1
|
Matos ID, Borges AD, Trindade LM, Andrade MER, Cavalcante GG, Leocádio PCL, Alvarez-Leite JI, Cassali GD, Costa BG, Martins FDS, Cardoso VN, Generoso SDV. Mitigation of chemotherapy-induced experimental intestinal mucositis through postbiotic lactate. Lett Appl Microbiol 2024; 77:ovae103. [PMID: 39496521 DOI: 10.1093/lambio/ovae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024]
Abstract
Postbiotic lactate modulates the immune system in inflammatory bowel diseases. However, its role in experimental intestinal mucositis (IM) has not been elucidated. This study aimed to evaluate the effects of lactate supplementation (1 and 2 × 10-1 mol/l) in a 5-fluorouracil (5-FU)-induced IM model. Male BALB/c mice (6-8 weeks old) were randomly divided into four groups: control (CTL), mucositis (MUC), mucositis with 1 × 10-1 mol/l lactate solution (MUC10), and mucositis with 2 × 10-1 mol/l lactate solution (MUC200). Lactate was administered via oral gavage for 10 days. Following the treatment period, the animals were subjected to an intraperitoneal injection of 300 mg/kg 5-FU to induce IM and were euthanized 72 h later for analysis. The MUC group presented intestinal damage with a poor histological score and decreased morphometric parameters as well as decreased mucus production and increased inflammatory infiltration and intestinal permeability compared to those of the CTL group (P < .05). However, the MUC200 group exhibited better results for the evaluated parameters than the MUC group (P < .05). Notably, the results in the MUC10 group were similar to those in the MUC group (P > .05). In conclusion, lactate supplementation attenuates mucositis-induced damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Isabel David Matos
- Food Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Amanda Dias Borges
- Food Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luísa Martins Trindade
- Food Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maria Emília Rabelo Andrade
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gregório Grama Cavalcante
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jacqueline Isaura Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Geovanni Dantas Cassali
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Bruno Galotti Costa
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Simone de Vasconcelos Generoso
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
2
|
Zhou X, Liu Q, Li Z, Liu X, Zhao Q, Wang Y, Wu F, Zhao G, Sun R, Guo X. The activation of adenosine monophosphate-activated protein kinase inhibits the migration of tongue squamous cell carcinoma cells by targeting Claudin-1 via epithelial-mesenchymal transition. Animal Model Exp Med 2024; 7:606-616. [PMID: 39017036 PMCID: PMC11528389 DOI: 10.1002/ame2.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The role of Claudin-1 in tongue squamous cell carcinoma (TSCC) metastasis needs further clarification, particularly its impact on cell migration. Herein, our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms. METHODS 36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1. Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells. Claudin-1 knockdown cell lines were established using short hairpin RNA transfection. Migration effects were assessed through wound healing assays. Furthermore, the expression of EMT-associated molecules was measured via western blotting. RESULTS Claudin-1 expression decreased as TSCC malignancy increased. Adenosine monophosphate-activated protein kinase (AMPK) activation led to increased Claudin-1 expression and membrane translocation, inhibiting TSCC cell migration and epithelial-mesenchymal transition (EMT). Conversely, Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation. CONCLUSIONS Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.
Collapse
Affiliation(s)
- Xin‐Yue Zhou
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| | - Qiu‐Ming Liu
- Sino‐German Biomedical CenterHubei University of TechnologyWuhanChina
- Center of Applied BiotechnologyWuhan Institute of BioengineeringWuhanChina
| | - Zhuang Li
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Xia‐Yang Liu
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Qi‐Wei Zhao
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Yu Wang
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Feng‐Hua Wu
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| | - Gang Zhao
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Rui Sun
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Department of Oral and Maxillofacial SurgeryShanxi Provincial People's HospitalTaiyuanChina
| | - Xiao‐Hong Guo
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| |
Collapse
|
3
|
Khodaverdi K, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int J Biol Macromol 2024; 278:134962. [PMID: 39179064 DOI: 10.1016/j.ijbiomac.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.
Collapse
Affiliation(s)
- Khashayar Khodaverdi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
4
|
Wang X, Yang S, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li X, Xie Q, Wang H. Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations. Nutrients 2024; 16:2951. [PMID: 39275267 PMCID: PMC11397455 DOI: 10.3390/nu16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zimo Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yilun Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Zhenyang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Liu H, Yan R, Li Y, Wang J, Deng Y, Li Y. Dragon's blood attenuates LPS-induced intestinal epithelial barrier dysfunction via upregulation of FAK-DOCK180-Rac1-WAVE2-Arp3 and downregulation of TLR4/NF-κB signaling pathways. J Nat Med 2024; 78:1013-1028. [PMID: 39014275 DOI: 10.1007/s11418-024-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 07/18/2024]
Abstract
Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.
Collapse
Affiliation(s)
- Huayan Liu
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Ranran Yan
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China.
| |
Collapse
|
6
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
7
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Maiuolo J, Bulotta RM, Ruga S, Nucera S, Macrì R, Scarano F, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Mollace R, Muscoli C, Mollace V. The Postbiotic Properties of Butyrate in the Modulation of the Gut Microbiota: The Potential of Its Combination with Polyphenols and Dietary Fibers. Int J Mol Sci 2024; 25:6971. [PMID: 39000076 PMCID: PMC11240906 DOI: 10.3390/ijms25136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The gut microbiota is a diverse bacterial community consisting of approximately 2000 species, predominantly from five phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. The microbiota's bacterial species create distinct compounds that impact the host's health, including well-known short-chain fatty acids. These are produced through the breakdown of dietary fibers and fermentation of undigested carbohydrates by the intestinal microbiota. The main short-chain fatty acids consist of acetate, propionate, and butyrate. The concentration of butyrate in mammalian intestines varies depending on the diet. Its main functions are use as an energy source, cell differentiation, reduction in the inflammatory process in the intestine, and defense against oxidative stress. It also plays an epigenetic role in histone deacetylases, thus helping to reduce the risk of colon cancer. Finally, butyrate affects the gut-brain axis by crossing the brain-blood barrier, making it crucial to determine the right concentrations for both local and peripheral effects. In recent years, there has been a significant amount of attention given to the role of dietary polyphenols and fibers in promoting human health. Polyphenols and dietary fibers both play crucial roles in protecting human health and can produce butyrate through gut microbiota fermentation. This paper aims to summarize information on the key summits related to the negative correlation between intestinal microbiota diversity and chronic diseases to guide future research on determining the specific activity of butyrate from polyphenols and dietary fibers that can carry out these vital functions.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Rosa Maria Bulotta
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Stefano Ruga
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Federica Scarano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Vincenzo Musolino
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy;
| |
Collapse
|
9
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Deng G, Wen B, Jia L, Liu J, Yan Q. Clostridium butyricum upregulates GPR109A/AMPK/PGC-1α and ameliorates acute pancreatitis-associated intestinal barrier injury in mice. Arch Microbiol 2024; 206:265. [PMID: 38761195 DOI: 10.1007/s00203-024-04001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.
Collapse
Affiliation(s)
- Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Jiaxin Liu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qingqing Yan
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
11
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
12
|
Ren Y, Tian Y, Hou M, Zhao Y, Li J, Aftab U, Rousseau X, Jiang R, Kang X, Tian Y, Gong Y. Evaluation of stimbiotic on growth performance and intestinal development of broilers fed corn- or wheat-based diets. Poult Sci 2023; 102:103094. [PMID: 37931376 PMCID: PMC10633449 DOI: 10.1016/j.psj.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023] Open
Abstract
In the antibiotics-free era, stimbiotic (STB) has been suggested as a new alternative of antibiotic growth promoters to modulate intestinal health via stimulating dietary fiber utilization in poultry production. The aim of this study was to evaluate the effects of STB supplementation in corn- or wheat-basal diet on growth performance, intestinal development, and function of broilers. A total of 512 one-day-old Arbor Acres(AA)broilers were randomly allocated 4 treatments, including corn group (CG), corn + 100 g/t STB (CG + STB), wheat group (WG), wheat + 100 g/t STB (WG + STB). The broilers were weighed at the days of 14, 28, and 42, of which 8 repetitions per treatment were randomly selected to determine the intestinal morphology, intestinal barrier, and cecal microbiota and metabolites. Our data showed that STB increased (P < 0.05) feed intake, body weight and reduced FCR for the overall period (0-42 d). At 28 d of age, significant increases in villus height and the villus height-to-crypt depth ratio (V/C) were found in the STB supplementation groups (P < 0.05). Addition of STB significantly increased intestinal mucosal DAO and AMPK enzyme activity and the gene expression of OCLN, CLDN1, ZO1, MUC2, SGLT1, PEPT1, FABP2, Ghrelin, and GCG in jejunum (P < 0.05), and significantly decreased the expression of the PYY gene. In addition, STB increased the relative abundance of beneficial bacteria, such as Akkermansia, Bifidobacterium, and Oscillospirales (P < 0.05). A significant increase in cecal short-chain fatty acid (SCFAs) concentration was also observed in the STB supplementation groups. At the cellular level, STB cannot directly increase the expression of small intestinal epithelial cells, and may indirectly improve intestinal barrier function by increasing the level of sodium butyrate. Overall, these results indicated that STB supplementation could improve the growth performance, intestinal development and barrier functions, and fiber fermentation in cecum of broiler chickens.
Collapse
Affiliation(s)
- Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- AB Vista, Marlborough SN8 4AN, UK
| | | | | | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Jackson C, Kolba N, Tako E. Assessing the Interactions between Zinc and Vitamin A on Intestinal Functionality, Morphology, and the Microbiome In Vivo ( Gallus gallus). Nutrients 2023; 15:2754. [PMID: 37375657 DOI: 10.3390/nu15122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.
Collapse
Affiliation(s)
- Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
15
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
16
|
Multi-Species Probiotic Strain Mixture Enhances Intestinal Barrier Function by Regulating Inflammation and Tight Junctions in Lipopolysaccharides Stimulated Caco-2 Cells. Microorganisms 2023; 11:microorganisms11030656. [PMID: 36985228 PMCID: PMC10056128 DOI: 10.3390/microorganisms11030656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although leaky gut syndrome is not recognized as an official diagnosis for human diseases, it is now believed that dysfunction of the cell barrier causes increased permeability of intestinal epithelial cells leading to this condition. Probiotics have been widely used to improve gut health, and studies have investigated the relevance of protecting the intestinal barrier by taking probiotic strains in vitro and in vivo. However, most studies have restricted the use of single or several probiotic strains and do not consider commercially available probiotic products composed of multi-species. In this study, we provide experimental evidence that a multi-species probiotic mixture composed of eight different strains and a heat-treated probiotic strain is effective in preventing leaky gut conditions. We employed an in vitro co-culture model system utilizing two different differentiated cell lines to mimic human intestinal tissue. The integrity of epithelial barrier function was protected by the preserving the occludin protein level and activating the AMPK signaling pathway, associated with tight junctions (TJs), through treatment with the probiotic strain mixture in Caco-2 cells. Moreover, we confirmed that application of the multi-species probiotic mixture reduced the expression of proinflammatory cytokine genes by inhibiting NFκB signaling pathway when artificial inflammation was induced in an in vitro co-culture model system. Finally, we proved that the epithelial permeability measured by trans-epithelial electrical resistance (TEER) was significantly decreased in the probiotic mixture treated cells, indicating that the integrity of the epithelial barrier function was not compromised. The multi-species probiotic strain mixture exhibited the protective effect on the integrity of intestinal barrier function via enhancing TJ complexes and reducing inflammatory responses in the human intestinal cells.
Collapse
|
17
|
Wang Z, Hao M, Wu L, He Y, Sun X. Mast cells disrupt the duodenal mucosal integrity: Implications for the mechanisms of barrier dysfunction in functional dyspepsia. Scand J Gastroenterol 2022; 58:460-470. [PMID: 36345966 DOI: 10.1080/00365521.2022.2141075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common functional gastrointestinal (GI) disorder, but its pathophysiology is poorly understood. Mast cells (MCs) may play a critical role in the development of FD. Therefore, the aim of this study was to investigate the effect of MCs on barrier function, tight junction (TJ) proteins and related signaling pathways. METHODS The expression of the TJ proteins claudin-8, ZO-1 and occludin in biopsy tissues from seven FD patients and five controls was assessed. Based on the in vivo results, we further investigated the effect of (1) MC degranulation in a coculture model of Caco-2/RBL-2H3 cells and tryptase in Caco-2 monolayers, (2) MC degranulation in the presence or absence of a PAR-2 antagonist and (3) MC degranulation in the presence or absence of an ERK1/2 signaling pathway inhibitor. The epithelial integrity of Caco-2 cell monolayers was assessed by measuring the transepithelial electrical resistance (TEER). The expression of TJ proteins was evaluated by western blotting, QT-PCR and immunostaining. RESULTS Epithelial claudin-8, ZO-1 and occludin protein expression were significantly reduced in tissues from FD patients compared with controls. MC degranulation and tryptase decreased the TEER and reduced the expression of TJ proteins in Caco-2 cell monolayers. A PAR-2 antagonist and an ERK1/2 signaling pathway inhibitor significantly reduced the effect of MC degranulation on the TEER and TJ protein expression in Caco-2 cell monolayers. CONCLUSIONS MCs disrupt duodenal barrier function by modulating the levels of TJ proteins, and the PAR-2 and ERK1/2 signaling pathways may mediate the pathogenesis of FD.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Menghao Hao
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Liping Wu
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China.,Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Yumei He
- North Sichuan Medical College, Nanchong, PR China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
18
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
19
|
Zhang B, Zhang Y, Liu X, Yin J, Li X, Zhang X, Xing X, Wang J, Wang S. Differential Protective Effect of Resveratrol and Its Microbial Metabolites on Intestinal Barrier Dysfunction is Mediated by the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11301-11313. [PMID: 36066018 DOI: 10.1021/acs.jafc.2c04101] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effectiveness of resveratrol (RES) on intestinal barrier dysfunction and colitis has been extensively studied. However, the specific effects of its microbial metabolites on gut barrier function remain unclear. Hence, we compared the protective effects of RES and its microbial metabolites dihydroresveratrol (DHR) and 3-(4-hydroxyphenyl)-propionic acid (4HPP) against intestinal barrier injury and colitis. Only 4HPP and RES significantly reduced paracellular permeability and the secretion of proinflammatory cytokines in lipopolysaccharides (LPS)-treated intestinal Caco-2 cells, which was consistent with the upregulation in tight junction (TJ) proteins. Furthermore, RES and 4HPP ameliorated intestinal barrier dysfunction and colonic inflammation in colitis mice, while DHR did not. In particular, the expressions of intestinal TJ proteins and Muc2 were restored by RES and 4HPP. The molecular mechanism involved the adenosine monophosphate-activated protein kinase (AMPK)-mediated activation of CDX2 and the regulation of the SIRT1/NF-κB pathway. These findings provide new insights into understanding the protective effects of RES against intestinal barrier damage and colitis.
Collapse
Affiliation(s)
- Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaolong Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Wu Z, Xu C, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. A critical role of AMP-activated protein kinase in regulating intestinal nutrient absorption, barrier function, and intestinal diseases. J Cell Physiol 2022; 237:3705-3716. [PMID: 35892164 DOI: 10.1002/jcp.30841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023]
Abstract
As one of the most important organs in animals, the intestine is responsible for nutrient absorption and acts as a barrier between the body and the environment. Intestinal physiology and function require the participation of energy. 5'-adenosine monophosphate-activated protein kinase (AMPK), a classical and highly expressed energy regulator in intestinal cells, regulates the process of nutrient absorption and barrier function and is also involved in the therapy of intestinal diseases. Studies have yielded findings that AMPK regulates the absorption of glucose, amino acids, and fatty acids in the intestine primarily by regulating transportation systems, as we detailed here. Moreover, AMPK is involved in the regulation of the intestinal mechanical barrier and immune barrier through manipulating the expression of tight junctions, antimicrobial peptides, and secretory immunoglobulins. In addition, AMPK also participates in the regulation of intestinal diseases, which indicates that AMPK is a promising therapeutic target for intestinal diseases and cancer. In this review, we summarized the current understanding regarding how AMPK regulates intestinal nutrient absorption, barrier function, and intestinal diseases.
Collapse
Affiliation(s)
- Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengfei Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). Food Res Int 2022; 157:111227. [DOI: 10.1016/j.foodres.2022.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
22
|
Wang P, Guo P, Wang Y, Teng X, Zhang H, Sun L, Xue M, Liang H. Propolis Ameliorates Alcohol-Induced Depressive Symptoms in C57BL/6J Mice by Regulating Intestinal Mucosal Barrier Function and Inflammatory Reaction. Nutrients 2022; 14:nu14061213. [PMID: 35334870 PMCID: PMC8950298 DOI: 10.3390/nu14061213] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Accumulating evidence points to a critical role of the brain gut axis as an important paradigm for many central nervous system diseases. Recent studies suggest that propolis has obvious neuroprotective properties and functionality in regulating intestinal bacteria flora, hinting at a potential key effect at both terminals of this axis regulation. However, currently no clear evidence confirms the effects of propolis on alcohol-induced depression. Here, we establish an alcoholic depression model with C57BL/6J mice and demonstrate that treatment with propolis protects against alcohol-induced depressive symptoms by behavioral tests. In addition, propolis attenuates the injury of nerve cells in the hippocampal region and restores the serum levels of brain-derived neurotrophic factor (BDNF) and dopamine (DA) in mice with alcohol-induced depression. Pathology and biotin tracer assays show that propolis repairs the intestinal leakage caused by alcohol. Additionally, propolis treatment increases the expression levels of intestinal intercellular tight junctions’ (TJs’) structural proteins Claudin-1, Occludin and zona occludens-1 (ZO-1), as well as the activation state of the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway, which is closely related to the intestinal permeability. Furthermore, propolis can reduce the levels of pro-inflammatory, lipopolysaccharide (LPS) and fatty-acid-binding protein 2 (FABP2), suggesting the significance of the inflammatory response in alcoholic depression. Collectively, our findings indicate that propolis exerted an improving effect on alcohol-induced depressive symptoms by ameliorating brain gut dysfunction.
Collapse
Affiliation(s)
- Peng Wang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Peiyu Guo
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Yanhui Wang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Xiangyun Teng
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Huaqi Zhang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Lirui Sun
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Ningxia Road 308, Qingdao 266071, China;
| | - Hui Liang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China; (P.W.); (P.G.); (Y.W.); (X.T.); (H.Z.); (L.S.)
- Correspondence: ; Tel.: +86-532-83812434
| |
Collapse
|
23
|
Gomes TL, de Oliveira-Marques V, Hampson RJ, Jacinto A, de Moraes LV, Martinho RG. theLiTE™: A Screening Platform to Identify Compounds that Reinforce Tight Junctions. Front Pharmacol 2022; 12:752787. [PMID: 35069190 PMCID: PMC8771259 DOI: 10.3389/fphar.2021.752787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tight junctions (TJ) are formed by transmembrane and intracellular proteins that seal the intercellular space and control selective permeability of epithelia. Integrity of the epithelial barrier is central to tissue homeostasis and barrier dysfunction has been linked to many pathological conditions. TJ support the maintenance of cell polarity through interactions with the Par complex (Cdc42-Par-6-Par-3-aPKC) in which Par-6 is an adaptor and links the proteins of the complex together. Studies have shown that Par-6 overexpression delays the assembly of TJ proteins suggesting that Par-6 negatively regulates TJ assembly. Because restoring barrier integrity is of key therapeutic and prophylactic value, we focus on finding compounds that have epithelial barrier reinforcement properties; we developed a screening platform (theLiTE™) to identify compounds that modulate Par-6 expression in follicular epithelial cells from Par-6-GFP Drosophila melanogaster egg chambers. Hits identified were then tested whether they improve epithelial barrier function, using measurements of transepithelial electrical resistance (TEER) or dye efflux to evaluate paracellular permeability. We tested 2,400 compounds, found in total 10 hits. Here we present data on six of them: the first four hits allowed us to sequentially build confidence in theLiTE™ and two compounds that were shortlisted for further development (myricetin and quercetin). We selected quercetin due to its clinical and scientific validation as a compound that regulates TJ; food supplement formulated on the basis of this discovery is currently undergoing clinical evaluation in gastroesophageal reflux disease (GERD) sufferers.
Collapse
Affiliation(s)
- Teresa Lopes Gomes
- Thelial Technologies SA, Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | | | - Richard John Hampson
- Thelial Technologies SA, Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- Thelial BV (Epinutra), Wageningen, Netherlands
| | - António Jacinto
- iNOVA4Health, Chronic Diseases Research Centre - CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luciana Vieira de Moraes
- Thelial Technologies SA, Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- Thelial BV (Epinutra), Wageningen, Netherlands
| | - Rui Gonçalo Martinho
- Thelial Technologies SA, Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
24
|
Shimada H, Kohno T, Konno T, Okada T, Saito K, Shindo Y, Kikuchi S, Tsujiwaki M, Ogawa M, Matsuura M, Saito T, Kojima T. The Roles of Tricellular Tight Junction Protein Angulin-1/Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Endometriosis and Endometrioid-Endometrial Carcinoma. Cancers (Basel) 2021; 13:6341. [PMID: 34944960 PMCID: PMC8699113 DOI: 10.3390/cancers13246341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tight junction proteins play roles beyond permeability barriers functions and control cell proliferation and differentiation. The relation between tight junctions and the signal transduction pathways affects cell growth, invasion and migration. Abnormality of tight junction proteins closely contributes to epithelial mesenchymal transition (EMT) and malignancy of various cancers. Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) forms tricellular contacts that has a barrier function. Downregulation of angulin-1/LSR correlates with the malignancy in various cancers, including endometrioid-endometrial carcinoma (EEC). These alterations have been shown to link to not only multiple signaling pathways such as Hippo/YAP, HDAC, AMPK, but also cell metabolism in ECC cell line Sawano. Moreover, loss of angulin-1/LSR upregulates claudin-1, and loss of apoptosis stimulating p53 protein 2 (ASPP2) downregulates angulin-1/LSR. Angulin-1/LSR and ASPP2 concentrate at both midbody and centrosome in cytokinesis. In EEC tissues, angulin-1/LSR and ASPP2 are reduced and claudin-2 is overexpressed during malignancy, while in the tissues of endometriosis changes in localization of angulin-1/LSR and claudin-2 are seen. This review highlights how downregulation of angulin-1/LSR promotes development of endometriosis and EEC and discusses about the roles of angulin-1/LSR and its related proteins, including claudins and ASPP2.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Tadahi Okada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Kimihito Saito
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Marie Ogawa
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Motoki Matsuura
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Tsuyoshi Saito
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| |
Collapse
|
25
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
26
|
Sinapic Acid Alleviated Inflammation-Induced Intestinal Epithelial Barrier Dysfunction in Lipopolysaccharide- (LPS-) Treated Caco-2 Cells. Mediators Inflamm 2021; 2021:5514075. [PMID: 34539242 PMCID: PMC8443358 DOI: 10.1155/2021/5514075] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The integrity and permeability of the intestinal epithelial barrier are important indicators of intestinal health. Impaired intestinal epithelial barrier function and increased intestinal permeability are closely linked to the onset and progression of various intestinal diseases. Sinapic acid (SA) is a phenolic acid that has anti-inflammatory, antihyperglycemic, and antioxidant activities; meanwhile, it is also effective in the protection of inflammatory bowel disease (IBD), but the specific mechanisms remain unclear. Here, we evaluated the anti-inflammatory of SA and investigated its potential therapeutic activity in LPS-induced intestinal epithelial barrier and tight junction (TJ) protein dysfunction. SA improved cell viability; attenuated epithelial permeability; restored the protein and mRNA expression of claudin-1, ZO-1, and occludin; and reversed the redistribution of the ZO-1 and claudin-1 proteins in LPS-treated Caco-2 cells. Moreover, SA reduced the inflammatory response by downregulating the activation of the TLR4/NF-κB pathway and attenuated LPS-induced intestinal barrier dysfunction by decreasing the activation of the MLCK/MLC pathway. This study demonstrated that SA has strong anti-inflammatory activity and can alleviate the occurrence of high intercellular permeability in Caco-2 cells exposed to LPS.
Collapse
|
27
|
Rajakylä EK, Lehtimäki JI, Acheva A, Schaible N, Lappalainen P, Krishnan R, Tojkander S. Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep 2021; 30:4266-4280.e4. [PMID: 32209483 DOI: 10.1016/j.celrep.2020.02.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the maintenance of intercellular junctions are associated with loss of epithelial barrier function and consequent pathological conditions, including invasive cancers. Epithelial integrity is dependent on actomyosin bundles at adherens junctions, but the origin of these junctional bundles is incompletely understood. Here we show that peripheral actomyosin bundles can be generated from a specific actin stress fiber subtype, transverse arcs, through their lateral fusion at cell-cell contacts. Importantly, we find that assembly and maintenance of peripheral actomyosin bundles are dependent on the mechanosensitive CaMKK2/AMPK signaling pathway and that inhibition of this route leads to disruption of tension-maintaining actomyosin bundles and re-growth of stress fiber precursors. This results in redistribution of cellular forces, defects in monolayer integrity, and loss of epithelial identity. These data provide evidence that the mechanosensitive CaMKK2/AMPK pathway is critical for the maintenance of peripheral actomyosin bundles and thus dictates cell-cell junctions through cellular force distribution.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Lu YZ, Liang LM, Cheng PP, Xiong L, Wang M, Song LJ, Yu F, He XL, Xiong L, Wang XR, Xin JB, Ye H, Ma WL. VEGF/Src signaling mediated pleural barrier damage and increased permeability contributes to subpleural pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L990-L1004. [PMID: 33787325 DOI: 10.1152/ajplung.00436.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Zhi Lu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Xiao-Rong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Veenstra JP, Vemu B, Tocmo R, Nauman MC, Johnson JJ. Pharmacokinetic Analysis of Carnosic Acid and Carnosol in Standardized Rosemary Extract and the Effect on the Disease Activity Index of DSS-Induced Colitis. Nutrients 2021; 13:nu13030773. [PMID: 33673488 PMCID: PMC7997407 DOI: 10.3390/nu13030773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Rosemary extract (RE) is an approved food preservative in the European Union and contains dietary phytochemicals that are beneficial for gastrointestinal health. This study investigated the effects of RE on dextran sodium sulfate (DSS)-induced colitis and also determined the pharmacokinetics of dietary phytochemicals administered to mice via oral gavage. Individual components of rosemary extract were separated and identified by LC–MS/MS. The pharmacokinetics of two major diterpenes from RE, carnosic acid (CA) and carnosol (CL), administered to mice via oral gavage were determined. Then, the effect of RE pre-treatment on the disease activity index (DAI) of DSS-induced colitis in mice was investigated. The study determined that 100 mg/kg RE significantly improved DAI in DSS-induced colitis compared to negative control. Sestrin 2 protein expression, which increased with DSS exposure, was reduced with RE treatment. Intestinal barrier integrity was also shown to improve via fluorescein isothiocyanate (FITC)–dextran administration and Western blot of zonula occludens-1 (ZO-1), a tight junction protein. Rosemary extract was able to improve the DAI of DSS-induced colitis in mice at a daily dose of 100 mg/kg and showed improvement in the intestinal barrier integrity. This study suggests that RE can be an effective preventative agent against IBD.
Collapse
|
30
|
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun 2021; 545:183-188. [PMID: 33561653 DOI: 10.1016/j.bbrc.2021.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
31
|
Liu F, Peng S, Adelman RA, Rizzolo LJ. Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 33591357 PMCID: PMC7900869 DOI: 10.1167/iovs.62.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Besides regulating paracellular diffusion, claudin-19 modulates the expression of proteins essential for the retinal pigment epithelium (RPE). This study asks how RPE responds when the expression of claudin-19 is reduced. Methods In stem cell-derived RPE, claudin-19 and sequestosome-1/p62 (SQSTM1) were knocked down with siRNAs. Expression was monitored by quantitative RT-PCR and western blotting. Morphology and function were monitored by immunocytochemistry and transepithelial electrical resistance (TER). Phagocytosis of photoreceptor outer segments (POSs) was followed by fluorescence-activated cell sorting and western blotting. Pharmacology was used to assess the effects of AMP-activated protein kinase (AMPK) and SQSTM1 on phagocytosis. Enzymatic activity was measured using commercial assay kits. Results Knockdown of claudin-19 reduced the TER without affecting the integrity of the apical junctional complex, as assessed by the distribution of zonula occludens-1 and filamentous actin. AMPK was activated without apparent effect on autophagy. Activation of AMPK alone had little effect on phagocytosis. Without affecting ingestion, knockdown reduced the rate of POS degradation and increased the steady-state levels of LC3B and SQSTM1. Proteasome inhibitors also retarded degradation, as did knockdown of SQSTM1. The expression of metallothioneins and the activity of superoxide dismutase increased. Conclusions Knockdown of claudin-19 slowed the degradation of internalized POSs. The study questions the role of activated AMPK in phagocytosis and suggests a role for SQSTM1. Further, knockdown was associated with a partial oxidative stress response. The study opens new avenues of experimentation to explore these essential RPE functions.
Collapse
Affiliation(s)
- Fanfei Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Ron A. Adelman
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
32
|
Tseng CH. Metformin Use Is Associated with a Lower Risk of Inflammatory Bowel Disease in Patients with Type 2 Diabetes Mellitus. J Crohns Colitis 2021; 15:64-73. [PMID: 32604412 DOI: 10.1093/ecco-jcc/jjaa136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Our aim was to compare the risk of developing inflammatory bowel disease [IBD] between ever users and never users of metformin. METHODS Patients with newly diagnosed type 2 diabetes mellitus from 1999 to 2005 were enrolled from Taiwan's National Health Insurance. A total of 340 211 ever users and 24 478 never users who were free from IBD on January 1, 2006 were followed up until December 31, 2011. Hazard ratios were estimated by Cox regression incorporating the inverse probability of treatment weighting using a propensity score. RESULTS New-onset IBD was diagnosed in 6466 ever users and 750 never users. The respective incidence rates were 412.0 and 741.3 per 100 000 person-years and the hazard ratio for ever vs never users was 0.55 [95% confidence interval: 0.51-0.60]. A dose-response pattern was observed while comparing the tertiles of cumulative duration of metformin therapy to never users. The respective hazard ratios for the first [<26.0 months], second [26.0-58.3 months] and third [>58.3 months] tertiles were 1.00 [0.93-1.09], 0.57 [0.52-0.62] and 0.24 [0.22-0.26]. While patients treated with oral antidiabetic drugs [OADs] without metformin were treated as a reference group, the hazard ratios for patients treated with OADs with metformin, with insulin without metformin [with/without other OADs] and with insulin and metformin [with/without other OADs] were 0.52 [0.42-0.66], 0.95 [0.76-1.20] and 0.50 [0.40-0.62], respectively. CONCLUSION A reduced risk of IBD is consistently observed in patients with type 2 diabetes mellitus who have been treated with metformin.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
33
|
Yang T, Wang X, Zhou Y, Yu Q, Heng C, Yang H, Yuan Z, Miao Y, Chai Y, Wu Z, Sun L, Huang X, Liu B, Jiang Z, Zhang L. SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1-mediated AMPK signaling pathway. Cell Biol Toxicol 2021; 37:595-609. [PMID: 33400020 DOI: 10.1007/s10565-020-09567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Cholestatic liver injury, a group of diseases characterized with dysregulated bile acid (BA) homeostasis, was partly resulted from BA circulation disorders, which is commonly associated with the damage of hepatocyte barrier function. However, the underlying hepatocyte barrier-protective molecular mechanisms of cholestatic liver injury remain poorly understood. Interestingly, recent studies have shown that sphingosine-1-phosphate (S1P) participated in the process of cholestasis by activating its G protein-coupled receptors S1PRs, regaining the integrity of hepatocyte tight junctions (TJs). Here, we showed that SEW2871, a selective agonist of sphingosine-1-phosphate receptor 1(S1PR1), alleviated ANIT-induced TJs damage in 3D-cultured mice primary hepatocytes. Molecular mechanism studies indicated that AMPK signaling pathways was involved in TJs protection of SEW2871 in ANIT-induced hepatobiliary barrier function deficiency. AMPK antagonist compound C (CC) and agonist AICAR were all used to further identify the important role of AMPK signaling pathway in SEW2871's TJs protection of ANIT-treated mice primary hepatocytes. The in vivo data showed that SEW2871 ameliorated ANIT-induced cholestatic hepatotoxicity. Further protection mechanism research demonstrated that SEW2871 not only regained hepatocyte TJs by the upregulated S1PR1 via AMPK signaling pathway, but also recovered hepatobiliary barrier function deficiency, which was verified by the restored BA homeostasis by using of high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results revealed that the increased expression of S1PR1 induced by SEW2871 could ameliorate ANIT-induced cholestatic liver injury through improving liver barrier function via AMPK signaling and subsequently reversed the disrupted BA homeostasis. Our study provided strong evidence that S1PR1 may be a promising therapeutic approach for treating intrahepatic cholestatic liver injury. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiongna Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziteng Wu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixin Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Picroside II alleviates liver injury induced by alpha-naphthylisothiocyanate through AMPK-FXR pathway. Toxicol Appl Pharmacol 2020; 408:115248. [PMID: 32976922 DOI: 10.1016/j.taap.2020.115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.
Collapse
|
35
|
Novel Potential Application of Chitosan Oligosaccharide for Attenuation of Renal Cyst Growth in the Treatment of Polycystic Kidney Disease. Molecules 2020; 25:molecules25235589. [PMID: 33261193 PMCID: PMC7730275 DOI: 10.3390/molecules25235589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS), a natural polymer derived from chitosan, exerts several biological activities including anti-inflammation, anti-tumor, anti-metabolic syndrome, and drug delivery enhancer. Since COS is vastly distributed to kidney and eliminated in urine, it may have a potential advantage as the therapeutics of kidney diseases. Polycystic kidney disease (PKD) is a common genetic disorder characterized by multiple fluid-filled cysts, replacing normal renal parenchyma and leading to impaired renal function and end-stage renal disease (ESRD). The effective treatment for PKD still needs to be further elucidated. Interestingly, AMP-activated protein kinase (AMPK) has been proposed as a drug target for PKD. This study aimed to investigate the effect of COS on renal cyst enlargement and its underlying mechanisms. We found that COS at the concentrations of 50 and 100 µg/mL decreased renal cyst growth without cytotoxicity, as measured by MTT assay. Immunoblotting analysis showed that COS at 100 µg/mL activated AMPK, and this effect was abolished by STO-609, a calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) inhibitor. Moreover, COS elevated the level of intracellular calcium. These results suggest that COS inhibits cyst progression by activation of AMPK via CaMKKβ. Therefore, COS may hold the potential for pharmaceutical application in PKD.
Collapse
|
36
|
Ma T, Peng W, Liu Z, Gao T, Liu W, Zhou D, Yang K, Guo R, Duan Z, Liang W, Bei W, Yuan F, Tian Y. Tea polyphenols inhibit the growth and virulence of ETEC K88. Microb Pathog 2020; 152:104640. [PMID: 33232763 DOI: 10.1016/j.micpath.2020.104640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) causes high levels of morbidity and mortality in neonatal piglets. Owing to the abuse of antibiotics and emergence of drug resistance, antibiotics are no longer considered only beneficial, but also potentially harmful drugs. Supplements that can inhibit the growth of bacteria are expected to replace antibiotics. Tea polyphenols have numerous important biological functions, including antibacterial, antiviral, antioxidative, anti-inflammatory, and antihypertensive effects. We investigated the role of tea polyphenols in ETEC K88 infection using a mouse model. Pretreating with tea polyphenols attenuated the symptoms induced by ETEC K88. Furthermore, in a cell adherence assay, tea polyphenols inhibited ETEC K88 adherence to IPEC-J2 cells. When cells were infected with ETEC K88, mRNA and protein levels of claudin-1 were significantly decreased compared with those of control cells. However, when cells were pretreated with tea polyphenols, claudin-1 mRNA and protein levels were higher than those in cells without pretreatment upon cell infection with ETEC K88. TLR2 mRNA levels were also higher following cell infection with ETEC K88 when cells were pretreated with tea polyphenols. These data revealed that tea polyphenols could increase the barrier integrity of IPEC-J2 cells by upregulating expression of claudin-1 through activation of TLR2. Tea polyphenols had beneficial effects on epithelial barrier function. Therefore, tea polyphenols could be used as a novel strategy to control and treat pig infections caused by ETEC K88.
Collapse
Affiliation(s)
- Tianfeng Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
37
|
Wongkrasant P, Pongkorpsakol P, Ariyadamrongkwan J, Meesomboon R, Satitsri S, Pichyangkura R, Barrett KE, Muanprasat C. A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed Pharmacother 2020; 129:110415. [PMID: 32603892 DOI: 10.1016/j.biopha.2020.110415] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tight junctions play an important role in maintaining barrier integrity of intestinal epithelia. Activation of AMP-activated protein kinase (AMPK) promotes tight junction assembly in intestinal epithelial cells (IEC). Fructo-oligosaccharides (FOS), well-known prebiotics, have previously been shown to alleviate inflammation-associated intestinal epithelial disruption although the mechanisms were unclear. This study aimed to investigate any effect of FOS on AMPK activity and tight junction assembly under non-inflammatory and inflammatory conditions using T84 cells as an IEC model. As analyzed by western blot, FOS induced AMPK activation through a calcium sensing receptor (CaSR)-phospholipase C (PLC)- Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ) pathway. Calcium switch assays and immunofluorescence staining of zonula occludens-1 (ZO-1) revealed that FOS induced tight junction assembly via an CaMKKβ-AMPK-dependent mechanism in IEC. Interestingly, FOS reversed the suppressive effect of lipopolysaccharide (LPS) on AMPK activity and tight junction assembly via a CaMKKβ pathway. Taken together, these findings uncover a prebiotic-independent effect of FOS in promoting intestinal epithelial tight junction assembly through AMPK activation, which may have implications for the treatment of diseases whose pathogenesis involves impaired intestinal barrier function.
Collapse
Affiliation(s)
- Preedajit Wongkrasant
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand; Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangpli, Samutprakarn, 10540, Thailand
| | - Pawin Pongkorpsakol
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Jutharat Ariyadamrongkwan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangpli, Samutprakarn, 10540, Thailand
| | - Roojanaat Meesomboon
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangpli, Samutprakarn, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangpli, Samutprakarn, 10540, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kim E Barrett
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangpli, Samutprakarn, 10540, Thailand.
| |
Collapse
|
38
|
Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase. Arch Biochem Biophys 2020; 692:108541. [PMID: 32781053 DOI: 10.1016/j.abb.2020.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Irena Audzeyenka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
39
|
Angé M, Castanares-Zapatero D, De Poortere J, Dufeys C, Courtoy GE, Bouzin C, Quarck R, Bertrand L, Beauloye C, Horman S. α1AMP-Activated Protein Kinase Protects against Lipopolysaccharide-Induced Endothelial Barrier Disruption via Junctional Reinforcement and Activation of the p38 MAPK/HSP27 Pathway. Int J Mol Sci 2020; 21:ijms21155581. [PMID: 32759774 PMCID: PMC7432762 DOI: 10.3390/ijms21155581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.
Collapse
Affiliation(s)
- Marine Angé
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Intensive Care, Cliniques Universitaires Saint Luc, 1200 Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Guillaume E. Courtoy
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Rozenn Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium;
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Cardiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Correspondence: ; Tel.: +32-2-764-55-66
| |
Collapse
|
40
|
Aghapour M, Remels AHV, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, Heijink IH. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2020; 318:L149-L164. [PMID: 31693390 PMCID: PMC6985875 DOI: 10.1152/ajplung.00329.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Disturbances in mitochondrial structure and function in lung epithelial cells have been implicated in the pathogenesis of various lung diseases, including chronic obstructive pulmonary disease (COPD). Such disturbances affect not only cellular energy metabolism but also alter a range of indispensable cellular homeostatic functions in which mitochondria are known to be involved. These range from cellular differentiation, cell death pathways, and cellular remodeling to physical barrier function and innate immunity, all of which are known to be impacted by exposure to cigarette smoke and have been linked to COPD pathogenesis. Next to their well-established role as the first physical frontline against external insults, lung epithelial cells are immunologically active. Malfunctioning epithelial cells with defective mitochondria are unable to maintain homeostasis and respond adequately to further stress or injury, which may ultimately shape the phenotype of lung diseases. In this review, we provide a comprehensive overview of the impact of cigarette smoke on the development of mitochondrial dysfunction in the lung epithelium and highlight the consequences for cell function, innate immune responses, epithelial remodeling, and epithelial barrier function in COPD. We also discuss the applicability and potential therapeutic value of recently proposed strategies for the restoration of mitochondrial function in the treatment of COPD.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander H V Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Stanford I, Weill Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
41
|
Reciprocal Association between the Apical Junctional Complex and AMPK: A Promising Therapeutic Target for Epithelial/Endothelial Barrier Function? Int J Mol Sci 2019; 20:ijms20236012. [PMID: 31795328 PMCID: PMC6928779 DOI: 10.3390/ijms20236012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial/endothelial cells adhere to each other via cell–cell junctions including tight junctions (TJs) and adherens junctions (AJs). TJs and AJs are spatiotemporally and functionally integrated, and are thus often collectively defined as apical junctional complexes (AJCs), regulating a number of spatiotemporal events including paracellular barrier, selective permeability, apicobasal cell polarity, mechano-sensing, intracellular signaling cascades, and epithelial morphogenesis. Over the past 15 years, it has been acknowledged that adenosine monophosphate (AMP)-activated protein kinase (AMPK), a well-known central regulator of energy metabolism, has a reciprocal association with AJCs. Here, we review the current knowledge of this association and show the following evidences: (1) as an upstream regulator, AJs activate the liver kinase B1 (LKB1)–AMPK axis particularly in response to applied junctional tension, and (2) TJ function and apicobasal cell polarization are downstream targets of AMPK and are promoted by AMPK activation. Although molecular mechanisms underlying these phenomena have not yet been completely elucidated, identifications of novel AMPK effectors in AJCs and AMPK-driven epithelial transcription factors have enhanced our knowledge. More intensive studies along this line would eventually lead to the development of AMPK-based therapies, enabling us to manipulate epithelial/endothelial barrier function.
Collapse
|
42
|
Huang L, Yin P, Liu F, Liu Y, Liu Y, Xia Z. Protective effects of L-arginine on the intestinal epithelial barrier under heat stress conditions in rats and IEC-6 cell line. J Anim Physiol Anim Nutr (Berl) 2019; 104:385-396. [PMID: 31709652 DOI: 10.1111/jpn.13246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/03/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Heat stress (HS) and the associated restricted blood flow to the intestine have been proven to destroy intestinal integrity. Considering the beneficial properties of L-arginine on gut function, we investigated the protective effects of L-arginine on the intestine under HS conditions. In vivo, the serum cortisol level and the rectal temperature increased in response to HS. Under HS, the intestinal damage showed obvious morphological changes. Furthermore, HS decreased the mRNA and protein expression levels of Nurr1, ZO-1, occludin, claudin-6 and E-cadherin, increased the mRNA expression of NF-κB and IL-1β, and increased the protein expression of cleaved caspase-3. In contrast, L-arginine supplementation maintained intestinal integrity and increased the villus/crypt ratio. L-arginine also suppressed the expression of inflammation-related genes and the protein expression of cleaved caspase-3, whereas it upregulated the mRNA and protein expression of tight junction proteins and LC3B protein expression. In vitro, L-arginine attenuated HS-induced apoptosis as demonstrated by flow cytometry and decreased cleaved caspase-3 protein expression. L-arginine induced autophagy, which was demonstrated by decreased expression of p62 and p-mTOR/mTOR, and increased expression of LC3B. The protein expression levels of TJ proteins also enhanced by L-arginine in IEC-6 cells. Taken together, these results suggest that L-arginine can alleviate intestinal damage and protect the intestinal integrity by suppressing local inflammation response, promoting the production of TJs and facilitating autophagy under HS conditions.
Collapse
Affiliation(s)
- Liqing Huang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Yin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing Agricultural University, Beijing, China
| | - Yilin Liu
- College of Animal Science and Technology, Beijing Agricultural University, Beijing, China
| | - Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Olivier S, Leclerc J, Grenier A, Foretz M, Tamburini J, Viollet B. AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. Int J Mol Sci 2019; 20:E5171. [PMID: 31635305 PMCID: PMC6829419 DOI: 10.3390/ijms20205171] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is principally known as a major regulator of cellular energy status, but it has been recently shown to play a key structural role in cell-cell junctions. The aim of this study was to evaluate the impact of AMPK activation on the reassembly of tight junctions in intestinal epithelial Caco-2 cells. We generated Caco-2 cells invalidated for AMPK α1/α2 (AMPK dKO) by CRISPR/Cas9 technology and evaluated the effect of the direct AMPK activator 991 on the reassembly of tight junctions following a calcium switch assay. We analyzed the integrity of the epithelial barrier by measuring the trans-epithelial electrical resistance (TEER), the paracellular permeability, and quantification of zonula occludens 1 (ZO-1) deposit at plasma membrane by immunofluorescence. Here, we demonstrated that AMPK deletion induced a delay in tight junction reassembly and relocalization at the plasma membrane during calcium switch, leading to impairments in the establishment of TEER and paracellular permeability. We also showed that 991-induced AMPK activation accelerated the reassembly and reorganization of tight junctions, improved the development of TEER and paracellular permeability after calcium switch. Thus, our results show that AMPK activation ensures a better recovery of epithelial barrier function following injury.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jocelyne Leclerc
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Adrien Grenier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jérôme Tamburini
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| |
Collapse
|
44
|
L-Arginine alleviates heat stress-induced intestinal epithelial barrier damage by promoting expression of tight junction proteins via the AMPK pathway. Mol Biol Rep 2019; 46:6435-6451. [PMID: 31576512 DOI: 10.1007/s11033-019-05090-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/22/2019] [Indexed: 01/11/2023]
Abstract
Heat stress (HS) and secondary restricted blood flow to the intestines cause dysfunction of the intestinal epithelial barrier. Tight junctions (TJs) are essential to maintain intestinal integrity. L-Arginine has beneficial effects on gut functions. However, the underlying mechanisms remain largely unknown. This study tested the hypothesis that L-arginine regulates the TJ network by activating AMP-activated protein kinase (AMPK) signaling, which in turn improves intestinal barrier functions under HS. IEC-6 cells and rat small intestines were used as experiment models of heat stress. AICAR and dorsomorphin were used to activate and inhibit the AMPK pathway, respectively. Cell proliferation, apoptosis, differential gene expression and KEGG pathway analysis, intestinal paracellular permeability, intestinal morphology, and expression of HSP and TJ proteins, and p-AMPK were determined. L-Arginine promoted cell proliferation and reduced apoptosis after heat exposure at an optimal concentration of 5 mmol. Transcriptome sequencing analysis revealed that differentially expressed genes associated with the HSP family and TJs were elevated by L-arginine. According to KEGG pathway analysis, L-arginine activated the AMPK signaling pathway. In vivo, intestinal damage resulted in obvious morphological changes as well as apoptosis with TUNEL and caspase-3 staining under HS and dorsomorphin treatments. Furthermore, HS and dorsomorphin increased the serum D-lactate concentration, diamine oxidase activity, and mRNA expression level of MLCK (P < 0.05). In contrast, L-arginine and AICAR treatments reduced intestinal injury, maintained intestinal permeability, and increased the villus/crypt ratio under hyperthermia. L-Arginine had the same effect as AICAR both in vitro and in vivo, namely increasing p-AMPK protein expression. L-Arginine and AICAR also upregulated the mRNA expression level of HSP70 and HSP90, and downregulated mRNA expression of MLCK (P < 0.05). The protein expression levels of TJ proteins ZO-1 and claudin-1 were suppressed by heat stroke and dorsomorphin, but enhanced by L-arginine and AICAR. Our findings indicate that activation of AMPK signaling by L-arginine is associated with improved intestinal mucosal barrier functions by enhancing the expression of TJs in rat small intestines and IEC-6 cells during HS.
Collapse
|
45
|
Breton S, Nair AV, Battistone MA. Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 2019; 7:631-643. [PMID: 31044554 PMCID: PMC6688936 DOI: 10.1111/andr.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 01/10/2023]
Abstract
Epithelial cells line the lumen of tubular organs and are key players in their respective functions. They establish a unique luminal environment by providing a protective barrier and by performing vectorial transport of ions, nutrients, solutes, proteins, and water. Complex intercellular communication networks, specific for each organ, ensure their interaction with adjacent epithelial and non-epithelial cells, allowing them to respond to and modulate their immediate environment. In the epididymis, several epithelial cell types work in a concerted manner to establish a luminal acidic milieu that is essential for the post-testicular maturation and storage of spermatozoa. The epididymis also prevents autoimmune responses against auto-antigenic spermatozoa, while ensuring protection against ascending and blood pathogens. This is achieved by a network of immune cells that are in close contact and interact with epithelial cells. This review highlights the coordinated interactions between spermatozoa, basal cells, principal cells, narrow cells, clear cells, and immune cells that contribute to the maturation, protection, selection, and storage of spermatozoa in the lumen of the epididymis.
Collapse
Affiliation(s)
- S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - A V Nair
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
46
|
AMP-Activated Protein Kinase Signalling. Int J Mol Sci 2019; 20:ijms20030766. [PMID: 30759716 PMCID: PMC6386857 DOI: 10.3390/ijms20030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
|
47
|
Wang X, Li L, Zhang G. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation. RSC Adv 2019; 9:34607-34616. [PMID: 35529998 PMCID: PMC9073856 DOI: 10.1039/c9ra06222j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/18/2019] [Indexed: 11/21/2022] Open
Abstract
The expression of tight junction proteins in human epithelial colorectal adenocarcinoma (Caco-2) cells was investigated after treatment by the mycotoxin of deoxynivalenol and phenolic compound of kaempferol in different stages of proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Li Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|