1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Zhang T, Kang H, Peng Q, Jiang Y, Xie Y, Zhang D, Song X, Li Y, Deng C. Therapeutic mechanism of Cornus Officinalis Fruit Coreon on ALI by AKT/Nrf2 pathway and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155736. [PMID: 38788396 DOI: 10.1016/j.phymed.2024.155736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Acute liver injury (ALI) often precipitates severe liver function impairment and is associated with high mortality rates. Traditional Chinese Medicine (TCM) has demonstrated efficacy in mitigating hepatic damage by exhibiting anti-inflammatory effects, enhancing antioxidant activity, and modulating gut microbiota (GM). Numerous studies have identified similar or identical bioactive compounds within the Cornus Officinalis Fruit Coreon(COFO) and its flesh. Notably, Cornus Officinalis has been shown to possess potent hepatoprotective properties. However, studies on the pharmacological effects and mechanism of action of COFO for hepatoprotection have received little attention. PURPOSE To elucidate the mechanisms underlying the COFO effect in ALI by integrating GM gene sequencing, quantifying Short-Chain Fatty Acids (SCFAs), and examining relevant signaling pathways. MATERIALS AND METHODS A rat model for carbon tetrachloride (CCl4)-induced ALI was established, and the best liver protective components of COFO were selected by pathological observation and biochemical determination. The therapeutic efficacy of COFO in mitigating liver injury was elucidated through an integrated approach that included network pharmacology, biochemical indexes, 16S rDNA sequencing analyses, short-chain fatty acids, Western blotting analysis of protein levels, and immunohistochemical evaluations. RESULTS Pharmacological evaluation established that the n-butanol fraction (CNBP) provided optimal hepatoprotective effects. Firstly, the chemical constituents of CNBP were characterized, and its principal anti-ALI targets, such as ALI, AKT1, TNF, and IL-6, were identified through network pharmacology analysis. Secondly, experimental validation revealed that CNBP may enhance the genetic diversity of the GM, augmenting the diversity of the microbial community, increasing the levels of three SCFAs, and activating key proteins in the AKT/Nrf2 signaling pathway (AKT1, TNF-α, IL-6, NF-κB p65, Nrf2, and HO-1). Consequently, CNBP exhibited hepatoprotective effects, with antioxidative and anti-inflammatory properties. CONCLUSION CNBP may mitigate GM-induced disturbances, augment the levels of three SCFAs, activate the AKT/Nrf2 signaling pathway, and exhibit antioxidant and anti-inflammatory effects, thereby conferring hepatoprotective benefits.
Collapse
Affiliation(s)
- Ting Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Huili Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qin Peng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yi Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Dongdong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China
| | - Yuze Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chong Deng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Provincial Administration of Traditional Chinese Medicine Key Laboratory of Mechanical and Material Basis of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China.
| |
Collapse
|
4
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Dang J, Shu J, Wang R, Yu H, Chen Z, Yan W, Zhao B, Ding L, Wang Y, Hu H, Li Z. The glycopatterns of Pseudomonas aeruginosa as a potential biomarker for its carbapenem resistance. Microbiol Spectr 2023; 11:e0200123. [PMID: 37861315 PMCID: PMC10714932 DOI: 10.1128/spectrum.02001-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Bacterial surface glycans are an attractive therapeutic target in response to antibiotics; however, current knowledge of the corresponding mechanisms is rather limited. Antimicrobial susceptibility testing, genome sequencing, and MALDI-TOF MS, commonly used in recent years to analyze bacterial resistance, are unable to rapidly and efficiently establish associations between glycans and resistance. The discovery of new antimicrobial strategies still requires the introduction of promising analytical methods. In this study, we applied lectin microarray technology and a machine-learning model to screen for important glycan structures associated with carbapenem-resistant P. aeruginosa. This work highlights that specific glycopatterns can be important biomarkers associated with bacterial antibiotic resistance, which promises to provide a rapid entry point for exploring new resistance mechanisms in pathogens.
Collapse
Affiliation(s)
- Jing Dang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jian Shu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ruiying Wang
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Hanjie Yu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhuo Chen
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenbo Yan
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bingxiang Zhao
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Li Ding
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yuzi Wang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Huizheng Hu
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Zheng Li
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Shah SS, Noman O, Jaiswal N. Unveiling the Gut Microbiome: How Junk Food Impacts the Gut. Cureus 2023; 15:e49179. [PMID: 38130525 PMCID: PMC10734656 DOI: 10.7759/cureus.49179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The human gut microbiome, a complex community of microorganisms, profoundly influences human health and disease. Bacteroidetes and Firmicutes make up the majority of the normal human gut microbiota. These microorganisms wield considerable influence over our physiological functions, impacting both our well-being and our susceptibility to disease. The surge of interest in the gut microbiome over the past decade has been remarkable. Once overlooked, the gastrointestinal tract's microbiota has gained recognition for its significance in maintaining optimal health. The food industry has capitalized on this, flooding the market with "probiotic" and "fermented" products. This article aims to provide a critical review of the current literature on the gut microbiome and its significance in human health, with a particular focus on the impact of dietary choices, especially junk food, on the composition and function of the gut microbiota. Microbes possess the remarkable ability to unlock nutrients from otherwise indigestible substances. The gut microbiome of individuals who consume healthy foods and those who prefer junk food varies significantly. Healthy diets promote a diverse and beneficial gut microbiome, while junk food consumption often leads to a less diverse microbiome with negative consequences for health.
Collapse
Affiliation(s)
- Sania S Shah
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Obaid Noman
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Neha Jaiswal
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| |
Collapse
|
7
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
8
|
Andresen S, de Mojana di Cologna N, Archer-Hartmann S, Rogers AM, Samaddar S, Ganguly T, Black IM, Glushka J, Ng KKS, Azadi P, Lemos JA, Abranches J, Szymanski CM. Involvement of the Streptococcus mutans PgfE and GalE 4-epimerases in protein glycosylation, carbon metabolism, and cell division. Glycobiology 2023; 33:245-259. [PMID: 36637425 PMCID: PMC10114643 DOI: 10.1093/glycob/cwad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.
Collapse
Affiliation(s)
- Silke Andresen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Ashley M Rogers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sandip Samaddar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Christine M Szymanski
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Optimized Genetic Tools Allow the Biosynthesis of Glycocin F and Analogues Designed To Test the Roles of gcc Cluster Genes in Bacteriocin Production. J Bacteriol 2021; 203:JB.00529-20. [PMID: 33468591 DOI: 10.1128/jb.00529-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant pathogens has motivated natural product research to inform the development of new antimicrobial agents. Glycocin F (GccF) is a diglycosylated 43-amino-acid bacteriocin secreted by Lactobacillus plantarum KW30. It displays a moderate phylogenetic target range that includes vancomycin-resistant strains of Enterococcus species and appears to have a novel bacteriostatic mechanism, rapidly inhibiting the growth of the most susceptible bacterial strains at picomolar concentrations. Experimental verification of the predicted role(s) of gcc cluster genes in GccF biosynthesis has been hampered by the inability to produce soluble recombinant Gcc proteins. Here, we report the development of pRV610gcc, an easily modifiable 11.2-kbp plasmid that enables the production of GccF in L. plantarum NC8. gcc gene expression relies on native promoters in the cloned cluster, and NC8(pRV610gcc) produces mature GccF at levels similar to KW30. Key findings are that the glycosyltransferase glycosylates both serine and cysteine at either position in the sequence but glycosylation of the loop serine is both sequence and spatially specific, that glycosylation of the peptide scaffold is not required for export and subsequent disulfide bond formation, that neither of the putative thioredoxin proteins is essential for peptide maturation, and that removal of the entire putative response regulator GccE decreases GccF production less than removal of the LytTR domain alone. Using this system, we have verified the functions of most of the gcc genes and have advanced our understanding of the roles of GccF structure in its maturation and antibacterial activity.IMPORTANCE The entire 7-gene cluster for the diglycosylated bacteriocin glycocin F (GccF), including the natural promoters responsible for gcc gene expression, has been ligated into the Escherichia coli-lactic acid bacteria (LAB) shuttle vector pRV610 to produce the easily modifiable 11.2-kbp plasmid pRV610gcc for the efficient production of glycocin F analogues. In contrast to the refactoring approach, chemical synthesis, or chemoenzymatic synthesis, all of which have been successfully used to probe glycocin structure and function, this plasmid can also be used to probe in vivo the evolutionary constraints on glycocin scaffolds and their processing by the maturation pathway machinery, thus increasing understanding of the enzymes involved, the order in which they act, and how they are regulated.
Collapse
|
10
|
Quilodrán-Vega S, Albarracin L, Mansilla F, Arce L, Zhou B, Islam MA, Tomokiyo M, Al Kassaa I, Suda Y, Kitazawa H, Villena J. Functional and Genomic Characterization of Ligilactobacillus salivarius TUCO-L2 Isolated From Lama glama Milk: A Promising Immunobiotic Strain to Combat Infections. Front Microbiol 2020; 11:608752. [PMID: 33363529 PMCID: PMC7752859 DOI: 10.3389/fmicb.2020.608752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.
Collapse
Affiliation(s)
- Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, Tucuman, Argentina
| | - Flavia Mansilla
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Lorena Arce
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Tucumán, Argentina
| | - Binghui Zhou
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Imad Al Kassaa
- Faculty of Public Health, Lebanese University, Hadath, Lebanon
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
12
|
Zhou B, Albarracin L, Indo Y, Arce L, Masumizu Y, Tomokiyo M, Islam MA, Garcia-Castillo V, Ikeda-Ohtsubo W, Nochi T, Morita H, Takahashi H, Kurata S, Villena J, Kitazawa H. Selection of Immunobiotic Ligilactobacillus salivarius Strains from the Intestinal Tract of Wakame-Fed Pigs: Functional and Genomic Studies. Microorganisms 2020; 8:microorganisms8111659. [PMID: 33114778 PMCID: PMC7716343 DOI: 10.3390/microorganisms8111659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
In this article, Ligilactobacillus salivarius FFIG strains, isolated from the intestinal tract of wakame-fed pigs, are characterized according to their potential probiotic properties. Strains were evaluated by studying their interaction with porcine intestinal epithelial (PIE) cells in terms of their ability to regulate toll-like receptor (TLR)-3- or TLR4-mediated innate immune responses, as well as by assessing their adhesion capabilities to porcine epithelial cells and mucins. These functional studies were complemented with comparative genomic evaluations using the complete genome sequences of porcine L. salivarius strains selected from subgroups that demonstrated different “immune” and “adhesion” phenotypes. We found that their immunomodulatory and adhesion capabilities are a strain-dependent characteristic. Our analysis indicated that the differential immunomodulatory and adhesive activities of FFIG strains would be dependent on the combination of several surface structures acting simultaneously, which include peptidoglycan, exopolysaccharides, lipoteichoic acid, and adhesins. Of note, our results indicate that there is no correlation between the immunomodulatory capacity of the strains with their adhesion ability to mucins and epithelial cells. Therefore, in the selection of strains destined to colonize the intestinal mucosa and modulate the immunity of the host, both properties must be adequately evaluated. Interestingly, we showed that L. salivarius FFIG58 functionally modulated the innate immune responses triggered by TLR3 and TLR4 activation in PIE cells and efficiently adhered to these cells. Moreover, the FFIG58 strain was capable of reducing rotavirus replication in PIE cells. Therefore, L. salivarius FFIG58 is a good candidate for further in vivo studying the protective effect of lactobacilli against intestinal infections in the porcine host. We also reported and analyzed, for the first time, the complete genome of several L. salivarius strains that were isolated from the intestine of pigs after the selective pressure of feeding the animals with wakame. Further genomic analysis could be of value to reveal the metabolic characteristics and potential of the FFIG strains in general and of the FFIG58 strain, in particular, relating to wakame by-products assimilation.
Collapse
Affiliation(s)
- Binghui Zhou
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Sciences and Technology, National University of Tucuman, Tucuman 4000, Argentina
| | - Yuhki Indo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Lorena Arce
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Infection Biology Laboratory, INSIBIO-CONICET, Faculty of Medicine, University of Tucuman, Tucuman 4000, Argentina
| | - Yuki Masumizu
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Valeria Garcia-Castillo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Tomonori Nochi
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan;
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Correspondence: (J.V.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Correspondence: (J.V.); (H.K.)
| |
Collapse
|
13
|
Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. Curr Microbiol 2020; 77:3831-3841. [PMID: 33079206 PMCID: PMC7677277 DOI: 10.1007/s00284-020-02243-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens.
Collapse
|
14
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Malamud M, Cavallero GJ, Casabuono AC, Lepenies B, Serradell MDLÁ, Couto AS. Immunostimulation by Lactobacillus kefiri S-layer proteins with distinct glycosylation patterns requires different lectin partners. J Biol Chem 2020; 295:14430-14444. [PMID: 32817316 DOI: 10.1074/jbc.ra120.013934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic Lactobacillus kefiri CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far. Herein, we analyze the glycosylation pattern of three SLPs, SLP-8348, SLP-8321, and SLP-5818, and explore how these patterns impact their recognition by C-type lectin receptors and the immunomodulatory effect of the L. kefiri SLPs on antigen-presenting cells. High-performance anion-exchange chromatography-pulse amperometric detector performed after β-elimination showed glucose as the major component in the O-glycans of the three SLPs; however, some differences in the length of hexose chains were observed. No N-glycosylation signals were detected in SLP-8348 and SLP-8321, but SLP-5818 was observed to have two sites carrying complex N-glycans based on a site-specific analysis and a glycomic workflow of the permethylated glycans. SLP-8348 was previously shown to enhance LPS-induced activation on both RAW264.7 macrophages and murine bone marrow-derived dendritic cells; we now show that SLP-8321 and SLP-5818 have a similar effect regardless of the differences in their glycosylation patterns. Studies performed with bone marrow-derived dendritic cells from C-type lectin receptor-deficient mice revealed that the immunostimulatory activity of SLP-8321 depends on its recognition by Mincle, whereas SLP-5818's effects are dependent on SignR3 (murine ortholog of human DC-SIGN). These findings encourage further investigation of both the potential application of these SLPs as new adjuvants and the protein glycosylation mechanisms in these bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Gustavo J Cavallero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Adriana C Casabuono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| |
Collapse
|
16
|
Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, Raghuvanshi R, Quinn RA, Britton R, Parameswaran N, McCabe LR. Involvement of the Gut Microbiota and Barrier Function in Glucocorticoid-Induced Osteoporosis. J Bone Miner Res 2020; 35:801-820. [PMID: 31886921 DOI: 10.1002/jbmr.3947] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are potent immune-modulating drugs with significant side effects, including glucocorticoid-induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC-Tx) in the presence or absence of broad-spectrum antibiotic treatment (ABX) to deplete the microbiota. Long-term ABX prevented GC-Tx-induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC-Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC-Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC-Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4-fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC-Tx-induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC-Tx-induced osteoblast and osteocyte apoptosis. GC-Tx suppression of Wnt10b in bone was restored by the LR and high-molecular-weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone-specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Fraser Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ruma Raghuvanshi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Bacterial glycans and their interactions with lectins in the innate immune system. Biochem Soc Trans 2020; 47:1569-1579. [PMID: 31724699 DOI: 10.1042/bst20170410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Bacterial surfaces are rich in glycoconjugates that are mainly present in their outer layers and are of great importance for their interaction with the host innate immune system. The innate immune system is the first barrier against infection and recognizes pathogens via conserved pattern recognition receptors (PRRs). Lectins expressed by innate immune cells represent an important class of PRRs characterized by their ability to recognize carbohydrates. Among lectins in innate immunity, there are three major classes including the galectins, siglecs, and C-type lectin receptors. These lectins may contribute to initial recognition of bacterial glycans, thus providing an early defence mechanism against bacterial infections, but they may also be exploited by bacteria to escape immune responses. In this review, we will first exemplify bacterial glycosylation systems; we will then describe modes of recognition of bacterial glycans by lectins in innate immunity and, finally, we will briefly highlight how bacteria have found ways to exploit these interactions to evade immune recognition.
Collapse
|
18
|
Choudhary P, Nagar R, Singh V, Bhat AH, Sharma Y, Rao A. ProGlycProt V2.0, a repository of experimentally validated glycoproteins and protein glycosyltransferases of prokaryotes. Glycobiology 2020; 29:461-468. [PMID: 30835791 DOI: 10.1093/glycob/cwz013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
Knowledge of glycosylation status and glycan-pattern of proteins are of considerable medical, academic and application interest. ProGlycProt V2.0 (www.proglycprot.org) therefore, is conceived and maintained as an exclusive web-resource providing comprehensive information on experimentally validated glycoproteins and protein glycosyltransferases (GTs) of prokaryotic origin. The second release of ProGlycProt features a major update with a 191% increase in the total number of entries, manually collected and curated from 607 peer-reviewed publications, on the subject. Protein GTs from prokaryotes that catalyze a varied range of glycan linkages are amenable glycoengineering tools. Therefore, the second release presents content that is greatly expanded and reorganized in two sub-databases: ProGPdb and ProGTdb. While ProGPdb provides information about validated glycoproteins (222 entries), ProGTdb catalogs enzymes/proteins that are instrumental in protein glycosylation, directly (122) or as accessory proteins (182). ProGlycProt V2.0 remains highly cross-referenced yet exclusive and complementary in content to other related databases. The second release further features enhanced search capability, a "compare" entries option and an innovative geoanalytical tool (MapView) facilitating location-assisted search-cum filtering of the entries using geo-positioning information of researchers/groups cited in the ProGlycProt V2.0 databases. Thus, ProGlycProt V2.0 continues to serve as a useful one-point web-resource on various evidence-based information on protein glycosylation in prokaryotes.
Collapse
Affiliation(s)
| | - Rupa Nagar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | | | - Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| |
Collapse
|
19
|
Wuyts S, Van Beeck W, Allonsius CN, van den Broek MF, Lebeer S. Applications of plant-based fermented foods and their microbes. Curr Opin Biotechnol 2019; 61:45-52. [PMID: 31733464 DOI: 10.1016/j.copbio.2019.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Plant-based fermentations and their microbes provide an underexplored source for novel biotechnological applications. Recent advances in DNA sequencing technologies and analyses of sequencing data highlight that a diverse array of lactic acid bacteria (LAB) frequently dominate these plant fermentations. Because of the long history of safe LAB use in fermented foods, we argue here that various novel probiotic, synbiotic and a range of other industrial applications can be produced based on new insights in the functional and genetic potential of these LAB. To aid in this quest, comparative genomics tools are increasingly available enabling a more rational design of wet-lab experiments to screen for the most relevant properties. This is also true for the exploration of useful enzymatic and (secondary) metabolic production capacities of the LAB that can be isolated from these plant-based fermentations, such as the recent discovery of a cellulase enzyme in specific Lactobacillus plantarum group members.
Collapse
Affiliation(s)
- Sander Wuyts
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Camille Nina Allonsius
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Marianne Fl van den Broek
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
20
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
21
|
Abstract
Over the past decade the number and variety of protein post-translational modifications that have been detected and characterized in bacteria have rapidly increased. Most post-translational protein modifications occur in a relatively low number of bacterial proteins in comparison with eukaryotic proteins, and most of the modified proteins carry low, substoichiometric levels of modification; therefore, their structural and functional analysis is particularly challenging. The number of modifying enzymes differs greatly among bacterial species, and the extent of the modified proteome strongly depends on environmental conditions. Nevertheless, evidence is rapidly accumulating that protein post-translational modifications have vital roles in various cellular processes such as protein synthesis and turnover, nitrogen metabolism, the cell cycle, dormancy, sporulation, spore germination, persistence and virulence. Further research of protein post-translational modifications will fill current gaps in the understanding of bacterial physiology and open new avenues for treatment of infectious diseases.
Collapse
|
22
|
Latousakis D, MacKenzie DA, Telatin A, Juge N. Serine-rich repeat proteins from gut microbes. Gut Microbes 2019; 11:102-117. [PMID: 31035824 PMCID: PMC6973325 DOI: 10.1080/19490976.2019.1602428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Serine-rich repeat proteins (SRRPs) have emerged as an important group of cell surface adhesins found in a growing number of Gram-positive bacteria. Studies focused on SRRPs from streptococci and staphylococci demonstrated that these proteins are O-glycosylated on serine or threonine residues and exported via an accessory secretion (aSec) system. In pathogens, these adhesins contribute to disease pathogenesis and represent therapeutic targets. Recently, the non-canonical aSec system has been identified in the genomes of gut microbes and characterization of their associated SRRPs is beginning to unfold, showing their role in mediating attachment and biofilm formation. Here we provide an update of the occurrence, structure, and function of SRRPs across bacteria, with emphasis on the molecular and biochemical properties of SRRPs from gut symbionts, particularly Lactobacilli. These emerging studies underscore the range of ligands recognized by these adhesins and the importance of SRRP glycosylation in the interaction of gut microbes with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Donald A. MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
23
|
Latousakis D, Nepravishta R, Rejzek M, Wegmann U, Le Gall G, Kavanaugh D, Colquhoun IJ, Frese S, MacKenzie DA, Walter J, Angulo J, Field RA, Juge N. Serine-rich repeat protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles. Glycobiology 2019; 29:45-58. [PMID: 30371779 PMCID: PMC6291802 DOI: 10.1093/glycob/cwy100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed serine-rich repeat protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or L. reuteri isogenic mutants, MALDI-ToF-MS, LC-MS and GC-MS analyses of SRRPs, we showed that L. reuteri strains 100-23C (from rodent) and ATCC 53608 (from pig) can perform protein O-glycosylation and modify SRRP100-23 and SRRP53608 with Hex-Glc-GlcNAc and di-GlcNAc moieties, respectively. Furthermore, in vivo glycoengineering in E. coli led to glycosylation of SRRP53608 variants with α-GlcNAc and GlcNAcβ(1→6)GlcNAcα moieties. The glycosyltransferases involved in the modification of these adhesins were identified within the SecA2/Y2 accessory secretion system and their sugar nucleotide preference determined by saturation transfer difference NMR spectroscopy and differential scanning fluorimetry. Together, these findings provide novel insights into the cellular O-protein glycosylation pathways of gut commensal bacteria and potential routes for glycoengineering applications.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ridvan Nepravishta
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Udo Wegmann
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gwenaelle Le Gall
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Devon Kavanaugh
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ian J Colquhoun
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Donald A MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|