical and nonclassical vitamin D functions. A total of 18 articles were selected. Six studies were conducted on human samples, while twelve were focused on animal models. The six studies conducted in humans involved a large number of subjects (663), but the treatment period was relatively short (1–6 months). Furthermore, the treatment dosage was different in the various groups (600–3800 IU/day). Probably for this reason, the studies did not demonstrate clinical efficacy on the parameters evaluated (cognitive functions, muscle system/function, metabolic syndrome). Indeed, those studies demonstrated an efficacy in increasing the blood levels of 25(OH)D2, but not in increasing the levels of 25(OH)D total. In 9 of 12 studies conducted on the animal model, however, a clinical efficacy on bone metabolism, inflammation, and cognitive performance was demonstrated. The results of this systematic review indicate that the intake of vitamin D from irradiated mushrooms could possibly help to meet vitamin D needs, but the dosage and the time of treatment tested need to be evaluated. Therefore, studies conducted in humans for longer periods than the studies carried out up to now are necessary, with defined dosages, in order to also evaluate the clinical efficacy demonstrated in animal models both for the classical (bone metabolism) and nonclassical (muscle function, cognitive performance, anti-inflammatory, and antioxidant activities) effects of vitamin D.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382381739
| | - Marco Zese
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| | | | | | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi Alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
35
|
Jayachandran M, Christudas S, Zheng X, Xu B. Dietary fiber konjac glucomannan exerts an antidiabetic effect via inhibiting lipid absorption and regulation of PPAR-γ and gut microbiome. Food Chem 2023; 403:134336. [DOI: 10.1016/j.foodchem.2022.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
36
|
Swallah MS, Bondzie-Quaye P, Wu Y, Acheampong A, Sossah FL, Elsherbiny SM, Huang Q. Therapeutic potential and nutritional significance of Ganoderma lucidum - a comprehensive review from 2010 to 2022. Food Funct 2023; 14:1812-1838. [PMID: 36734035 DOI: 10.1039/d2fo01683d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a long history in traditional Asian medicine, Ganoderma lucidum (G. lucidum) is a mushroom species suggested to improve health and extend life. Its medicinal reputation has merited it with numerous attributes and titles, and it is evidenced to be effective in the prevention and treatment of various metabolic disorders owing to its unique source of bioactive metabolites, primarily polysaccharides, triterpenoids, and polyphenols, attributed with antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic activities, etc. These unique potential pharmaceutical properties have led to its demand as an important resource of nutrient supplements in the food industry. It is reported that the variety of therapeutic/pharmacological properties was mainly due to its extensive prebiotic and immunomodulatory functions. All literature summarized in this study was collated based on a systematic review of electronic libraries (PubMed, Scopus databases, Web of Science Core Collection, and Google Scholar) from 2010-2022. This review presents an updated and comprehensive summary of the studies on the immunomodulatory therapies and nutritional significance of G. lucidum, with the focus on recent advances in defining its immunobiological mechanisms and the possible applications in the food and pharmaceutical industries for the prevention and management of chronic diseases. In addition, toxicological evidence and the adoption of standard pharmaceutical methods for the safety assessment, quality assurance, and efficacy testing of G. lucidum-derived compounds will be the gateway to bringing them into health establishments.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Frederick Leo Sossah
- Council For Scientific And Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O.Box 245, Sekondi, Ghana.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.,Department of Physics, Faculty of Science, Mansoura University, Mansoura 33516, Egypt
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
37
|
Fernandes A, Nair A, Kulkarni N, Todewale N, Jobby R. Exploring Mushroom Polysaccharides for the Development of Novel Prebiotics: A Review. Int J Med Mushrooms 2023; 25:1-10. [PMID: 36749052 DOI: 10.1615/intjmedmushrooms.2022046837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prebiotics have gained much attention in recent years as functional food ingredients. This has encouraged researchers to look for sustainable alternative sources of prebiotics. Prebiotics help in the modulation of the human intestinal microbiota and thereby improve host health. Chicory, asparagus, and Jerusalem artichoke are some conventional prebiotics that have been extensively studied. Mushrooms are rich sources of medicinal foods as well as bioactive polysaccharides and essential amino acids. They contain large amounts of chitin, mannans, galactans, xylans, glucans, krestin, lentinan, and hemicellulose, thus making it a potential candidate for prebiotics. They are also rich sources of fibers, proteins, and antioxidants. Several mushroom species like Ganoderma lucidum, Pleurotus ostreatus, Hericium erinaceus, Agaricus bisporus, and Lentinula edodes are rich in medicinal properties that have an array of applications. These medicinal mushrooms can be repurposed to regulate gut microbiota. In this review, we discuss the prebiotic effects of different mushroom species on probiotic organisms. We also reviewed the potential of mushroom waste as novel, cheap, and alternative sources of prebiotics.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Akhil Nair
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Nikhil Kulkarni
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Nishad Todewale
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| |
Collapse
|
38
|
Risoli S, Nali C, Sarrocco S, Cicero AFG, Colletti A, Bosco F, Venturella G, Gadaleta A, Gargano ML, Marcotuli I. Mushroom-Based Supplements in Italy: Let's Open Pandora's Box. Nutrients 2023; 15:nu15030776. [PMID: 36771482 PMCID: PMC9919834 DOI: 10.3390/nu15030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom. However, the cultivation of medicinal mushrooms on a large scale is performed mainly in China, where most of the production facilities do not have internationally recognized good manufacturing practices, despite that many European companies that sell myotherapies are supplied by Chinese manufacturers. This is particularly evident in Italy, where an arsenal of mushroom products is marketed in the form of powders and extracts not always of ascertained origin and sometimes of doubtful taxonomic identification, and thus not meeting the quality criteria required. The growing interest in mycotherapy involves a strong commitment from the scientific community to propose supplements of safe origin and genetic purity as well as to promote clinical trials to evaluate its real effects on humans. The purpose of this research is to analyze different mushroom-based dietary supplements used in medicine as monotherapy on the Italian market and to evaluate their composition and quality. The molecular identification of the sequences with those deposited in GenBank allowed for identifying 6 out of 19 samples, matching with those deposited belonging to the species indicated in the label, i.e., Lentinula edodes (samples 1, 4, 12 and 18) and Ganoderma lucidum (samples 5 and 10). Samples containing Ganoderma, labeled in the commercial product as G. lucidum, showed sequences that showed homology of 100% and 99% with G. resinaceum and G. sichuanense. An additional investigation was carried out in order to determine the active fungal ingredients, such as ergosterol, aflatoxins, heavy metals, nicotine and total glucan. The results obtained and shown in the manuscript highlight how the data were not only in line with what is expected with respect to what is indicated in the labels.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Arrigo Francesco Giuseppe Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy
- IRCCS AOU S. Orsola di Bologna, 40126 Bologna, Italy
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-345-589-8928
| | - Filippo Bosco
- U.O. Anesthesia and Intensive Care MiSC, AOUP Complementary Medicine Oncology Integrated, University Hospital Trust of Pisa, 56126 Pisa, Italy
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Ilaria Marcotuli
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
39
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
In Vitro Fermentation of Pleurotus eryngii Mushrooms by Human Fecal Microbiota: Metataxonomic Analysis and Metabolomic Profiling of Fermentation Products. J Fungi (Basel) 2023; 9:jof9010128. [PMID: 36675949 PMCID: PMC9865116 DOI: 10.3390/jof9010128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Edible mushrooms contain biologically active compounds with antioxidant, antimicrobial, immunomodulatory and anticancer properties. The link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. Lyophilized Pleurotus eryngii (PE) mushrooms, selected due to their strong lactogenic effect and anti-genotoxic, immunomodulatory properties, underwent in vitro static batch fermentation for 24 h by fecal microbiota from eight elderly apparently healthy volunteers (>65 years old). The fermentation-induced changes in fecal microbiota communities were examined using Next Generation Sequencing of the hypervariable regions of the 16S rRNA gene. Primary processing and analysis were conducted using the Ion Reporter Suite. Changes in the global metabolic profile were assessed by 1H NMR spectroscopy, and metabolites were assigned by 2D NMR spectroscopy and the MetaboMiner platform. PLS-DA analysis of both metataxonomic and metabolomic data showed a significant cluster separation of PE fermented samples relative to controls. DEseq2 analysis showed that the abundance of families such as Lactobacillaceae and Bifidobacteriaceae were increased in PE samples. Accordingly, in metabolomics, more than twenty metabolites including SCFAs, essential amino acids, and neurotransmitters discriminate PE samples from the respective controls, further validating the metataxonomic findings.
Collapse
|
41
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
42
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
43
|
Tu J, Adhikari B, Brennan MA, Cheng P, Bai W, Brennan CS. Interactions between sorghum starch and mushroom polysaccharides and their effects on starch gelatinization and digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel) 2022; 14:6203. [PMID: 36551687 PMCID: PMC9777303 DOI: 10.3390/cancers14246203] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hayri Demirbas
- Department of Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Zehra Hajrulai-Musliu
- Department of Chemistry, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, North Macedonia
| | - Fatih Ramazan Istanbullugil
- Department of Chemistry and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Dmitry Morozov
- Department of Epizootology and Infectious Diseases, Vitebsk State Academy of Veterinary Medicine, 210026 Vitebsk, Belarus
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Viorel Herman
- Department of Infectious Disease and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Abdelhanine Ayad
- Department of Physical Biology and Chemistry, Faculty of Nature and Life Sciences, Université de Bejaia, Bejaia 06000, Algeria
| | - Christos Athanassiou
- Laboratory of Entomology and Agriculture Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
45
|
Barbosa I, Domingues C, Barbosa RM, Ramos F. Amanitins in Wild Mushrooms: The Development of HPLC-UV-EC and HPLC-DAD-MS Methods for Food Safety Purposes. Foods 2022; 11:foods11233929. [PMID: 36496736 PMCID: PMC9741345 DOI: 10.3390/foods11233929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mushroom poisoning remains a serious food safety and health concern in some parts of the world due to its morbidity and mortality. Identification of mushroom toxins at an early stage of suspected intoxication is crucial for a rapid therapeutic decision. In this study, a new extraction method was developed to determine α- and β-amanitin in mushroom samples collected from central Portugal. High-performance liquid chromatography with in-line ultraviolet and electrochemical detection was implemented to improve the specificity of the method. The method was fully validated for linearity (0.5-20.0 µg·mL-1), sensitivity, recovery, and precision based on a matrix-matched calibration method. The limit of detection was 55 µg mL-1 (UV) and 62 µg mL-1 (EC) for α-amanitin and 64 µg mL-1 (UV) and 24 µg mL-1 (EC) for β-amanitin. Intra- and inter-day precision differences were less than 13%, and the recovery ratios ranged from 89% to 117%. The developed method was successfully applied to fourteen Amanita species (A. sp.) and compared with five edible mushroom samples after extraction with Oasis® PRIME HLB cartridges without the conditioning and equilibration step. The results revealed that the A. phalloides mushrooms present the highest content of α- and β-amanitin, which is in line with the HPLC-DAD-MS. In sum, the developed analytical method could benefit food safety assessment and contribute to food-health security, as it is rapid, simple, sensitive, accurate, and selectively detects α- and β-amanitin in any mushroom samples.
Collapse
Affiliation(s)
- Isabel Barbosa
- Faculty of Pharmacy, Azinhaga de Santa Comba, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Faculty of Pharmacy, Azinhaga de Santa Comba, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142 Oporto, Portugal
| | - Rui M. Barbosa
- Faculty of Pharmacy, Azinhaga de Santa Comba, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Azinhaga de Santa Comba, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142 Oporto, Portugal
- Correspondence:
| |
Collapse
|
46
|
Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Wang T, Han J, Dai H, Sun J, Ren J, Wang W, Qiao S, Liu C, Sun L, Liu S, Li D, Wei S, Liu H. Polysaccharides from Lyophyllum decastes reduce obesity by altering gut microbiota and increasing energy expenditure. Carbohydr Polym 2022; 295:119862. [DOI: 10.1016/j.carbpol.2022.119862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
|
48
|
Rehman AU, Siddiqui NZ, Farooqui NA, Alam G, Gul A, Ahmad B, Asim M, Khan AI, Xin Y, Zexu W, Song Ju H, Xin W, Lei S, Wang L. Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model. Front Nutr 2022; 9:984695. [PMID: 36276816 PMCID: PMC9582931 DOI: 10.3389/fnut.2022.984695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a health issue that causes serious worldwide economic problems. It has previously been reported that natural polysaccharides have been studied with regard to regulating the gut microbiota, which plays an important role in T2DM. Here, we investigate the effects of Morchella esculenta polysaccharide (MEP) on a high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM in BALB/c mice. The administration of MEP effectively regulated hyperglycemia and hyperlipidemia and improved insulin sensitivity. We also determined an improvement in gut microbiota composition by 16sRNA pyrosequencing. Treatment with MEP showed an increase in beneficial bacteria, i.e., Lactobacillus and Firmicutes, while the proportion of the opportunistic bacteria Actinobacteria, Corynebacterium, and Facklamia decreased. Furthermore, the treatment of T2DM mice with MEP resulted in reduced endotoxemia and insulin resistance-related pro-inflammatory cytokines interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Moreover, MEP treatment improved intestinal permeability by modulating the expression of the colon tight-junction proteins zonula occludens-1 (ZO-1), occludin, claudin-1, and mucin-2 protein (MUC2). Additionally, MEP administration affects the metagenome of microbial communities in T2DM mice by altering the functional metabolic pathways. All these findings suggested that MEP is a beneficial prebiotic associated with ameliorating the gut microbiota and its metabolites in T2DM.
Collapse
Affiliation(s)
- Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Gulzar Alam
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Aneesa Gul
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Bashir Ahmad
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Asim
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hyo Song Ju
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Sun Lei
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Liang Wang,
| |
Collapse
|
49
|
Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int J Mol Sci 2022; 23:ijms231810502. [PMID: 36142412 PMCID: PMC9504980 DOI: 10.3390/ijms231810502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Various chemotherapeutic drugs have been extensively used for cancer treatment. However, current anticancer drugs cause severe side effects and induce resistance. Therefore, the development of novel and effective anticancer agents with minimal or no side effects is important. Notably, natural compounds have been highlighted as anticancer drugs. Among them, many researchers have focused on mushrooms that have biological activities, including antitumor activity. The aim of this review is to discuss the anticancer potential of different mushrooms and the underlying molecular mechanisms. We provide information regarding the current clinical status and possible modes of molecular actions of various mushrooms and mushroom-derived compounds. This review will help researchers and clinicians in designing evidence-based preclinical and clinical studies to test the anticancer potential of mushrooms and their active compounds in different types of cancers.
Collapse
|
50
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|