1
|
Hakami ZH, Abdo W, Nazeam JA, Osman SM, Goda W, Fadl SE, Alsulimani A, Al-Noshokaty TM, Haridy M, Alnasser SM, Abdeen A. Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. Phytother Res 2024. [PMID: 39731399 DOI: 10.1002/ptr.8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties. However, the molecular mechanisms underlying these activities have not yet been fully elucidated. This study aimed to explore the effects of the plant polar glycosidic fraction (AAG) on hepatocellular carcinoma (HCC) in an in vivo model induced by diethylnitrosamine (DEN). (2) Experimental procedure: The fraction was standardized using HPLC-PDA-MS/MS fingerprinting, and two distinct intragastric AAG dose regimens were examined (10 and 20 mg/kg) in combination with DEN 200 mg/kg. Serum alpha-fetoprotein (AFP), gamma-glutamyl transferase (γ-GGT), glutathione S-transferase placental (GST-P), mRNA expression of metabolic cytochrome enzymes (CYP1A3 and CYP2B2), inflammatory genes (nuclear factor kappa-B p65 subunit; NF-κB p65), metalloproteases 9 (MMP9), tissue inhibitors of metalloproteases (TIMP1), transforming growth factor beta 1 (TGFβ1), and histological features were assessed. (3) Key results and conclusions and implications: AAG was characterized by five major secondary metabolites: saponins, chromones, anthraquinone, and triterpenes. The fraction reduced hepatic malignancy characteristics by diminishing the size and number of altered foci and lowering hepatic cancer biomarkers, such as γ-GGT, AFP, and GST-positive foci. It also reduced the mRNA levels of CYP1A3 and CYP2B2, NF-κB p65, and MMP9, hepatic Ki-67, and TGFβ1 while upregulating TIMP1 levels. This study revealed that AAG exhibited a marked suppressive effect on HCC cell proliferation, displaying a range of mechanistic actions, including decreasing the metabolic activation of cytochrome enzymes, which consequently reduced the production of reactive oxygen species and other genes implicated in cancer development. AAG could be a significant therapeutic candidate for patients diagnosed with hepatocarcinoma.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Samir M Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Wael Goda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Sabreen E Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matruh University, Matruh, Egypt
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohie Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
2
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2024:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
3
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Zhang Y, Gao S, Mao J, Song Y, Wang X, Jiang J, Lv L, Zhou Z, Wang J. The Inhibitory Effect and Mechanism of the Histidine-Rich Peptide rAj-HRP from Apostichopus japonicus on Human Colon Cancer HCT116 Cells. Molecules 2024; 29:5214. [PMID: 39519855 PMCID: PMC11548021 DOI: 10.3390/molecules29215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colon cancer is a common and lethal malignancy, ranking second in global cancer-related mortality, highlighting the urgent need for novel targeted therapies. The sea cucumber (Apostichopus japonicus) is a marine organism known for its medicinal properties. After conducting a bioinformatics analysis of the cDNA library of Apostichopus japonicus, we found and cloned a cDNA sequence encoding histidine-rich peptides, and the recombinant peptide was named rAj-HRP. Human histidine-rich peptides are known for their anti-cancer properties, raising questions as to whether rAj-HRP might exhibit similar effects. To investigate whether rAj-HRP can inhibit colon cancer, we used human colon cancer HCT116 cells as a model and studied the tumor suppressive activity in vitro and in vivo. The results showed that rAj-HRP inhibited HCT116 cell proliferation, migration, and adhesion to extracellular matrix (ECM) proteins in vitro. It also disrupted the cytoskeleton and induced apoptosis in these cells. In vivo, rAj-HRP significantly inhibited the growth of HCT116 tumors in BALB/c mice, reducing tumor volume and weight without affecting the body weight of the tumor-bearing mice. Western blot analysis showed that rAj-HRP inhibited HCT116 cell proliferation and induced apoptosis by upregulating BAX and promoting PARP zymogen degradation. Additionally, rAj-HRP inhibited HCT116 cell adhesion and migration by reducing MMP2 levels. Further research showed that rAj-HRP downregulated EGFR expression in HCT116 cells and inhibited key downstream molecules, including AKT, P-AKT, PLCγ, P38 MAPK, and c-Jun. In conclusion, rAj-HRP exhibits significant inhibitory effects on HCT116 cells in both in vitro and in vivo, primarily through the EGFR and apoptosis pathways. These findings suggest that rAj-HRP has the potential as a novel targeted therapy for colon cancer.
Collapse
Affiliation(s)
- Yuebin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jiaming Mao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Yuyao Song
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Xueting Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| |
Collapse
|
5
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
6
|
Kaewpiboon C, Boonnak N, Salae AW, Pakdeepromma S, Yawut N, Chung YH. Andrographolide targets EGFR to impede epithelial-mesenchymal transition in human breast cancer cells. J Pharm Biomed Anal 2024; 248:116267. [PMID: 38889579 DOI: 10.1016/j.jpba.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Despite the primary surgical treatment for breast cancer patients, malignant invasiveness and metastasis remain threatening factors for women with breast cancer. As chemotherapy yields unsatisfactory results, it prompted us to search for effective natural agents with few side-effects. Although andrographolide (ADGL), a natural diterpenoid lactone isolated from Andrographis paniculata, presents anticancer effects, the molecular mechanism remains unknown. Initially, on comparing the expression of proteins related to epithelial-mesenchymal transition (EMT) between nonmetastatic cancer MCF7 cells and highly metastatic cancer MDA-MB-231 cells, we found that MDA-MB-231 cells exhibit higher protein levels of N-cadherin and vimentin and lower protein levels of E-cadherin when compared to MCF7 cells. Moreover, MDA-MB-231 cells also exhibited higher EGFR expression and activity, higher STAT1 activity and abundant HDAC4 expression. To elucidate whether these proteins are closely associated with EMT, EGFR, STAT1 or HDAC4, the proteins were silenced in MDA-MB-231 breast cancer cells by their specific siRNAs. We found that silencing these proteins reduced EMT, indicating an important role of EGFR, STAT1 and HDAC4 in EMT progression. When we treated MDA-MB-231 cells with ADGL as a potential therapeutic drug, we found that ADGL treatment inhibited cell migration and invasion. Furthermore, it also recovered E-cadherin expression and decreased N-cadherin and vimentin protein levels. ADGL treatment reduced EGFR expression at a lower concentration (1 μg/mL); however, STAT1 activity and HDAC4 expression was reduced by a higher concentration (5 μg/mL) of ADGL. Moreover, we observed that the combined treatment with ADGL and siRNAs against these proteins highly sensitized the MDA-MB-231 cells to apoptosis compared to that with ADGL and control siRNA. Collectively, our results suggest that ADGL targets EGFR, thereby inhibiting EMT in human breast cancer cells.
Collapse
Affiliation(s)
- Chutima Kaewpiboon
- Department of Biology, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand.
| | - Nawong Boonnak
- Department of Basic Science and Mathematics, Faculty of Science and Digital Innovation, Thaksin University, Songkhla 90000, Thailand
| | - Abdul-Wahab Salae
- Department of Science and Mathematics, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, Thailand
| | - Sirichatnach Pakdeepromma
- Department of General Science and Liberal Arts, King Mongkut's Institute of Technology Ladkrabang Prince of Chumphon Campus, Pathiu, Chumphon 86160, Thailand
| | - Natpaphan Yawut
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Pusan National University, BK 21+, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Wang L, Peng X, Ma C, Hu L, Li M, Wang Y. Research progress of epithelial-mesenchymal transformation-related transcription factors in peritoneal metastases. J Cancer 2024; 15:5367-5375. [PMID: 39247601 PMCID: PMC11375557 DOI: 10.7150/jca.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Metastasis is the leading cause of mortality in patients with malignant tumors, particularly characterized by peritoneal metastases originating from gastric, ovarian, and colorectal cancers. Regarded as the terminal phase of tumor progression, peritoneal metastasis presents limited therapeutic avenues and is associated with a dismal prognosis for patients. The epithelial-mesenchymal transition (EMT) is a crucial phenomenon in which epithelial cells undergo significant changes in both morphology and functionality, transitioning to a mesenchymal-like phenotype. This transition plays a pivotal role in facilitating tumor metastasis, with transcription factors being key mediators of EMT's effects. Consequently, we provide a retrospective summary of the efforts to identify specific targets among EMT-related transcription factors, aimed at modulating the onset and progression of peritoneal metastatic cancer. This summary offers vital theoretical underpinnings for developing treatment strategies against peritoneal metastasis.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaobei Peng
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Chang Ma
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| |
Collapse
|
9
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Tao B, Yi C, Ma Y, Li Y, Zhang B, Geng Y, Chen Z, Ma X, Chen J. A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochem Genet 2024; 62:2999-3029. [PMID: 38062276 DOI: 10.1007/s10528-023-10591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 07/31/2024]
Abstract
The transforming growth factor beta (TGF-β) signaling plays a critical role in immune evasion and tumor progression. However, its modulatory influences on prognosis, tumor microenvironment (TME), and therapeutic efficacy remain unknown in colorectal cancer (CRC). We summarized TGF-β-related genes and comprehensively estimated their expression pattern in 2142 CRC samples from 9 datasets. Two distinct cluster patterns were divided and biological characteristics of each pattern were further analyzed. Then, to quantify the TGF-β cluster pattern of individual CRC patient, we generated the TGF-β score (TGFBscore) model based on TGF-β cluster pattern-relevant differentially expressed genes (DEGs). Subsequently, we conducted correlation analysis for TGFBscore and clinical prognosis, consensus molecular subtypes (CMSs), TME characteristics, liver metastasis, drug response, and immunotherapeutic efficacy in CRC. We illustrated transcriptional and genetic alterations of TGF-β-relevant genes, which were closely linked with carcinogenic pathways. We identified two different TGF-β cluster patterns, characterized by a high and a low TGFBscore. The TGFBscore-high group was significantly linked with worse patient survival, epithelial-mesenchymal transition (EMT) activation, liver metastasis tendency, and the infiltration of immunosuppressive cells (regulatory T cells [Tregs], M2 macrophages, cancer-associated fibroblasts [CAFs], and myeloid-derived suppressor cells [MDSCs]), while the TGFBscore-low group was linked with a survival advantage, epithelial phenotype, early CRC staging, and the infiltration of immune-activated cells (B cell, CD4 T cell, natural killer T [NKT] cell, and T helper 1 [Th1] cell). In terms of predicting drug response, TGFBscore negatively correlated (sensitive to TGFBscore-high group) with drugs targeting PI3K/mTOR, JNK and p38, RTK signaling pathways, and positively correlated (sensitive to TGFBscore-low group) with drugs targeting EGFR signaling pathway. Also, TGFBscore could predict the efficacy of different anti-tumor therapies. TGFBscore-low patients might benefit more from anti-PDL1 immunotherapy, adjuvant chemotherapy (ACT), and ERBB targeted therapy, whereas TGFBscore-high patients might benefit more from antiangiogenic targeted therapy. Our study constructed a novel TGF-β scoring model that could predict prognosis, liver metastasis tendency, and TME characteristics for CRC patients. More importantly, this work emphasizes the potential clinical utility of TGFBscore in evaluating the efficacy of chemotherapy, targeted therapy, and immunotherapy, guiding individualized precision treatment in CRC.
Collapse
Affiliation(s)
- Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yue Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Bo Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Zhang M, Zhou K, Wang Z, Liu T, Stevens LE, Lynce F, Chen WY, Peng S, Xie Y, Zhai D, Chen Q, Shi Y, Shi H, Yuan Z, Li X, Xu J, Cai Z, Guo J, Shao N, Lin Y. A Subpopulation of Luminal Progenitors Secretes Pleiotrophin to Promote Angiogenesis and Metastasis in Inflammatory Breast Cancer. Cancer Res 2024; 84:1781-1798. [PMID: 38507720 PMCID: PMC11148543 DOI: 10.1158/0008-5472.can-23-2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy Y Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Song Y, Zhang Y, Wang X, Han X, Shi M, Xu L, Yu J, Zhang L, Han S. SPI1 activates TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12 to support the mesenchymal phenotype of glioma stem cells. Brain Pathol 2024; 34:e13217. [PMID: 37865975 PMCID: PMC11007049 DOI: 10.1111/bpa.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Glioma stem cells (GSCs) exhibit diverse molecular subtypes with the mesenchymal (MES) population representing the most malignant variant. The oncogenic potential of Salmonella pathogenicity island 1 (SPI1), an oncogenic transcription factor, has been established across various human malignancies. In this study, we explored the association between the SPI1 pathway and the MES GSC phenotype. Through comprehensive analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas glioma databases, along with patient-derived GSC cultures, we analyzed SPI1 expression. Using genetic knockdown and overexpression techniques, we assessed the functional impact of SPI1 on GSC MES marker expression, invasion, proliferation, self-renewal, and sensitivity to radiation in vitro, as well as its influence on tumor formation in vivo. Additionally, we investigated the downstream signaling cascades activated by SPI1. Our findings revealed a positive correlation between elevated SPI1 expression and the MES phenotype, which in turn, correlated with poor survival. SPI1 enhanced GSC MES differentiation, self-renewal, and radioresistance in vitro, promoting tumorigenicity in vivo. Mechanistically, SPI1 augmented the transcriptional activity of both TGF-β1 and FKBP12 while activating the non-canonical PI3K/Akt pathway. Notably, inhibition of TGF-β1/PI3K/Akt signaling partially attenuated SPI1-induced GSC MES differentiation and its associated malignant phenotype. Collectively, our results underscore SPI1's role in activating TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12, thereby supporting the aggressive MES phenotype of GSCs. Therefore, SPI1 emerges as a potential therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Yifu Song
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yaochuan Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaoliang Wang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaodi Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Mengwu Shi
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Ling Xu
- Department of Medical Oncologythe First Hospital of China Medical UniversityShenyangChina
| | - Juanhan Yu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Li Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Sheng Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
13
|
Shi Q, Huang F, Wang Y, Liu H, Deng H, Chen YG. HER2 phosphorylation induced by TGF-β promotes mammary morphogenesis and breast cancer progression. J Cell Biol 2024; 223:e202307138. [PMID: 38407425 PMCID: PMC10896696 DOI: 10.1083/jcb.202307138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Transforming growth factor β (TGF-β) and HER2 signaling collaborate to promote breast cancer progression. However, their molecular interplay is largely unclear. TGF-β can activate mitogen-activated protein kinase (MAPK) and AKT, but the underlying mechanism is not fully understood. In this study, we report that TGF-β enhances HER2 activation, leading to the activation of MAPK and AKT. This process depends on the TGF-β type I receptor TβRI kinase activity. TβRI phosphorylates HER2 at Ser779, promoting Y1248 phosphorylation and HER2 activation. Mice with HER2 S779A mutation display impaired mammary morphogenesis, reduced ductal elongation, and branching. Furthermore, wild-type HER2, but not S779A mutant, promotes TGF-β-induced epithelial-mesenchymal transition, cell migration, and lung metastasis of breast cells. Increased HER2 S779 phosphorylation is observed in human breast cancers and positively correlated with the activation of HER2, MAPK, and AKT. Our findings demonstrate the crucial role of TGF-β-induced S779 phosphorylation in HER2 activation, mammary gland development, and the pro-oncogenic function of TGF-β in breast cancer progression.
Collapse
Affiliation(s)
- Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Huidong Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Hei B, Liu RE, Li M. Ursolic acid inhibits glioblastoma through suppressing TGFβ-mediated epithelial-mesenchymal transition (EMT) and angiogenesis. Heliyon 2024; 10:e27722. [PMID: 38501006 PMCID: PMC10945258 DOI: 10.1016/j.heliyon.2024.e27722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Found in many fruits and plants, Ursolic acid (UA), a pentacyclic triterpene that occurs naturally, is recognized for its anti-cancer effects, especially in combating glioblastoma. However, the intricate molecular mechanisms underpinning its anti-tumor actions are still not fully understood, despite the recognition of these effects. By examining the functions of epithelial-mesenchymal transition (EMT) and angiogenesis, crucial for glioblastoma progression, and their regulation through Transforming Growth Factor Beta (TGFβ) - a key marker for glioblastoma, our research aims to fill this knowledge gap. This study explores how ursolic acid can block the progression of glioblastoma by precisely targeting TGFβ-triggered EMT and angiogenesis. The findings show that UA successfully blocks the spread, movement, and invasion of glioblastoma cells. Accompanying this, there is a significant reduction in the expression of TGFβ and crucial EMT indicators like snail and vimentin. Furthermore, UA shows a reduction in angiogenesis that depends on the dosage, highlighted by decreased vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs). Interestingly, increased TGFβ expression in U87 and U251 glioblastoma cell lines was found to weaken UA's anti-tumor properties, shedding more light on TGFβ's critical function in glioblastoma's pathology. Supporting these laboratory results, UA also showed considerable inhibition of tumor growth in a glioblastoma xenograft mouse model. Overall, our research emphasizes Ursolic acid's promise as a new treatment for glioblastoma and clarifies its action mechanism, mainly by inhibiting TGFβ signaling and thereby EMT and angiogenesis.
Collapse
Affiliation(s)
- Bo Hei
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
- Department of Neurosurgery, Army General Hospital, Beijing, China
| | - Ru-en Liu
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
15
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Ray SK, Mukherjee S. Molecular perspectives on systemic priming and concomitant immunity in colorectal carcinoma. J Egypt Natl Canc Inst 2024; 36:7. [PMID: 38462581 DOI: 10.1186/s43046-024-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
The progression of metastasis, a complex systemic disease, is facilitated by interactions between tumor cells and their isolated microenvironments. Over the past few decades, researchers have investigated the metastatic spread of cancer extensively, identifying multiple stages in the process, such as intravasation, extravasation, tumor latency, and the development of micrometastasis and macrometastasis. The premetastatic niche is established in target organs by the accumulation of aberrant immune cells and extracellular matrix proteins. The "seed and soil" idea, which has become widely known and accepted, is being used to this day to guide cancer studies. Changes in the local and systemic immune systems have a major impact on whether an infection spreads or not. The belief that the immune response may play a role in slowing tumor growth and may be beneficial against the metastatic disease underpins the responsiveness shown in the immunological landscape of metastasis. Various hypotheses on the phylogenesis of metastases have been proposed in the past. The primary tumor's secreting factors shape the intratumoral microenvironment and the immune landscape, allowing this progress to be made. Therefore, it is evident that among disseminated tumor cells, there are distinct phenotypes that either carry budding for metastasis or have the ability to obtain this potential or in systemic priming through contact with substantial metastatic niches that have implications for medicinal chemistry. Concurrent immunity signals that the main tumor induces an immune response that may not be strong enough to eradicate the tumor. Immunotherapy's success with some cancer patients shows that it is possible to effectively destroy even advanced-stage tumors by modifying the microenvironment and tumor-immune cell interactions. This review focuses on the metastasome in colorectal carcinoma and the therapeutic implications of site-specific metastasis, systemic priming, tumor spread, and the relationship between the immune system and metastasis.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
| |
Collapse
|
17
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
19
|
Stanilov N, Velikova T, Stanilova S. Navigating the Cytokine Seas: Targeting Cytokine Signaling Pathways in Cancer Therapy. Int J Mol Sci 2024; 25:1009. [PMID: 38256080 PMCID: PMC10815616 DOI: 10.3390/ijms25021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, necessitating continuous efforts to develop effective therapeutic strategies. Over the years, advancements in our understanding of the complex interplay between the immune system and cancer cells have led to the development of immunotherapies that revolutionize cancer treatment. Cytokines, as key regulators of the immune response, are involved in both the initiation and progression of cancer by affecting inflammation and manipulating multiple intracellular signaling pathways that regulate cell growth, proliferation, and migration. Cytokines, as key regulators of inflammation, have emerged as promising candidates for cancer therapy. This review article aims to provide an overview of the significance of cytokines in cancer development and therapy by highlighting the importance of targeting cytokine signaling pathways as a potential therapeutic approach.
Collapse
Affiliation(s)
- Noyko Stanilov
- Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Spaska Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
20
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
21
|
Hai Z, Wu Y, Ning Z. Salidroside attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II through inhibition of LOXL2-TGF-β1-Smad2/3 pathway. Heliyon 2023; 9:e21220. [PMID: 37920527 PMCID: PMC10618763 DOI: 10.1016/j.heliyon.2023.e21220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/16/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Aims and objectives Salidroside (SAL), an active component isolated from the Chinese plant Rose Rhodiola, has anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and renal protective properties. Atrial fibrosis developed due to angiotensin II (Ang II) plays a crucial function in developing atrial fibrillation (AF). This research investigates the involvement of SAL in AF, its vulnerability to AF, and Ang II-induced inflammatory atrial fibrosis. Methods Ang II (2 mg/kg/day) was infused underneath the skin into male C57BL/6 mice (8-10 weeks old, n = 40) for four weeks to create the AF model. SAL (50 mg/kg/day) was given intraperitoneally once per day for 28 days. Analyses of morphology, histology, and biochemical were carried out. Transesophageal burst pacing was used in vivo to induce AF. Results Ang II injection increased mice's heart rate and systolic blood pressure (SBP), whereas SAL treatment was significantly reduced. Ang II infusion increased left atrial diameter (LAD) in mice, which was attenuated after SAL treatment. SAL alone did not affect AF inducibility, but SAL therapy markedly decreased Ang II-induced AF inducibility. Additionally, the expression levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were inhibited with SAL therapy in mice. Compared to the Ang II group, Ang II infusion raised malondialdehyde (MDA) levels and reduced superoxide dismutase (SOD) and catalase (CAT) activity, but SAL therapy altered all of these effects. SAL treatment significantly reduced LOXL2, TGF-β1, p-Smad2 and p-Smad3 protein expression than the Ang II group mice. Conclusion SAL inhibits atrial fibrosis and potentially attenuates increased susceptibility to AF by suppressing the LOXL2-TGF-β1-Smad2/3 pathway.
Collapse
Affiliation(s)
- Zhen Hai
- Department of Cardiology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203, China
| | - Yingbiao Wu
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| |
Collapse
|
22
|
El-Ashmawy NE, Khedr EG, Khedr NF, El-Adawy SA. Emerging therapeutic strategy for mitigating cancer progression through inhibition of sirtuin-1 and epithelial-mesenchymal transition. Pathol Res Pract 2023; 251:154907. [PMID: 37925819 DOI: 10.1016/j.prp.2023.154907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
With 8.8 million deaths worldwide, cancer is the major reason for the high rate of fatalities. Malignancy's commencement, progression, development, metastasis, and therapy resistance have all been correlated with the epithelial-to-mesenchymal transition (EMT) pathway. EMT promotes the cancer cells' metastatic spread and starts the development of treatment resistance. Sirtuin-1 (SIRT1) is a histone deacetylase that is important for signaling, cell persistence, and apoptosis. It does this by deacetylating important cell signaling molecules and proteins that are associated with apoptosis. The function of SIRT1 in EMT and cancer progression, as well as the emerging therapeutic strategy of treating cancer through the inhibition of SIRT1 and EMT will be discussed in detail.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Samar A El-Adawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
23
|
Cerverò-Varona A, Canciello A, Peserico A, Haidar Montes AA, Citeroni MR, Mauro A, Russo V, Moffa S, Pilato S, Di Giacomo S, Dufrusine B, Dainese E, Fontana A, Barboni B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater Today Bio 2023; 22:100758. [PMID: 37600353 PMCID: PMC10432246 DOI: 10.1016/j.mtbio.2023.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown. To this aim, GO-functionalized glass coverslips have been used for AECs culture. The results demonstrated how GO-coating is able to induce and accelerate the Epithelial-Mesenchymal Transition (EMT), in a process mediated by the intracellular activation of TGFβ1-SMAD2/3 signaling pathway. The trans-differentiation towards mesenchymal phenotype provides AECs of migratory ability and substantially changes the pattern of cytokines secretion upon inflammatory stimulus. Indeed, GO-exposed AECs enhance their pro-inflammatory interleukins production thus inducing a more efficient activation of macrophages and, at the same time, by slightly reducing their inhibitory action on peripheral blood mononuclear cells proliferation. Therefore, the adhesion of AECs on GO-functionalized surfaces might contribute to the generation of a tailored microenvironment useful to face both the phases of the inflammation, thereby fostering the regenerative process.
Collapse
Affiliation(s)
- Adrian Cerverò-Varona
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Arlette Alina Haidar Montes
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Maria Rita Citeroni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Valentina Russo
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Samanta Moffa
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Stefano Di Giacomo
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Barbara Barboni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| |
Collapse
|
24
|
Zhou L, Zhang Z, Tian Y, Li Z, Liu Z, Zhu S. The critical role of platelet in cancer progression and metastasis. Eur J Med Res 2023; 28:385. [PMID: 37770941 PMCID: PMC10537080 DOI: 10.1186/s40001-023-01342-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Platelets play a crucial role in cancer blood metastasis. Various cancer-related factors such as Toll-like receptors (TLRs), adenosine diphosphate (ADP) or extracellular matrix (ECM) can activate these small particles that function in hemostasis and thrombosis. Moreover, platelets induce Epithelial Mesenchymal Transition (EMT) to promote cancer progression and invasiveness. The activated platelets protect circulating tumor cells from immune surveillance and anoikis. They also mediate tumor cell arrest, extravasation and angiogenesis in distant organs through direct or indirect modulation, creating a metastatic microenvironment. This review summarizes the recent advances and progress of mechanisms in platelet activation and its interaction with cancer cells in metastasis.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Zhe Zhang
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, People's Republic of China
| | - Yizhou Tian
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China
| | - Zefei Li
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China
| | - Zhongliang Liu
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China.
| | - Sibo Zhu
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China.
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
25
|
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated Fullerene C 60(OH) 40 Nanofilms Promote the Mesenchymal-Epithelial Transition of Human Liver Cancer Cells via the TGF-β1/Smad Pathway. J Inflamm Res 2023; 16:3739-3761. [PMID: 37663761 PMCID: PMC10474868 DOI: 10.2147/jir.s415378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-β1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
27
|
Cheng D, Wang B, Wu L, Chen R, Zhao W, Fang C, Ji M. Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation. Med Oncol 2023; 40:254. [PMID: 37505345 DOI: 10.1007/s12032-023-02125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30-150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Lige Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| |
Collapse
|
28
|
Manfioletti G, Fedele M. Epithelial-Mesenchymal Transition (EMT). Int J Mol Sci 2023; 24:11386. [PMID: 37511145 PMCID: PMC10379270 DOI: 10.3390/ijms241411386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process involved in many physiological and pathological conditions [...].
Collapse
Affiliation(s)
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology (IEOS), 80145 Naples, Italy
| |
Collapse
|
29
|
Francis M, Bhaskar S, Komanduri S, Sheshadri P, Prasanna J, Kumar A. Deubiquitinase USP1 influences the dedifferentiation of mouse pancreatic β-cells. iScience 2023; 26:106771. [PMID: 37250303 PMCID: PMC10214732 DOI: 10.1016/j.isci.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Loss of insulin-secreting β-cells in diabetes may be either due to apoptosis or dedifferentiation of β-cell mass. The ubiquitin-proteasome system comprising E3 ligase and deubiquitinases (DUBs) controls several aspects of β-cell functions. In this study, screening for key DUBs identified USP1 to be specifically involved in dedifferentiation process. Inhibition of USP1 either by genetic intervention or small-molecule inhibitor ML323 restored epithelial phenotype of β-cells, but not with inhibition of other DUBs. In absence of dedifferentiation cues, overexpression of USP1 was sufficient to induce dedifferentiation in β-cells; mechanistic insight showed USP1 to mediate its effect via modulating the expression of inhibitor of differentiation (ID) 2. In an in vivo streptozotocin (STZ)-induced dedifferentiation mouse model system, administering ML323 alleviated hyperglycemic state. Overall, this study identifies USP1 to be involved in dedifferentiation of β-cells and its inhibition may have a therapeutic application of reducing β-cell loss during diabetes.
Collapse
Affiliation(s)
- Meenal Francis
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Saarwani Komanduri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
30
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
31
|
Tzavlaki K, Ohata Y, Morén A, Watanabe Y, Eriksson J, Tsuchiya M, Kubo Y, Yamamoto K, Sellin ME, Kato M, Caja L, Heldin CH, Moustakas A. The liver kinase B1 supports mammary epithelial morphogenesis by inhibiting critical factors that mediate epithelial-mesenchymal transition. J Cell Physiol 2023; 238:790-812. [PMID: 36791282 DOI: 10.1002/jcp.30975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The liver kinase B1 (LKB1) controls cellular metabolism and cell polarity across species. We previously established a mechanism for negative regulation of transforming growth factor β (TGFβ) signaling by LKB1. The impact of this mechanism in the context of epithelial polarity and morphogenesis remains unknown. After demonstrating that human mammary tissue expresses robust LKB1 protein levels, whereas invasive breast cancer exhibits significantly reduced LKB1 levels, we focused on mammary morphogenesis studies in three dimensional (3D) acinar organoids. CRISPR/Cas9-introduced loss-of-function mutations of STK11 (LKB1) led to profound defects in the formation of 3D organoids, resulting in amorphous outgrowth and loss of rotation of young organoids embedded in matrigel. This defect was associated with an enhanced signaling by TGFβ, including TGFβ auto-induction and induction of transcription factors that mediate epithelial-mesenchymal transition (EMT). Protein marker analysis confirmed a more efficient EMT response to TGFβ signaling in LKB1 knockout cells. Accordingly, chemical inhibition of the TGFβ type I receptor kinase largely restored the morphogenetic defect of LKB1 knockout cells. Similarly, chemical inhibition of the bone morphogenetic protein pathway or the TANK-binding kinase 1, or genetic silencing of the EMT factor SNAI1, partially restored the LKB1 knockout defect. Thus, LKB1 sustains mammary epithelial morphogenesis by limiting pathways that promote EMT. The observed downregulation of LKB1 expression in breast cancer is therefore predicted to associate with enhanced EMT induced by SNAI1 and TGFβ family members.
Collapse
Affiliation(s)
- Kalliopi Tzavlaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yae Ohata
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anita Morén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yukihide Watanabe
- Department of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Maiko Tsuchiya
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuki Kubo
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mitsuyasu Kato
- Department of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
33
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
34
|
Rao DY, Huang DF, Si MY, Lu H, Tang ZX, Zhang ZX. Role of exosomes in non-small cell lung cancer and EGFR-mutated lung cancer. Front Immunol 2023; 14:1142539. [PMID: 37122754 PMCID: PMC10130367 DOI: 10.3389/fimmu.2023.1142539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
As an important mediator of information transfer between cells, exosomes play a unique role in regulating tumor growth, supporting vascular proliferation, tumor invasion, and metastasis. Exosomes are widely present in various body fluids, and therefore they can be used as a potential tool for non-invasive liquid biopsy. The present study reviews the role of exosomes in liquid biopsy, tumor microenvironment formation, and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC). By targeting epidermal growth factor receptor (EGFR) therapy as a first-line treatment for patients with NSCLC, this study also briefly describes the occurrence of EGRF+ exosomes and the role of exosomes and their contents in non-invasive detection and potential therapeutic targets in EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Ding-Yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - De-Fa Huang
- Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mao-Yan Si
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Hua Lu
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Zhi-Xian Tang, ; Zu-Xiong Zhang,
| | - Zu-Xiong Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
35
|
Chen D, Zhou X, Yan P, Yang C, Li Y, Han L, Ren X. Lipid metabolism reprogramming in colorectal cancer. J Cell Biochem 2023; 124:3-16. [PMID: 36334309 DOI: 10.1002/jcb.30347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The hallmark feature of metabolic reprogramming is now considered to be widespread in many malignancies, including colorectal cancer (CRC). Of the gastrointestinal tumors, CRC is one of the most common with a high metastasis rate and long insidious period. The incidence and mortality of CRC has increased in recent years. Metabolic reprogramming also has a significant role in the development and progression of CRC, especially lipid metabolic reprogramming. Many studies have reported that lipid metabolism reprogramming is similar to the Warburg effect with typical features affecting tumor biology including proliferation, migration, local invasion, apoptosis, and other biological behaviors of cancer cells. Therefore, studying the role of lipid metabolism in the occurrence and development of CRC will increase our understanding of its pathogenesis, invasion, metastasis, and other processes and provide new directions for the treatment of CRC. In this paper, we mainly describe the molecular mechanism of lipid metabolism reprogramming and its important role in the occurrence and development of CRC. In addition, to provide reference for subsequent research and clinical diagnosis and treatment we also review the treatments of CRC that target lipid metabolism.
Collapse
Affiliation(s)
- Dan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Xuebing Zhou
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - PengYu Yan
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyu Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Longzhe Han
- Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.,Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| |
Collapse
|
36
|
Wu Y, Luo J, Song X, Gu W, Wang S, Hao S, Dong Z, Ning Z. Irisin attenuates angiotensin II-induced atrial fibrillation and atrial fibrosis via LOXL2 and TGFβ1/Smad2/3 signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:717-724. [PMID: 37275755 PMCID: PMC10237168 DOI: 10.22038/ijbms.2023.68639.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 06/07/2023]
Abstract
Objectives Irisin was reported as a cardioprotective and anti-oxidative effector, while the effect on atrial fibrosis is unknown. The current research examined irisin's function in atrial fibrillation (AF); atrial fibrosis brought on by Ang II can be suppressed, thus lessening the risk of developing AF. Materials and Methods 246 individuals were enrolled in the present case-control study. Chinese AF patients (n=126), 83 of whom were paroxysmal AF (PAF), 43 patients with persistent AF (PeAF), and 120 healthy controls. Saline or Ang II (2.0 mg/kg/day) was subcutaneously injected into healthy male C57BL/6 mice for four weeks. Once daily for four weeks, intraperitoneal injections of exogenous irisin (500 g/kg/day) were administered. Results In comparison to PAF patients and healthy controls (all P<0.05), PeAF patients had significantly higher rates of heart failure (HF), large left atrial size (LAD), hypertrophic protein B-type natriuretic peptide (BNP), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-terminal telopeptide of type I collagen (CTX-I), and transforming growth factor beta-1 (TGF-β1), while superoxide dismutase (SOD) level was low. Expression of irisin was decreased in AF patients' serum and Ang II-infused mice. Exogenous irisin dramatically reduced apoptosis, atrial fibrosis, atrial inflammation, and the susceptibility to AF caused by Ang II. In the atrial tissue, irisin inhibited Ang II-induced fibroblast transdifferentiation, LOXL2, TGF-β1, collagen production, and phosphorylation of Smad2/3. Conclusion The study results speculated that irisin could be a potential AF target, and it inhibited atrial fibrosis and significantly impaired increased AF susceptibility through inactivation of LOXL2 and the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yingbiao Wu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
- These authors contributed equally to this work
| | - Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
- These authors contributed equally to this work
| | - Xiang Song
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wei Gu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Saihua Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shuwen Hao
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhiwu Dong
- Department of Cardiology, People’s Hospital of Shache County, Xinjiang, 844700, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
37
|
Knockdown of RhoQ, a member of Rho GTPase, accelerates TGF-β-induced EMT in human lung adenocarcinoma. Biochem Biophys Rep 2022; 32:101346. [PMID: 36120491 PMCID: PMC9474329 DOI: 10.1016/j.bbrep.2022.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and the most common subtype of lung cancer is adenocarcinoma. RhoQ is a Rho family GTPase with primary sequence and structural similarities to Cdc42 and RhoJ. RhoQ is involved in neurite outgrowth via membrane trafficking and is essential for insulin-stimulated glucose uptake in mature adipocytes. However, the function of RhoQ in lung adenocarcinoma (LUAD) remains unclear. In this study, RhoQ siRNAs were introduced into A549 and PC-9 cells. Expression level of EMT-related genes and invasion ability were investigated using Western blot and transwell assay. To examine the relationship between RhoQ expression and prognosis of LUAD, Kaplan–Meier plotter was used. We discovered that suppressing RhoQ expression promoted TGF-β-mediated EMT and invasion in LUAD cell lines. Furthermore, RhoQ knockdown increased Smad3 phosphorylation and Snail expression, indicating that RhoQ was involved in TGF/Smad signaling during the EMT process. Moreover, Kaplan–Meier plotter analysis revealed that low RhoQ levels were associated with poor overall survival in patients with LUAD. In conclusion, these findings shed light on RhoQ's role as a negative regulator of TGF-β-mediated EMT in LUAD. Knockdown of RhoQ expression promoted TGF-β-mediated EMT and invasion in human lung adenocarcinoma cells. RhoQ knockdown increased Smad3 phosphorylation and Snail expression during the EMT process. Low RhoQ levels were associated with poor overall survival in patients with lung adenocarcinoma.
Collapse
|
38
|
Glycopyrronium bromide regulates cigarette smoke-induced epithelial mesenchymal transition by mediating ACh production. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
ANGPTL1, Foxo3a-Sox2, and colorectal cancer metastasis. Clin Sci (Lond) 2022; 136:1367-1370. [PMID: 36156125 PMCID: PMC9527825 DOI: 10.1042/cs20220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
In the present commentary, we discuss new observations stating that angiopoietin-like protein 1 (ANGPTL1) attenuates cancer metastasis and stemness through Forkhead box O-3a (Foxo3a)–SRY-related HMG-box-2 (Sox2) axis in colorectal cancer (Clin. Sci. (2022) 136, 657–673, https://doi.org/10.1042/CS20220043). ANGPTL1 has been reported to play a critical role in cancer progression and metastasis. However, the underlying mechanisms remain controversial. Here, we integrate the possible mechanisms for ANGPTL1 inhibiting colorectal cancer liver metastasis and discuss the regulation of ANGPTL1 on the Foxo3a–Sox2 pathway. Although ANGPTL1 showed multifunctional potential, there is still a long way to go for ANGPTL1 to be an effective treatment strategy in the clinic.
Collapse
|
40
|
Potential Therapeutic Agents against Paclitaxel—And Sorafenib-Resistant Papillary Thyroid Carcinoma. Int J Mol Sci 2022; 23:ijms231810378. [PMID: 36142303 PMCID: PMC9499486 DOI: 10.3390/ijms231810378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Thyroid carcinoma, a disease in which malignant cells form in the thyroid tissue, is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for nearly 80% of total thyroid carcinoma cases. However, the management of metastatic or recurrent therapy-refractory PTC is challenging and requires complex carcinoma therapy. In this study, we proposed a new clinical approach for the treatment of therapy-refractory PTC. We identified sarco/endoplasmic reticulum calcium ATPase (SERCA) as an essential factor for the survival of PTC cells refractory to the treatment with paclitaxel or sorafenib. We validated its use as a potential target for developing drugs against resistant PTC, by using patient-derived paclitaxel- or sorafenib-resistant PTC cells. We further discovered novel SERCA inhibitors, candidates 7 and 13, using the evolutionary chemical binding similarity method. These novel SERCA inhibitors determined a substantial reduction of tumors in a patient-derived xenograft tumor model developed using paclitaxel- or sorafenib-resistant PTC cells. These results could provide a basis for clinically meaningful progress in the treatment of refractory PTC by identifying a novel therapeutic strategy: using a combination therapy between sorafenib or paclitaxel and specific SERCA inhibitors for effectively and selectively targeting extremely malignant cells such as antineoplastic-resistant and carcinoma stem-like cells.
Collapse
|
41
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol 2022; 168:113385. [PMID: 36007853 DOI: 10.1016/j.fct.2022.113385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Apigenin (APG) is a flavonoid presence in beverages, vegetables, and fruits containing anti-diabetic, anti-oxidant, and anti-viral activities, as well as cancer management properties. There is growing evidence that APG presented extensive anti-cancer effects in several cancer types by modulating various cellular processes, including angiogenesis, apoptosis, metastasis, autophagy, cell cycle, and immune responses, through activation or inhibition of different cell signaling pathways and molecules. By emerging nanotechnology and its advent in the biomedicine field, cancer therapy has been changed based on nanotechnology-based delivery systems. APG nanoformulations have been used to target tumor cells specifically, improve cellular uptake of APG, and overcome limitations of the free form of APG, such as low solubility and poor bioavailability. In this review, the biotherapeutic activity of APG and its mechanisms, both in free form and nanoformulation, toward cancer cells are discussed to shed some light on APG anti-tumor activity in different cancers.
Collapse
|
43
|
Luo J, Wu Y, Zhu X, Wang S, Zhang X, Ning Z. LOXL2 silencing suppresses angiotensin II-induced cardiac hypertrophy through the EMT process and TGF-β1/Smad3/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:964-969. [PMID: 36159334 PMCID: PMC9464345 DOI: 10.22038/ijbms.2022.63338.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022]
Abstract
Objectives Atrial fibrillation (AF) is a common arrhythmia with atrial myocyte hypertrophy linked with stroke, heart failure, and increased mortality. Lysyl oxidase-like 2 (LOXL2) involves the cross-linking of collagen in the extracellular matrix (ECM). In the present study, we investigated the roles and underlying mechanisms of LOXL2 on cardiomyocyte hypertrophy. Materials and Methods The expression of LOXL2 mRNA and protein were detected in angiotensin II (Ang II) treated rat cardiomyocytes H9c2 by RT-qPCR and western blot. Small interfering RNA (siRNA) mediated LOXL2 gene silencing was used to evaluate cardiac hypertrophy and related markers. Also, the protein expression of EMT markers and Smad3/NF-κB pathway was determined by western blot. Results Ang II significantly increased mRNA and protein expressions of LOXL2 and increased mRNA levels of myocardial hypertrophy markers, including ANP, BNP, and β-MHC in H9c2 cells. Silencing of LOXL2 significantly suppressed Ang II-induced hypertrophy and reversed the increase in ANP, BNP, and β-MHC mRNA levels. Also, EMT markers' expressions, as evidenced by increased E-cadherin and decreased vimentin, α-smooth muscle actin (α-SMA), fibroblast-specific protein (FSP), and collagen 1A1. Mechanistically, we found that LOXL2 silencing suppressed protein expressions of TGF-β1, p-Smad3, and p-NF-κB in Ang II-stimulated H9c2 cells. LOXL2 silencing also attenuated Ang II-induced increased expression and content of proinflammatory cytokines IL-1β (H) and TNF-α. Conclusion Our data speculated that LOXL2 might be a potential contributing factor to Ang II-induced cardiac hypertrophy, and TGF-β1/Smad3/NF-κB is involved in a signal axis and might be a potential strategy in treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,These authors contributed eqully to this work
| | - Yingbiao Wu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,These authors contributed eqully to this work
| | - Xi Zhu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Saihua Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaogang Zhang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,Corresponding author: Zhongping Ning. Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China. Tel: +86-021-68135590;
| |
Collapse
|
44
|
Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Med 2022; 28:82. [PMID: 35854234 PMCID: PMC9295360 DOI: 10.1186/s10020-022-00509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Metastasis of malignant tumors accelerates systemic failure and hastens the deaths of pancreatic cancer patients. During the metastatic process, the physical translocation of cancer cells from the primary lesion to distant organs and is crucial. CSCs properties, such as self-renewal and multiple-direction differentiation capacity are essential for colonization in the microenvironment of distant organs and metastatic lesion formation. It is widely believed that EMT can cause cancer cells to penetrate blood vessels by undergoing phenotypic and cytoskeletal changes, so that they can infiltrate surrounding tissue and disseminate from the primary tumor to the blood circulation, where they are termed circulating tumor cells (CTCs), while CTCs often exhibit stemness properties. Accumulating evidence demonstrates that some EMT-related transcription factors are essential for CSCs self-renewal, so cancer cells that have undergone EMT typically acquire increased stemness properties. Abnormal activation of the WNT signaling pathway can drive a series of gene transcripts to promote EMT in multiple types of cancer, and among different Frizzled receptors of WNT signaling pathway, FZD7 expression is associated with distant organ metastasis, advanced clinical stages, and poor clinical prognosis. Objective of this study is to demonstrate that high FZD7 expression in pancreatic cancer can accelerate hepatic metastases and elucidate the related molecular mechanisms. Methods The expression of Frrizled receptor 7 (FZD7) in pancreatic ductal adenocarcinoma (PDAC) and relating survival rate were analyzed by bioinformatics, histochemistry assay and follow-up study. In vitro, FZD7 expression was silenced by lentiviral vectors carrying short hair RNA (shRNA) or upregulated by overexpression plasmid. Then, Wound-healing and Transwell experiment was used to analyze the abilities of migration and invasion; the levels of epithelial-to-mesenchymal transition (EMT) relating phenotype proteins, stemness relating phenotype proteins, and signaling molecular proteins were measured by Western-blot; cell stemness was evaluated by sphere forming ability of cells in suspension culture and detecting the proportion of CD24+CD44+ cells with flow cytometry. TGF-β1 was used to induce EMT, and observe the effect of shRNA silencing FZD7 on which. Results High level of FZD7 expression in pancreatic cancer samples was associated with earlier hepatic metastasis. In vitro upregulation FZD7 can enable pancreatic cancer cells to obtain stronger migration and invasion ability and higher mesenchymal phenotype, and vice versa; the proportion of cancer stem cell (CSC) was also positively correlated with the level of FZD7; cells forming spheres in suspension culture showed stronger migration and invasion ability and higher level of mesenchymal phenotype than normal adherent cultured cells; the level of FZD7 was positively correlated with the level of activated β-catenin. Silencing FZD7 expression can attenuate EMT induced by TGF-β1 stimulating, and TGF-β1 stimulating can also upregulate stemness phenotype expression, such as ABCG2, CD24, and CD44 by mediating of FZD7. Conclusions High FZD7 expression in pancreatic cancer can accelerates hepatic metastases by promoting EMT and strengthening cell stemness, and FZD7 can work through the canonical Wingless-type (WNT) signaling pathway and participate in TGF-β/SMAD3 signaling pathway also.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
45
|
De Renzi G, De Marco G, De Meo M, Del Rosso E, Gazzaniga P, Nicolazzo C. In vitro cultures of circulating tumor cells: a potential tool to unravel drug sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:245-260. [PMID: 35582538 PMCID: PMC8992597 DOI: 10.20517/cdr.2021.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Since taking part as leading actors in driving the metastatic process, circulating tumor cells (CTCs) have displayed a wide range of potential applications in the cancer-related research field. Besides their well-proved prognostic value, the role of CTCs in both predictive and diagnostics terms might be extremely informative about cancer properties and therefore highly helpful in the clinical decision-making process. Unfortunately, CTCs are scarcely released in the blood circulation and their counts vary a lot among different types of cancer, therefore CTC detection and consequent characterization are still highly challenging. In this context, in vitro CTC cultures could potentially offer a great opportunity to expand the number of tumor cells isolated at different stages of the disease and thus simplify the analysis of their biological and molecular features, allowing a deeper comprehension of the nature of neoplastic diseases. The aim of this review is to highlight the main attempts to establish in vitro CTC cultures from patients harboring different tumor types in order to highlight how powerful this practice could be, especially in optimizing the therapeutic strategies available in clinical practice and potentially preventing or contrasting the development of treatment resistance.
Collapse
Affiliation(s)
- Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia De Marco
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Michela De Meo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Eleonora Del Rosso
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
46
|
Tsubakihara Y, Ohata Y, Okita Y, Younis S, Eriksson J, Sellin ME, Ren J, Ten Dijke P, Miyazono K, Hikita A, Imamura T, Kato M, Heldin CH, Moustakas A. TGFβ selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition. Mol Oncol 2022; 16:2330-2354. [PMID: 35348275 PMCID: PMC9208077 DOI: 10.1002/1878-0261.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Transforming growth factor β (TGFβ) induces epithelial-mesenchymal transition (EMT), which correlates with stemness and invasiveness. Mesenchymal-epithelial transition (MET) is induced by TGFβ withdrawal and correlates with metastatic colonization. Whether TGFβ promotes stemness and invasiveness simultaneously via EMT remains unclear. We established a breast cancer cell model expressing red fluorescent protein (RFP) under the E-cadherin promoter. In 2D cultures, TGFβ induced EMT, generating RFPlow cells with a mesenchymal transcriptome, and regained RFP, with an epithelial transcriptome, after MET induced by TGFβ withdrawal. RFPlow cells generated robust mammospheres, with epithelio-mesenchymal cell surface features. Mammospheres that were forced to adhere generated migratory cells, devoid of RFP, a phenotype which was inhibited by a TGFβ receptor kinase inhibitor. Further stimulation of RFPlow mammospheres with TGFβ suppressed the generation of motile cells, but enhanced mammosphere growth. Accordingly, mammary fat-pad-transplanted mammospheres, in the absence of exogenous TGFβ treatment, established lung metastases with evident MET (RFPhigh cells). In contrast, TGFβ-treated mammospheres revealed high tumor-initiating capacity, but limited metastatic potential. Thus, the biological context of partial EMT and MET allows TGFβ to differentiate between pro-stemness and pro-invasive phenotypes.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Dept. of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| | - Yae Ohata
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Yukari Okita
- Dept. of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| | - Shady Younis
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jens Eriksson
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Mikael E Sellin
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Jiang Ren
- Dept. of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Dept. of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Kohei Miyazono
- Dept. of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuhiko Hikita
- Div. of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Imamura
- Dept. of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mitsuyasu Kato
- Dept. of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| | - Carl-Henrik Heldin
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Aristidis Moustakas
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
47
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
48
|
Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L. Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 2022; 36:1386-1401. [PMID: 35133045 DOI: 10.1002/ptr.7401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022]
Abstract
As one of the major diabetic microvascular complications, diabetic retinopathy (DR) is mainly initiated by the blood-retinal barrier (BRB) dysfunction. Chlorogenic acid (CGA) is a natural polyphenolic compound in Lonicerae Japonicae Flos, which traditionally has the beneficial function for eyes and is commonly included in many anti-diabetic formulas. In this study, the potential protective mechanism of CGA against DR was investigated. Streptozotocin (STZ) was used to induce diabetes in mice. CGA attenuated BRB dysfunction and reversed endothelial-mesenchymal transition (EndoMT) and epithelial-mesenchymal transition (EMT) in retinas in vivo. CGA inhibited microglia activation and reduced tumor necrosis factor (TNF)α release both in vivo and in vitro. CGA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) activation and prevented EndoMT/EMT in TNFα-treated human retinal endothelial cells (HRECs) or retinal pigment epithelial APRE19 cells. CGA alleviated endothelial/epithelial barrier oxidative injury in HRECs or APRE19 cells stimulated with TNFα, but this effect was disappeared in cells co-incubated with Nrf2 inhibitor. Additionally, the CGA-supplied alleviation on BRB damage and EndoMT/EMT was markedly weakened in retinas from STZ-treated Nrf2 knock-out mice. All results suggest that CGA improves DR through attenuating BRB injury by reducing microglia-initiated inflammation and preventing TNFα-induced EndoMT/EMT and oxidative injury via inducing Nrf2 activation.
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyu Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Shirin M, Madadi S, Peyravian N, Pezeshkian Z, Rejali L, Hosseini M, Moradi A, Khanabadi B, Sherkat G, Aghdaei HA, Nazemalhosseini-Mojarad E. A linkage between effectual genes in progression of CRC through canonical and non-canonical TGF-β signaling pathways. Med Oncol 2022; 39:40. [PMID: 35092502 DOI: 10.1007/s12032-021-01634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
Different molecular signaling pathways have been involved in the incidence and progression of CRC. We aimed to examine the correlation between eight candidate genes, including TFGβ, SMAD2, SMAD4, RhoA, EGFR, MAP2K1, MTA1, and LEF1 in the progression of colorectal cancer (CRC) and their association with clinicopathological variables and CRC patients prognosis. Immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis 2-ΔΔct, were performed to assess the expression of eight genes in 64 and 122 patients with CRC, respectively and 20 normal samples were added for verification. We showed a positive correlation between SMAD2 and MAP2K1 (r = 0.337, P < 0.001), MAP2K1 and LEF1 (r = 0.187, P = 0.03), SMAD4 and RhoA (r = 0.214, P = 0.01) and as well, a negative correlation between SMAD2 and TGFβ (r = - 0.197, P = 0.02), and RhoA and LEF1 (r = - 0.180, P = 0.04) in tumor tissues. A decrease in RhoA mRNA expression was associated with the advanced TNM stage (P = 0.01), while the EGFR and SMAD2 mRNA expression upregulated in advanced stages (P = 0.03, P = 0.03), respectively. Also, an increase in EGFR and SMAD4 protein expression was significantly associated with the advanced TNM stage (P = 0.000) (P = .002), respectively. Perceiving the connections between canonical and non-canonical Transforming growth factor (TGF-β) signaling pathway along with the epidermal growth factor receptor (EGFR) and WNT cascades may trigger the development of novel approaches for CRC prediction.
Collapse
Affiliation(s)
- Marzieh Shirin
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Sajedeh Madadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Zahra Pezeshkian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Masoumeh Hosseini
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Binazir Khanabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Ghazal Sherkat
- Medicin Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, 19857-17411, Tehran, Iran.
| |
Collapse
|
50
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|