1
|
Sakrajda K, Langwiński W, Stachowiak Z, Ziarniak K, Narożna B, Szczepankiewicz A. Immunomodulatory effect of lithium treatment on in vitro model of neuroinflammation. Neuropharmacology 2025; 265:110238. [PMID: 39586495 DOI: 10.1016/j.neuropharm.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Bipolar disorder (BD) is psychiatric disorder of not fully acknowledged pathophysiology. Studies show the involvement of innate-immune system activation and inflammation in BD course and treatment efficiency. Microglia are crucial players in the inflammatory response possibly responsible for BD innate-immune activity. Lithium is a mood stabilizer used in treatment for 75 years. Immunomodulation was previously described as one of the potential modes of its action. We hypothesized that lithium might modulate the microglia response to innate-immune-associated cytokines (10 ng/mL TNF-α, 50 ng/mL IL-1β, 20 ng/mL IFN-γ). We aimed to investigate whether lithium treatment and pretreatment of microglia modify the expression of genes associated with NLRP3 inflammasome. We also aimed to verify lithium treatment effect on caspase activity and extracellular IL-1β concentration. For the first time, our study used human microglial cell line - HMC3, the cytokine stimuli and lithium in concentration corresponding to that in the brains of patients. To analyze lithium mode of action, we analyzed the short- and long-term treatment and pretreatment. To assess the influence on microglia responding to innate-immune cytokines, we analyzed the expression of genes involved in innate-immune and inflammasome (TSPO, TLR4, NFKB1, CASP1, CASP4, NLRP3, IL-1β, IL-6), caspase activity, extracellular IL-1β concentration, phospho-GSK-3β(Ser9) expression and lactate concentration. We found that lithium treatment significantly reduced NLRP3 inflammasome-related genes expression. We observed that lithium treatment reduces inflammasome activity, which may attenuate the inflammatory state. Interestingly, the lithium pretreatment resulted in significantly elevated inflammasome activity, suggesting that lithium does not impair the immune response to additional stimuli.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Kamil Ziarniak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | | |
Collapse
|
2
|
Chen BF, Liu L, Lin FZ, Zeng HM, Huang HQ, Zhang CF, Liu CC, Chen X, Peng J, Wang YF, Wang ZL, Chen B, Liu DL, Liu Y, Li ZZ, Zeng XX. Comprehensive bibliometric analysis of pharmacotherapy for bipolar disorders: Present trends and future directions. World J Psychiatry 2025; 15:100685. [DOI: 10.5498/wjp.v15.i1.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental illness characterized by significant mood swings. Effective drug treatment modalities are crucial for managing BD.
AIM To analyze the current status and future trends of global research on BD drug treatment over the last decade.
METHODS The Web of Science Core Collection database spanning from 2015 to 2024 was utilized to retrieve literature related to BD drug treatment. A total of 2624 articles were extracted. Data visualization and analysis were conducted using CiteSpace, VOSviewer, Pajek, Scimago Graphica, and R-studio bibliometrix to identify research hotspots, key contributors, and future trends.
RESULTS The United States, China, and the United Kingdom have made the most significant contributions to research on BD drug treatment and formed notable research collaboration networks. The University of Pittsburgh, Massachusetts General Hospital, and the University of Michigan have been identified as the major research institutions in this field. The Journal of Affective Disorders is the most influential journal. A keyword analysis revealed research hotspots related to clinical symptoms, drug efficacy, and genetic mechanisms. A citation analysis identified the management guidelines published by Yatham et al in 2018 as the most cited paper.
CONCLUSION This study provides a detailed overview of the field of BD drug treatment, highlighting key contributors, research hotspots, and future directions. The study findings can be employed as a reference for future research and policymaking, which may enable further development and optimization of BD pharmacotherapy.
Collapse
Affiliation(s)
- Bo-Fan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Li Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Fang-Zhen Lin
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Min Zeng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Qiang Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chun-Fang Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong-Cong Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Peng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun-Fa Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Lin Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bin Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Le Liu
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Yun Liu
- Department of Psychiatry, Jiangxi Mental Hospital, Hospital of Nanchang University, Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Zheng-Zheng Li
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin-Xing Zeng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Bernard J, Tamouza R, Godin O, Berk M, Andreazza AC, Leboyer M. Mitochondria at the crossroad of dysregulated inflammatory and metabolic processes in bipolar disorders. Brain Behav Immun 2025; 123:456-465. [PMID: 39378969 DOI: 10.1016/j.bbi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
In last few decades, considerable evidence has emphasized the significant involvement of mitochondria, often referred to as the "powerhouse of the cell," in the pathophysiology of bipolar disorder (BD). Given crucial mitochondrial functions in cellular metabolism and inflammation, both of which are compromised in BD, this perspective review examines the central role of mitochondria in inflammation and metabolism within the context of this disorder. We first describe the significance of mitochondria in metabolism before presenting the dysregulated inflammatory and metabolic processes. Then, we present a synthetic and hypothetical model of the importance of mitochondria in those dysfunctional pathways. The article also reviews different techniques for assessing mitochondrial function and discuss diagnostic and therapeutic implications. This review aims to improve the understanding of the inflammatory and metabolic comorbidities associated with bipolar disorders along with mitochondrial alterations within this context.
Collapse
Affiliation(s)
- Jérémy Bernard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ophélia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, Mitochondrial Innovation Initiative (MITO2i) University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France.
| |
Collapse
|
4
|
Kachel M, Dola A, Kubiak M, Majewska W, Nowakowska J, Langwiński W, Hryhorowicz S, Szczepankiewicz A. MicroRNA Expression Profile Is Altered by Short-Term and Chronic Lithium Treatment in a Rat Model of Depression. J Mol Neurosci 2024; 74:116. [PMID: 39674983 DOI: 10.1007/s12031-024-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Depression is a common disease that affects 3.8% of the global population. Despite various antidepressant treatments, one-third of patients do not respond to antidepressants, therefore augmentation with mood stabilizers such as lithium may be required in this group. One of the suggested pathomechanisms of depression is the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and recent reports showed that microRNAs (miRNA) can impact its activity by epigenetic regulation. We aimed to explore the miRNA expression profile in the depression model and its changes upon short-term and chronic lithium treatment in the rat brain (pituitary, hypothalamus, and hippocampus). We used a chronic mild stress rat model of depression and short- and long-term lithium treatment. The behavior was assessed by an open-field test. The miRNA expression profile in the pituitary was estimated by sequencing and validated in the hypothalamus and hippocampus with qPCR. We found several miRNAs in the pituitary that were significantly altered between CMS-exposed and control rats as well as after short- and long-term lithium treatment. MicroRNAs chosen for validation in the hypothalamus and hippocampus (rno-miR-146a-5p, rno-miR-127-3p) showed no significant changes in expression. We performed in silico analysis and estimated potential pathways involved in lithium action for miRNAs differentially expressed in the pituitary at different time points. Specific microRNA subsets showed altered expression in the pituitary in depression model upon short- and long-term lithium treatment. We identified that biological pathways of target genes for these altered miRNAs differ, with the Foxo pathway potentially involved in disease development.
Collapse
Affiliation(s)
- Maria Kachel
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Dola
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Mikołaj Kubiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Majewska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
5
|
Zhao Y, Duan C, Xiao Y, Gong W, Wang Y, Zhang H, Ku P, Nie X. Water acidification aggravates lithium-induced toxicity represented by energy supply, oxidative stress, and cell fate in Daphnia magna neonates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177143. [PMID: 39490820 DOI: 10.1016/j.scitotenv.2024.177143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Lithium is extensively utilized in industrial energy production, particularly in lithium-ion batteries, and in pharmaceuticals for the treating clinical mood disorders. Consequently, lithium is frequently detected in various environmental matrices. It has been reported to cause a range of toxic effects on aquatic organisms including oxidative stress, neurological disorders, and reproductive suppression. Water acidification is a global issue with numerous negative impacts on aquatic organisms. It can alter the physio-chemical properties and bioavailability of metal ions. The acidic leaching process during lithium battery treatment and global water acidification both suggest that lithium contamination often occurs in acidic environments. In the present study, Daphnia magna neonates were exposed to four treatments (control, lithium alone, low pH, and combined) to investigate whether an acidic environment exacerbates the toxic effects of lithium on aquatic organisms and to explore potential toxic action mechanisms. The results indicated that low pH posed a significant threat to the growth and reproduction of D. magna. When exposed to both lithium and low pH, there was increased lithium accumulation and an energy trade-off response, leading to increased energy allocation to reproduction and reduced energy for growth. Lithium exposure stimulated D. magna activity, while low pH inhibited it, suggesting that an imbalance in energy consumption and supply. Combined exposure to lithium and low pH resulted in severe oxidative stress due to mitochondrial dysfunction, under-utilization of energy substances, and increased ionic homeostasis disturbances. Consequently, the exposed organism altered apoptosis and autophagy processes to maintain homeostasis. The present study demonstrated that lithium and water acidification posed a population-level threat to D. magna, and their combined exposure significantly largely exacerbated the toxic effects.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Peijia Ku
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Roh JD, Bae M, Kim H, Yang Y, Lee Y, Cho Y, Lee S, Li Y, Yang E, Jang H, Kim H, Kim H, Kang H, Ellegood J, Lerch JP, Bae YC, Kim JY, Kim E. Lithium normalizes ASD-related neuronal, synaptic, and behavioral phenotypes in DYRK1A-knockin mice. Mol Psychiatry 2024:10.1038/s41380-024-02865-2. [PMID: 39633007 DOI: 10.1038/s41380-024-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Dyrk1A deficiency is linked to various neurodevelopmental disorders, including developmental delays, intellectual disability (ID) and autism spectrum disorders (ASD). Haploinsufficiency of Dyrk1a in mice reportedly leads to ASD-related phenotypes. However, the key pathological mechanisms remain unclear and human DYRK1A mutations remain uncharacterized in mice. Here, we generated and studied Dyrk1a-knockin mice carrying a human ASD patient mutation (Ile48LysfsX2; Dyrk1a-I48K mice). These mice display severe microcephaly, social and cognitive deficits, dendritic shrinkage, excitatory synaptic deficits, and altered phospho-proteomic patterns enriched for multiple signaling pathways and synaptic proteins. Early chronic lithium treatment of newborn mutant mice rescues the brain volume, behavior, dendritic, synaptic, and signaling/synapse phospho-proteomic phenotypes at juvenile and adult stages. These results suggest that signaling/synaptic alterations contribute to the phenotypic alterations seen in Dyrk1a-I48K mice, and that early correction of these alterations by lithium treatment has long-lasting effects in preventing juvenile and adult-stage phenotypes.
Collapse
Affiliation(s)
- Junyeop Daniel Roh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mihyun Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hyosang Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Yeunkeum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
- Korea Institute of Drug Safety & Risk Management, Anyang, 14051, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | | | | | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, 34141, Korea
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, M4G 1R8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
7
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024; 27:1391-1404. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Nishida K, Osaka H, Kanazawa T. Development progress of drugs for bipolar disorder: 75 Years after lithium proved effective. J Psychiatr Res 2024; 180:177-182. [PMID: 39427446 DOI: 10.1016/j.jpsychires.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Bipolar disorder, a psychiatric condition identified by significant mood changes and a considerable genetic connection with schizophrenia, needs continuous and extensive management due to its common onset in adolescence and significant impact on psychosocial activities. While traditional mood stabilizers continue to be widely used, the pursuit of more effective treatments remains ongoing, with the current research targeting various stages of the disorder. This study provides a thorough examination of new pharmacological treatments for bipolar disorder, which are currently in Phase II and Phase III clinical trials up to 22 April 2024. A systematic search was conducted using the NIH National Library of Medicine, focusing on both repurposed and innovative drugs now in advanced stages of testing. The study identifies several promising therapeutic agents, including those intended for severe mood disorders with suicidal tendencies, and others aimed at treating mood-related neuroinflammation. Drugs that enhance dopamine stabilization and those that act on serotonin receptor activities were found notable. We also explored the strategic repurposing of already existing medications for broader therapeutic uses and looked into the potential of new formulations designed for the immediate management of symptoms. Our analysis highlights two main strategies for tackling bipolar disorder: finding new uses for existing drugs and developing new medications with unique actions. This approach shows continuous improvement in drug treatments, helping patients manage their condition better and addressing the complicated nature of bipolar disorder.
Collapse
Affiliation(s)
- Keiichiro Nishida
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Hitoshi Osaka
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tetsufumi Kanazawa
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
9
|
Harandi H, Ahmadinia H, Ghaffarian-Bahraman A, Alimoradi H, Nasab ZB, Rezaeian M. Correlation between lithium concentrations in drinking water and suicide attempt in the southeast of Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1144. [PMID: 39480571 DOI: 10.1007/s10661-024-13325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Suicide, as an avoidable cause of death in public health systems, currently lacks effective global strategies to prevent it. However, several epidemiological studies found a correlation between the concentration of lithium (Li) in drinking water and lower suicide rates in the general population. Our ecological study investigated this hypothesis in the Rafsanjan district of Iran. Samples from the public water supply in 16 areas in the district were analyzed using the graphite furnace atomic absorption. The resulting data were examined in relation to the suicide attempt from March 2019 to March 2020 obtained from Iran's Ministry of Health's registration system. During that period, 239 suicide attempts were recorded, resulting in an average of 69 individuals (85 women and 54 men) per 100,000 residents of the area. The average Li concentration in the drinking water was 47.30 µg/L (ranging from 9.4 to 141 µg/L). A negative significant correlation (r = -0.551, p = 0.027) between Li concentration in water and the rate of suicide attempt were observed in the studied population. Notably, these findings indicate an inverse significant relationship between Li levels and suicide attempt rate in women (r = -0.725, p = 0.001). This is the first study in Iran that examines the relationship between Li levels in drinking water and suicide attempt rate. The findings of this study support an inverse relationship between the level of Li in public drinking water and the rate of women suicide attempt.
Collapse
Affiliation(s)
- Hamidreza Harandi
- Department of Biochemistry Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, Occupational Environment Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Houman Alimoradi
- BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Zoheira Bagheri Nasab
- Department of Biochemistry Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran
| | - Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, Occupational Environment Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Pardossi S, Pinzi M, Cattolico M, Rescalli MB, Nicchi L, Tuci B, Mariantoni E, Cuomo A. Insights into the Incidence, Course, and Management of Lithium-Induced Hypothyroidism in Real-World Psychiatric Practice in Italy. Pharmaceuticals (Basel) 2024; 17:1425. [PMID: 39598337 PMCID: PMC11597692 DOI: 10.3390/ph17111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Lithium is a cornerstone in the treatment of bipolar disorder (BD). However, lithium use requires careful monitoring of thyroid function due to associated dysfunctions. The aim of our real-world study is to retrospectively evaluate the impact of lithium on thyroid function and how these thyroid alterations can be measured and managed. Methods: A retrospective observational study was performed on 150 patients with BD who started lithium treatment at the University Hospital of Siena. Thyroid function was assessed at baseline and after the introduction of lithium by measuring TSH, T3, and T4 levels at baseline and after 3, 6, 9, and 12 months, during which changes in psychiatric symptoms were also evaluated using specific psychometric scales. Results: Significant increases in TSH levels were observed at 3 and 6 months, while T3 and T4 levels decreased significantly at 3 months. Transient thyroid dysfunction occurred in 36.7% of patients, but normalized without the discontinuation of lithium or need for thyroid replacement therapy in most cases; however, replacement therapy was initiated in 8.7% of patients. There were no significant differences in treatment response between patients with and without thyroid abnormalities, as the abnormalities were transient or resolved. Conclusions: In our sample, lithium induced some cases of hypothyroidism, which, being transient or corrected with replacement therapy, did not interfere with symptomatic improvement. These findings underscore the necessity for continuous thyroid function monitoring during lithium therapy. Clinicians should be prepared to initiate thyroid replacement therapy, when necessary, as timely management can prevent the interruption of lithium treatment and ensure ongoing symptomatic improvement in BD patients. Future studies could include larger and more diverse populations to validate these findings further, extending the follow-up period beyond 12 months to better observe long-term thyroid function trends and management outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Cuomo
- Department of Molecular Medicine, School of Medicine, University of Siena, 53100 Siena, Italy; (S.P.); (M.P.); (M.C.); (M.B.R.); (L.N.); (B.T.); (E.M.)
| |
Collapse
|
11
|
Gomes-da-Costa S, Fernandéz-Pérez I, Borras R, Lopez N, Rivas Y, Ruiz V, Pons-Cabrera MT, Giménez-Palomo A, Anmella G, Valentí M, Berk M, Vieta E, Pacchiarotti I. Is a vegetarian diet beneficial for bipolar disorder? Relationship between dietary patterns, exercise and pharmacological treatments with metabolic syndrome and course of disease in bipolar disorder. Acta Psychiatr Scand 2024; 150:209-222. [PMID: 38994686 DOI: 10.1111/acps.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Lifestyle factors are being increasingly studied in bipolar disorder (BD) due to their possible effects on both course of disease and physical health. The aim of this study was to jointly describe and explore the interrelations between diet patterns, exercise, pharmacological treatment with course of disease and metabolic profile in BD. METHODS The sample consisted of 66 euthymic or mild depressive individuals with BD. Clinical and metabolic outcomes were assessed, as well as pharmacological treatment or lifestyle habits (diet and exercise). Correlations were explored for different interrelations and a factor analysis of dietary patterns was performed. RESULTS Adherence to the Mediterranean diet was low, seen in 37.9% of the patients and was positively associated with perceived quality of life. The amount of exercise was negatively associated with cholesterol levels, with 32.8% of participants rated as low active by International Physical Activity Questionnaire. There was a high prevalence of obesity (40.6%) and metabolic syndrome (29.7%). Users of lithium showed the best metabolic profile. Interestingly, three dietary patterns were identified: "vegetarian," "omnivore" and "Western." The key finding was the overall positive impact of the "vegetarian" pattern in BD, which was associated with reduced depression scores, better psychosocial functioning, and perceived quality of life, decreased body mass index, cholesterol, LDL and diastolic blood pressure. Nuts consumption was associated with a better metabolic profile. CONCLUSIONS A vegetarian diet pattern was associated with both, better clinical and metabolic parameters, in patients with BD. Future studies should prioritize prospective and randomized designs to determine causal relationships, and potentially inform clinical recommendations.
Collapse
Affiliation(s)
- Susana Gomes-da-Costa
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
- Sant Andreu Mental Health Care Centre, Vidal i Barraquer Foundation, Barcelona, Spain
| | | | - Roger Borras
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Noelia Lopez
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Yudith Rivas
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Victoria Ruiz
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Maria Teresa Pons-Cabrera
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
- Health and Addictions Research Group, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Gerard Anmella
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Michael Berk
- IMPACT-The Institute for Mental and Physical Health and Clinical, Translation, School of Medicine, Food and Mood Centre, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
12
|
Bauer JA, Punshon T, Barr MN, Jackson BP, Weisskopf MG, Bidlack FB, Coker MO, Peacock JL, Karagas MR. Deciduous teeth from the New Hampshire birth cohort study: Early life environmental and dietary predictors of dentin elements. ENVIRONMENTAL RESEARCH 2024; 256:119170. [PMID: 38768888 DOI: 10.1016/j.envres.2024.119170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Sparse research exists on predictors of element concentrations measured in deciduous teeth. OBJECTIVE To estimate associations between maternal/child characteristics, elements measured in home tap water during pregnancy and element concentrations in the dentin of shed deciduous teeth. METHODS Our analysis included 152 pregnant person-infant dyads followed from the second trimester through the end of the first postnatal year from the New Hampshire Birth Cohort Study. During pregnancy and early infancy, we collected dietary and sociodemographic information via surveys, measured elements in home tap water, and later collected naturally exfoliated teeth from child participants. We measured longitudinal deposition of elements in dentin using LA-ICP-MS. Multivariable linear mixed models were used to estimate associations between predictors and dentin element concentrations. RESULTS We measured 12 elements in dentin including those previously reported (Ba, Mn, Pb, Sr, Zn) and less frequently reported (Al, As, Cd, Cu, Hg, Li, and W). A doubling of Pb or Sr concentrations in water was associated with higher dentin Pb or Sr respectively in prenatally formed [9% (95%CI: 3%, 15%); 3% (1%, 6%)] and postnatally formed [10% (2%, 19%); 6% (2%, 10%)] dentin. Formula feeding from birth to 6 weeks or 6 weeks to 4 months was associated with higher element concentrations in postnatal dentin within the given time period as compared to exclusive human milk feeding: Sr: 6 weeks: 61% (36%, 90%) and 4 months: 85% (54%, 121%); Ba: 6 weeks: 35% (3.3%, 77%) and 4 months: 42% (10%, 83%); and Li: 6 weeks: 61% (33%, 95%) and 4 months: 58% (31%, 90%). SIGNIFICANCE These findings offer insights into predictors of dentin elements and potential confounders in exposure-health outcome relationships during critical developmental periods.
Collapse
Affiliation(s)
- Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Matthew N Barr
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Janet L Peacock
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
13
|
Vita G, Nöhles VB, Ostuzzi G, Barbui C, Tedeschi F, Heuer FH, Keller A, DelBello MP, Welge JA, Blom TJ, Kowatch RA, Correll CU. Systematic Review and Network Meta-Analysis: Efficacy and Safety of Antipsychotics vs Antiepileptics or Lithium for Acute Mania in Children and Adolescents. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)01316-9. [PMID: 39128561 DOI: 10.1016/j.jaac.2024.07.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE To compare second-generation antipsychotics (SGAs) and mood stabilizers (MSs) in youth with a bipolar disorder type I (BD-I) manic/mixed episode. METHOD A systematic PubMed/Embase/PsycInfo literature search until December 31, 2023, for randomized trials of SGAs or MSs in patients ≤18 years of age with BD-I manic/mixed episode was conducted. The study included a network meta-analysis comparing treatments regarding mania symptoms and mania response (co-primary outcomes), and secondary efficacy and tolerability outcomes. RESULTS Eighteen studies (n = 2844, mean age = 11.74, female participants = 48.0%, mean study duration = 5.4 weeks) comparing 6 SGAs (aripiprazole, asenapine, olanzapine, quetiapine, risperidone, and ziprasidone) and 4 MSs (lithium, oxcarbazepine, topiramate, and valproate) were meta-analyzed. All 6 SGAs outperformed placebo in reducing manic symptomatology, including risperidone (standardized mean difference [SMD] = -1.18, 95% CI = -0.92, -1.45, Confidence in Network Meta-Analysis [CINeMA] = moderate confidence), olanzapine (SMD = -0.77, 95% CI = -0.36, -1.18, low confidence), aripiprazole (SMD = -0.67, 95% CI = -0.33, -1.01, moderate confidence), quetiapine (SMD = -0.60, 95% CI = -0.32, -0.87, high confidence), asenapine (SMD = -0.54, 95% CI = -0.19, -0.89, moderate confidence), and ziprasidone (SMD = -0.43, 95% CI = -0.17, 0.70, low confidence), whereas no mood stabilizer outperformed placebo. Concerning mania response, risperidone (Risk ratio [RR] = 2.58, 95% CI = 1.88, 3.54, low confidence), olanzapine (RR = 2.42, 95% CI = 1.33, 3.54, very low confidence), aripiprazole (RR = 2.05, 95% CI = 1.44, 2.92, low confidence), quetiapine (RR = 1.89, 95% CI = 1.45n 2.47, moderate confidence), asenapine (RR = 1.81, 95% CI = 1.28, 2.55, very low confidence) and lithium (RR = 1.35, 95% CI = 1.00, 1.83, p = .049, very low confidence) outperformed placebo, without superiority of other MSs vs placebo. Individually, risperidone was more efficacious in reducing manic symptomatology than all other comparators, except olanzapine and topiramate, yet with low/very low confidence, and was associated with increased prolactin and glucose. Pooled together, SGAs outperformed both placebo and MSs for mania symptom reduction (SMD = -0.68, 95% CI = -0.86, -0.51 and SMD = -0.61, 95% CI = -0.82, -0.40, moderate confidence), and mania response (RR = 1.85, 95% CI = 1.53, 2.24 and RR = 1.65, 95% CI = 1.33, 2.04, moderate confidence) without differences between MSs and placebo. There were no significant treatment-placebo differences for all-cause discontinuation, whereas lithium, ziprasidone, and oxcarbazepine were associated with more adverse event-related drop-outs than placebo. Most SGAs were associated with more sedation, weight gain, and metabolic issues vs placebo and MSs. CONCLUSION SGAs were more efficacious than placebo and MSs in treating acute mania symptoms, however, their use must be carefully weighed against important side effects.
Collapse
Affiliation(s)
- Giovanni Vita
- Charité Universitätsmedizin, Berlin, Germany; WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, University of Verona, Verona, Italy
| | | | - Giovanni Ostuzzi
- WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, University of Verona, Verona, Italy
| | - Corrado Barbui
- WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, University of Verona, Verona, Italy
| | - Federico Tedeschi
- WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, University of Verona, Verona, Italy
| | | | | | | | - Jeffrey A Welge
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas J Blom
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert A Kowatch
- Ohio State University Wexner Medical Center / Nationwide Children's Hospital, Columbus, Ohio
| | - Christoph U Correll
- Charité Universitätsmedizin, Berlin, Germany; Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York; Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.
| |
Collapse
|
14
|
Meng Y, Liu S, Yu M, Liang H, Tong Y, Song J, Shi J, Cai W, Wu Q, Wen Z, Wang J, Guo F. The Changes of Blood and CSF Ion Levels in Depressed Patients: a Systematic Review and Meta-analysis. Mol Neurobiol 2024; 61:5369-5403. [PMID: 38191692 DOI: 10.1007/s12035-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Micronutrient deficiencies and excesses are closely related to developing and treating depression. Traditional and effective antidepressants include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and lithium. There is no consensus on the fluctuation of zinc (Zn2+), magnesium (Mg2+), calcium (Ca2+), copper (Cu2+), iron (Fe2+), and manganese (Mn2+) ion levels in depressed individuals before and after therapy. In order to determine whether there were changes in blood and cerebrospinal fluid (CSF) levels of these ions in depressed patients compared with healthy controls and depressed patients treated with TCAs, SSRIs, or lithium, we applied a systematic review and meta-analysis. Using the Stata 17.0 software, we performed a systematic review and meta-analysis of the changes in ion levels in human samples from healthy controls, depressive patients, and patients treated with TCAs, SSRIs, and lithium, respectively. By searching the PubMed, EMBASE, Google Scholar, Web of Science, China National Knowledge Infrastructure (CNKI), and WAN FANG databases, 75 published analyzable papers were chosen. In the blood, the levels of Zn2+ and Mg2+ in depressed patients had decreased while the Ca2+ and Cu2+ levels had increased compared to healthy controls, Fe2+ and Mn2+ levels have not significantly changed. After treatment with SSRIs, the levels of Zn2+ and Ca2+ in depressed patients increased while Cu2+ levels decreased. Mg2+ and Ca2+ levels were increased in depressed patients after Lithium treatment. The findings of the meta-analysis revealed that micronutrient levels were closely associated with the onset of depression and prompted more research into the underlying mechanisms as well as the pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Yulu Meng
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuangshuang Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ji Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jian Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wen Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Jialu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
15
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
16
|
Amirghasemi F, Nejad SK, Chen R, Soleimani A, Ong V, Shroff N, Eftekhari T, Ushijima K, Ainla A, Siegel S, Mousavi MPS. LiFT (a Lithium Fiber-Based Test): An At-Home Companion Diagnostics for a Safer Lithium Therapy in Bipolar Disorder. Adv Healthc Mater 2024; 13:e2304122. [PMID: 38563494 PMCID: PMC11466011 DOI: 10.1002/adhm.202304122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
This work presents LiFT (a lithium fiber-based test), a low-cost electrochemical sensor that can measure lithium in human saliva and urine with FDA-required accuracy. Lithium is used for the treatment of bipolar disorder, and has a narrow therapeutic window. Close monitoring of lithium concentration in biofluids and adjustment of drug dosage can minimize the devastating side effects. LiFT is an inexpensive, yet accurate and simple-to-operate lithium sensor for frequent at-home testing for early identification of lithium toxicity. The low cost and high accuracy of LiFT are enabled through an innovative design and the use of ubiquitous materials such as yarn and carbon black for fabrication. LiFT measures Li+ through potentiometric recognition using a lithium selective sensing membrane that is deposited on the ink-coated yarn. A detection limit of 0.97 µM is obtained with a sensitivity of 59.07±1.25 mV/decade for the Li+ sensor in deionized water. Moreover, the sodium correction extended LiFT's linear range in urine and saliva to 0.5 mM. The LiFT platform sends the test results to the patient's smartphone, which subsequently can be shared with the patient's healthcare provider to expedite diagnosis and prevention of acute lithium toxicity.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Ruitong Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Nika Shroff
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Tanya Eftekhari
- Kern Medical Center, 1700 Mount Vernon Ave, Bakersfield, CA, 93306, US
| | - Kara Ushijima
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Steven Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, 90033, CA, US
| | - Maral P. S. Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| |
Collapse
|
17
|
Chen C, Wang B, Zhao X, Luo Y, Fu L, Qi X, Ying Z, Chen L, Wang Q, Sun S, Chen D, Kang P. Lithium Promotes Osteogenesis via Rab11a-Facilitated Exosomal Wnt10a Secretion and β-Catenin Signaling Activation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30793-30809. [PMID: 38833412 DOI: 10.1021/acsami.4c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/β-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.
Collapse
Affiliation(s)
- Changjun Chen
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Baoning Wang
- Department of Microbiology, West China of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xin Zhao
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, China
| | - Yue Luo
- Department of Orthopedic Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Fu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Qi
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhendong Ying
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Liyile Chen
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuru Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuo Sun
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dailing Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Pengde Kang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Yang Z, Zhao Y, Wang Y, Liu X, Jiang Y, Jiang Y, Liu T, Hu Y, Chang H. Echinacoside ameliorates post-stroke depression by activating BDNF signaling through modulation of Nrf2 acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155433. [PMID: 38547621 DOI: 10.1016/j.phymed.2024.155433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Post-stroke depression (PSD) affects approximately one-third of stroke survivors, leading to adverse outcomes in rehabilitation, reduced quality of life, and increased mortality rates. Despite these implications, the underlying causes of PSD remain unclear, posing challenges for prevention and treatment. Echinacoside (ECH), a natural compound with known neuroprotective and antidepressant properties, holds significant therapeutic potential for PSD. However, the precise mechanism of its action remains unknown. PURPOSE To unravel the specific mechanism through which ECH alleviates PSD by exploring the intricate interplay between ECH and Nrf2, as well as its impact on the BDNF/TrkB signaling axis. STUDY DESIGN AND METHODS A rat PSD model was established though middle cerebral artery occlusion coupled with chronic unpredictable mild stress, followed by ECH treatment. The rats' depressive state was evaluated using the sucrose preference test and force swimming test. Brain damage was assessed through TTC staining, Nissl staining, and TUNEL assay. The multifaceted mechanism of ECH in PSD was investigated using immunofluorescence, immunohistochemistry, RT-qPCR, dual-luciferase assay, and western blotting. Additionally, the interaction between ECH and Nrf2 was explored through molecular docking and microscale thermophoresis. RESULTS Our findings unveiled a novel facet of ECH action, demonstrating its unique ability to upregulate Nrf2 through acetylation within the hippocampus of PSD-affected rats (p < 0.05). Moreover, ECH showcased its distinctive potential by enhancing BDNF transcriptional activity, activating the BDNF/TrkB signaling axis, and orchestrating a comprehensive response against oxidative stress and apoptosis, thereby alleviating PSD symptoms in rats (p < 0.05). CONCLUSIONS This study not only provides insights into the pivotal role of Nrf2 in mediating the BDNF/TrkB axis activation by ECH but also highlights the novelty of ECH's mechanism in addressing PSD. The elucidation of these unique aspects positions ECH as a groundbreaking candidate for further exploration and development in the realm of PSD intervention.
Collapse
Affiliation(s)
- Zhou Yang
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China
| | - Yalin Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Yanling Wang
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China; Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou City, Guangdong Province, 510405, China
| | - Xiaoli Liu
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China
| | - Yongxia Jiang
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China
| | - Yongqu Jiang
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China
| | - Tingyu Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China; Shen Chun-ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance, Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213003, China; Department of Neurology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, PR China.
| | - Hui Chang
- Lianyungang Hospital of Traditional Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu Province, 222004, China.
| |
Collapse
|
20
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
21
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
22
|
Hawkes C, Dale RC, Scher S, Cornish JL, Perez DL, Santoro JD, Fernandes S, Kozlowska K. Bridging the Divide: An Integrated Neurobio-Psycho-Social Approach to Treating Antibody Negative Inflammatory Encephalitis in a School-Aged Child. Harv Rev Psychiatry 2024; 32:101-116. [PMID: 38728570 DOI: 10.1097/hrp.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Clare Hawkes
- From Kids Neuroscience Centre (Dr. Dale), The Children's Hospital at Westmead (Drs. Dale, Hawkes, and Kozlowska), Westmead, AUS; Faculty of Medicine and Health, The Children's Hospital at Westmead Clinical School (Drs. Dale and Kozlowska), and Brain and Mind Centre (Dr. Dale), University of Sydney, Sydney, AUS; Harvard Medical School (Drs. Scher, Perez, and Fernandes); McLean Hospital, Belmont, MA (Drs. Scher and Fernandes); Specialty in Psychiatry, University of Sydney School of Medicine, Sydney, AUS (Drs. Scher and Kozlowska); School of Psychological Sciences and Centre for Emotional Health, Macquarie University (Dr. Cornish); Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA (Dr. Perez); Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA (Dr. Santoro); Department of Neurology, Keck School of Medicine of the University of Southern California (Dr. Santoro); The Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, AUS (Dr. Kozlowska)
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sadighi M, Mai L, Xu Y, Boillot M, Targa G, Mottarlini F, Brambilla P, Gass P, Caffino L, Fumagalli F, Homberg JR. Chronic exposure to imipramine induces a switch from depression-like to mania-like behavior in female serotonin transporter knockout rats: Role of BDNF signaling in the infralimbic cortex. J Affect Disord 2024; 351:128-142. [PMID: 38280571 DOI: 10.1016/j.jad.2024.01.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly burdensome psychiatric disorder characterized by alternating states of mania and depression. A major challenge in the clinic is the switch from depression to mania, which is often observed in female BD patients during antidepressant treatment such as imipramine. However, the underlying neural basis is unclear. METHODS To investigate the potential neuronal pathways, serotonin transporter knockout (SERT KO) rats, an experimental model of female BD patients, were subjected to a battery of behavioral tests under chronic treatment of the antidepressant imipramine. In addition, the expression of brain-derived neurotrophic factor (BDNF) and its downstream signaling was examined in the prefrontal cortex. RESULTS Chronic exposure to imipramine reduced anxiety and sociability and problem-solving capacity, and increased thigmotaxis and day/night activity in all animals, but specifically in female SERT KO rats, compared to female wild-type (WT) rats. Further, we found an activation of BDNF-TrkB-Akt pathway signaling in the infralimbic, but not prelimbic, cortex after chronic imipramine treatment in SERT KO, but not WT, rats. LIMITATIONS Repeated testing behaviors could potentially affect the results. Additionally, the imipramine induced changes in behavior and in the BDNF system were measured in separate animals. CONCLUSIONS Our study indicates that female SERT KO rats, which mirror the female BD patients with the 5-HTTLPR s-allele, are at higher risk of a switch to mania-like behaviors under imipramine treatment. Activation of the BDNF-TrkB-Akt pathway in the infralimbic cortex might contribute to this phenotype, but causal evidence remains to be provided.
Collapse
Affiliation(s)
- Mina Sadighi
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Lingling Mai
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Yifan Xu
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Sakrajda K, Bilska K, Czerski PM, Narożna B, Dmitrzak-Węglarz M, Heilmann-Heimbach S, Brockschmidt FF, Herms S, Nöthen MM, Cichon S, Więckowska B, Rybakowski JK, Pawlak J, Szczepankiewicz A. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology (Berl) 2024; 241:727-738. [PMID: 38036661 DOI: 10.1007/s00213-023-06505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr M Czerski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Barbara Więckowska
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
25
|
de Souza Lopes L, da Silva JS, da luz JMR, de Cássia Soares da Silva M, Lima HS, Rocha GC, Mantovani HC, Kasuya MCM. Intestinal microbial diversity of swines fed with different sources of lithium. 3 Biotech 2024; 14:102. [PMID: 38464613 PMCID: PMC10917731 DOI: 10.1007/s13205-024-03938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
A drug that is widely used in the treatment of psychiatric disorder is lithium (Li) salts. The people who make therapeutic use of this drug develop a series of side effects. Through metataxonomic data, this study assessed the impacts of lithium, as Li carbonate or Li-enriched mushrooms, on the microbial composition of the ileum, colon, and feces of piglets. Employing Bray-Curtis metric, no differences were observed among the treatments evaluated. Nevertheless, the alpha diversity indices showed differences in the Simpson, Shannon, and Chao-1 indices in the colon and Chao-1 in the feces in the diets with Li compared with the diets without Li. The taxa with the highest relative abundance varied among the ileum, colon, and feces, with a predominance of the phyla Firmicutes, Bacteroidota, and Proteobacteria in diets with Li. Many groups of microorganisms that are important for the health of the host (e.g., Lactobacillus, Ruminococcaceae, Enterorhabdus, Muribaculaceae, and Coprococcus) had their relative abundance increased in animals that received diets with the recommended dose of lithium. Furthermore, there was an increase in the abundance of Prevotellaceae and Bacteroidales (in the diet with Li-enriched mushroom) and Clostridia, Ruminococcus, Burkholderia, and Bacteroidales (diets with Li carbonate) at the recommended dosages. This is the first study to show the effects of Li carbonate and Li-enriched mushrooms on the intestinal microbiota of piglets. Thus, the effects of lithium on the body may be related to its ability to change the composition of the intestinal microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03938-3.
Collapse
Affiliation(s)
- Leandro de Souza Lopes
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Juliana Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - José Maria Rodrigues da luz
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Helena Santiago Lima
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais 36570-900 Brazil
| | - Hilário Cuquetto Mantovani
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Maria Catarina Megumi Kasuya
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, S/N, Viçosa, Minas Gerais 36570-000 Brazil
| |
Collapse
|
26
|
Vasconcelos ME, Mota D, Silva T. Possible association between lithium intoxication and Takotsubo syndrome. BMJ Case Rep 2024; 17:e257051. [PMID: 38479830 PMCID: PMC10941129 DOI: 10.1136/bcr-2023-257051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
More than 25 years after being diagnosed with bipolar disorder and receiving continuous treatment with lithium, a woman develops Takotsubo syndrome.
Collapse
Affiliation(s)
- Mara Elisa Vasconcelos
- Psychiatry, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
- University of Coimbra Institute of Psychological Medicine, Coimbra, Portugal
| | - David Mota
- Psychiatry, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
- University of Coimbra Institute of Psychological Medicine, Coimbra, Portugal
| | - Tânia Silva
- Psychiatry, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
- University of Coimbra Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
27
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
28
|
Singh AK, Malviya R, Prakash A, Verma S. Neuropsychiatric Manifestations in Alzheimer's Disease Patients: Genetics and Treatment Options. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:39-54. [PMID: 36856177 DOI: 10.2174/1871527322666230301111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 03/02/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neuropsychiatric symptoms (NPS), which cause great misery to those with dementia and those who care for them and may lead to early institutionalization. OBJECTIVE The present systematic review aims to discuss the various aspects of Alzheimer's, including treatment options. METHODS The databases Embase, PubMed, and Web of Science were searched to collect data. RESULTS Incipient cognitive deterioration is commonly accompanied by these early warning signals of neurocognitive diseases. The neurobiology of NPSs in Alzheimer's disease, as well as particular symptoms, including psychosis, agitation, apathy, sadness, and sleep disorders, will be examined in this review. For NPSs in Alzheimer's disease, clinical trial designs, as well as regulatory issues, were also addressed. A fresh wave of research, however, is helping to push the discipline ahead. For medication development and repurposing, we highlight the most recent results in genetics, neuroimaging, and neurobiology. Even though identifying and treating psychosis in adults with dementia is still a challenging endeavor, new options are coming up that give the field fresh focus and hope. Conclsuion: It can be concluded from the complete literature survey that Alzheimer's-related psychosis as well as other symptoms that are not psychotic, have made significant progress in the last decade. These milestones in the development of safer, more effective treatments have been achieved as a consequence of great focus on non-pharmacological interventions like DICE or WHELD; the investigation into ways to improve existing drugs like aripiprazole, risperidone, amisulpride, and Escitalopram for safer precision-based treatment; and the development of a clinical trial program for pimavanserin.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Anuj Prakash
- Reference Standard Division, Indian Pharmacopoeia Commission, Sec-23, Raj Nagar, Ghaziabad, Uttar Pradesh, India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
30
|
Aurélie L, Andréa B, Gauvind K, Olivier B, Raoul B, Dayan F, Sylvain B, Romain G. External Evaluation of Population Pharmacokinetics Models of Lithium in the Bipolar Population. Pharmaceuticals (Basel) 2023; 16:1627. [PMID: 38004492 PMCID: PMC10674621 DOI: 10.3390/ph16111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Lithium has been used in the treatment of bipolar disorder for several decades. Treatment optimization is recommended for this drug, due to its narrow therapeutic range and a large pharmacokinetics (PK) variability. In addition to therapeutic drug monitoring, attempts have been made to predict individual lithium doses using population pharmacokinetics (popPK) models. This study aims to assess the clinical applicability of published lithium popPK models by testing their predictive performance on two different external datasets. Available PopPK models were identified and their predictive performance was determined using a clinical dataset (46 patients/samples) and the literature dataset (89 patients/samples). The median prediction error (PE) and median absolute PE were used to assess bias and inaccuracy. The potential factors influencing model predictability were also investigated, and the results of both external evaluations compared. Only one model met the acceptability criteria for both datasets. Overall, there was a lack of predictability of models; median PE and median absolute PE, respectively, ranged from -6.6% to 111.2% and from 24.4% to 111.2% for the literature dataset, and from -4.5% to 137.6% and from 24.9% to 137.6% for the clinical dataset. Most models underpredicted the observed concentrations (7 out of 10 models presented a negative bias). Renal status was included as a covariate of lithium's clearance in only two models. To conclude, most of lithium's PopPK models had limited predictive performances related to the absence of covariates of interest included, such as renal status. A solution to this problem could be to improve the models with methodologies such as metamodeling. This could be useful in the perspective of model-informed precision dosing.
Collapse
Affiliation(s)
- Lereclus Aurélie
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Inserm UMR 1106, 13385 Marseille, France (G.R.)
- EXACTCURE, 06000 Nice, France (F.D.)
| | | | - Kallée Gauvind
- Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, 13005 Marseille, France
| | - Blin Olivier
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Inserm UMR 1106, 13385 Marseille, France (G.R.)
- Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, 13005 Marseille, France
| | - Belzeaux Raoul
- Pôle Universitaire de Psychiatrie, CHU de Montpellier, 34000 Montpellier, France
| | | | | | - Guilhaumou Romain
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Inserm UMR 1106, 13385 Marseille, France (G.R.)
- Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, 13005 Marseille, France
| |
Collapse
|
31
|
Mrozek W, Socha J, Sidorowicz K, Skrok A, Syrytczyk A, Piątkowska-Chmiel I, Herbet M. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023; 115:112143. [PMID: 37562078 PMCID: PMC10299949 DOI: 10.1016/j.nut.2023.112143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
In recent years, there has been a significant increase in depression, which is related to, among other things, the COVID-19 pandemic. Depression can be fatal if not treated or if treated inappropriately. Depression is the leading cause of suicide attempts. The disease is multifactorial, and pharmacotherapy often fails to bring satisfactory results. Therefore, increasingly more importance is attached to the natural healing substances and nutrients in food, which can significantly affect the therapy process and prevention of depressive disorders. A proper diet is vital to preventing depression and can be a valuable addition to psychological and pharmacologic treatment. An inadequate diet may reduce the effectiveness of antidepressants or increase their side effects, leading to life-threatening symptoms. This study aimed to review the literature on the pathogenesis of the development and treatment of depression, with particular emphasis on dietary supplements and the role of nutrition in the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Weronika Mrozek
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Socha
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Klara Sidorowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Skrok
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Syrytczyk
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
32
|
Lopes LDS, da Silva MDCS, da Silva JS, da Luz JMR, Faustino ADO, Rocha GC, de Oliveira LL, Kasuya MCM. Bioavailability of Li-enriched mushrooms and protection against oxidative stress in pigs: First study in vivo. 3 Biotech 2023; 13:334. [PMID: 37681112 PMCID: PMC10480122 DOI: 10.1007/s13205-023-03731-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Mycelia and mushrooms are able to bioaccumulate minerals. Lithium is the active principle of drugs used in the treatment of psychiatric diseases. However, a dietary source of Li can reduce the side effects of these drugs. Thus, the objective of this study was to evaluate the bioavailability of Li-enriched mushroom of Pleurotus djamor in pigs and the effects of this element on oxidative stress in the animal tissues. Pigs 28-30 days-old were fed with diets containing or not Li for five days. Levels of serum cortisol were related to the Li dosage from diet. Li-enriched mushrooms were more bioavailable source of Li to the body than Li2CO3. These mushrooms also improved the effects of oxidative enzymes and showed less oxidative damage than Li2CO3. These results demonstrate the potential to use Li-enriched P. djamor as a source of Li that is more bioavailable and present protective effects against oxidative stress.
Collapse
Affiliation(s)
- Leandro de Souza Lopes
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Juliana Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - José Maria Rodrigues da Luz
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Alessandra de Oliveira Faustino
- Department of Cell Biology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Leandro Licursi de Oliveira
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Maria Catarina Megumi Kasuya
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| |
Collapse
|
33
|
Hamad AA, Attia AN, Al-Dardery NM, Mohamed SF, Meshref M. Safety and efficacy of lithium in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis of randomized controlled trials. Neurol Sci 2023; 44:3029-3036. [PMID: 37069469 DOI: 10.1007/s10072-023-06814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES This study provides a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating the safety and efficacy of lithium in amyotrophic lateral sclerosis (ALS) patients. METHODS PubMed, Web of Science, Cochrane CENTRAL, Scopus, and Your Journals@Ovid were searched up to 9 December 2022. RCTs investigating lithium, either alone or with any supplement, in ALS patients were included. Meta-analysis was performed using RevMan and results are presented in forest plot. RESULTS Four RCTs with 469 patients met the inclusion criteria and were included in our study. Lithium doses varied among the included studies and one study used a combined therapy of lithium with valproate. Meta-analysis showed no difference between lithium and placebo regarding severe adverse events (odds ratio = 1.13, 95% confidence interval: 0.73 to 1.75, P = 0.58). No significant differences were observed with regard to survival rate between the two groups (hazard ratio = 0.95, 95% confidence interval: 0.65 to 1.37, P = 0.77). There were also no significant differences between the two groups with regard to average changes of revised amyotrophic lateral sclerosis functional rating scale (P = 0.35) and forced vital capacity percentage predicted (P = 0.73). Subgroup analysis showed no significant differences regarding all investigated outcomes either for lithium alone or lithium with valproate. CONCLUSION Current evidence suggests a safety profile with no benefit of lithium for ALS. However, given the limited number of RCTs and the safety findings, we recommend further well-designed RCTs to investigate lithium and valproate in ALS patients.
Collapse
Affiliation(s)
- Abdullah Ashraf Hamad
- Medical Research Group of Egypt (MRGE), Cairo, Egypt.
- Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Amir N Attia
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Nada Mostafa Al-Dardery
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Shrouk F Mohamed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mostafa Meshref
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Artiach Hortelano P, Martens MAG, Pringle A, Harmer CJ. Effect of lithium administration on brain activity under an emotion regulation paradigm in healthy participants: a functional magnetic resonance imaging study. Psychopharmacology (Berl) 2023; 240:1719-1734. [PMID: 37338568 PMCID: PMC10349753 DOI: 10.1007/s00213-023-06395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
RATIONALE Emotion regulation (ER) difficulties have been previously described in bipolar disorder (BD). Whilst lithium has been shown to be effective in the treatment of BD, the mechanisms underlying lithium's effect on mood stabilisation remain unclear. OBJECTIVES Unravelling lithium's effect on psychological processes impaired in BD, such as ER, could address this translational gap and inform the development of new treatments. METHODS This study investigated the neural effects of lithium (800mg) on ER in 33 healthy volunteers in a double-blind between-groups design, randomised to lithium (n=17) or placebo (n=16) for 11 days. At treatment completion, participants underwent 3-Tesla fMRI scan whilst performing an ER task. RESULTS Reappraisal reduced negative affect across groups and led to the expected increase in frontal brain activity. Participants receiving lithium showed (1) decreased activation in prefrontal and posterior parietal cortices and connectivity between the fronto-limbic network (Z>2.3, p<0.05 corrected); and (2) increased activity in the right superior temporal gyrus (Z>3.1, p<0.05 corrected) and connectivity between the right medial temporal gyrus (MTG) and left middle frontal gyrus (Z>2.3, p<0.05 corrected) during reappraisal. Further effects of lithium were found in response to negative picture presentation, whereby an anticorrelation was found between the left amygdala and the frontal cortex, and greater connectivity between the right MTG and the bilateral medial prefrontal cortex extending into the paracingulate gyrus, compared to placebo (Z>2.3, p < 0.05 corrected). CONCLUSIONS These results show a potential effect of lithium on ER through its effects on activity and connectivity, and further elaborate the neural underpinnings of cognitive reappraisal. Future work should investigate longer term effects of lithium on ER in BD, ultimately benefitting the development of novel and more effective treatments.
Collapse
Affiliation(s)
| | - Marieke A G Martens
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK.
| | | | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
35
|
Yong SJ, Halim A, Halim M, Ming LC, Goh KW, Alfaresi M, AlShehail BM, Al Fares MA, Alissa M, Sulaiman T, Alsalem Z, Alwashmi ASS, Khamis F, Al Kaabi NA, Albayat H, Alsheheri A, Garout M, Alsalman J, Alfaraj AH, Alhajri M, Dhama K, Alburaiky LM, Alsanad AH, AlShurbaji AT, Rabaan AA. Experimental drugs in randomized controlled trials for long-COVID: what's in the pipeline? A systematic and critical review. Expert Opin Investig Drugs 2023; 32:655-667. [PMID: 37534972 DOI: 10.1080/13543784.2023.2242773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Over three years have passed since the emergence of coronavirus disease 2019 (COVID-19), and yet the treatment for long-COVID, a post-COVID-19 syndrome, remains long overdue. Currently, there is no standardized treatment available for long-COVID, primarily due to the lack of funding for post-acute infection syndromes (PAIS). Nevertheless, the past few years have seen a renewed interest in long-COVID research, with billions of dollars allocated for this purpose. As a result, multiple randomized controlled trials (RCTs) have been funded in the quest to find an effective treatment for long-COVID. AREAS COVERED This systematic review identified and evaluated the potential of current drug treatments for long-COVID, examining both completed and ongoing RCTs. EXPERT OPINION We identified four completed and 22 ongoing RCTs, investigating 22 unique drugs. However, most drugs were deemed to not have high potential for treating long-COVID, according to three pre-specified domains, a testament to the ordeal of treating long-COVID. Given that long-COVID is highly multifaceted with several proposed subtypes, treatments likely need to be tailored accordingly. Currently, rintatolimod appears to have modest to high potential for treating the myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) subtype, LTY-100 and Treamid for pulmonary fibrosis subtype, and metformin for general long-COVID prevention.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Alice Halim
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Halim
- Department of Biomedical Science, School of Science, Engineering and Environment, University of Salford, Greater Manchester, UK
| | - Long Chiau Ming
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat, Oman
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed Alsheheri
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama, Bahrain
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Lamees M Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Dammam, Saudi Arabia
| | - Ahlam H Alsanad
- Neonatal Intensive Care Unit, Pediatrics Department, Maternity and Children Hospital, Dammam, Saudi Arabia
| | | | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
36
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
37
|
Pacholko AG, Bekar LK. Different pharmacokinetics of lithium orotate inform why it is more potent, effective, and less toxic than lithium carbonate in a mouse model of mania. J Psychiatr Res 2023; 164:192-201. [PMID: 37356352 DOI: 10.1016/j.jpsychires.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Lithium carbonate (LiCO) is a mainstay therapeutic for the prevention of mood-episode recurrences in bipolar disorder (BD). Unfortunately, its narrow therapeutic index is associated with complications that may lead to treatment non-compliance. Intriguingly, lithium orotate (LiOr) is suggested to possess unique uptake characteristics that would allow for reduced dosing and mitigation of toxicity concerns. We hypothesized that due to differences in pharmacokinetics, LiOr is more potent with reduced adverse effects. Dose responses were established for LiOr and LiCO in male and female mice using an amphetamine-induced hyperlocomotion (AIH) model; AIH captures manic elements of BD and is sensitive to a dose-dependent lithium blockade. LiCO induced a partial block of AIH at doses of 15 mg/kg in males and 20 mg/kg in females. In contrast, LiOr elicited a near complete blockade at concentrations of just 1.5 mg/kg in both sexes, indicating improved efficacy and potency. Prior application of organic anion transport inhibitors, or inhibition of orotate uptake into the pentose pathway, completely blocked the effects of LiOr on AIH while sparing LiCO effects, confirming differences in transport and compartmentalization between the two compounds. Next, the relative toxicities of LiOr and LiCO were contrasted after 14 consecutive daily administrations. LiCO, but not LiOr, elicited polydipsia in both sexes, elevated serum creatinine levels in males, and increased serum TSH expression in females. LiOr demonstrates superior efficacy, potency, and tolerability to LiCO in both male and female mice because of select transport-mediated uptake and pentose pathway incorporation.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| | - Lane K Bekar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
38
|
Hidalgo-Mazzei D, Mantingh T, Pérez de Mendiola X, Samalin L, Undurraga J, Strejilevich S, Severus E, Bauer M, González-Pinto A, Nolen WA, Young AH, Vieta E. Clinicians' preferences and attitudes towards the use of lithium in the maintenance treatment of bipolar disorders around the world: a survey from the ISBD Lithium task force. Int J Bipolar Disord 2023; 11:20. [PMID: 37243681 DOI: 10.1186/s40345-023-00301-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Lithium has long been considered the gold-standard pharmacological treatment for the maintenance treatment of bipolar disorders (BD) which is supported by a wide body of evidence. Prior research has shown a steady decline in lithium prescriptions during the last two decades. We aim to identify potential factors explaining this decline across the world with an anonymous worldwide survey developed by the International Society for Bipolar Disorders (ISBD) Task Force "Role of Lithium in Bipolar Disorders" and distributed by diverse academic and professional international channels. RESULTS A total of 886 responses were received of which 606 completed the entire questionnaire while 206 completed it partially. Respondents were from 43 different countries comprising all continents. Lithium was the most preferred treatment option for the maintenance of BD patients (59%). The most relevant clinical circumstances in which lithium was the preferred option were in patients with BD I (53%), a family history of response (18%), and a prior response during acute treatment (17%). In contrast, Lithium was not the preferred option in case of patients´ negative beliefs and/or attitudes towards lithium (13%), acute side-effects or tolerability problems (10%) and intoxication risk (8%). Clinicians were less likely to prefer lithium as a first option in BD maintenance phase when practising in developing economy countries [X2 (1, N = 430) = 9465, p = 0.002) ] and private sectors [X2 (1, N = 434) = 8191, p = 0.004)]. CONCLUSIONS Clinicians' preferences and attitudes towards the use of lithium in the maintenance treatment of bipolar disorders appear to be affected by both the patients' beliefs and the professional contexts where clinicians provide their services. More research involving patients is needed for identifying their attitudes toward lithium and factors affecting its use, particularly in developing economies.
Collapse
Affiliation(s)
- Diego Hidalgo-Mazzei
- Bipolar and depressive disorders unit, Department of Psychiatry and Psychology, Hospital Clínic, IDIBAPS, University of Barcelona, 170 Villarroel St, 08036, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), C. Casanova, 143, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience , King's College London, London, UK
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience , King's College London, London, UK
| | - Xavier Pérez de Mendiola
- Bioaraba, Psychiatry Service, Department of Neurosciences, Research Group on Severe Mental Illness, Araba University Hospital, University of the Basque Country UPV/EHU, Osakidetza, Vitoria-Gasteiz, Spain
| | - Ludovic Samalin
- Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Juan Undurraga
- Department of Neurology and Psychiatry, Clinica Alemana Universidad Del Desarrollo, Santiago, Chile
| | - Sergio Strejilevich
- Área, Asistencia e investigación en trastornos del ánimo, Buenos Aires, Argentina
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ana González-Pinto
- Bioaraba, Psychiatry Service, Department of Neurosciences, Research Group on Severe Mental Illness, Araba University Hospital, University of the Basque Country UPV/EHU, Osakidetza, Vitoria-Gasteiz, Spain
| | - Willem A Nolen
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience , King's College London, London, UK
| | - Eduard Vieta
- Bipolar and depressive disorders unit, Department of Psychiatry and Psychology, Hospital Clínic, IDIBAPS, University of Barcelona, 170 Villarroel St, 08036, Barcelona, Spain.
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), C. Casanova, 143, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Natsuyama T, Okamoto N, Akaji H, Hoshino K, Ikenouchi A, Yoshimura R. Prolonged delirium caused by lithium poisoning in an endometrial cancer patient at advanced stage: A case report. Clin Case Rep 2023; 11:e7040. [PMID: 36879674 PMCID: PMC9984868 DOI: 10.1002/ccr3.7040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
A patient with schizoaffective disorder and receiving long-term treatment with lithium developed prolonged delirium. She had recently been diagnosed with stage IVB endometrial cancer and presented a deteriorating general condition. Toxic levels of lithium were measured in serum. After hemodialysis, lithium levels gradually decreased and the symptoms disappeared completely.
Collapse
Affiliation(s)
- Tomoya Natsuyama
- Department of PsychiatryUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Naomichi Okamoto
- Department of PsychiatryUniversity of Occupational and Environmental HealthKitakyushuJapan
- Medical Center for DementiaUniversity Hospital, University of Occupational and Environmental HealthKitakyushuJapan
| | - Haruka Akaji
- Department of Obstetrics and GynecologyUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kaori Hoshino
- Department of Obstetrics and GynecologyUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Atsuko Ikenouchi
- Department of PsychiatryUniversity of Occupational and Environmental HealthKitakyushuJapan
- Medical Center for DementiaUniversity Hospital, University of Occupational and Environmental HealthKitakyushuJapan
| | - Reiji Yoshimura
- Department of PsychiatryUniversity of Occupational and Environmental HealthKitakyushuJapan
| |
Collapse
|
40
|
Sheikh M, Qassem M, Kyriacou PA. A paper-based colorimetric method for monitoring of lithium therapeutic levels. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:979-986. [PMID: 36727666 DOI: 10.1039/d2ay01743a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lithium remains the "gold standard" for both acute and maintenance treatment of bipolar disorder (BD), a serious life-long condition characterised by recurrent episodes of depressed and manic mood states. However, lithium has a very narrow therapeutic range (0.4-1.2 mmol L-1) and despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. While it is crucial to carefully monitor lithium plasma levels, the current techniques of lithium monitoring are cumbersome and require frequent blood tests with the consequent discomfort which results in patients evading treatment. Therefore, development of low-cost and facile lithium detection techniques that can be translated into point-of-care devices for personal monitoring will be a major advance in the management of BD. In the current study, we present colorimetric determination of lithium therapeutic levels utilizing test paper strips, based on its reaction with the chromogenic agent Quinizarin. Exposure of Quinizarin-dipped test papers to samples of interstitial fluid (ISF) or dH2O spiked with therapeutic concentrations of lithium resulted in colour changes that were monitored using optical spectroscopy. The acquired spectra from the test papers show spectral variations which are related to lithium concentrations in spiked samples of dh2O and artificial ISF with a coefficient of determination (R2) of 0.9 and 0.8, respectively. Altogether, the spectrophotometric and colorimetric analyses demonstrated strong correlations between the observed colour changes and the concentrations of lithium present in the sample. Therefore, this study has demonstrated that Quinizarin-treated cellulose-based papers are suitable for the precise detection of changes in lithium therapeutic levels. This method is simple and very convenient and serves as a foundation for the future development of a paper-based colorimetric sensor for monitoring of lithium therapeutic levels in ISF and other non-invasive biological fluids.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| | - Meha Qassem
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City University of London, London EC1V 0HB, UK.
| |
Collapse
|
41
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
42
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol Psychiatry 2023; 28:1667-1678. [PMID: 36690794 DOI: 10.1038/s41380-023-01955-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Bipolar-disorder's pathophysiology and the mechanism by which medications exert their beneficial effect is yet unknown, but others' and our data implicate patients' brain mitochondrial-dysfunction and its amendment by mood-stabilizers. We recently designed a novel mouse bipolar-disorder-like model using chronic administration of a low-dose of the oxidative-phosphorylation complex I inhibitor, rotenone. Four and eight weeks rotenone treatment induced manic- and depressive-like behavior, respectively, accompanied by mood-related neurochemical changes. Here we aimed to investigate whether each of the autophagy-enhancers lithium (a mood-stabilizer), trehalose and resveratrol and/or each of the reactive oxygen species (ROS)-scavengers, resveratrol and N-acetylcystein and/or the combinations lithium+resveratrol or trehalose+N-acetylcystein, can ameliorate behavioral and neurochemical consequences of neuronal mild mitochondrial-dysfunction. We observed that lithium, trehalose and N-acetylcystein reversed rotenone-induced manic-like behavior as well as deviations in protein levels of mitochondrial complexes and the autophagy marker LC3-II. This raises the possibility that mild mitochondrial-dysfunction accompanied by impaired autophagy and a very mild increase in ROS levels are related to predisposition to manic-like behavior. On the other hand, although, as expected, most of the drugs tested eliminated the eight weeks rotenone-induced increase in protein levels of all hippocampal mitochondrial complexes, only lithium ubiquitously ameliorated the depressive-like behaviors. We cautiously deduce that aberrant autophagy and/or elevated ROS levels are not involved in predisposition to the depressive phase of bipolar-like behavior. Rather, that amending the depressive-like characteristics requires different mitochondria-related interventions. The latter might be antagonizing N-methyl-D-aspartate receptors (NMDARs), thus protecting from disruption of mitochondrial calcium homeostasis and its detrimental consequences. In conclusion, our findings suggest that by-and-large, among the autophagy-enhancers and ROS-scavengers tested, lithium is the most effective in counteracting rotenone-induced changes. Trehalose and N-acetylcystein may also be effective in attenuating manic-like behavior.
Collapse
|
44
|
de Sousa TR, Dt C, Novais F. Exploring the Hypothesis of a Schizophrenia and Bipolar Disorder Continuum: Biological, Genetic and Pharmacologic Data. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:161-171. [PMID: 34477537 DOI: 10.2174/1871527320666210902164235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/19/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Present time nosology has its roots in Kraepelin's demarcation of schizophrenia and bipolar disorder. However, accumulating evidence has shed light on several commonalities between the two disorders, and some authors have advocated for the consideration of a disease continuum. Here, we review previous genetic, biological and pharmacological findings that provide the basis for this conceptualization. There is a cross-disease heritability, and they share single-nucleotide polymorphisms in some common genes. EEG and imaging patterns have a number of similarities, namely reduced white matter integrity and abnormal connectivity. Dopamine, serotonin, GABA and glutamate systems have dysfunctional features, some of which are identical among the disorders. Finally, cellular calcium regulation and mitochondrial function are, also, impaired in the two.
Collapse
Affiliation(s)
- Teresa Reynolds de Sousa
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
| | - Correia Dt
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- ISAMB - Instituto de Saúde Ambiental, Lisboa, Portugal
| | - Filipa Novais
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- ISAMB - Instituto de Saúde Ambiental, Lisboa, Portugal
| |
Collapse
|
45
|
A Case of Lithium Encephalopathy with Therapeutic Lithium Levels: The Diagnostic Role of EEG. Case Rep Psychiatry 2022; 2022:8052471. [PMID: 36568329 PMCID: PMC9788879 DOI: 10.1155/2022/8052471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction. Lithium is considered a first-line therapy for both the acute phase and the maintenance of bipolar disorder. Many studies highlighted its neuroprotective and neuroplastic capacity suggesting a potential usefulness in the treatment of neurodegenerative diseases. Despite the undeniable efficacy, lithium clearly presents several adverse effects including neurotoxicity, also known as lithium encephalopathy, regarding both neurological, psychiatric, and cognitive side effects. In this case, adverse reactions are not always related to its serum levels, possibly appearing within the therapeutic range. Case Presentation. We analyzed the case of a bipolar patient who has been uncontinuosly treated with lithium salts since the onset of the psychopathological picture. Over the years, the average values of lithemia always remained around 0.60-0.70 mEq/L, but in 2019, the patient begun to manifest distal tremors and in the mandibular district accompanied, in the following months, by psychomotor slowdown, generalized tremors, reduced alertness, spatiotemporal disorientation, and aphasia. While alterations referable to neurodegenerative diseases were excluded, EEG maintained rhythm alteration 1 year after the probable intoxication. Discussion. This case confirms the central role of EEG for lithium neurotoxicity, while its dosages are in therapeutic range, being plasma levels are not always indicative of liquoral and neuronal lithium's levels. We highlight the importance of an early diagnosis of lithium encephalopathy proposing EEG as an indispensable tool for assessing lithium neurotoxicity both in acute and chronic intoxication.
Collapse
|
46
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
47
|
Gao D, Li P, Gao F, Feng Y, Li X, Li D, Li Y, Xiao Y. Preparation and Multitarget Anti-AD Activity Study of Chondroitin Sulfate Lithium in AD Mice Induced by Combination of D-Gal/AlCl 3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9466166. [PMID: 36411758 PMCID: PMC9675613 DOI: 10.1155/2022/9466166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023]
Abstract
Previous studies have demonstrated that both CS and LiCl possess anti-Alzheimer's disease (AD) activities. We prepared chondroitin sulfate-Li (CS-Li) and investigated its effect on AD and explored the possible mechanisms both in vitro and in vivo. We found that CS-Li could inhibit amyloid β (Aβ) aggregation and protect SH-SY5Y cells from Aβ 1-42-induced cytotoxicity in vitro. In D-gal and AlCl3-induced AD mouse model, CS-Li improves the spatial learning and memory abilities of AD mice, reverses the nuclear pyknosis and cell edema, and increases the survival rate of neurons in hippocampus of mice. Moreover, CS-Li significantly increased the levels of GSH-Px, Na+/K+-ATPase, and ChAT and decreased the levels of MDA and AchE in AD mice. Western blot results demonstrated that CS-Li could decrease the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of p-GSK-3β (Ser9) and PP2A and inhibit the expression of proinflammatory factors through inhibiting NF-κB nuclear translocation by activating the MAPK signaling pathways. In a word, CS-Li can delay AD development through multitarget processes, including Aβ aggregation inhibition, oxidative stress damage, tau hyperphosphorylation, and inflammatory response, thereby improves learning and memory abilities.
Collapse
Affiliation(s)
- Debo Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Pingli Li
- Phase I Clinical Trial Center, Qilu Hospital of Shandong University, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan 25000, China
| | - Fei Gao
- Taibang Biologic Group Co., Ltd., Taian, 271000 Shandong, China
| | - Yangjun Feng
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Xiaolin Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Delong Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Yuqin Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Yuliang Xiao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| |
Collapse
|
48
|
Sani G, Kotzalidis GD, Fiaschè F, Manfredi G, Ghaemi SN. Second messengers and their importance for novel drug treatments of patients with bipolar disorder. Int Rev Psychiatry 2022; 34:736-752. [PMID: 36786113 DOI: 10.1080/09540261.2022.2119073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Second messenger systems, like the cyclic nucleotide, glycogen synthase kinase-3β, phosphoinositide, and arachidonic acid cascades, are involved in bipolar disorder (BD). We investigated their role on the development of novel therapeutic drugs using second messenger mechanisms. PubMed search and narrative review. We used all relevant keywords for each second messenger cascade combining it with BD and related terms and combined all with novel/innovative treatments/drugs. Our search produced 31 papers most were reviews, and focussed on the PI3K/AKT-GSK-3β/Nrf2-NF-ĸB pathways. Only two human randomized clinical trials were identified, of ebselen, an antioxidant, and celecoxib, a cyclooxygenase-2 inhibitor, both with poor unsatisfactory results. Despite the fact that all second messenger systems are involved in the pathophysiology of BD, there are few experiments with novel drugs using these mechanisms. These mechanisms are a neglected and potentially major opportunity to transform the treatment of bipolar illness.
Collapse
Affiliation(s)
- Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Georgios D Kotzalidis
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - Federica Fiaschè
- NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy.,ASL Rieti, Servizio Psichiatrico Diagnosi e Cura, Ospedale San Camillo de Lellis, Rieti, Italy
| | - Giovanni Manfredi
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - S Nassir Ghaemi
- School of Medicine, Tufts University, Boston, MA, USA.,Lecturer on Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Cattane N, Courtin C, Mombelli E, Maj C, Mora C, Etain B, Bellivier F, Marie-Claire C, Cattaneo A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022; 22:665. [PMID: 36303132 PMCID: PMC9615157 DOI: 10.1186/s12888-022-04286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. METHODS In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). RESULTS We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. CONCLUSIONS Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways.
Collapse
Affiliation(s)
- Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cindie Courtin
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Elisa Mombelli
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- grid.411097.a0000 0000 8852 305XInstitute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Cristina Mora
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bruno Etain
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Frank Bellivier
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
50
|
Possamai-Della T, Dal-Pont GC, Resende WR, Aguiar-Geraldo JM, Peper-Nascimento J, Quevedo J, Valvassori SS. Imipramine Can Be Effective on Depressive-Like Behaviors, but Not on Neurotrophic Factor Levels in an Animal Model for Bipolar Disorder Induced by Ouabain. Mol Neurobiol 2022; 59:7170-7181. [PMID: 36121567 DOI: 10.1007/s12035-022-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Despite possible risks of mania switching with the long-term use of antidepressants in patients with bipolar disorder (BD), these drugs may help in depressive episodes. Alterations in neurotrophic factor levels seem to be involved in the pathophysiology of BD. The present study aimed to evaluate the effect of acute treatment of imipramine on behavior and neurotrophic levels in rats submitted to the animal model for BD induced by ouabain. METHODS Wistar rats received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid or ouabain (10-3 M). Following the ICV administration, the rats were treated for 14 days with saline (NaCl 0.9%, i.p.), lithium (47.5 mg/kg, i.p.), or valproate (200 mg/kg, i.p.). On the 13th and 14th days of treatment, the animals received an additional injection of saline or imipramine (10 mg/kg, i.p.). Behavior tests were evaluated 7 and 14 days after ICV injection. Adrenal gland weight and concentrations of ACTH were evaluated. Levels of neurotrophins BDNF, NGF, NT-3, and GDNF were measured in the frontal cortex and hippocampus by ELISA test. RESULTS The administration of ouabain induced mania- and depressive-like behavior in the animals 7 and 14 days after ICV, respectively. The treatment with lithium and valproate reversed the mania-like behavior. All treatments were able to reverse most of the depressive-like behaviors induced by ouabain. Moreover, ouabain increased HPA-axis parameters in serum and decreased the neurotrophin levels in the frontal cortex and hippocampus. All treatments, except imipramine, reversed these alterations. CONCLUSION It can be suggested that acute administration of imipramine alone can be effective on depressive-like symptoms but not on neurotrophic factor alterations present in BD.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|