1
|
Roy K, Ghosh S, Karmakar S, Mandal P, Hussain A, Dutta A, Pal C. Inverse correlation between Leishmania-induced TLR1/2 and TGF-β differentially regulates parasite persistence in bone marrow during the chronic phase of infection. Cytokine 2025; 185:156811. [PMID: 39612658 DOI: 10.1016/j.cyto.2024.156811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Host-tissue preference is a critical aspect of parasitic infections and is directly correlated with species diversity. Even the same species, Leishmania donovani, infects the host's bone marrow, spleen, and liver differentially. The tissue-specific persistence of Leishmania results from host-pathogen immune conflicts and arguments. The protective pro-host or destructive pro-parasitic role of TLRs during L. donovani infection has been well established, but what entirely missing is the influence of TLRs on tissue-specific parasite persistence. We observed that the parasites induced differential expression of TLR1/2 in the bone marrow but not in the spleen. Interestingly, the rate of Leishmania infection was found to be positively correlated with TLR1/2-mediated upregulation of myelopoietic cytokines, M-CSF, GM-CSF, IL-6, and IL-3, leading to the expansion of Ly6ChiCCR2+ monocytes, however, negatively correlated with the expression of the disease hallmark cytokines, TNF-α, TGF-β, and IL-10, along the course of infection in the bone marrow. Leishmania induced the activation of bone marrow-specific TLR1/2 to promote Ly6ChiCCR2+ monocytes for its safe shelter vis-à-vis infection establishment. Consequently, the established infection initiated the release of TNF-α, TGF-β, and IL-10 in the bone marrow. Post-infection time-kinetic study affirmed that TGF-β had a significant negative influence on the expression of TLR1/2 heterodimer in the bone marrow niche. To the best of our knowledge, this is the first report to show that the inverse correlation of TLR1/2 - TGF-β can be instrumental in tissue-specific parasite persistence during Leishmania infection.
Collapse
Affiliation(s)
- Kamalika Roy
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Sanhita Ghosh
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Suman Karmakar
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Pritam Mandal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Aabid Hussain
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Aritri Dutta
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Chiranjib Pal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India.
| |
Collapse
|
2
|
Cruz-Granados P, Frejo L, Perez-Carpena P, Amor-Dorado JC, Dominguez-Duran E, Fernandez-Nava MJ, Batuecas-Caletrio A, Haro-Hernandez E, Martinez-Martinez M, Lopez-Escamez JA. Multiomic-based immune response profiling in migraine, vestibular migraine and Meniere's disease. Immunology 2024; 173:768-779. [PMID: 39294737 DOI: 10.1111/imm.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Migraine (MI) is the most common neurological disease, affecting with 20% of the world population. A subset of 25% of MI patients showcase concurrent vestibular symptoms, which may classify as vestibular migraine (VM). Meniere's disease (MD) is a complex inner ear disorder defined by episodes of vertigo associated with tinnitus and sensorineural hearing loss with a significant autoimmune/autoinflammatory contribution, which symptoms overlap with VM. Blood samples from 18 patients with MI (5), VM (5) and MD (8) and 6 controls were collected and compared in a case-control study. Droplet-isolated nuclei from mononuclear cells used to generate scRNAseq and scATACseq data sets from MI, VM and MD. MI and VM have no differences in their immune transcriptome; therefore, they were considered as a single cluster for further analyses. Natural Killer (NK) cells transcriptomic data support a polarisation triggered by Type 1 innate immune cells via the release of interleukin (IL)-12, IL-15 and IL-18. According to the monocyte scRNAseq data, there were two MD clusters, one inactive and one driven by monocytes. The unique pathways of the MI + VM cluster were cellular responses to metal ions, whereas MD monocyte-driven cluster pathways showed responses to biotic stimuli. MI and MD have different immune responses. These findings support that MI and VM have a Type 1 immune lymphoid cell response, and that there are two clusters of MD patients, one inactive and one Monocyte-driven.
Collapse
Affiliation(s)
- Pablo Cruz-Granados
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Lidia Frejo
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | | | | | - Maria Jose Fernandez-Nava
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Salamanca, Salamanca, Spain
| | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Salamanca, Salamanca, Spain
| | - Elisheba Haro-Hernandez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de Baza, Granada, Spain
| | - Marta Martinez-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
3
|
Lv Y, Cheng L, Zhang X, Peng F, Yuan Y, Weng X, Lin WT. Effects of a single bout of exercise on human hemocytes and serum interleukin 3, erythropoietin, and soluble transferrin receptor in a hot and humid environment. PeerJ 2024; 12:e18603. [PMID: 39624122 PMCID: PMC11610479 DOI: 10.7717/peerj.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Exercise in humid and hot environments (HHEs) may result in decreased perception, motor performance, and memory owing to endogenous heat production and exogenous load. However, whether a single bout of exercise (SBOE) intensity affects the magnitude of changes in the levels of hemocytes remains controversial. In this article, we aimed to investigate the effects of a SBOE of varying intensities on blood cells in HHE. Methods Thirty-two volunteers were randomly divided into a quiet control group (QC), 55% VO2max intensity exercise group (HHE55%), 70% VO2max intensity exercise group (HHE70%), and 85% VO2max intensity exercise group (HHE85%). The participants in the exercise groups were assigned to perform an SBOE on the treadmill under HHE conditions for 30 min, whereas participants in the QC remained still under HHE conditions for 30 min (temperature: 28-32 °C, relative humidity: 85-95%). Results The net body mass (NBM), perfusion index (PI), mean corpuscular volume (MCV), platelet (PLT), and plateletcrit (PCT) values were affected significantly by the exercise intensity (P < 0.01) the hemoglobin (HGB) and neutrophil count (NE) were affected significantly by exercise intensity (P < 0.05). After an SBOE, compared with that before exercise, the sublingual temperature (ST) of all groups, the NBM and MCV of all exercise groups, the PI of the HHE55% and HHE70% groups, the HGB, hematocrit (HCT), and NE of the HHE70% group, the red blood cell count (RBC), PLT, and PCT of the HHE70% and HHE85% groups, and the white blood cell count (WBC) of HHE85% changed very significantly (P < 0.01). The PCT of QC, blood oxygen saturation (SaO2), and soluble transferrin receptor (sTfR) levels in the HHE55% group, the lymphocyte count (LY) in the HHE70% group, and the HGB and HCT in the HHE85% group changed significantly (P < 0.05). Conclusion Low- and moderate-intensity SBOE in HHE could increase the serum EPO and serum sTfR levels and decrease the serum IL-3 levels. Conversely, a high-intensity load could increase the risk of inflammation. Therefore, low-intensity exercise may be more appropriate for an SBOE in HHE.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, GuangZhou, Guangdong, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, GuangZhou, Guangdong, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, GuangZhou, Guangdong, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, GuangZhou, Guangdong, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yu Yuan
- Guangzhou Sport University, Guangzhou, Gaungdong, China
| | - Xiquan Weng
- Guangzhou Sport University, Guangzhou, Gaungdong, China
| | - Wen-Tao Lin
- College of Sports Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Jackson DJ, Wechsler ME, Brusselle G, Buhl R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy 2024; 79:2943-2952. [PMID: 39396109 DOI: 10.1111/all.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Eosinophilic asthma is characterized by frequent exacerbations, poor symptom control and accelerated lung function decline. It is now recognized that the immune response underlying eosinophilic asthma involves a complex network of interconnected pathways from both the adaptive and innate immune systems. Within this response, interleukin-5 (IL-5) plays a central role in eosinophil differentiation, activation and survival and has emerged as a key target for therapies treating severe asthma. The monoclonal antibodies mepolizumab and reslizumab target the ligand IL-5, preventing its interaction with eosinophils; in contrast, benralizumab binds to the IL-5 receptor (IL-5R), preventing IL-5 from binding and leading to substantially greater eosinophil reduction by enhanced antibody-dependent cell-mediated cytotoxicity. Although no direct head-to-head clinical trials of asthma have been published to formally evaluate the clinical significance of these different therapeutic approaches, the potential benefits of partial versus complete eosinophil depletion continue to remain an important area of study and debate. Here, we review the existing real-world and clinical study data of anti-IL-5/anti-IL-5R therapies in severe eosinophilic asthma.
Collapse
Affiliation(s)
- David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Roland Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| |
Collapse
|
5
|
Debeuf N, Deckers J, Lameire S, Bosteels C, Hammad H, Lambrecht BN. Inhaled GM-CSF administered during ongoing pneumovirus infection alters myeloid and CD8 T cell immunity without affecting disease outcome. Front Immunol 2024; 15:1439789. [PMID: 39439800 PMCID: PMC11493702 DOI: 10.3389/fimmu.2024.1439789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine, able to promote both myelopoiesis and activation of immune cells. Particularly in the lung, GM-CSF plays an important homeostatic role in the development and maintenance of alveolar macrophages, and is therefore considered to play a role in respiratory virus infections such as influenza and SARS-CoV-2, although the benefits of GM-CSF treatment in clinical studies remain inconclusive. To address this, we tested inhaled GM-CSF treatment in the Pneumonia Virus of Mice (PVM) mouse model. Our findings show that local GM-CSF therapy during PVM disease increased local neutrophilia and monocyte-derived cell influx, but diminished CD8+ T cells responses. Despite this, the observed effects on T cells and myeloid cells did not result in an altered clinical outcome during PVM infection. We conclude that inhaled GM-CSF therapy cannot be considered as a universal protective therapy in respiratory virus infections.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cedric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
Mansouri L, Kalm F, Björkander S, Melén E, Lundahl J, Nopp A. Sequential engagement of adhesion molecules and cytokine receptors impacts both piecemeal and anaphylactic degranulation of human basophils. Immunology 2024; 171:609-617. [PMID: 38226657 DOI: 10.1111/imm.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/07/2024] [Indexed: 01/17/2024] Open
Abstract
Basophils are rare granulocytes in circulation which home to tissues in a process depending on rolling, adhesion and cytokine exposure. However, it is still unclear how these steps affect basophil degranulation. Our aim was to imitate these processes associated with homing by sequential crosslinking of adhesion molecules and cytokine exposure and evaluate the effect on basophil piecemeal (PMD) and anaphylactic degranulation (AND). Blood donors with or without allergic asthma were recruited from an ongoing cohort study. Basophils were subjected to CD62L-, CD49d- or CD11b crosslinking and IL-3 or IL-33 stimulation in different orders followed by anti-IgE and fMLP stimulation. Basophil CD203c and CD63 expression were analysed by flow cytometry to determine PMD and AND, respectively. IL-3 induced PMD in basophils and combined with CD62L- or CD11b crosslinking, IL-3 potentiated the degranulation regardless of sequential order. IL-3 priming followed by adhesion molecule crosslinking induced AND and potentiated the effect of anti-IgE. CD62L- and CD11b crosslinking did not further potentiate this effect. CD49d crosslinking followed by IL-3 increased CD63 expression following anti-IgE. IL-3 potentiated the effect of fMLP on AND while adhesion molecule crosslinking did not. IL-33 had impact on PMD only when followed by adhesion molecule crosslinking but did not potentiate neither IgE-dependent nor IgE-independent degranulation. Our data indicate that sequential interactions between basophils, cytokines and adhesion molecule ligands have a decisive effect on basophil degranulation and that these interactions are operational for fine-tuning the activity of tissue dwelling basophils. These data should be considered when the effect of different pharmaceutical on basophil function is studied.
Collapse
Affiliation(s)
- Ladan Mansouri
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Stockholm, Sweden
| | - Frida Kalm
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Stockholm, Sweden
| | - Sophia Björkander
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Stockholm, Sweden
| | - Joachim Lundahl
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Stockholm, Sweden
| | - Anna Nopp
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Ymaña B, Enciso-Benavides J, Moncunill G, Pons MJ. Cytokine Profile Response of Human Peripheral Blood Mononuclear Cells Stimulated by Bartonella bacilliformis. J Interferon Cytokine Res 2024; 44:16-25. [PMID: 37967433 DOI: 10.1089/jir.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Carrion's disease is a neglected endemic disease found in remote Andean areas. As an overlooked disease, knowledge of innate immune responses to Bartonella bacilliformis, the etiological agent, is scarce. This study aimed to evaluate the cytokine response to B. bacilliformis using in vitro human peripheral blood mononuclear cells (PBMCs) stimulations. PBMCs from naive adults were isolated by gradient centrifugation and cocultured with heat-inactivated (HI) B. bacilliformis at different incubation times (3, 6, 12, 24, and 36 h). Cytokines, chemokines, and growth factors were determined in culture supernatants by multiplex fluorescent bead-based quantitative suspension array technology. During the first 36 h, a proinflammatory response was observed, including tumor necrosis factor-α, interleukin (IL)-1α, IL-1β, interferon-α2, and IL-6, followed by an anti-inflammatory response mainly related to IL-1RA. Moreover, high expression levels of chemokines IL-8, monocyte chemoattractant protein-1α, and macrophage inflammatory protein (MIP)-1β were detected from 3 h poststimulation and MIP-1α was detected at 24 h. Some growth factors, mainly granulocyte macrophage colony-stimulating factor and granulocyte colony-stimulating factor, and in minor concentrations vascular endothelial growth factor, epidermal growth factor, and eotaxin, were also detected. Innate response to HI B. bacilliformis stimulation consists of a rapid and strong proinflammatory response characterized by a wide range of cytokines and chemokines followed by an anti-inflammatory response and increased specific growth factors.
Collapse
Affiliation(s)
- Barbara Ymaña
- Grupo de Enfermedades Infecciosas Re-emergentes, Universidad Científica del Sur, Lima, Peru
| | | | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- Grupo de Enfermedades Infecciosas Re-emergentes, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
8
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Morroni J, Benedetti A, Esposito L, De Bardi M, Borsellino G, Riera CS, Giordani L, Bouche M, Lozanoska-Ochser B. Injury-experienced satellite cells retain long-term enhanced regenerative capacity. Stem Cell Res Ther 2023; 14:246. [PMID: 37697344 PMCID: PMC10496398 DOI: 10.1186/s13287-023-03492-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Inflammatory memory or trained immunity is a recently described process in immune and non-immune tissue resident cells, whereby previous exposure to inflammation mediators leads to a faster and stronger responses upon secondary challenge. Whether previous muscle injury is associated with altered responses to subsequent injury by satellite cells (SCs), the muscle stem cells, is not known. METHODS We used a mouse model of repeated muscle injury, in which intramuscular cardiotoxin (CTX) injections were administered 50 days apart in order to allow for full recovery of the injured muscle before the second injury. The effect of prior injury on the phenotype, proliferation and regenerative potential of satellite cells following a second injury was examined in vitro and in vivo by immunohistochemistry, RT-qPCR and histological analysis. RESULTS We show that SCs isolated from muscle at 50 days post-injury (injury-experienced SCs (ieSCs)) enter the cell cycle faster and form bigger myotubes when cultured in vitro, compared to control SCs isolated from uninjured contralateral muscle. Injury-experienced SCs were characterized by the activation of the mTORC 1 signaling pathway, suggesting they are poised to activate sooner following a second injury. Consequently, upon second injury, SCs accumulate in greater numbers in muscle at 3 and 10 days after injury. These changes in SC phenotype and behavior were associated with accelerated muscle regeneration, as evidenced by an earlier appearance of bigger fibers and increased number of myonuclei per fiber at day 10 after the second injury. CONCLUSIONS Overall, we show that skeletal muscle injury has a lasting effect on SC function priming them to respond faster to a subsequent injury. The ieSCs have long-term enhanced regenerative properties that contribute to accelerated regeneration following a secondary challenge.
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- COU of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenza Esposito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Carles Sanchez Riera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
| |
Collapse
|
10
|
Lu L, Jin Y, Tong Y, Xiao L, Hou Y, Liu Z, Dou H. Myeloid-derived suppressor cells promote the formation of abdominal aortic aneurysms through the IL-3-ICOSL-ICOS axis. BBA ADVANCES 2023; 4:100103. [PMID: 37705722 PMCID: PMC10495679 DOI: 10.1016/j.bbadva.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Th17 cells are powerful inflammation promoters in the pathogenesis of abdominal aortic aneurysms (AAAs). Myeloid-derived suppressor cells (MDSCs) can promote the differentiation of Th17 cells in chronic inflammatory autoimmune injury. Here, we aim to examine whether MDSCs regulate the differentiation of Th17 cells to participate in the development of AAA. We demonstrated an abnormal accumulation of MDSCs in AAA patients, which was positively associated with Th17 cells. We established angiotensin II-induced apolipoprotein E knockout mice and found the impaired immunosuppressive function of M-MDSCs. After systemic injection of anti-Gr-1 antibody in AAA mice to deplete circulating MDSCs, AAA formation and the differentiation of Th17 cells were abolished, and the overexpression of inducible T-cell costimulator (ICOS) on Th17 cells was reversed accordingly. Regulating the expression of ICOS ligand (ICOSL) on MDSCs affects the differentiation of Th17 cells. The adoptive transfer of ICOSLlowMDSCs in AAA mice inhibited the differentiation of Th17 cells and the development of AAA. Meanwhile, rIL-3 promoted the survival and immunosuppressive dysfunction of MDSCs, upregulated ICOSL expression on MDSCs by inhibiting activation of the PI3K/AKT signaling pathway, and regulated MDSCs to promote the differentiation of Th17 cells via the ICOSL-ICOS axis. An increase in serum IL-3, ICOSL+MDSCs, and ICOS+Th17 cells was detected in AAA patients, and IL-3 levels were positively correlated with the proportion of ICOSL+MDSC cells. In conclusion, we uncovered a pivotal role of MDSCs in promoting the differentiation of Th17 cells through the IL-3-ICOSL-ICOS axis during AAA, providing an important theoretical basis for understanding the pathogenesis of AAA.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yi Jin
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuanhao Tong
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lun Xiao
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
11
|
Naser W, Maymand S, Dlugolenski D, Basheer F, Ward AC. The Role of Cytokine-Inducible SH2 Domain-Containing Protein (CISH) in the Regulation of Basal and Cytokine-Mediated Myelopoiesis. Int J Mol Sci 2023; 24:12757. [PMID: 37628937 PMCID: PMC10454631 DOI: 10.3390/ijms241612757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cytokine-inducible SH2 domain-containing protein (CISH) is a member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators shown to play crucial roles in lymphoid cell development and function as well as appetite regulation. It has also been implicated in the control of signaling downstream of the receptors for the cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) in myeloid cells. To investigate the physiological role of CISH in myelopoiesis, mice deficient in CISH were analyzed basally and in response to administration of these cytokines. CISH knockout (KO) mice possessed basally elevated neutrophils in the blood, bone marrow, and spleen compared to wild-type (WT) mice. During GM-CSF-induced myelopoiesis, the frequency of neutrophils, myeloid dendritic cells (DCs), and CFU-M in the bone marrow was higher in the KO, as were the neutrophils and CFU-G in the spleen. In contrast, no differences were observed between KO and WT mice during G-CSF-induced myelopoiesis apart from an elevated frequency of CFU-G and CFU-M in the spleen. This work has identified a role for CISH in the negative regulation of granulopoiesis, including that mediated by GM-CSF.
Collapse
Affiliation(s)
- Wasan Naser
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (W.N.); (S.M.); (D.D.); (F.B.)
- College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Saeed Maymand
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (W.N.); (S.M.); (D.D.); (F.B.)
| | - Daniel Dlugolenski
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (W.N.); (S.M.); (D.D.); (F.B.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (W.N.); (S.M.); (D.D.); (F.B.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (W.N.); (S.M.); (D.D.); (F.B.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
12
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
14
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
15
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
16
|
Kakni P, Truckenmüller R, Habibović P, van Griensven M, Giselbrecht S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int J Mol Sci 2022; 23:15364. [PMID: 36499691 PMCID: PMC9736416 DOI: 10.3390/ijms232315364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
17
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
18
|
Peters BA, Pass HI, Burk RD, Xue X, Goparaju C, Sollecito CC, Grassi E, Segal LN, Tsay JCJ, Hayes RB, Ahn J. The lung microbiome, peripheral gene expression, and recurrence-free survival after resection of stage II non-small cell lung cancer. Genome Med 2022; 14:121. [PMID: 36303210 PMCID: PMC9609265 DOI: 10.1186/s13073-022-01126-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cancer recurrence after tumor resection in early-stage non-small cell lung cancer (NSCLC) is common, yet difficult to predict. The lung microbiota and systemic immunity may be important modulators of risk for lung cancer recurrence, yet biomarkers from the lung microbiome and peripheral immune environment are understudied. Such markers may hold promise for prediction as well as improved etiologic understanding of lung cancer recurrence. METHODS In tumor and distant normal lung samples from 46 stage II NSCLC patients with curative resection (39 tumor samples, 41 normal lung samples), we conducted 16S rRNA gene sequencing. We also measured peripheral blood immune gene expression with nanoString®. We examined associations of lung microbiota and peripheral gene expression with recurrence-free survival (RFS) and disease-free survival (DFS) using 500 × 10-fold cross-validated elastic-net penalized Cox regression, and examined predictive accuracy using time-dependent receiver operating characteristic (ROC) curves. RESULTS Over a median of 4.8 years of follow-up (range 0.2-12.2 years), 43% of patients experienced a recurrence, and 50% died. In normal lung tissue, a higher abundance of classes Bacteroidia and Clostridia, and orders Bacteroidales and Clostridiales, were associated with worse RFS, while a higher abundance of classes Alphaproteobacteria and Betaproteobacteria, and orders Burkholderiales and Neisseriales, were associated with better RFS. In tumor tissue, a higher abundance of orders Actinomycetales and Pseudomonadales were associated with worse DFS. Among these taxa, normal lung Clostridiales and Bacteroidales were also related to worse survival in a previous small pilot study and an additional independent validation cohort. In peripheral blood, higher expression of genes TAP1, TAPBP, CSF2RB, and IFITM2 were associated with better DFS. Analysis of ROC curves revealed that lung microbiome and peripheral gene expression biomarkers provided significant additional recurrence risk discrimination over standard demographic and clinical covariates, with microbiome biomarkers contributing more to short-term (1-year) prediction and gene biomarkers contributing to longer-term (2-5-year) prediction. CONCLUSIONS We identified compelling biomarkers in under-explored data types, the lung microbiome, and peripheral blood gene expression, which may improve risk prediction of recurrence in early-stage NSCLC patients. These findings will require validation in a larger cohort.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, #1315AB, The Bronx, New York, NY, 10461, USA.
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
- NYU Perlmutter Cancer Center, New York, NY, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, #1315AB, The Bronx, New York, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, The Bronx, New York, NY, USA
- Department of Microbiology & Immunology, and Obstetrics & Gynecology & Women's Health, Albert Einstein College of Medicine, The Bronx, New York, NY, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, #1315AB, The Bronx, New York, NY, 10461, USA
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | | | - Evan Grassi
- Department of Pediatrics, Albert Einstein College of Medicine, The Bronx, New York, NY, USA
| | | | | | - Richard B Hayes
- NYU Perlmutter Cancer Center, New York, NY, USA
- Department of Population Health, NYU Langone Health, New York, NY, USA
| | - Jiyoung Ahn
- NYU Perlmutter Cancer Center, New York, NY, USA
- Department of Population Health, NYU Langone Health, New York, NY, USA
| |
Collapse
|
19
|
Autoantibodies to IgE can induce the release of proinflammatory and vasoactive mediators from human cardiac mast cells. Clin Exp Med 2022:10.1007/s10238-022-00861-w. [PMID: 35879625 PMCID: PMC10390627 DOI: 10.1007/s10238-022-00861-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
Mast cells are multifunctional immune cells with complex roles in tissue homeostasis and disease. Cardiac mast cells (HCMCs) are strategically located within the human myocardium, in atherosclerotic plaques, in proximity to nerves, and in the aortic valve. HCMCs express the high-affinity receptor (FcεRI) for IgE and can be activated by anti-IgE and anti-FcεRI. Autoantibodies to IgE and/or FcεRI have been found in the serum of patients with a variety of immune disorders. We have compared the effects of different preparations of IgG anti-IgE obtained from patients with atopic dermatitis (AD) with rabbit IgG anti-IgE on the release of preformed (histamine and tryptase) and lipid mediators [prostaglandin D2 (PGD2) and cysteinyl leukotriene C4 (LTC4)] from HCMCs. Functional human IgG anti-IgE from one out of six AD donors and rabbit IgG anti-IgE induced the release of preformed (histamine, tryptase) and de novo synthesized mediators (PGD2 and LTC4) from HCMCs. Human IgG anti-IgE was more potent than rabbit IgG anti-IgE in inducing proinflammatory mediators from HCMCs. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Although functional anti-IgE autoantibodies rarely occur in patients with AD, when present, they can powerfully activate the release of proinflammatory and vasoactive mediators from HCMCs.
Collapse
|
20
|
Ahmed MM, Wang ACJ, Elos M, Chial HJ, Sillau S, Solano DA, Coughlan C, Aghili L, Anton P, Markham N, Adame V, Gardiner KJ, Boyd TD, Potter H. The innate immune system stimulating cytokine GM-CSF improves learning/memory and interneuron and astrocyte brain pathology in Dp16 Down syndrome mice and improves learning/memory in wild-type mice. Neurobiol Dis 2022; 168:105694. [PMID: 35307513 PMCID: PMC9045510 DOI: 10.1016/j.nbd.2022.105694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 μg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Athena Ching-Jung Wang
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mihret Elos
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heidi J Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leila Aghili
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paige Anton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil Markham
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanesa Adame
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Changes in immune function and immunomodulatory treatments of septic patients. Clin Immunol 2022; 239:109040. [DOI: 10.1016/j.clim.2022.109040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022]
|
22
|
Newport E, Pedrosa AR, Lees D, Dukinfield M, Carter E, Gomez-Escudero J, Casado P, Rajeeve V, Reynolds LE, R Cutillas P, Duffy SW, De Luxán Delgado B, Hodivala-Dilke K. Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth. J Pathol 2022; 256:235-247. [PMID: 34743335 DOI: 10.1002/path.5833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Endothelial Cells/enzymology
- Female
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Emma Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Delphine Lees
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Matthew Dukinfield
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Edward Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro Casado
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Louise E Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Beatriz De Luxán Delgado
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| |
Collapse
|
23
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
25
|
Abstract
Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa K Torres
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA;
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
26
|
Ahmed MM, Johnson NR, Boyd TD, Coughlan C, Chial HJ, Potter H. Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners? Front Aging Neurosci 2021; 13:718426. [PMID: 34603007 PMCID: PMC8481947 DOI: 10.3389/fnagi.2021.718426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune system activation and inflammation are associated with and may contribute to clinical outcomes in people with Down syndrome (DS), neurodegenerative diseases such as Alzheimer's disease (AD), and normal aging. In addition to serving as potential diagnostic biomarkers, innate immune system activation and inflammation may play a contributing or causal role in these conditions, leading to the hypothesis that effective therapies should seek to dampen their effects. However, recent intervention studies with the innate immune system activator granulocyte-macrophage colony-stimulating factor (GM-CSF) in animal models of DS, AD, and normal aging, and in an AD clinical trial suggest that activating the innate immune system and inflammation may instead be therapeutic. We consider evidence that DS, AD, and normal aging are accompanied by innate immune system activation and inflammation and discuss whether and when during the disease process it may be therapeutically beneficial to suppress or promote such activation.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy D. Boyd
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Partner Therapeutics, Inc., Lexington, MA, United States
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Abstract
Sepsis is a host immune disorder induced by infection. It can lead to multiple organ dysfunction syndrome (MODS), which has high morbidity and mortality. There has been great progress in the clinical diagnosis and treatment of sepsis, such as improvements in pathogen detection technology, innovations regarding anti-infection drugs, and the development of organ function support. Abnormal immune responses triggered by pathogens, ranging from excessive inflammation to immunosuppression, are recognized to be an important cause of the high mortality rate. However, no drugs have been approved specifically for treating sepsis. Here, we review the recent research progress on immune responses in sepsis to provide a theoretical basis for the treatment of sepsis. Constructing and optimizing a dynamic immune system treatment regimen based on anti-infection treatment, fluid replacement, organ function support, and timely use of immunomodulatory interventions may improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Department of Geriatrics, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Fogha J, Bayry J, Diharce J, de Brevern AG. Structural and evolutionary exploration of the IL-3 family and its alpha subunit receptors. Amino Acids 2021; 53:1211-1227. [PMID: 34196789 DOI: 10.1007/s00726-021-03026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-3 (IL-3) is a cytokine belonging to the family of common β (βc) and is involved in various biological systems. Its activity is mediated by the interaction with its receptor (IL-3R), a heterodimer composed of two distinct subunits: IL-3Rα and βc. IL-3 and its receptor, especially IL-3Rα, play a crucial role in pathologies like inflammatory diseases and therefore are interesting therapeutic targets. Here, we have performed an analysis of these proteins and their interaction based on structural and evolutionary information. We highlighted that IL-3 and IL-3Rα structural architectures are conserved across evolution and shared with other proteins belonging to the same βc family interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IL-3Rα/IL-3 interaction is mediated by a large interface in which most residues are surprisingly not conserved during evolution and across family members. In spite of this high variability, we suggested small regions constituted by few residues conserved during the evolution in both proteins that could be important for the binding affinity.
Collapse
Affiliation(s)
- Jade Fogha
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche Des Cordeliers, Institut National de La Santé Et de La Recherche Médicale, Sorbonne Université, Université de Paris, 75006, Paris, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad, 678 557, India
| | - Julien Diharce
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
| | - Alexandre G de Brevern
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
- UMR_S 1134, DSIMB, Université de La Réunion, Inserm, Biologie Intégrée du Globule Rouge, La Réunion, 97744, Saint-Denis, France.
| |
Collapse
|
29
|
Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R, Francis F, Huang J, Varankovich N, Liu A, Bao W, Bjerregaard-Andersen M, Schaltz-Buchholzer F, Sanca L, Golding CN, Larsen KL, Levy O, Kampmann B, Tan R, Charles A, Wynn JL, Shann F, Aaby P, Benn CS, Tebbutt SJ, Kollmann TR, Amenyogbe N. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med 2021; 12:12/542/eaax4517. [PMID: 32376769 DOI: 10.1126/scitranslmed.aax4517] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Danny J Harbeson
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Daniel He
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada.,PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Joe Huang
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Natallia Varankovich
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Aaron Liu
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Winnie Bao
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Lilica Sanca
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christian N Golding
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kristina Lindberg Larsen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, P.O. Box 273, Banjul, The Gambia.,Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - Adrian Charles
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - James L Wynn
- Department of Paediatrics and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, P.O. Box 100296, Gainesville, FL 32610-0296, USA
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Scott J Tebbutt
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
30
|
Avendaño-Félix M, Ochoa-Ramírez LA, Ramos-Payán R, Aguilar-Medina M, Ayala-Ham A, Rendón-Aguilar H, Lizárraga-Verdugo E, Peraza-Garay F, Ríos-Tostado JJ, Velarde-Félix JS. Lack of Effects of the Genetic Polymorphisms of Interleukin-10 in Clinical Outcomes of COVID-19. Viral Immunol 2021; 34:567-572. [PMID: 34115949 DOI: 10.1089/vim.2021.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) gene polymorphisms have been associated with severity and outcomes in patients with respiratory and nonrespiratory viral infections. The aim of this study was to assess whether rs1800871 and rs1800872 polymorphisms of IL-10 gene are associated with the clinical outcomes of COVID-19 in a Mexican population. Study subjects were 193 COVID-19 patients. The genotyping was carried out with real-time PCR and serum IL-10 levels were measured with enzyme-linked immunosorbent assay. Logistic regression analysis was used for analysis association with clinical outcomes. There was no evidence of an association between alleles, genotypes, or haplotypes frequencies between patient groups according to severity and outcomes. The rs1800871 and rs1800872 polymorphisms might not be genetic risk factors for severity and mortality for COVID-19 in Mexican mestizos patients from northwest Mexico.
Collapse
Affiliation(s)
- Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa (Z. C: 80013), Culiacán, México
| | - Luis Antonio Ochoa-Ramírez
- Hospital General de Culiacán, "Bernardo J Gastélum," Secretaria de Salud de Sinaloa (Z.C: 80230), Culiacán, México
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa (Z. C: 80013), Culiacán, México
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa (Z. C: 80013), Culiacán, México
| | - Alfredo Ayala-Ham
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Horacio Rendón-Aguilar
- Hospital General de Culiacán, "Bernardo J Gastélum," Secretaria de Salud de Sinaloa (Z.C: 80230), Culiacán, México
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa (Z. C: 80013), Culiacán, México
| | - Felipe Peraza-Garay
- Centro de Investigación y Docencia en Ciencias de la Salud (Z.C: 80030), Culiacán, México
| | - Juan José Ríos-Tostado
- Hospital General de Culiacán, "Bernardo J Gastélum," Secretaria de Salud de Sinaloa (Z.C: 80230), Culiacán, México.,Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Jesús Salvador Velarde-Félix
- Hospital General de Culiacán, "Bernardo J Gastélum," Secretaria de Salud de Sinaloa (Z.C: 80230), Culiacán, México.,Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| |
Collapse
|
31
|
Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma 2021; 62:2568-2586. [PMID: 33999767 DOI: 10.1080/10428194.2021.1927021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following the observation of interleukin 3 receptor α chain (IL-3Rα; CD123) upregulation on leukemia stem cells (LSCs) almost two decades ago, targeted treatment via CD123-diptheria toxin conjugates has now been tested in patients with diverse myeloid malignancies. Targeted eradication of LSCs could result in effective treatments for many challenging diseases initiated by these cells. Consequently, considerable effort has been directed toward targeting CD123 as a potential strategy for treating patients with hematologic malignancies in which CD123 is overexpressed. However, these therapies have had limited success so far, highlighting the need for suitable criteria to identify patients who could benefit from them. Given the diversity in CD123 expression across different hematologic malignancies, understanding CD123 expression patterns and the functional pathogenetic significance is crucial. Here, we review the methodologies available for CD123 assessment and discuss the biological and clinical characteristics of patients for whom CD123-targeting therapies may have a clinical impact.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tariq I Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA, USA.,Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Christopher Brooks
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Ross Lindsay
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Potter H, Woodcock JH, Boyd TD, Coughlan CM, O'Shaughnessy JR, Borges MT, Thaker AA, Raj BA, Adamszuk K, Scott D, Adame V, Anton P, Chial HJ, Gray H, Daniels J, Stocker ME, Sillau SH. Safety and efficacy of sargramostim (GM-CSF) in the treatment of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12158. [PMID: 33778150 PMCID: PMC7988877 DOI: 10.1002/trc2.12158] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Inflammatory markers have long been observed in the brain, cerebrospinal fluid (CSF), and plasma of Alzheimer's disease (AD) patients, suggesting that inflammation contributes to AD and might be a therapeutic target. However, non-steroidal anti-inflammatory drug trials in AD and mild cognitive impairment (MCI) failed to show benefit. Our previous work seeking to understand why people with the inflammatory disease rheumatoid arthritis are protected from AD found that short-term treatment of transgenic AD mice with the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) led to an increase in activated microglia, a 50% reduction in amyloid load, an increase in synaptic area, and improvement in spatial memory to normal. These results called into question the consensus view that inflammation is solely detrimental in AD. Here, we tested our hypothesis that modulation of the innate immune system might similarly be used to treat AD in humans by investigating the ability of GM-CSF/sargramostim to safely ameliorate AD symptoms/pathology. METHODS A randomized, double-blind, placebo-controlled trial was conducted in mild-to-moderate AD participants (NCT01409915). Treatments (20 participants/group) occurred 5 days/week for 3 weeks plus two follow-up (FU) visits (FU1 at 45 days and FU2 at 90 days) with neurological, neuropsychological, blood biomarker, and imaging assessments. RESULTS Sargramostim treatment expectedly changed innate immune system markers, with no drug-related serious adverse events or amyloid-related imaging abnormalities. At end of treatment (EOT), the Mini-Mental State Examination score of the sargramostim group increased compared to baseline (P = .0074) and compared to placebo (P = .0370); the treatment effect persisted at FU1 (P = .0272). Plasma markers of amyloid beta (Aβ40 [decreased in AD]) increased 10% (P = .0105); plasma markers of neurodegeneration (total tau and UCH-L1) decreased 24% (P = .0174) and 42% (P = .0019), respectively, after sargramostim treatment compared to placebo. DISCUSSION The innate immune system is a viable target for therapeutic intervention in AD. An extended treatment trial testing the long-term safety and efficacy of GM-CSF/sargramostim in AD is warranted.
Collapse
Affiliation(s)
- Huntington Potter
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Jonathan H. Woodcock
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Christina M. Coughlan
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - John R. O'Shaughnessy
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Manuel T. Borges
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ashesh A. Thaker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | | | | | - Vanesa Adame
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paige Anton
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Heidi J. Chial
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Helen Gray
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Joseph Daniels
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Michelle E. Stocker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Stefan H. Sillau
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| |
Collapse
|
33
|
Mattos EBDA, Pereira PR, Mérida LAD, Corrêa ACNTF, Freire MPV, Paschoalin VMF, Teixeira GAPB, Pinho MDFB, Verícimo MA. Taro Lectin Can Act as a Cytokine-Mimetic Compound, Stimulating Myeloid and T Lymphocyte Lineages and Protecting Progenitors in Murine Bone Marrow. Pharmaceutics 2021; 13:pharmaceutics13030350. [PMID: 33800086 PMCID: PMC8001523 DOI: 10.3390/pharmaceutics13030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Taro (Colocasia esculenta) corm is traditionally consumed as a medicinal plant to stimulate immune responses and restore a health status. Tarin, a taro lectin, is considered responsible for the immunomodulatory effects of taro. In the present study, in order to investigate the effects of tarin on bone marrow hematopoietic population, murine cells were stimulated with tarin combined with a highly enriched conditioned medium containing either IL-3 or GM-CSF. Cells challenged with tarin proliferated in a dose-dependent manner, evidenced by the increase in cell density and number of clusters and colonies. Tarin exhibited a cytokine-mimetic effect similar to IL-3 and GM-CSF, increasing granulocytic cell lineage percentages, demonstrated by an increase in the relative percentage of Gr-1+ cells. Tarin does not increase lymphocytic lineages, but phenotyping revealed that the relative percentage of CD3+ cells was increased with a concomitant decrease in CD19+ and IL-7Rα+ cells. Most bone marrow cells were stained with tarin-FITC, indicating non-selective tarin binding, a phenomenon that must still be elucidated. In conclusion, taro corms contain an immunomodulatory lectin able to boost the immune system by promoting myeloid and lymphoid hematopoietic progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Erika Bertozzi de Aquino Mattos
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| | - Patricia Ribeiro Pereira
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Sala 545, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; (P.R.P.); (A.C.N.T.F.C.)
| | - Lyris Anunciata Demétrio Mérida
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| | - Anna Carolina Nitzsche Teixeira Fernandes Corrêa
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Sala 545, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; (P.R.P.); (A.C.N.T.F.C.)
| | - Maria Paula Vigna Freire
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| | - Vania Margaret Flosi Paschoalin
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Sala 545, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; (P.R.P.); (A.C.N.T.F.C.)
- Correspondence: ; Tel.: +55-(21)-3938-7362
| | - Gerlinde Agate Platais Brasil Teixeira
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| | - Maria de Fátima Brandão Pinho
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| | - Maurício Afonso Verícimo
- Biology Institute, Federal University (UFF), Rua Alexandre Moura, No. 8, Bloco M, Sala. 505, Gragoatá, Niterói, RJ 24210-200, Brazil; (E.B.d.A.M.); (L.A.D.M.); (M.P.V.F.); (G.A.P.B.T.); (M.d.F.B.P.); (M.A.V.)
| |
Collapse
|
34
|
Chulpanova DS, Gilazieva ZE, Kletukhina SK, Aimaletdinov AM, Garanina EE, James V, Rizvanov AA, Solovyeva VV. Cytochalasin B-Induced Membrane Vesicles from Human Mesenchymal Stem Cells Overexpressing IL2 Are Able to Stimulate CD8 + T-Killers to Kill Human Triple Negative Breast Cancer Cells. BIOLOGY 2021; 10:biology10020141. [PMID: 33579033 PMCID: PMC7916789 DOI: 10.3390/biology10020141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Almost all human cells release extracellular vesicles participating in intercellular communication. Extracellular vesicles are rounded structures surrounded by the cytoplasmic membrane, which embody cytoplasmic contents of the parental cells, which makes extracellular vesicles a promising therapeutic tool for cell-free cancer therapy. In this study, human mesenchymal stem cells were genetically modified to overexpress human interleukin-2 (IL2), a cytokine which regulates the proliferation and activation of immune cells. Membrane vesicle release from native and genetically modified stem cells was induced by cytochalasin B treatment to increase the yield of membrane vesicles. To evaluate the immunomodulating properties of isolated membrane vesicles, immune cells were isolated from human peripheral blood and co-cultured with membrane vesicles from native or IL2 overexpressing stem cells. To analyze the anti-tumor activity of immune cells after interaction with IL2-enriched membrane vesicles, immune cells were co-cultured with triple negative breast cancer cells. As a result, IL2-enriched membrane vesicles were able to activate and stimulate the proliferation of immune cells, which in turn were able to induce apoptosis in breast cancer cells. Therefore, the production of IL2-enriched membrane vesicles represents a unique opportunity to meet the potential of extracellular vesicles to be used in clinical applications for cancer therapy. Abstract Interleukin 2 (IL2) was one of the first cytokines used for cancer treatment due to its ability to stimulate anti-cancer immunity. However, recombinant IL2-based therapy is associated with high systemic toxicity and activation of regulatory T-cells, which are associated with the pro-tumor immune response. One of the current trends for the delivery of anticancer agents is the use of extracellular vesicles (EVs), which can carry and transfer biologically active cargos into cells. The use of EVs can increase the efficacy of IL2-based anti-tumor therapy whilst reducing systemic toxicity. In this study, human adipose tissue-derived mesenchymal stem cells (hADSCs) were transduced with lentivirus encoding IL2 (hADSCs-IL2). Membrane vesicles were isolated from hADSCs-IL2 using cytochalasin B (CIMVs-IL2). The effect of hADSCs-IL2 and CIMVs-IL2 on the activation and proliferation of human peripheral blood mononuclear cells (PBMCs) as well as the cytotoxicity of activated PBMCs against human triple negative cancer MDA-MB-231 and MDA-MB-436 cells were evaluated. The effect of CIMVs-IL2 on murine PBMCs was also evaluated in vivo. CIMVs-IL2 failed to suppress the proliferation of human PBMCs as opposed to hADSCs-IL2. However, CIMVs-IL2 were able to activate human CD8+ T-killers, which in turn, killed MDA-MB-231 cells more effectively than hADSCs-IL2-activated CD8+ T-killers. This immunomodulating effect of CIMVs-IL2 appears specific to human CD8+ T-killer cells, as the same effect was not observed on murine CD8+ T-cells. In conclusion, the use of CIMVs-IL2 has the potential to provide a more effective anti-cancer therapy. This compelling evidence supports further studies to evaluate CIMVs-IL2 effectiveness, using cancer mouse models with a reconstituted human immune system.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Sevindzh K. Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Aleksandr M. Aimaletdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Victoria James
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (Z.E.G.); (S.K.K.); (A.M.A.); (E.E.G.); (A.A.R.)
- Correspondence: ; Tel.: +7-919-649-9343
| |
Collapse
|
35
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
37
|
Tarrant JC, Binder ZA, Bugatti M, Vermi W, van den Oord J, Ranieri B, Assenmacher CA, Hoepp N, O'Rourke DM, Shan X, Danet-Desnoyers G, Radaelli E. Pathology of macrophage activation syndrome in humanized NSGS mice. Res Vet Sci 2020; 134:137-146. [PMID: 33383491 DOI: 10.1016/j.rvsc.2020.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
"Humanized" immunodeficient mice generated via the transplantation of CD34+ human hematopoietic stem cells (hHSC) are an important preclinical model system. The triple transgenic NOD.Cg-PrkdcscidIl2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSGS) mouse line is increasingly used as recipient for CD34+ hHSC engraftment. NSGS mice combine the features of the highly immunodeficient NSG mice with transgenic expression of the human myeloid stimulatory cytokines GM-CSF, IL-3, and Kit ligand. While generating humanized NSGS (huNSGS) mice from two independent cohorts, we encountered a fatal macrophage activation syndrome (MAS)-like phenotype resulting from the transplantation of CD34+ hHSC. huNSGS mice exhibiting this phenotype declined clinically starting at approximately 10 weeks following CD34+ hHSC engraftment, with all mice requiring euthanasia by 16 weeks. Gross changes comprised small, irregular liver, splenomegaly, cardiomegaly, and generalized pallor. Hematological abnormalities included severe thrombocytopenia and anemia. Pathologically, huNSGS spontaneously developed a disseminated histiocytosis with infiltrates of activated macrophages and hemophagocytosis predominantly affecting the liver, spleen, bone marrow, and pancreas. The infiltrates were chimeric with a mixture of human and mouse macrophages. Immunohistochemistry suggested activation of the inflammasome in both human and murine macrophages. Active Epstein-Barr virus infection was not a feature. Although the affected mice exhibited robust chimerism of the spleen and bone marrow, the phenotype often developed in the face of low chimerism of the peripheral blood. Given the high penetrance and early lethality associated with the MAS-like phenotype here described, we urge caution when considering the use of huNSGS mice for the development of long-term studies.
Collapse
Affiliation(s)
- James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Brona Ranieri
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Natalie Hoepp
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaochuan Shan
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Distinct systemic cytokine networks in symptomatic and asymptomatic carotid stenosis. Sci Rep 2020; 10:21963. [PMID: 33319833 PMCID: PMC7738491 DOI: 10.1038/s41598-020-78941-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory processes are crucial in atherosclerosis and atherothrombosis. This study aimed to identify a cytokine-pattern that is associated with plaque-vulnerability or symptomatic state in comprehensively investigated patients with symptomatic (sCS) and asymptomatic carotid stenosis (aCS). Twenty-two patients with sCS and twenty-four patients with aCS undergoing carotid endarterectomy (CEA) were considered. A cytokine-panel was measured in plasma-specimens prior to surgery and at a 90 day follow-up. Doppler-ultrasound detecting microembolic signals (MES) in the ipsilateral middle cerebral artery was performed. Carotid plaques were analysed regarding histopathological criteria of plaque-vulnerability and presence of chemokine receptor CXCR4. Correction for multiple comparisons and logistic regression analysis adjusting for vascular risk factors, grade of stenosis, antithrombotic and statin pretreatment were applied. In sCS-patients higher plasma-levels of Fractalkine (CX3CL1), IFN-α2, IL-1β, IL-2, IL-3, IL-7 were found compared to aCS-patients. CXCR4-expression on inflammatory cells was more evident in sCS- compared to aCS-plaques and was associated with vulnerability-criteria. In contrast, plasma-cytokine-levels were not related to CXCR4-expression or other vulnerability-criteria or MES. However, in both groups distinct inter-cytokine correlation patterns, which persisted at follow-up and were more pronounced in the sCS-group could be detected. In conclusion, we identified a distinct cytokine/chemokine-network in sCS-patients with elevated and closely correlated mediators of diverse functions.
Collapse
|
39
|
Sharma A, Sarkaraisamy P, Shukla S, Alam SI. Screening of immunogenic proteins from extracellular proteome of C. botulinum type B by immunoproteomic approach. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1835671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Arti Sharma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, India
- Government Degree College Prithvipur, Niwari, India
| | | | - Sangeeta Shukla
- Zoology Department, Jiwaji University Gwalior, Gwalior, India
| | - Syed Imtiaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
40
|
TET2/IDH1/2/WT1 and NPM1 Mutations Influence the RUNX1 Expression Correlations in Acute Myeloid Leukemia. ACTA ACUST UNITED AC 2020; 56:medicina56120637. [PMID: 33255417 PMCID: PMC7760270 DOI: 10.3390/medicina56120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Background and objectives: Mutational analysis has led to a better understanding of acute myeloid leukemia (AML) biology and to an improvement in clinical management. Some of the most important mutations that affect AML biology are represented by mutations in genes related to methylation, more specifically: TET2, IDH1, IDH2 and WT1. Because it has been shown in numerous studies that mutations in these genes lead to similar expression profiles and phenotypes in AML, we decided to assess if mutations in any of those genes interact with other genes important for AML. Materials and Methods: We downloaded the clinical data, mutational profile and expression profile from the TCGA LAML dataset via cBioPortal. Data were analyzed using classical statistical methods and functional enrichment analysis software represented by STRING and GOrilla. Results: The first step we took was to assess the 196 AML cases that had a mutational profile available and observe the mutations that overlapped with TET2/IDH1/2/WT1 mutations. We observed that RUNX1 mutations significantly overlap with TET2/IDH1/2/WT1 mutations. Because of this, we decided to further investigate the role of RUNX1 mutations in modulating the level of RUNX1 mRNA and observed that RUNX1 mutant cases presented higher levels of RUNX1 mRNA. Because there were only 16 cases of RUNX1 mutant samples and that mutations in this gene determined a change in mRNA expression, we further observed the correlation between RUNX1 and other mRNAs in subgroups regarding the presence of hypermethylating mutations and NPM1. Here, we observed that both TET2/IDH1/2/WT1 and NPM1 mutations increase the number of genes negatively correlated with RUNX1 and that these genes were significantly linked to myeloid activation. Conclusions: In the current study, we have shown that NPM1 and TET2/IDH1/2/WT1 mutations increase the number of negative correlations of RUNX1 with other transcripts involved in myeloid differentiation.
Collapse
|
41
|
Zhao J, Wang M, Yang Y, Wang G, Che F, Li Q, Zhang L. CD123 thioaptamer protects against sepsis via the blockade between IL-3/CD123 in a cecal ligation and puncture rat model. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:16-31. [PMID: 32985358 DOI: 10.1080/15257770.2020.1815770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis is one of the most common causes of death in ICU and especially is a harmful and a life-threatened disease to pediatrics in the world. It has been demonstrated that IL-3 plays an essential role in the processing of sepsis and the inhibition of IL-3 may alleviate sepsis progress. In our previous study, we selected a novel CD123 aptamer successfully which could inhibit the interaction of CD123 and IL-3. The aim of this study is to explore the protection ability of the first thioaptamer SS30 against sepsis in a cecal ligation and puncture (CLP) rat model. Serum IL-3 level of sepsis patients was assessed by ELISA. CLP rat model was applied in all experimental groups. CD123 thioaptamer SS30 and CD123 antibody were used to block the recognition between IL-3 and CD123. Body weight, temperature, blood gas, MAP, and serum cytokines of four grouped rats were assessed. Flow cytometry was utilized to evaluate JAK2 and STAT5 proteins. After the administration of SS30 or CD123 antibody, the rats in SS30 and CD123 antibody group had lower cytokines values(lactate, TNF-α, IL-1β, and IL-6), whereas exhibited higher value of core temperature, MAP, PO2/FiO2, and ETCO2 than those in the CLP group. The expression level of phosphorylated JAK2 and STAT5 was declined and the survival rate of rats was increased. In addition, the protection ability of SS30 was better than CD123 antibody. Therefore, CD123 thioaptamer SS30 could reduce mortality by down-regulating the phosphorylated JAK2/STAT5 signaling pathway, and reduce serum cytokines which involving in sepsis development in CLP rat model.
Collapse
Affiliation(s)
- Jiangang Zhao
- Department of Neonatal, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Meng Wang
- Department of Orthopaedics, The NO. 946 hospital of PLA, Yi-Ning, Xin-Jiang, People's Republic of China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Guoxia Wang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Qiao Li
- Department of Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
42
|
Varricchi G, Bencivenga L, Poto R, Pecoraro A, Shamji MH, Rengo G. The emerging role of T follicular helper (T FH) cells in aging: Influence on the immune frailty. Ageing Res Rev 2020; 61:101071. [PMID: 32344191 DOI: 10.1016/j.arr.2020.101071] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023]
Abstract
The world population is undergoing a rapid expansion of older adults. Aging is associated with numerous changes that affect all organs and systems, including every component of the immune system. Immunosenescence is a multifaceted process characterized by poor response to vaccine and higher incidence of bacterial and viral infections, cancer, cardiovascular and autoimmune diseases. Immunosenescence has been associated with chronic low-grade inflammation referred to as inflammaging, whose underlying mechanisms remain incompletely elucidated, including age-related changes affecting components of the innate and adaptive immune system. T follicular helper (TFH) cells, present in lymphoid organs and in peripheral blood, are specialized in providing cognate help to B cells and are required for the production of immunoglobulins. Several subsets of TFH cells have been identified in humans and mice and modifications in TFH cell phenotype and function progressively occur with age. Dysfunctional TFH cells play a role in cancer, autoimmune and cardiovascular diseases, all conditions particularly prevalent in elderly subjects. A specialized population of Treg cells, named T follicular regulatory (TFR) cells, present in lymphoid organs and in peripheral blood, exerts opposing roles to TFH cells in regulating immunity. Indeed, changes in TFH/TFR cell ratio constitute a relevant feature of aging. Herein we discuss the cellular and molecular changes in both TFH cells and TFR cells that occur in aging and recent findings suggesting that TFH cells and/or their subsets could be involved in atherosclerosis, cancer, and autoimmunity.
Collapse
|
43
|
Mury P, Dupuis J, Thorin E. A Novel Molecular Pathway of Plaque Vulnerability Reveals a Cholesterol-Independent Effect of Statins and Supports Inflammation as a Therapeutic Target. Can J Cardiol 2020; 36:1710-1713. [PMID: 32315602 DOI: 10.1016/j.cjca.2020.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pauline Mury
- Faculty of Medicine, Department of Pharmacology and Physiology, University of Montreal, Montreal, Québec, Canada; Montreal Heart Institute, Research Center, Montreal, Québec, Canada.
| | - Jocelyn Dupuis
- Montreal Heart Institute, Research Center, Montreal, Québec, Canada; Faculty of Medicine, Department of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, University of Montreal, Montreal, Québec, Canada; Montreal Heart Institute, Research Center, Montreal, Québec, Canada; Faculty of Medicine, Department of Surgery, University of Montreal, Montreal, Québec, Canada
| |
Collapse
|
44
|
Tong Y, Lear TB, Evankovich J, Chen Y, Londino JD, Myerburg MM, Zhang Y, Popescu ID, McDyer JF, McVerry BJ, Lockwood KC, Jurczak MJ, Liu Y, Chen BB. The RNFT2/IL-3Rα axis regulates IL-3 signaling and innate immunity. JCI Insight 2020; 5:133652. [PMID: 31990690 DOI: 10.1172/jci.insight.133652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Interleukin-3 (IL-3) receptor α (IL-3Rα) is the α subunit of the ligand-specific IL-3R and initiates intracellular signaling in response to IL-3. IL-3 amplifies proinflammatory signaling and cytokine storm in murine sepsis models. Here we found that RNFT2 (RING finger transmembrane-domain containing protein 2, also TMEM118), a previously uncharacterized RING finger ubiquitin E3 ligase, negatively regulated IL-3-dependent cellular responses through IL-3Rα ubiquitination and degradation in the proteasome. In vitro, IL-3 stimulation promoted IL-3Rα proteasomal degradation dependent on RNFT2, and we identified IL-3Rα lysine 357 as a ubiquitin acceptor site. We determined that LPS priming reduces RNFT2 abundance, extends IL-3Rα half-life, and sensitizes cells to the effects of IL-3, acting synergistically to increase proinflammatory signaling. In vivo, IL-3 synergized with LPS to exacerbate lung inflammation in LPS and Pseudomonas aeruginosa-challenged mice; conversely, IL-3 neutralization reduced LPS-induced lung injury. Further, RNFT2 overexpression reduced lung inflammation and injury, whereas Rnft2 knockdown exacerbated inflammatory responses in LPS-induced murine lung injury. Last, we examined RNFT2 and IL-3Rα in human lung explants from patients with cystic fibrosis and also showed that IL-3 is elevated in mechanically ventilated critically ill humans at risk for acute respiratory distress syndrome. These results identify RNFT2 as a negative regulator of IL-3Rα and show a potential role for the RNFT2/IL-3Rα/IL-3 axis in regulating innate immune responses in the lung.
Collapse
Affiliation(s)
- Yao Tong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanwen Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - James D Londino
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael M Myerburg
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iulia D Popescu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine
| | - Yuan Liu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, and
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Abstract
Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.
Collapse
|
46
|
Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, Scadding GW, Varricchi G. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Pharmacol 2019; 10:1387. [PMID: 31866859 PMCID: PMC6908970 DOI: 10.3389/fphar.2019.01387] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Approximately 5–10% of asthmatic patients worldwide suffer from severe asthma. Experimental and clinical studies have demonstrated that IL-13 is an important cytokine in chronic airways inflammation. IL-13 is involved in Th2 inflammation and has been identified as a possible therapeutic target in the treatment of asthma. Two different human monoclonal antibodies (mAbs) anti-IL-13 (tralokinumab and lebrikizumab) block binding and signaling of IL-13 to its receptors, IL-13Rα1 and IL-13Rα2. Several randomized, double-blind, placebo-controlled multicenter studies have evaluated the safety and efficacy of tralokinumab and lebrikizumab in the treatment of adult patients with severe asthma, but all have failed to meet their primary endpoints. No serious adverse events related to the treatment with these anti-IL-13 mAbs have been reported in these studies. These negative clinical results contrast with positive findings from blocking IL-13 signaling in experimental models of asthma, raising doubts about the transferrable value of some models. Interestingly, dupilumab, a mAb which blocks both IL-4 and IL-13 signaling reduces exacerbation rates and improves lung function in severe asthmatics. These results suggest that IL-4 and IL-13 share some, but not all functional activities in airway inflammation. Tralokinumab might show efficacy in a highly selected cohort of asthmatics characterized by overexpression of IL-13.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Valentina Pucino
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Pecoraro
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Enrico Heffler
- Personalized Medicine, Asthma, and Allergy, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Guy W Scadding
- Allergy and Clinical Immunology, Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
47
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
48
|
Thomas R, Al-Rashed F, Akhter N, Al-Mulla F, Ahmad R. ACSL1 Regulates TNFα-Induced GM-CSF Production by Breast Cancer MDA-MB-231 Cells. Biomolecules 2019; 9:biom9100555. [PMID: 31581558 PMCID: PMC6843696 DOI: 10.3390/biom9100555] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in different types of cancer is associated with tumor growth and progression. Tumor necrosis factor-α (TNFα) is involved in the induction of GM-CSF in different cells; however, the underlying molecular mechanism in this production of GM-CSF has not been fully revealed. Recently, it was noted that TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we investigated the role of ACSL1 in the TNFα mediated production of GM-CSF. Our results showed that MDA-MB-231 cells displayed increased GM-CSF mRNA expression and secretion after incubation with TNFα. Blocking of ACSL1 activity in the cells with triacsin C markedly suppressed the secretion of GM-CSF. However, inhibition of β-oxidation and ceramide biosynthesis were not required for GM-CSF production. By small interfering RNA mediated knockdown, we further demonstrated that TNFα induced GM-CSF production was significantly diminished in ACSL1 deficient cells. TNFα mediated GM-CSF expression was significantly reduced by inhibition of p38 MAPK, ERK1/2 and NF-κB signaling pathways. TNFα induced phosphorylation of p38, ERK1/2, and NF-κB was observed during the secretion of GM-CSF. On the other hand, inhibition of ACSL1 activity attenuates TNFα mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB in the cells. Importantly, our findings suggest that ACSL1 plays an important role in the regulation of GM-CSF induced by TNFα in MDA-MB-231 cells. Therefore, ACSL1 may be considered as a potential novel therapeutic target for tumor growth.
Collapse
Affiliation(s)
- Reeby Thomas
- Microbiology & Immunology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Fatema Al-Rashed
- Microbiology & Immunology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Nadeem Akhter
- Microbiology & Immunology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Rasheed Ahmad
- Microbiology & Immunology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
49
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|