1
|
Atia MM, Badr EL-Deen AA, Abdel-Tawab H, Alghriany A. Rehabilitation of N, N'-methylenebisacrylamide-induced DNA destruction in the testis of adult rats by adipose-derived mesenchymal stem cells and conditional medium. Heliyon 2024; 10:e40380. [PMID: 39669145 PMCID: PMC11636104 DOI: 10.1016/j.heliyon.2024.e40380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Environmental pollutant acrylamide has toxic effect on human health. Numerous industries such as the paper, and cosmetics, use acrylamide in their manufacturing. In certain foods, acrylamide arises at extremely high temperatures. Mesenchymal stem cells can shield different tissues from the damaging effects of free radicals induced by acrylamide. This study aimed to compare the therapeutic efficacy against acrylamide-induced toxicity between adipose-derived mesenchymal stem cells (MSCs) and their conditioned media (CM), evaluating which is more effective. Seventy adult male rats were employed in this study, distributed among 5 groups. The control group consisted of 10 rats, while each of the other four groups comprised 15 rats. The AC group received a daily oral acrylamide (AC) dosage of 3 mg/kg. In the AC + AD-MSCs and AC + AD-MSCs CM groups, after 4 weeks of AC administration, rats were injected with 0.65 × 106 AD-MSCs/0.5 ml PBS and 0.5 ml of AD-MSCs CM, respectively, via the caudal vein, and were observed for 15 days. The recovery group (Rec.), subjected to 4 weeks of AC treatment, and was allowed an additional 15 days for recuperation. The result in AC and Rec. groups revealed elevated DNA damage, P53 protein levels, apoptosis, LPO, and testosterone (free and total). In contrast, the administration of CM and the transplanting of AD-MSCs decreased the levels of these proteins. According to histological analysis, treating testicular cells with AD-MSCs mitigated histopathological lesions, fibrosis, and toxicity caused by AC. The regulation of P53, LPO protein levels, and testosterone levels, supported the function of AD-MSCs in lowering testis DNA damage and apoptosis.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
- Department of Biology, Faculty of Biotechnology, Badr University in Assiut (BUA), Egypt
| | - Aya Ahmed Badr EL-Deen
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Hanem.S. Abdel-Tawab
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Alshaimaa.A.I. Alghriany
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| |
Collapse
|
2
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A. The release behavior and in vitro osteogenesis of quercetin-loaded bioactive glass/hyaluronic acid/sodium alginate nanocomposite paste. Int J Biol Macromol 2024; 280:136094. [PMID: 39343279 DOI: 10.1016/j.ijbiomac.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Injectable pastes based on bioactive compounds and natural polymers are of interest in non-invasive bone surgeries. Several quantities of quercetin (100, 150, and 200 μM) were added to a sol-gel derived mesoporous bioactive glass. Injectable pastes based on quercetin-loaded bioactive glass, sodium alginate, and hyaluronic acid were prepared. Aggregated nanoparticles of bioactive glass and quercetin-loaded bioactive glass with mesoporous morphologies were confirmed by TEM and BET techniques. The quercetin release study was assessed in phosphate-buffered solution medium over 200 h and the obtained data were fitted by different eqs. A sustained release of quercetin was found, in which a better regression coefficient was achieved using Weibull equation. Human-derived mesenchymal stem cells were utilized to determine alkaline phosphatase activity and bone-related protein expression by western blotting and real-time PCR evaluations. Quercetin-loaded pastes increased the levels of alkaline phosphatase activity and the expression of Collagen-1, Osteopontin, Osteocalcin, and Runx2 proteins in a concentration-dependent manner. Due to the mesoporous architecture and high specific surface area of bioactive glass, the paste made of these particles and sodium alginate/hyaluronic acid macromolecules is appropriate matrix for quercetin release, resulting in promoted osteogenesis. The further in vivo studies can support the osteogenesis capacity of the quercetin-loaded paste.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| |
Collapse
|
3
|
Wolski M, Ciesielski T, Buczma K, Fus Ł, Girstun A, Trzcińska-Danielewicz J, Cudnoch-Jędrzejewska A. Administration of Adipose Tissue Derived Stem Cells before the Onset of the Disease Lowers the Levels of Inflammatory Cytokines IL-1 and IL-6 in the Rat Model of Necrotizing Enterocolitis. Int J Mol Sci 2024; 25:11052. [PMID: 39456833 PMCID: PMC11507542 DOI: 10.3390/ijms252011052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
There is little research concerning the role of stem cells in necrotizing enterocolitis (NEC). Bone marrow-derived mesenchymal stem cells (BMDSC) and amniotic fluid-derived stem cells significantly reduced the amount and severity of NEC in the animal models. ADSCs share similar surface markers and differentiation potential with BMDSCs. Their potential role in the setting of NEC has not been researched before. The hypothesis of the study was that prophylactic intraperitoneal administration of ADSCs before the onset of the disease will result in limiting the inflammatory response, effecting a lower incidence of NEC. On a molecular level, this should result in lowering the levels of inflammatory cytokines IL-1 and IL-6. The local ethical committee for animal experiments approval was acquired (WAW2/093/2021). We utilized a self-modified rat NEC model based on single exposure to hypothermia, hypoxia, and formula feeding. One hundred and twenty-eight rat puppies were divided into two groups-prophylaxis (ADSC-NEC, n = 66) and control group (NEC-PLCB, n = 62)-to measure the influence of ADSCs administration on the inflammatory changes in NEC, the level of cell engraftment, and the histopathology of the disease. The analysis did not show a significant effect on histopathology between groups, H(2) = 2.12; p = 0.347; η²H = 0.00. The intensity of the NEC variable results was similar across the analyzed groups (NEC-PLCB and ADSC-NEC). For IL-1 and IL-6, the difference between the NEC-PLCB group and the ADSC-NEC group was statistically significant, p = 0.002 and p < 0.001, respectively. To conclude, administration of adipose tissue-derived stem cells before the onset of the disease lowers the levels of inflammatory cytokines IL-1 and IL-6 but does not affect the histopathological results in the rat model of NEC.
Collapse
Affiliation(s)
- Marek Wolski
- Department of Pediatric Surgery, Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warsaw, Poland
| | - Tomasz Ciesielski
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Pawinskiego 7, 02-106 Warsaw, Poland;
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| |
Collapse
|
4
|
Marassi V, La Rocca G, Placci A, Muntiu A, Vincenzoni F, Vitali A, Desiderio C, Maraldi T, Beretti F, Russo E, Miceli V, Conaldi PG, Papait A, Romele P, Cargnoni A, Silini AR, Alviano F, Parolini O, Giordani S, Zattoni A, Reschiglian P, Roda B. Native characterization and QC profiling of human amniotic mesenchymal stromal cell vesicular fractions for secretome-based therapy. Talanta 2024; 276:126216. [PMID: 38761653 DOI: 10.1016/j.talanta.2024.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Anna Placci
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Alexandra Muntiu
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy.
| |
Collapse
|
5
|
Khaled MM, Ibrahium AM, Abdelgalil AI, El-Saied MA, Yassin AM, Abouquerin N, Rizk H, El-Bably SH. Efficacy of using adipose-derived stem cells and PRP on regeneration of 40 -mm long sciatic nerve defect bridged by polyglycolic-polypropylene mesh in canine model. Stem Cell Res Ther 2024; 15:212. [PMID: 39020391 PMCID: PMC11256418 DOI: 10.1186/s13287-024-03796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Sciatic nerve repair becomes a focus of research in neurological aspect to restore the normal physical ability of the animal to stand and walk. Tissue engineered nerve grafts (TENGs) provide a promising alternative therapy for regeneration of large gap defects. The present study investigates the regenerative capacity of PRP, ADSCs, and PRP mixed ADSCs on a long sciatic nerve defect (40-mm) bridged by a polyglycolic polypropylene (PGA-PRL) mesh which acts as a neural scaffold. MATERIALS AND METHODS The study was conducted on 12 adult male mongrel dogs that were randomly divided into 4 groups: Group I (scaffold group); where the sciatic defect was bridged by a (PGA-PRL) mesh only while the mesh was injected with ADSCs in Group II (ADSCs group), PRP in Group III (PRP group). Mixture of PRP and ADSCs was allocated in Group IV (PRP + ADSCs group). Monthly, all animals were monitored for improvement in their gait and a numerical lameness score was recorded for all groups. 6 months-post surgery, the structural and functional recovery of sciatic nerve was evaluated electrophysiologically, and on the level of gene expression, and both sciatic nerve and the gastrocnemius muscle were evaluated morphometrically, histopathologically. RESULTS Numerical lameness score showed improvement in the motor activities of both Group II and Group III followed by Group IV and the scaffold group showed mild improvement even after 6 months. Histopathologically, all treated groups showed axonal sprouting and numerous regenerated fascicles with obvious angiogenesis in proximal cut, and distal portion where Group IV exhibited a significant remyelination with the MCOOL technique. The regenerative ratio of gastrocnemius muscle was 23.81%, 56.68%, 52.06% and 40.69% for Group I, II, III and IV; respectively. The expression of NGF showed significant up regulation in the proximal portion for both Group III and Group IV (P ≤ 0.0001) while Group II showed no significant difference. PDGF-A, and VEGF expressions were up-regulated in Group II, III, and IV whereas Group I showed significant down-regulation for NGF, PDGF-A, and VEGF (P ≤ 0.0001). CONCLUSION ADSCs have a great role in restoring the damaged nerve fibers by secreting several types of growth factors like NGF that have a proliferative effect on Schwann cells and their migration. In addition, PRP therapy potentiates the effect of ADSCs by synthesis another growth factors such as PDGF-A, VEGF, NGF for better healing of large sciatic gap defects.
Collapse
Affiliation(s)
- Mona M Khaled
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa M Ibrahium
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nagy Abouquerin
- Department of Physiology, Faculty of medicine, Ain shams University, Cairo, Egypt
| | - Hamdy Rizk
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Samah H El-Bably
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Karimian A, Khoshnazar SM, Kazemi T, Asadi A, Abdolmaleki A. Role of secretomes in cell-free therapeutic strategies in regenerative medicine. Cell Tissue Bank 2024; 25:411-426. [PMID: 36725732 DOI: 10.1007/s10561-023-10073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
After an injury, peripheral nervous system neurons have the potential to rebuild their axons by generating a complicated activation response. Signals from the damaged axon are required for this genetic transition to occur. Schwann cells (SCs) near a damaged nerve's distal stump also play a role in the local modulation of axonal programs, not only via cell-to-cell contacts but also through secreted signals (the secretome). The secretome is made up of all the proteins that the cell produces, such as cytokines, growth factors, and extracellular vesicles. The released vesicles may carry signaling proteins as well as coding and regulatory RNAs, allowing for multilayer communication. The secretome of SCs is now well understood as being critical for both orchestrating Wallerian degeneration and maintaining axonal regeneration. As a consequence, secretome has emerged as a feasible tissue regeneration alternative to cell therapy. Separate SC secretome components have been used extensively in the lab to promote peripheral nerve regeneration after injury. However, in neurological therapies, the secretome generated by mesenchymal (MSC) or other derived stem cells has been the most often used. In fact, the advantages of cell treatment have been connected to the release of bioactive chemicals and extracellular vesicles, which make up MSCs' secretome.
Collapse
Affiliation(s)
- Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahmineh Kazemi
- Department of Basic Sciences, Faculty of Veterinary Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
8
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
9
|
Feng J, Fu S, Luan J. Harnessing fine fibers in decellularized adipose-derived matrix for enhanced adipose regeneration. Mater Today Bio 2024; 25:100974. [PMID: 38322660 PMCID: PMC10844111 DOI: 10.1016/j.mtbio.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Decellularized Adipose-Derived Matrix (DAM) has the function of inducing adipogenesis, but the distribution of adipogenesis is uneven. We found for the first time that DAM contains two structural components: The tough fibers DAM (T-DAM) and the fine fibers DAM (F-DAM). T-DAM was a dense vortex structure composed of a large number of coarse fibers, characterized by myoblast-related proteins, which cannot achieve fat regeneration and forms a typical "adipose-free zone". While the F-DAM was a loose structure consisting of uniform fine fibers, has more matrix-related proteins and adipose-related proteins. It can not only better promote the adhesion and proliferation of adipose stem cells in vitro, but also achieve the regeneration of adipose tissue in vivo earlier and better, with a uniform range of adipogenesis. The F-DAM is the main and effective kind of DAM to initiate adipose tissue regeneration, which can be picked out by ultrasound fragmentation.
Collapse
Affiliation(s)
- Jiayi Feng
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | | | | |
Collapse
|
10
|
Mori M, Saito N, Shirado T, Wu Y, Asahi R, Yoshizumi K, Yamamoto Y, Zhang B, Yoshimura K. Human Adipose-Derived Endothelial Progenitor Cells Accelerate Epithelialization of Radiation Ulcers in Nude Mice. Plast Reconstr Surg 2024; 153:625-635. [PMID: 37224423 DOI: 10.1097/prs.0000000000010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cotransplantation of adipose-derived stem cells (ASCs) and endothelial progenitor cells has shown superior angiogenic effects compared with ASCs alone in recent animal studies. However, endothelial progenitor cells could only be collected from blood vessels or bone marrow. Thus, the authors have established a method for purifying adipose-derived endothelial progenitor cells (AEPCs). The authors hypothesized that AEPCs would enhance the therapeutic effect of ASCs on radiation ulcers. METHODS Seven-week-old male nude mice (BALB/cAJcl-nu/nu) were irradiated on the dorsal skin (total 40 Gy); 12 weeks later, 6-mm-diameter wounds were created. The mice were then treated with subcutaneous injection of human ASCs [1 × 10 5 ( n = 4)], human AEPCs [2 × 10 5 or 5 × 10 5 ( n = 5)], combinations of those [ASCs 1 × 10 5 plus AEPCs 2 × 10 5 ( n = 4) or 5 × 10 5 ( n = 5)], or only vehicle ( n = 7). The nonirradiated group was also prepared as a control ( n = 6). The days required for macroscopic epithelialization was compared, and immunostaining for human-derived cells and vascular endothelial cells was performed at day 28. RESULTS AEPC-ASC combination-treated groups healed faster than the ASC-treated group (14 ± 0 days versus 17 ± 2 days; P < 0.01). Engraftment of the injected cells could not be confirmed. Only the nonirradiated mice had significantly higher vascular density (0.988 ± 0.183 × 10 -5 /µm -2 versus 0.474 ± 0.092 × 10 -5 /µm 2 ; P = 0.02). CONCLUSION The results suggested therapeutic potentials of AEPCs and an enhanced effect of combination with ASCs. This study is a xenogenic transplantation model, and further validation in an autologous transplantation model is needed. CLINICAL RELEVANCE STATEMENT Human AEPCs and their combination with ASCs accelerated epithelialization of radiation ulcers in nude mice. The authors suggest that administration of humoral factors secreted from AEPCs (eg, treatment with culture-conditioned media) could be used for the same purpose.
Collapse
Affiliation(s)
- Masanori Mori
- From the Department of Plastic Surgery, Jichi Medical University
| | - Natsumi Saito
- From the Department of Plastic Surgery, Jichi Medical University
| | - Takako Shirado
- From the Department of Plastic Surgery, Jichi Medical University
| | - Yunyan Wu
- From the Department of Plastic Surgery, Jichi Medical University
| | - Rintaro Asahi
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kayo Yoshizumi
- From the Department of Plastic Surgery, Jichi Medical University
| | | | - Bihang Zhang
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kotaro Yoshimura
- From the Department of Plastic Surgery, Jichi Medical University
| |
Collapse
|
11
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Biniazan F, Stoian A, Haykal S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. Int J Mol Sci 2024; 25:2356. [PMID: 38397032 PMCID: PMC10889096 DOI: 10.3390/ijms25042356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Adipose tissue (AT) is a large and important energy storage organ as well as an endocrine organ with a critical role in many processes. Additionally, AT is an enormous and easily accessible source of multipotent cell types used in our day for all types of tissue regeneration. The ability of adipose-derived stem cells (ADSCs) to differentiate into other types of cells, such as endothelial cells (ECs), vascular smooth muscle cells, or cardiomyocytes, is used in tissue engineering in order to promote/stimulate the process of angiogenesis. Being a key for future successful clinical applications, functional vascular networks in engineered tissue are targeted by numerous in vivo and ex vivo studies. The article reviews the angiogenic potential of ADSCs and explores their capacity in the field of tissue engineering (TE).
Collapse
Affiliation(s)
- Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada
| |
Collapse
|
13
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Chen CF, Wang PF, Liao HT. Platelet-Rich Plasma Lysate Enhances the Osteogenic Differentiation of Adipose-Derived Stem Cells. Ann Plast Surg 2024; 92:S12-S20. [PMID: 38285990 DOI: 10.1097/sap.0000000000003765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ABSTRACT Adipose-derived stem cells (ADSCs) have become an accepted source of cells in bone tissue engineering. This study aimed to investigate whether platelet-rich plasma (PRP) lysate can replace traditional fetal bovine serum as a culture medium with the enhanced proliferation and osteogenic potential of ADSCs. We divided the experiment into 5 groups where the ADSCs were cultured in an osteogenic medium containing 2.5%, 5%, 7.5%, and 10% PRP lysate with 10% fetal bovine serum as the control group. The cell proliferation, alkaline phosphatase (ALP) activity, ALP stain, alizarin red stain, osteocalcin (OCN) protein expression, and osteogenic-specific gene expression were analyzed and compared among these groups. The outcome showed that all PRP lysate-treated groups had good ALP stain and ALP activity performance. Better alizarin red stains were found in the 2.5%, 5%, and 7.5% PRP lysate groups. The 2.5% and 5% PRP lysate groups showed superior results in OCN quantitative polymerase chain reaction, whereas the 5% and 7.5% PRP lysate groups showed higher OCN protein expressions. Early RUNX2 (Runt-related transcription factor 2 () genes were the most expressed in the 5% PRP lysate group, followed by the 2.5% PRP lysate group, and then the 7.5% PRP lysate group. Thus, we concluded that 5% PRP lysate seemed to provide the optimal effect on enhancing the osteogenic potential of ADSCs. Platelet-rich plasma lysate-treated ADSCs were considered to be a good cell source for application in treating nonunion or bone defects in the future.
Collapse
Affiliation(s)
- Chia-Fang Chen
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery
| | | | | |
Collapse
|
15
|
Ramírez Idarraga JA, Restrepo Múnera LM. Mesenchymal Stem Cells: Their Role in the Tumor Microenvironment. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:681-691. [PMID: 37276173 DOI: 10.1089/ten.teb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been seen for years as great candidates for treating different diseases and an alternative to embryonic stem cells due to their differentiation capacity in vitro. More recent research has focused on their ability to modulate the immune response and regeneration at sites associated with inflammation, activities attributable to the release of trophic factors into the extracellular medium, a set of components known as the secretome. It has been possible to demonstrate the presence of these cells within the tumor microenvironment, which is associated with their tropism for sites of inflammation; however, their role here needs to be clarified. In different investigations, the feasibility of using MSCs or their secretome to treat cancer has been sought, with these results being ambiguous. It has been described that MSCs can be activated and present various phenotypes, which could explain the divergence in their action; however, these activation mechanisms and the different phenotypes still need to be well known. This review explores MSCs and their use in regenerative medicine with a targeted approach to cancer. Impact Statement This text addresses the diverging findings on the role of mesenchymal stem cells in the tumor microenvironment and discrepancies on the use of these cells as cancer treatment, separating the direct use of the cells from the use of the secretome. Multiple authors refer equally to the cells and their secretome to conclude on the positive or negative outcome, without taking into consideration how the cells are affected by their surroundings.
Collapse
Affiliation(s)
- Jhon Alexander Ramírez Idarraga
- Corporación Académica Ciencias Básicas Biomédicas, Universidad de Antioquía, Medellín, Colombia
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
16
|
Arderiu G, Civit-Urgell A, Badimon L. Adipose-Derived Stem Cells to Treat Ischemic Diseases: The Case of Peripheral Artery Disease. Int J Mol Sci 2023; 24:16752. [PMID: 38069074 PMCID: PMC10706341 DOI: 10.3390/ijms242316752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Facultat de Medicina i Ciències de la Salut—Campus Clínic, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Lina Badimon
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Liu M, Lu F, Feng J. Therapeutic potential of adipose tissue derivatives in skin photoaging. Regen Med 2023; 18:869-883. [PMID: 37743749 DOI: 10.2217/rme-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Photoaging, the primary cause of exogenous skin aging and predominantly caused by ultraviolet radiation, is an essential type of skin aging characterized by chronic skin inflammation. Recent studies have shown that oxidative stress, inflammation, skin barrier homeostasis, collagen denaturation and pigmentation are the main contributors to it. As a composite tissue rich in matrix and vascular components, adipose tissue derivatives have been recently gaining attention as potential therapeutic agents for various human diseases with fat-processing technology upgrades. This review analyzes both 'minimally treated' and 'nonminimally treated' fat derivatives to give an overview of the preclinical and clinical relevance of adipose tissue derivatives for antiphotoaging application, highlighting their good clinical prospects as well as discussing their safety and potential risks.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
18
|
Mohammadi TC, Jazi K, Bolouriyan A, Soleymanitabar A. Stem cells in treatment of crohn's disease: Recent advances and future directions. Transpl Immunol 2023; 80:101903. [PMID: 37541629 DOI: 10.1016/j.trim.2023.101903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the intestine. There is currently no recognized cure for CD because its cause is unknown. One of the modern approaches that have been suggested for the treatment of CD and other inflammatory-based disorders is cell therapy. METHODS Search terms were stem cell therapy, CD, adipose-derived stem cells, mesenchymal stem cells, and fistula. Of 302 related studies, we removed duplicate and irrelevant papers and identified the ones with proper information related to our scope of the research by reviewing all the abstracts and categorizing each study into the proper section. RESULTS AND CONCLUSION Nowadays, stem cell therapy is widely implied in treating CD. Although mesenchymal and adipose-derived tissue stem cells proved to be safe in treating Crohn's-associated fistula, there are still debates on an optimal protocol to use. Additionally, there is still a lack of evidence on the efficacy of stem cell therapy for intestinal involvement of CD. Future investigations should focus on preparing a standard protocol as well as luminal stem cell therapy in patients.
Collapse
Affiliation(s)
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Alireza Bolouriyan
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Debski T, Siennicka K, Idaszek J, Roszkowski B, Swieszkowski W, Pojda Z. Effect of adipose-derived stem cells seeding and surgical prefabrication on composite scaffold vascularization. J Biomater Appl 2023; 38:548-561. [PMID: 37732423 DOI: 10.1177/08853282231202601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), β-tricalcium phosphate (β-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+β-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+β-TCP+PLGA scaffolds, with PCL+β-TCP+PLGA scaffolds seeded with ASCs and with PCL+β-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+β-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.
Collapse
Affiliation(s)
- Tomasz Debski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Idaszek
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bartlomiej Roszkowski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
20
|
Baldassarro VA, Perut F, Cescatti M, Pinto V, Fazio N, Alastra G, Parziale V, Bassotti A, Fernandez M, Giardino L, Baldini N, Calzà L. Intra-individual variability in the neuroprotective and promyelinating properties of conditioned culture medium obtained from human adipose mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:128. [PMID: 37170115 PMCID: PMC10173531 DOI: 10.1186/s13287-023-03344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Maura Cescatti
- IRET Foundation, Via Tolara Di Sopra 41/E, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Nicola Fazio
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Parziale
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandra Bassotti
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy.
- Pharmacology and Biotecnology Department (FaBiT), University of Bologna, Via San Donato, 15, 40127, Bologna, Italy.
- Monetecatone Rehabilitation Institute (MRI), Via Montecatone, 37, 40026, Imola, Bologna, Italy.
| |
Collapse
|
21
|
Robledo F, González-Hodar L, Tapia P, Figueroa AM, Ezquer F, Cortés V. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther 2023; 14:70. [PMID: 37024989 PMCID: PMC10080976 DOI: 10.1186/s13287-023-03262-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Collapse
Affiliation(s)
- Fermín Robledo
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lila González-Hodar
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Tapia
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Stromal Vascular Fraction Cells from Individuals Who Have Previously Undergone Radiotherapy Retain Their Pro-Wound Healing Properties. J Clin Med 2023; 12:jcm12052052. [PMID: 36902839 PMCID: PMC10003870 DOI: 10.3390/jcm12052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Beneficial effects have been observed following the transplant of lipoaspirates containing adipose-derived stem cells into chronic wounds caused by oncologic radiotherapy. It is not yet certain whether adipose-derived stem cells are resistant to radiation exposure. Therefore, the aims of this study were to isolate stromal vascular fraction from human breast tissue exposed to radiotherapy and determine the presence of adipose-derived stem cells. Stromal vascular fraction from irradiated donor tissue was compared to commercially sourced pre-adipocytes. Immunocytochemistry was used to determine the presence of adipose-derived stem cell markers. Conditioned media from stromal vascular fraction isolated from irradiated donors was used as a treatment in a scratch wound assay of dermal fibroblasts also isolated from irradiated donors and compared to pre-adipocyte conditioned media and serum free control. This is the first report of human stromal vascular fraction being cultured from previously irradiated breast tissue. Stromal vascular fraction conditioned media from irradiated donors had a similar effect in increasing the migration of dermal fibroblasts from irradiated skin to pre-adipocyte conditioned media from healthy donors. Therefore, the ability of adipose-derived stem cells in the stromal vascular fraction to stimulate dermal fibroblasts in wound healing appears to be preserved following radiotherapy. This study demonstrates that stromal vascular fraction from irradiated patients is viable, functional and may have potential for regenerative medicine techniques following radiotherapy.
Collapse
|
23
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
24
|
Regenerative Medicine-Based Treatment for Vitiligo: An Overview. Biomedicines 2022; 10:biomedicines10112744. [DOI: 10.3390/biomedicines10112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disorder with an important effect on the self-esteem and social life of patients. It is the commonest acquired depigmentation disorder characterized by the development of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeutic options have been proposed to stabilize the disease by stopping the depigmentation process and inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes associated with failure to spontaneously recover pigmentation, several different cell-based and cell-free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.
Collapse
|
25
|
Koivunotko E, Snirvi J, Merivaara A, Harjumäki R, Rautiainen S, Kelloniemi M, Kuismanen K, Miettinen S, Yliperttula M, Koivuniemi R. Angiogenic Potential of Human Adipose-Derived Mesenchymal Stromal Cells in Nanofibrillated Cellulose Hydrogel. Biomedicines 2022; 10:2584. [PMID: 36289846 PMCID: PMC9599553 DOI: 10.3390/biomedicines10102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASCs) hold great potential for cellular therapies by having immunomodulatory behavior and tissue regenerative properties. Due to the capability of ASCs to differentiate into endothelial cells (ECs) and other angiogenic cell types, such as pericytes, ASCs are a highly valuable source for stimulating angiogenesis. However, cellular therapies in tissue engineering have faced challenges in poor survival of the cells after transplantation, which is why a protective biomaterial scaffold is required. In this work, we studied the potential of nanofibrillated cellulose (NFC) hydrogel to be utilized as a suitable matrix for three-dimensional (3D) cell culturing of human-derived ASCs (hASCs) and studied their angiogenic properties and differentiation potential in ECs and pericytes. In addition, we tested the effect of hASC-conditioned medium and stimulation with angiopoietin-1 (Ang-1) on human umbilical vein endothelial cells (HUVECs) to induce blood vessel-type tube formation in NFC hydrogel. The hASCs were successfully 3D cell cultured in NFC hydrogel as they formed spheroids and had high cell viability with angiogenic features. Most importantly, they showed angiogenic potential by having pericyte-like characteristics when differentiated in EC medium, and their conditioned medium improved HUVEC viability and tube formation, which recalls the active paracrine properties. This study recommends NFC hydrogel for future use as an animal-free biomaterial scaffold for hASCs in therapeutic angiogenesis and other cell therapy purposes.
Collapse
Affiliation(s)
- Elle Koivunotko
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Jasmi Snirvi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Swarna Rautiainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, 33520 Tampere, Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technologies, University of Tampere, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
26
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
27
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
28
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
29
|
Umar AK, Luckanagul JA, Zothantluanga JH, Sriwidodo S. Complexed Polymer Film-Forming Spray: An Optimal Delivery System for Secretome of Mesenchymal Stem Cell as Diabetic Wound Dressing? Pharmaceuticals (Basel) 2022; 15:867. [PMID: 35890165 PMCID: PMC9324405 DOI: 10.3390/ph15070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes-related wounds have physiological factors that make healing more complicated. High sugar levels can increase microbial infection risk while limiting nutrition and oxygen transfer to the wound area. The secretome of mesenchymal stem cells has been widely known for its efficacy in regenerative therapy. However, applying the secretome directly to the wound can reduce its effectiveness. In this review, we examined the literature on synthesizing the combinations of carboxymethyl chitosan, hyaluronic acid, and collagen tripeptides, as well as the possibility of physicochemical properties enhancement of the hydrogel matrix, which could potentially be used as an optimal delivery system of stem cell's secretome for diabetic wound healing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
30
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
31
|
Wahba NS, Saliem AO, Abd Allah EG, Mohammed MZ. Therapeutic efficacy of adipose-derived mesenchymal stem cells after chronic fluoxetine treatment on pars distalis in adult male albino rats. Tissue Cell 2022; 76:101770. [DOI: 10.1016/j.tice.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
32
|
Tevlin R, desJardins-Park H, Huber J, DiIorio S, Longaker M, Wan D. Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials 2022; 286:121544. [DOI: 10.1016/j.biomaterials.2022.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
|
33
|
Yang Z, Qi Z, Yang X, Gao Q, Hu Y, Yuan X. Inhibition of RIP3 increased ADSC viability under OGD and modified the competency of adipogenesis, angiogenesis, and inflammation regulation. Biosci Rep 2022; 42:BSR20212808. [PMID: 35302166 PMCID: PMC8965819 DOI: 10.1042/bsr20212808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) showed decreased cell viability and increased cell death under oxygen-glucose deprivation (OGD). Meanwhile, vital necroptotic proteins, including receptor-interacting protein kinase (RIP) 3 (RIP3) and mixed lineage kinase domain-like pseudokinase (MLKL), were expressed in the early stage. The present study aims to explore the effect of necroptosis inhibition on ADSCs. ADSCs were obtained from normal human subcutaneous fat and verified by multidirectional differentiation and flow cytometry. By applying cell counting kit-8 (CCK-8), calcein/propidium iodide (PI) staining and immunostaining, we determined the OGD treatment time of 4 h, a timepoint when the cells showed a significant decrease in viability and increased protein expression of RIP3, phosphorylated RIP3 (pRIP3) and phosphorylated MLKL (pMLKL). After pretreatment with the inhibitor of RIP3, necroptotic protein expression decreased under OGD conditions, and cell necrosis decreased. Transwell assays proved that cell migration ability was retained. Furthermore, the expression of the adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and quantitative analysis of Oil Red O staining increased in the inhibitor group. The expression of vascular endothelial growth factor-A (VEGFA) and fibroblast growth factor 2 (FGF2) and the migration test suggest that OGD increases the secretion of vascular factors, promotes the migration of human umbilical vein endothelial cells (HUVECs), and forms unstable neovascularization. ELISA revealed that inhibition of RIP3 increased the secretion of the anti-inflammatory factor, interleukin (IL)-10 (IL-10) and reduced the expression of the proinflammatory factor IL-1β. Inhibition of RIP3 can reduce the death of ADSCs, retain their migration ability and adipogenic differentiation potential, reduce unstable neovascularization and inhibit the inflammatory response.
Collapse
Affiliation(s)
- Zhenyu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Zuoliang Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xiaonan Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Qiuni Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Yuling Hu
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xihang Yuan
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| |
Collapse
|
34
|
Kim J, Eom MR, Ji Jeong E, Choi JS, Kwon SK. Multiple stimulation with spheroids comprising salivary gland and adipose-derived stem cells enhances regeneration of radiation-damaged salivary glands. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Development of Intracorporeal Differentiation of Stem Cells to Induce One-Step Mastoid Bone Reconstruction during Otitis Media Surgeries. Polymers (Basel) 2022; 14:polym14050877. [PMID: 35267699 PMCID: PMC8912861 DOI: 10.3390/polym14050877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 11/21/2022] Open
Abstract
Mastoidectomy is a surgical procedure for the treatment of chronic otitis media. This study investigated the ability of rat stromal vascular fraction cells (rSVF) in combination with polycaprolactone (PCL) scaffolds and osteogenic differentiation-enhancing blood products to promote the regeneration of mastoid bone defect. Twenty male Sprague Dawley rats were randomly divided according to obliteration materials: (1) control, (2) PCL scaffold only, (3) rSVFs + PCL, (4) rSVFs + PCL + platelet-rich plasma, and (5) rSVFs + PCL + whole plasma (WP). At 7 months after transplantation, the rSVFs + PCL + WP group showed remarkable new bone formation in the mastoid. These results indicate that SVFs, PCL scaffolds, and blood products accelerate bone regeneration for mastoid reconstruction. Autologous SVF cells with PCL scaffolds and autologous blood products are promising composites for mastoid reconstruction which can be easily harvested after mastoidectomy. With this approach, the reconstruction of mastoid bone defects can be performed right after mastoidectomy as a one-step procedure which can offer efficiency in the clinical field.
Collapse
|
36
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
37
|
Hu Y, Wang X, Jiang C. Clinical Efficacy Analysis of Augmentation Mammoplasty with Cell-Assisted Autologous Fat Transplantation. Aesthetic Plast Surg 2022; 46:2218-2227. [PMID: 35169917 DOI: 10.1007/s00266-022-02778-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To analyze the clinical efficacy of augmentation mammoplasty with cell-assisted autologous fat transplantation. METHODS Thirty-four cases of micromastia patients in our hospital were randomly divided into control group (n = 17) and observation group (n = 17). Breast augmentation with autologous fat transplantation alone and cell-assisted autologous fat transplantation were performed, respectively, compare and observe the therapeutic effect. RESULTS Compared with the control group, the effective rate of breast augmentation was higher in the observation group. After six months of treatment, the increase value of chest circumference (CC), Sternal notch-nipple distance (SN-N),distance between nipple and inframammary fold (N-MF) was higher in the observation group, and the uplift value was higher after six months surgery, with statistical significance (p < 0.05). MRI showed higher postoperative fat retention rate, QLQ-30 Quality of life scores showed no significant difference (p > 0.05). LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yiming Hu
- Department of Plastics and Aesthetic Surgery, The Second Xiangya Hospital of Central South University, No.139 Furong Road, Changsha, 410011, Hunan, China
| | - Xiancheng Wang
- Department of Plastics and Aesthetic Surgery, The Second Xiangya Hospital of Central South University, No.139 Furong Road, Changsha, 410011, Hunan, China.
| | - Conghang Jiang
- Department of Plastics and Aesthetic Surgery, The Second Xiangya Hospital of Central South University, No.139 Furong Road, Changsha, 410011, Hunan, China
| |
Collapse
|
38
|
Nazarie (Ignat) SR, Gharbia S, Hermenean A, Dinescu S, Costache M. Regenerative Potential of Mesenchymal Stem Cells' (MSCs) Secretome for Liver Fibrosis Therapies. Int J Mol Sci 2021; 22:ijms222413292. [PMID: 34948088 PMCID: PMC8705326 DOI: 10.3390/ijms222413292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic liver injuries lead to liver fibrosis and then to end-stage liver cirrhosis. Liver transplantation is often needed as a course of treatment for patients in critical conditions, but limitations associated with transplantation prompted the continuous search for alternative therapeutic strategies. Cell therapy with stem cells has emerged as an attractive option in order to stimulate tissue regeneration and liver repair. Transplanted mesenchymal stem cells (MSCs) could trans-differentiate into hepatocyte-like cells and, moreover, show anti-fibrotic and immunomodulatory effects. However, cell transplantation may lead to some uncontrolled side effects, risks associated with tumorigenesis, and cell rejection. MSCs' secretome includes a large number of soluble factors and extracellular vesicles (EVs), through which they exert their therapeutic role. This could represent a cell-free strategy, which is safer and more effective than MSC transplantation. In this review, we focus on cell therapies based on MSCs and how the MSCs' secretome impacts the mechanisms associated with liver diseases. Moreover, we discuss the important therapeutic role of EVs and how their properties could be further used in liver regeneration.
Collapse
Affiliation(s)
- Simona-Rebeca Nazarie (Ignat)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (S.-R.N.); (S.G.); (A.H.); (M.C.)
| | - Sami Gharbia
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (S.-R.N.); (S.G.); (A.H.); (M.C.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldiș” Western University of Arad, 310025 Arad, Romania
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (S.-R.N.); (S.G.); (A.H.); (M.C.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldiș” Western University of Arad, 310025 Arad, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (S.-R.N.); (S.G.); (A.H.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (S.-R.N.); (S.G.); (A.H.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
39
|
Sharma S, Muthu S, Jeyaraman M, Ranjan R, Jha SK. Translational products of adipose tissue-derived mesenchymal stem cells: Bench to bedside applications. World J Stem Cells 2021; 13:1360-1381. [PMID: 34786149 PMCID: PMC8567449 DOI: 10.4252/wjsc.v13.i10.1360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
With developments in the field of tissue engineering and regenerative medicine, the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians. Among all the available biological tissues, research and exploration of adipose tissue have become more robust. Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential. The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth, proliferation, and differentiation. Adipose tissue, apart from being the powerhouse of energy storage, also functions as the largest endocrine organ, with the release of various adipokines. The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues. The results of adipose-derived stem-cell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis, fat graft integration, and survival within the recipient tissue and promote the regeneration of tissue are promising. Adipose tissue gives rise to various by-products upon processing. This article highlights the significance and the usage of various adipose tissue by-products, their individual characteristics, and their clinical applications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
| | - Sathish Muthu
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu 624304, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
40
|
Skeletal Muscle Regeneration by the Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells. Curr Issues Mol Biol 2021; 43:1473-1488. [PMID: 34698065 PMCID: PMC8929094 DOI: 10.3390/cimb43030104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Profound skeletal muscle loss can lead to severe disability and cosmetic deformities. Mesenchymal stem cell (MSC)-derived exosomes have shown potential as an effective therapeutic tool for tissue regeneration. This study aimed to determine the regenerative capacity of MSC-derived exosomes for skeletal muscle regeneration. Exosomes were isolated from human adipose tissue-derived MSCs (AD-MSCs). The effects of MSC-derived exosomes on satellite cells were investigated using cell viability, relevant genes, and protein analyses. Moreover, NOD-SCID mice were used and randomly assigned to the healthy control (n = 4), muscle defect (n = 6), and muscle defect + exosome (n = 6) groups. Muscle defects were created using a biopsy punch on the quadriceps of the hind limb. Four weeks after the surgery, the quadriceps muscles were harvested, weighed, and histologically analyzed. MSC-derived exosome treatment increased the proliferation and expression of myocyte-related genes, and immunofluorescence analysis for myogenin revealed a similar trend. Histologically, MSC-derived exosome-treated mice showed relatively preserved shapes and sizes of the muscle bundles. Immunohistochemical staining revealed greater expression of myogenin and myoblast determination protein 1 in the MSC-derived exosome-treated group. These results indicate that exosomes extracted from AD-MSCs have the therapeutic potential for skeletal muscle regeneration.
Collapse
|
41
|
Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910890. [PMID: 34639228 PMCID: PMC8509224 DOI: 10.3390/ijms221910890] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived mesenchymal stem/stromal cells (ASCs) are an adult stem cell population able to self-renew and differentiate into numerous cell lineages. ASCs provide a promising future for therapeutic angiogenesis due to their ability to promote blood vessel formation. Specifically, their ability to differentiate into endothelial cells (ECs) and pericyte-like cells and to secrete angiogenesis-promoting growth factors and extracellular vesicles (EVs) makes them an ideal option in cell therapy and in regenerative medicine in conditions including tissue ischemia. In recent angiogenesis research, ASCs have often been co-cultured with an endothelial cell (EC) type in order to form mature vessel-like networks in specific culture conditions. In this review, we introduce co-culture systems and co-transplantation studies between ASCs and ECs. In co-cultures, the cells communicate via direct cell-cell contact or via paracrine signaling. Most often, ASCs are found in the perivascular niche lining the vessels, where they stabilize the vascular structures and express common pericyte surface proteins. In co-cultures, ASCs modulate endothelial cells and induce angiogenesis by promoting tube formation, partly via secretion of EVs. In vivo co-transplantation of ASCs and ECs showed improved formation of functional vessels over a single cell type transplantation. Adipose tissue as a cell source for both mesenchymal stem cells and ECs for co-transplantation serves as a prominent option for therapeutic angiogenesis and blood perfusion in vivo.
Collapse
|
42
|
Rowe G, Tracy E, Beare JE, LeBlanc AJ. Cell therapy rescues aging-induced beta-1 adrenergic receptor and GRK2 dysfunction in the coronary microcirculation. GeroScience 2021; 44:329-348. [PMID: 34608562 DOI: 10.1007/s11357-021-00455-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Our past study showed that coronary arterioles isolated from adipose-derived stromal vascular fraction (SVF)-treated rats showed amelioration of the age-related decrease in vasodilation to beta-adrenergic receptor (β-AR) agonist and improved β-AR-dependent coronary flow and microvascular function in a model of advanced age. We hypothesized that intravenously (i.v.) injected SVF improves coronary microvascular function in aged rats by re-establishing the equilibrium of the negative regulators of the internal adrenergic signaling cascade, G-protein receptor kinase 2 (GRK2) and G-alpha inhibitory (Gαi) proteins, back to youthful levels. Female Fischer-344 rats aged young (3 months, n = 24), old (24 months, n = 26), and old animals that received 1 × 107 green fluorescent protein (GFP+) SVF cells (O + SVF, n = 11) 4 weeks prior to sacrifice were utilized. Overnight urine was collected prior to sacrifice for catecholamine measurements. Cardiac samples were used for western blotting while coronary arterioles were isolated for pressure myography studies, immunofluorescence staining, and RNA sequencing. Coronary microvascular levels of the β1 adrenergic receptor are decreased with advancing age, but this decreased expression was rescued by SVF treatment. Aging led to a decrease in phosphorylated GRK2 in cardiomyocytes vs. young control with restoration of phosphorylation status by SVF. In vessels, there was no change in genetic transcription (RNAseq) or protein expression (immunofluorescence); however, inhibition of GRK2 (paroxetine) led to improved vasodilation to norepinephrine in the old control (OC) and O + SVF, indicating greater GRK2 functional inhibition of β1-AR in aging. SVF works to improve adrenergic-mediated vasodilation by restoring the β1-AR population and mitigating signal cascade inhibitors to improve vasodilation.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA
| | - Evan Tracy
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40292, USA
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
43
|
Buscail E, Le Cosquer G, Gross F, Lebrin M, Bugarel L, Deraison C, Vergnolle N, Bournet B, Gilletta C, Buscail L. Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. Int J Mol Sci 2021; 22:ijms22189967. [PMID: 34576129 PMCID: PMC8470328 DOI: 10.3390/ijms22189967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.
Collapse
Affiliation(s)
- Etienne Buscail
- Department of Surgery, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France;
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Guillaume Le Cosquer
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Fabian Gross
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Marine Lebrin
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Laetitia Bugarel
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Cyrielle Gilletta
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
- Correspondence: ; Tel.: +33-561323055
| |
Collapse
|
44
|
Protective Effect of Adipose-Derived Mesenchymal Stem Cell Secretome against Hepatocyte Apoptosis Induced by Liver Ischemia-Reperfusion with Partial Hepatectomy Injury. Stem Cells Int 2021; 2021:9969372. [PMID: 34457008 PMCID: PMC8390152 DOI: 10.1155/2021/9969372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable complication of liver surgery and liver transplantation. Hepatocyte apoptosis plays a significant role in the pathological process of hepatic IRI. Adipose-derived stem cells (ADSCs) are known to repair and regenerate damaged tissues by producing bioactive factors, including cytokines, exosomes, and extracellular matrix components, which collectively form the secretome of these cells. The aim of this study was to assess the protective effects of the ADSCs secretome after liver ischemia-reperfusion combined with partial hepatectomy in miniature pigs. We successfully established laparoscopic liver ischemia-reperfusion with partial hepatectomy in miniature pigs and injected saline, DMEM, ADSC-secretome, and ADSCs directly into the liver parenchyma immediately afterwards. Both ADSCs and the ADSC-secretome improved the IR-induced ultrastructural changes in hepatocytes and significantly decreased the proportion of TUNEL-positive apoptotic cells along with caspase activity. Consistent with this, P53, Bax, Fas, and Fasl mRNA and protein levels were markedly decreased, while Bcl-2 was significantly increased in the animals treated with ADSCs and ADSC-secretome. Our findings indicate that ADSCs exert therapeutic effects in a paracrine manner through their secretome, which can be a viable alternative to cell-based regenerative therapies.
Collapse
|
45
|
Pain relief and cartilage repair by Nanofat against osteoarthritis: preclinical and clinical evidence. Stem Cell Res Ther 2021; 12:477. [PMID: 34446107 PMCID: PMC8390235 DOI: 10.1186/s13287-021-02538-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common joint degenerative disorder, with little effective therapy to date. Nanofat is a cocktail of cells obtained from fat tissue, which possesses regenerative capacity and has a potential in treating OA. This study aimed to determine the anti-OA efficacy of Nanofat from basic and clinical aspects and explore its action mode. Methods Flow cytometry was performed to characterize Nanofat. A monoiodoacetate-induced OA rat model was employed for in vivo study. Cell viability and wound healing assays were conducted for in vitro study. Real-time PCR and Western blot assays were applied to explore the molecular action mode of Nanofat. Moreover, a retrospective analysis was conducted to determine the clinical efficacy and safety of Nanofat on knee OA patients. Results The in vivo results showed that Nanofat significantly attenuated pain symptoms and protected cartilage ECM (Col2) from damage, and its effects were not significantly differed with adipose tissue-derived stem cells (both P > 0.05). The in vitro results showed that Nanofat promoted the cell viability and migration of chondrocytes and significantly restored the IL-1β-induced abnormal gene expressions of Col2, Aggrecan, Sox9, Adamts5, Mmp3, Mmp9 Mmp13, IL-6 and Col10 and protein expressions of Col2, MMP9, MMP13, and Sox9 of chondrocytes. The regulatory actions of Nanofat on these anabolic, catabolic, and hypertrophic molecules of chondrocytes were similar between two treatment routes: co-culture and conditioned medium, suggesting a paracrine-based mode of action of Nanofat. Moreover, the clinical data showed that Nanofat relieved pain and repaired damaged cartilage of OA patients, with no adverse events. Conclusion In sum, this study demonstrated the anti-OA efficacy as well as a paracrine-based action mode of Nanofat, providing novel knowledge of Nanofat and suggesting it as a promising and practical cell therapy for clinical treatment of OA.
Collapse
|
46
|
Hamilton G, Teufelsbauer M. Adipose-derived stromal/stem cells and extracellular vesicles for cancer therapy. Expert Opin Biol Ther 2021; 22:67-78. [PMID: 34236014 DOI: 10.1080/14712598.2021.1954156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mesenchymal stromal/stem cells (MSCs) hold great perspective for the therapy of a host of diseases due to regenerative and anti-inflammatory properties by differentiation into diverse cell populations, homing to damaged tissue regions, paracrine effects, and release of extracellular vesicles. AREAS COVERED This review describes the isolation, characterization, and potential use of MSCs and ADSCs for benign and malignant diseases. The MSCs may be administered as whole cells or in form of their secretome that is held responsible for most of their beneficial effects. A special constituent of the paracrine components are the extracellular vesicles (EVs) that carry a biologically potent cargo of proteins, cytokines, and RNA. EXPERT OPINION The applications of MSCs and ADSCs are amply documented and have been investigated in preclinical models and many unregulated and a few controlled trials. Larger numbers of MSCs and ADSCs can be obtained for allogeneic transfer but imply difficulties including perseverance of the cells in vivo and possible differentiation into harmful cell types. MSC-derived cell-free preparations are easier to handle and manufacture for various applications. Especially, with the help of bioreactors, EVs can be obtained in excessive numbers and preloaded or charged with proteins, cytokines, and regulatory RNA specimen to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.,Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Maryana Teufelsbauer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.,Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
48
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
49
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto, Tinduh D, Notobroto HB, Sigit Prakoeswa CR, Rantam FA, Rhatomy S. Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (Lond) 2021; 67:102482. [PMID: 34168873 PMCID: PMC8209190 DOI: 10.1016/j.amsu.2021.102482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
The use of stem cells is a breakthrough in medical biotechnology which brings regenerative therapy into a new era. Over the past several decades, stem cells had been widely used as regenerative therapy and Mesenchymal Stem Cells (MSCs) had emerged as a promising therapeutic option. Currently stem cells are effective therapeutic agents againts several diseases due to their tissue protective and repair mechanisms. This therapeutic effect is largely due to the biomolecular properties including secretomes. Injury to peripheral nerves has significant health and economic consequences, and no surgical procedure can completely restore sensory and motor function. Stem cell therapy in peripheral nerve injury is an important future intervention to achieve the best clinical outcome improvement. Adipose mesenchymal stem cells (AdMSCs) are multipotent mesenchymal stem cells which are similar to bone marrow-derived mesenchymal stem cells (BM-MSCs). The following review aims to provide an overview of the use of AdMSCs and their secretomes in regenerating peripheral nerves.
Collapse
Affiliation(s)
- Tito Sumarwoto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Suroto
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Romaniyanto
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Damayanti Tinduh
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Physical Medicine and Rehabilitation Department, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
50
|
Role of Fzd6 in Regulating the Osteogenic Differentiation of Adipose-derived Stem Cells in Osteoporotic Mice. Stem Cell Rev Rep 2021; 17:1889-1904. [PMID: 34041696 DOI: 10.1007/s12015-021-10182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Although it has been demonstrated that adipose-derived stem cells (ASCs) from osteoporotic mice (OP-ASCs) exhibited impaired osteogenic differentiation potential, the molecular mechanism has not yet been elucidated. We found that Fzd6 was decreased in OP-ASCs compared with ASCs. This study investigates effects and underlying mechanisms of Fzd6 in the osteogenic potential of OP-ASCs, and explores methods to enhance osteogenic capacity of OP-ASCs. METHODS Fzd6 overexpression and silencing lentiviruses were used to evaluate the role of Fzd6 in the osteogenic differentiation of OP-ASCs. Real-time PCR (qPCR) and western blotting (WB) was performed to detect the expression of Fzd6 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Alizarin red staining and Alkaline phosphatase (ALP) staining were performed following osteogenic induction. Microscopic CT (Micro-CT), hematoxylin and eosin staining (HE) staining, and Masson staining were used to assess the role of Fzd6 in osteogenic differentiation of osteoporosis (OP) mice in vivo. RESULTS Expression of Fzd6 was decreased significantly in OP-ASCs. Fzd6 silencing down-regulated the osteogenic ability of OP-ASCs in vitro. Overexpression of Fzd6 rescued the impaired osteogenic capacity in OP-ASCs in vitro. We obtained similar results in vivo. CONCLUSIONS Fzd6 plays an important role in regulating the osteogenic ability of OP-ASCs both in vivo and in vitro. Overexpression of Fzd6 promotes the osteogenic ability of OP-ASCs, which provides new insights for the prevention and treatment of OP mice.
Collapse
|