1
|
Hou J, Li A, Wang G, Qin X, Liu Y. Metabolomics analysis of Astragali Radix in Shanxi Province: Investigating the impact of various cultivation methods and growth years on metabolite profiles. Food Chem 2025; 468:142492. [PMID: 39700793 DOI: 10.1016/j.foodchem.2024.142492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Astragali radix (HQ) is a herb with rich medicinal and edible value. Wild-simulated HQ (FYS) and Transplanted HQ (PZ) are its currently two primary forms available in the market. Metabolomics was employed to investigate their intricate metabolic variations under various cultivation methods and growth years. Notable similarities were observed in their metabolic changes across various growth years. Specifically, saponins was higher in the early growth phase, while flavonoids increased in the later. Additionally, comparative analysis of HQ samples from different cultivation methods indicated that FYS generally exhibited different chemical characteristics compared to PZ within the same market circulation period, and Calycosin-7-O-Glc-6"-O-acetate and Cycloastragenol-H2O might be used to discriminant them (the content of Calycosin-7-O-Glc-6"-O-acetate and Cycloastragenol-H2O was higher in FYS than in PZ). This approach elucidates the dynamic change pattern of characteristic metabolites and pinpoints potential biomarkers for both FYS and PZ, thereby enhancing our understanding of these medicinal materials.
Collapse
Affiliation(s)
- Jinli Hou
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Guohong Wang
- Department of Pharmacy, Shanxi Traditional Chinese Medicine Hospital, Taiyuan 030012, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi-Zhendong Pharmaceutical Co., Ltd, Shanxi Key Laboratory of Medicinal and Edible Homology Functional Food, Chang zhi 047100, PR China.
| |
Collapse
|
2
|
Ma Y, Zhang Y, Zhao Y, Wang J, Hu Q, Yang L, Chen S, Diao Y, Ma H. Comparison of the Antioxidant Capacity of Cell Wall-Broken Decoction Pieces and Traditional Decoction Pieces of Astragli Radix Based on HPLC-ABTS Analytical Method. Biomed Chromatogr 2025; 39:e6052. [PMID: 39587434 DOI: 10.1002/bmc.6052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
In this study, an online antioxidant assay based on HPLC-ABTS was mainly developed for screening the antioxidants of flavonoids from Astragali Radix (AR), and comparing the antioxidant capacity between traditional decoction pieces (TDP) of AR and cell wall-broken decoction pieces (CDP) of AR. The experimental results showed that the overall antioxidant capacity of CDP of AR was about twice as much as that of TDP of AR, which was specifically expressed as the antioxidant capacity of the screened antioxidants extracted from CDP was equivalent to 1.9-5.1 times that of those extracted from TDP, and three antioxidants were successfully screened, which were calycosin-7-O-β-D-glucoside, calycosin, and formononetin. The method established in this study is characterized by high efficiency and accuracy, which can simultaneously accomplish the screening of antioxidant components and the comparison of antioxidant capacity between samples, and provides a new method for the quality evaluation of AR from the perspective of antioxidant activity.
Collapse
Affiliation(s)
- Yonglin Ma
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yue Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yu Zhao
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Jiwen Wang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Qianqian Hu
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Lianlin Yang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Shuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yong Diao
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, Yunnan, China
| | - Hongliang Ma
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| |
Collapse
|
3
|
Wang J, Wang Z, Wang P, Wu J, Kong L, Ma L, Jiang S, Ren W, Liu W, Guo Y, Ma W, Liu X. Genome-wide identification of YABBY gene family and its expression pattern analysis in Astragalus mongholicus. PLANT SIGNALING & BEHAVIOR 2024; 19:2355740. [PMID: 38776425 PMCID: PMC11123558 DOI: 10.1080/15592324.2024.2355740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
During plant growth and development, the YABBY gene plays a crucial role in the morphological structure, hormone signaling, stress resistance, crop breeding, and agricultural production of plant lateral organs, leaves, flowers, and fruits. Astragalus mongholicus is a perennial herbaceous plant in the legume family, widely used worldwide due to its high medicinal and edible value. However, there have been no reports of the YABBY gene family in A. mongholicus. This study used bioinformatics methods, combined with databases and analysis websites, to systematically analyze the AmYABBY gene family in the entire genome of A. mongholicus and verified its expression patterns in different tissues of A. mongholicus through transcriptome data and qRT-PCR experiments. A total of seven AmYABBY genes were identified, which can be divided into five subfamilies and distributed on three chromosomes. Two pairs of AmYABBY genes may be involved in fragment duplication on three chromosomes. All AmYABBY proteins have a zinc finger YABBY domain, and members of the same group have similar motif composition and intron - exon structure. In the promoter region of the genes, light-responsive and MeJa-response cis-elements are dominant. AmYABBY is highly expressed in stems and leaves, especially AmYABBY1, AmYABBY2, and AmYABBY3, which play important roles in the growth and development of stems and leaves. The AmYABBY gene family regulates the growth and development of A. mongholicus. In summary, this study provides a theoretical basis for in-depth research on the function of the AmYABBY gene and new insights into the molecular response mechanism of the growth and development of the traditional Chinese medicine A. mongholicus.
Collapse
Affiliation(s)
- Jiamei Wang
- Equipment Department, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weili Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanli Guo
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
4
|
Wang H, Zhao H, Tai B, Wang S, Ihsan A, Hao H, Cheng G, Tao Y, Wang X. Development and Evaluation of Non-Antibiotic Growth Promoters for Food Animals. Vet Sci 2024; 11:672. [PMID: 39729012 DOI: 10.3390/vetsci11120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The widespread utilization of antibiotic growth promoters (AGPs) boosts the growth rate of food animals and enhances human living standards. Nevertheless, it is accompanied by escalating antibiotic resistance. Consequently, there is an urgent demand to develop novel alternatives to growth promoters. The objective of this study was to develop a non-antibiotic growth promoter (NAGP) for augmenting the growth rate of food animals. The growth-promoting effect of plant-derived NAGPs was assessed in mice and broiler chickens, and its growth-promoting mechanism was initially investigated. The results reveal that a combination of hawthorn (also known as shanzha) and astragalus (also known as huangqi) extracts (SQ) enhanced the growth rate of mice both in vivo and in vitro, attributed to their significant capacity to promote muscle growth and improve immunity (p < 0.05). The composite super energy extract M (CSEE-M), further optimized on the basis of SQ, significantly improved growth performance and feed conversion ratio, and elevated the activity of intestinal digestive enzymes (p < 0.05) in both mice and broilers and reshaped the gut microbiota of broilers. The addition of 0.5% CSEE-M to broiler drinking water significantly increased muscle content and improved carcass quality (p < 0.05). In conclusion, both SQ and CSEE-M hold great promise as NAGPs and serve as effective substitutes to AGPs. This research not only furnishes new solutions for the misuse of antibiotics but presents a fresh perspective for the development of growth promoters.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Hengji Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Bocheng Tai
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal 44000, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Wang T, Chen X, Gao Q, Huang C, Wang K, Qiu F. Herb-drug interaction potential of Astragali Radix: a metabolic perspective. Drug Metab Rev 2024:1-17. [PMID: 39692050 DOI: 10.1080/03602532.2024.2441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Astragali Radix (AR) is one of the most widely used herbs in Asia and has a wide range of biological activities. These activities are attributed to its various compounds like flavonoids, saponins, and polysaccharides. AR and its major components are often used in combination with other drugs for the treatment of diseases such as cancer and cerebral ischemia. With the expanding range of AR combinations, the potential for herb-drug interaction (HDI) has been raised. Key targets in HDI studies include drug-metabolizing enzymes (DMEs) and transporters. Existing studies have shown that AR and its major components have various regulatory effects on these targets, notably CYP2C9, CYP3A4, UGT1A6, and P-gp. AR may contribute to HDI when it is taken with substrates of these biomolecules, such as tolbutamide, midazolam, and digoxin. However, there are also different views in the current study, such as the effect of AR on CYP3A4. To better understand the interactions of AR with drugs, we review the metabolic pathways and pharmacokinetic parameters of the main components of AR. Meanwhile, the regulatory effects and mechanisms of AR on DMEs and transporters are summarized to provide a theoretical and technical basis for the rational use of AR in clinical practice.
Collapse
Affiliation(s)
- Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xiaofei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Chonggang Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
6
|
Hua Y, Tan X, Zhang J, Xu N, Chen R, Zhou S, Liu S, Li K, Chen W, Luo Q, Li Y. Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation. Sci Rep 2024; 14:29873. [PMID: 39622883 PMCID: PMC11612164 DOI: 10.1038/s41598-024-80101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA's phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA's key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA's phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA's multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Yiwei Hua
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Xi Tan
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China
| | - Jingwen Zhang
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Ningcong Xu
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruien Chen
- Shenzhen Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shiqing Zhou
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China
- National Famous Chinese Medicine Expert Inheritance Studio (Li Yunying), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Shaoqing Liu
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China
| | - Kai Li
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China
| | - Wenyong Chen
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China.
- National Famous Chinese Medicine Expert Inheritance Studio (Li Yunying), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Qiulan Luo
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China.
- National Famous Chinese Medicine Expert Inheritance Studio (Li Yunying), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yunying Li
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong Province, China.
- National Famous Chinese Medicine Expert Inheritance Studio (Li Yunying), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
8
|
Lee MG, Song Y, Kang H. Exploring the complex immunomodulatory effects and gut defense via oral administration of Astragali radix water extract to normal mice. BMC Complement Med Ther 2024; 24:361. [PMID: 39375623 PMCID: PMC11460088 DOI: 10.1186/s12906-024-04667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. It exhibits diverse biological activities, including immunomodulatory and anti-inflammatory properties; however, some of its activities have only been demonstrated in vitro. OBJECTIVE To examine the effects of orally administered AR extract on immune cells and the intestine under physiological conditions, which bridges the gap between previously observed in vitro outcomes and in vivo results. METHODS AR extract was prepared by hot water extraction. Three separate animal experiments were conducted to isolate macrophages, splenocytes, and the small intestine epithelium. For the macrophage preparation experiment, an intraperitoneal injection of sterile thioglycolate was administered. The mice received oral AR extract at doses of 0.1, 0.5, or 2.5 g/kg for ten days. At the end of each experiment, cells or tissues were isolated. A portion of macrophages and splenocytes were analyzed for the phenotypic changes. The remaining cells were cultured and stimulated with lipopolysaccharide (LPS) or mitogen ex vivo to assess activation status, proliferation, and cytokine production. Samples of the intestine were subjected to real-time RT-PCR. RESULTS Peritoneal macrophages from AR-treated mice exhibited increased expression of scavenger receptors, including SRA and CD36. Stimulation of these macrophages ex vivo with LPS selectively modulated the inflammatory response, including reduced expression of the costimulatory molecules CD40 and CD86, which are important for T cell responses, without affecting TNF-α and IL-6 production. Splenocytes from AR-treated mice exhibited a dose-dependent increase in CD4 and CD8 T cells; however, stimulation with mitogen decreased T cell proliferation and reduced IFN-γ production, which is essential for macrophage activation. An analysis of the small intestinal epithelium revealed an attenuated antimicrobial response, including reduced IgA content in the lumen and decreased expression of mucin-2 and polymeric Ig receptor genes. CONCLUSION The response of immune cells following oral treatment with AR extract did not replicate the previously documented in vitro findings. Immune cells and intestinal epithelium from mice administered oral AR extract exhibited a selective anti-inflammatory phenotype. The overall findings indicate that the systemic effects after oral administration of AR extract include reduced sensitivity to inflammatory insults.
Collapse
Affiliation(s)
- Mi-Gi Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
9
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
10
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
11
|
Huang Q, Wu W, Wen Y, Lu S, Zhao C. Potential therapeutic natural compounds for the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155822. [PMID: 38909512 DOI: 10.1016/j.phymed.2024.155822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complicated neurodegenerative disease with cognitive impairment occurring in the older people, in which extracellular accumulation of β-amyloid and intracellular aggregation of hyperphosphorylated tau are regarded as the prevailing theories. However, the exact AD mechanism has not been determined. Moreover, there is no effective treatment available in phase III trials to eradicate AD, which is imperative to explore novel treatments. PURPOSE A number of up-to-date pre-clinical studies on cognitive impairment is beneficial to clarify the pathology of AD. This review recapitulates several advances in AD pathobiology and discusses the neuroprotective effects of natural compounds, such as phenolic compounds, natural polysaccharides and oligosaccharides, peptide, and lipids, underscoring the therapeutic potential for AD. METHODS Electronic databases involving PubMed, Web of Science, and Google Scholar were searched up to October 2023. Articles were conducted using the keywords like Alzheimer's disease, pathogenic mechanisms, natural compounds, and neuroprotection. RESULT This review summarized several AD pathologies and the neuroprotective effects of natural compounds such as natural polysaccharides and oligosaccharides, peptide, and lipids. CONCLUSION We have discussed the pathogenic mechanisms of AD and the effect natural products on neurodegenerative diseases particularly in treating AD. Specifically, we investigated the molecular pathways and links between natural compounds and Alzheimer's disease such as through NF-κB, Nrf2, and mTOR pathway. Further investigation is necessary in exploring the bioactivity and effectiveness of natural compounds in clinical trials, which may provide a promising treatment for AD patients.
Collapse
Affiliation(s)
- Qihui Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Zhou Q, Gao S, Yu X, Zhang L, Zhang Z, Fu Y, Liu W, Mu Y, Zhang H, Liu P, Chen J. Total astragalus saponins attenuate primary sclerosing cholangitis in mice by upregulation of TGR5. Phytother Res 2024; 38:4502-4518. [PMID: 39032102 DOI: 10.1002/ptr.8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Total astragalus saponins (TAS) are the main active components of astragali radix, and have potent anti-hepatic fibrosis effect. However, the therapeutic efficacy of TAS and their potential mechanisms in the treatment of primary sclerosing cholangitis (PSC) remain unclear. In this study, two mouse models of PSC, including 3,5-Diethoxycarbonyl-1,4-Dihydro-2,4,6-Collidine (DDC)-induced PSC and Mdr2-/- spontaneous PSC, and the Tgr5-/- mice were used to investigate the therapeutic effect and mechanisms of TAS. Treatment with TAS, particularly with a dose of 56 mg/kg, significantly ameliorated the PSC-related liver injury, cholestasis, collagen deposition, ductular reaction (DR), and fibrosis in the DDC-induced and Mdr2-/-spontaneous PSC mice. Furthermore, treatment with TAS significantly mitigated the PSC-related inflammatory responses in vivo and HIBEpiC cells by inhibiting the expression of TNF-α, IL-6, and IL-1β. Mechanistically, treatment with TAS rescued the PSC-decreased hepatic TGR5 expression to attenuate the NF-κB p65 phosphorylation. Notably, the therapeutic efficacy of TAS on PSC in DDC-induced mice was abrogated in Tgr5-/- mice, suggesting the anti-PSC effect of TAS may depend on enhancing TGR5 expression. In conclusion, TAS ameliorated DR, inflammation and liver fibrosis in both models of PSC mice by rescuing TGR5 expression. Our findings may aid in the design of new therapeutic strategies for the treatment of PSC.
Collapse
Affiliation(s)
- Qun Zhou
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Siqi Gao
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Xiaohan Yu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Zheng Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadong Fu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Abdallah WE, Abdelshafeek KA, Elsayed WM, AbdelMohsen MM, Salah NA, Hassanein HD. Phytochemical and biological investigation of Astragalus Caprinus L. BMC Complement Med Ther 2024; 24:294. [PMID: 39090617 PMCID: PMC11295436 DOI: 10.1186/s12906-024-04484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND cultivated and wild plants are used to treat different ailments. The Astragalus genus is found in temperate and dry climates; thus, it is found in Egypt and the arab world. Astragalus caprinus has a good amount of bioactive chemicals, which may help explain its therapeutic effects in reducing the risk of consequences from disease. METHOD The phytochemical investigation of the herb and roots of Astragalus caprinus L. included the analytical characterization for the petroleum ether components by GC/MS, unsaponifiable matter (unsap. fraction), and fatty acids (FAME) investigation by GLC analysis. Main flavonoids were chromatographically isolated from ethyl acetate and n-butanol extracts. In vitro antimicrobial activity has been tested against the Gram-positive bacteria Staphylococcus aureus and Streptococcus mutans for different plant extracts, the Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumonia, the fungus Candida albicans and Aspergillus niger, and the Escherichia coli bacterium. Metabolite cytotoxicity was examined using the MTT assay against HepG-2 (human liver carcinoma) and MCF-7 (breast carcinoma). RESULTS Identifying the important components of the herb and root petroleum ether extracts was achieved. Using column chromatography, luteolin, cosmosiin (apigenin-7-O-glucoside), and cynaroside (luteolin-7-O-glucoside) were separated and identified using UV, NMR, and Mass Spectroscopy. Root extracts displayed potential antimicrobial activity against most of the tested pathogens. Both extracts (herb and roots) were active against the MCF-7 cell line and HepG-2 cell line with IC50 62.5 ± 0.64 and 72.4 ± 2.3 µg/ml, and 75.9 ± 2.5 and 96.8 ± 4.2 µg/ml, respectively. CONCLUSION Astragalus caprinus seems to be a promising source of bioactive compounds that could potentially aid in preventing disease complications and address common health issues in developing countries. Moreover, the various parts of this plant could be utilized as natural raw materials for producing health-boosting products that could address common health issues in developing countries.
Collapse
Affiliation(s)
- Walid E Abdallah
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Khaled A Abdelshafeek
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Wael M Elsayed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mona M AbdelMohsen
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Neven A Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Heba D Hassanein
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
15
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Chan KW, Kwong ASK, Tsui PN, Chan GCW, Choi WF, Yiu WH, Cheung SCY, Wong MMY, Zhang ZJ, Tan KCB, Lao L, Lai KN, Tang SCW. Add-on astragalus in type 2 diabetes and chronic kidney disease: A multi-center, assessor-blind, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155457. [PMID: 38810556 DOI: 10.1016/j.phymed.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Diabetes leads to chronic kidney disease (CKD) and kidney failure, requiring dialysis or transplantation. Astragalus, a common herbal medicine and US pharmacopeia-registered food ingredient, is shown kidney protective by retrospective and preclinical data but with limited long-term prospective clinical evidence. This trial aimed to assess the effectiveness of astragalus on kidney function decline in macroalbuminuric diabetic CKD patients. METHODS This randomized, assessor-blind, standard care-controlled, multi-center clinical trial randomly assigned 118 patients with estimated glomerular filtration rate (eGFR) of 30-90 ml/min/1.73m2 and urinary albumin-to-creatinine ratio (UACR) of 300-5000 mg/g from 7 public outpatient clinics and the community in Hong Kong between July 2018 and April 2022 to add-on oral astragalus granules (15 gs of raw herbs daily equivalent) or to continue standard care alone as control for 48 weeks. Primary outcomes were the slope of change of eGFR (used for sample size calculation) and UACR of the intention-to-treat population. Secondary outcomes included endpoint blood pressures, biochemistry, biomarkers, concomitant drug change and adverse events. (ClinicalTrials.gov: NCT03535935) RESULTS: During the 48-week period, the estimated difference in the slope of eGFR decline was 4.6 ml/min/1.73m2 per year (95 %CI: 1.5 to 7.6, p = 0.003) slower with astragalus. For UACR, the estimated inter-group proportional difference in the slope of change was insignificant (1.14, 95 %CI: 0.85 to 1.52, p = 0.392). 117 adverse events from 31 astragalus-treated patients and 41 standard care-controlled patients were documented. The 48-week endpoint systolic blood pressure was 7.9 mmHg lower (95 %CI: -12.9 to -2.8, p = 0.003) in the astragalus-treated patients. 113 (96 %) and 107 (91 %) patients had post-randomization and endpoint primary outcome measures, respectively. CONCLUSION In patients with type 2 diabetes, stage 2 to 3 CKD and macroalbuminuria, add-on astragalus for 48 weeks further stabilized kidney function on top of standard care.
Collapse
Affiliation(s)
- Kam Wa Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alfred Siu Kei Kwong
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Pun Nang Tsui
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong East Cluster, Hong Kong Special Administrative Region, China
| | - Gary Chi Wang Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wing Fai Choi
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Chi Yuen Cheung
- Division of Nephrology, Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Michelle Man Ying Wong
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong East Cluster, Hong Kong Special Administrative Region, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn Choon Beng Tan
- Division of Endocrinology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Virginia University of Integrative Medicine, VA, USA
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sydney Chi Wai Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
17
|
Qiu H, Chen X, Zhang L, Zhang Q, Qiu C, Li J. Clinical remission of moderate generalized myasthenia gravis through exclusive use of Buzhong Yiqi decoction: A case report. Explore (NY) 2024; 20:588-591. [PMID: 38744568 DOI: 10.1016/j.explore.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is a rare autoimmune neuromuscular disorder with significant morbidity and mortality. Traditional Chinese medicine (TCM) offers an alternative approach to standard pharmacological and surgical interventions, which are often associated with adverse side effects. This case report details the clinical remission of a 50-year-old male with moderate generalized MG following exclusive treatment with a modified Buzhong Yiqi decoction (BYD), a TCM formula, without the use of immunosuppressive agents. CASE SUMMARY The patient presented with diplopia, bilateral ptosis, weakness in chewing, limb weakness, and other symptoms indicative of spleen and stomach qi deficiency. Modified BYD was prescribed, focusing on strengthening the spleen, nourishing qi and blood, and enhancing immune response. The treatment included ingredients such as Radix Astragali, Angelica sinensis, Atractylodes macrocephala, and others, aiming to restore balance and improve the patient's condition. After two weeks of TCM treatment, the patient showed significant improvement in symptoms of myasthenia. By the second month, all clinical symptoms had disappeared. The patient continued to receive the TCM regimen until the thirtieth month of treatment. At the time of writing this report, the patient has no clinical symptoms and has experienced no relapse. Notably, no obvious adverse effects were reported throughout the treatment. CONCLUSION The success of this case suggests that TCM may serve as an independent treatment option for moderate MG, offering a steroid-free alternative, which would be particularly valuable for patients who are intolerant of or refuse steroid therapy, potentially with significant clinical implications. However it needs a randomized clinical trial comparing TCM to conventional Western medicine treatment to validate it.
Collapse
Affiliation(s)
- Hui Qiu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan road, Hangzhou, Zhejiang Province 310000, PR China
| | - Xinru Chen
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, PR China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Qing Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Changlin Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
18
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Cheng H, Du Y, Hu J, Cao J, Zhang G, Ling J. New flavonoid and their anti-A549 cell activity from the bi-directional solid fermentation products of Astragalus membranaceus and Cordyceps kyushuensis. Fitoterapia 2024; 176:106013. [PMID: 38740342 DOI: 10.1016/j.fitote.2024.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Astragalus membranaceus and Cordyceps kyushuensis were used to obtain Astragalus membranaceus-Cordyceps kyushuensis bi-directional solid fermentation products using the bi-directional solid fermentation technique. The fermentation products were isolated and purified to obtain 20 individual compounds, of which compound 1 was a novel isoflavane, and compounds 2, 3, and 4 were novel isoflavones, along with 16 known compounds. In vitro experiments demonstrated that compounds 4, 5, 8, 10, and 20 exhibited significant inhibitory activity against A549 lung cancer cells. Specifically, the IC50 value of the novel compound 4 was 53.4 μM, while the IC50 value of cordycepin was 9.0 μM.
Collapse
Affiliation(s)
- Huixin Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiqing Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiajia Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiyuan Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Li S, Zhu Z, Chen Z, Guo Z, Wang Y, Li X, Ma K. Network pharmacology-based investigation of the effects of Shenqi Fuzheng injection on glioma proliferation and migration via the SRC/PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118128. [PMID: 38561056 DOI: 10.1016/j.jep.2024.118128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.
Collapse
Affiliation(s)
- Shuang Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhenglin Zhu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhijian Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhenli Guo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi, 832000, China.
| | - Yan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China.
| | - Xinzhi Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi, 832000, China.
| |
Collapse
|
21
|
Sharma U, Sharma B, Mishra A, Sahu A, Mathkor DM, Haque S, Raina D, Ramniwas S, Gupta M, Tuli HS. Ononin: A comprehensive review of anticancer potential of natural isoflavone glycoside. J Biochem Mol Toxicol 2024; 38:e23735. [PMID: 38773908 DOI: 10.1002/jbt.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-β-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ambrish Mishra
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, India
| | - Anidrisha Sahu
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, India
| | - Darin M Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Deepika Raina
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
22
|
Zhou HM, Yue SJ, Wang WX, Zhang Q, Xu DQ, Li JJ, Tang YP, Yang XY. Exploring the effective compounds and potential mechanisms of Shengxian Decoction against coronary heart disease by UPLC-Q-TOF/MS and network pharmacology analysis. Heliyon 2024; 10:e29558. [PMID: 38681620 PMCID: PMC11046127 DOI: 10.1016/j.heliyon.2024.e29558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
As a well-known classical Chinese medicine prescription, Shengxian Decoction (SXD) has been applied for a century to treat cardiovascular diseases, especially coronary heart disease (CHD), but the potentially effective compounds and underlying mechanisms remain unclear. With ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) and network pharmacology analysis, the potential effective compounds of SXD and their pharmacological mechanisms against CHD were identified and revealed. 57 effective compounds with favorable pharmacokinetic characteristics and biological activities were screened through UPLC-Q-TOF/MS analysis, database and literature mining, interacting with 96 CHD-related targets to support potential synergistic therapeutic actions. Systematic analysis of the PPI network and microarray data further revealed six core targets, including TNF, IL-1β, IL-6, TP53, VEGFA and PTGS2, which were mainly involved in fluid shear stress and atherosclerosis, lipid and atherosclerosis, PI3K-Akt signaling pathway et al. Moreover, the proposed contribution indexes of effective compounds indicated these compounds, including isoferulic acid, quercetin, calycosin, ferulic acid, kaempferol, calycosin 7-O-glycoside, formononetin, astragaloside IV and saikosaponin D, as the core compounds of SXD. The molecular docking results confirmed that those core compound-target pairs exhibited strong binding energy. Furthermore, we validated that SXD significantly alleviated myocardial tissue injury in CHD rats and reversed H/R-induced decreases in H9c2 cell viability by attenuating the production of TNF, IL-6 and IL-1β, and reducing cardiomyocyte apoptosis via down-regulating the TP53, caspase3 and cytochrome C mRNA expression levels as well as caspase3, caspase9 and cytochrome C protein expression levels according to RT-qPCR and Western blot results. Our findings explained the pharmacological mechanisms underlying the effectiveness of SXD in the treatment of CHD, and laid a foundation for future basic and clinical research of SXD.
Collapse
Affiliation(s)
- Hao-ming Zhou
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Shi-jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Wen-xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ding-qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Jia-jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Xin-yu Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| |
Collapse
|
23
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
24
|
Paliwal A, Jain S, Kumar S, Wal P, Khandai M, Khandige PS, Sadananda V, Anwer MK, Gulati M, Behl T, Srivastava S. Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine. Expert Opin Drug Metab Toxicol 2024; 20:181-195. [PMID: 38480460 DOI: 10.1080/17425255.2024.2330666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.
Collapse
Affiliation(s)
- Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Pharmacy, Kanpur, India
| | - Madhusmruti Khandai
- Department of Pharmacy, Royal College of Pharmacy and Health Sciences, Berahmpur, India
| | - Prasanna Shama Khandige
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Manglauru, NITTE (Deemed to be University), Manglauru, India
| | - Vandana Sadananda
- AB Shetty Memorial Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, NITTE (Deemed to be University), Mangaluru, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- ARCCIM, Health, University of Technology, Sydney, Ultimo, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
25
|
Li N, Zhang Y, Han M, Liu T, Wu J, Xiong Y, Fan Y, Ye F, Jin B, Zhang Y, Sun G, Sun X, Dong Z. Self-adjuvant Astragalus polysaccharide-based nanovaccines for enhanced tumor immunotherapy: a novel delivery system candidate for tumor vaccines. SCIENCE CHINA. LIFE SCIENCES 2024; 67:680-697. [PMID: 38206438 DOI: 10.1007/s11427-023-2465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257-264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Yun Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Miaomiao Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Tian Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Jinjia Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yingxia Xiong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yikai Fan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Fan Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Bing Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yinghua Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Xiaobo Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| |
Collapse
|
26
|
Chen H, Lou Y, Lin S, Tan X, Zheng Y, Yu H, Jiang R, Wei Y, Huang H, Qi X, Zhang R, Liu Z, Wu J. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117576. [PMID: 38104880 DOI: 10.1016/j.jep.2023.117576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 1 diabetes mellitus (T1DM) results from insulin deficiency due to the destruction of pancreatic β-cells. Previously, our studies showed that inhibition of Keap1/Nrf2 signaling pathway promoted the onset of T1DM, which suggests that finding drugs that can activate the Keap1/Nrf2 signaling may be a promising therapeutic strategy for the T1DM treatment. Astragalus membranaceus (Fisch.) Bunge is a common traditional Chinese medicine that has been frequently applied in Chinese clinics for the treatment of diabetes and other diseases. Formononetin (FMNT), one of the major isoflavonoid constituents isolated from this herbal medicine, possesses diverse pharmacological benefits and T1DM therapeutic potential. However, the exact molecular mechanisms underlying the action of FMNT in ameliorating T1DM have yet to be fully elucidated. AIMS OF THE STUDY This study is to investigate the regulation of FMNT on the Keap1/Nrf2 signaling pathway to ameliorate T1DM based on network pharmacology approach combined with experimental validation. MATERIALS AND METHODS A mouse-derived pancreatic islet β-cell line (MIN6) was used for the in vitro studies. An alloxan (ALX)-induced T1DM model in wild-type and Nrf2 knockout (Nrf2-/-) C57BL/6J mice were established for the in vivo experiments. The protective effects of FMNT against ALX-stimulated MIN6 cell injury were evaluated using MTT, EdU, apoptosis and comet assays. The levels of blood glucose in mice were measured by using a blood monitor and test strips. The protein expression was detected by Western blot analysis. Furthermore, the binding affinity of FMNT to Keap1 was evaluated using cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and solvent-induced protein precipitation (SIP) assay. The interaction pattern between FMNT and Keap1 was assessed by molecular docking and molecular dynamics simulation techniques. RESULTS Network pharmacology analysis revealed that FMNT exerted its therapeutic effect against T1DM by mainly regulating oxidative stress response-associated signaling molecules and pathways, such as Nrf2 regulating anti-oxidant/detoxification enzymes and Keap1-Nrf2 signaling pathway. The in vivo results showed that FMNT significantly deceased the ALX-induced high blood glucose levels and conversely increased the ALX-induced low insulin contents. In vitro, FMNT markedly protected MIN6 cells from ALX-induced cytotoxicity, proliferation inhibition and DNA damage and reduced the ALX-stimulated cell apoptosis. FMNT also inhibited ALX-induced overproduction of intracellular ROS to alleviate oxidative stress. In addition, FMNT could bind to Keap1 to notably activate the Keap1/Nrf2 signaling to upregulate Nrf2 expression and promote the Nrf2 translocation from the cytoplasm to the nucleus, resulting in enhancing the expression of antioxidant proteins HO-1 and NQO1. Inhibition of Keap1/Nrf2 signaling by ALX was also markedly abolished in the cells and mice exposed to FMNT. Moreover, these effects of FMNT in ameliorating T1DM were not observed in Nrf2-/- mice. CONCLUSIONS This study demonstrates that FMNT could bind to Keap1 to activate the Keap1/Nrf2 signaling to prevent intracellular ROS overproduction, thereby attenuating ALX-induced MIN6 cell injury and ameliorating ALX-stimulated T1DM. Results from this study might provide evidence and new insight into the therapeutic effect of FMNT and indicate that FMNT is a promising candidate agent for the treatment of T1DM in clinics.
Collapse
Affiliation(s)
- Haipeng Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yanmei Lou
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Senyi Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xuanjing Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuting Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hong Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ruidi Jiang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yijie Wei
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Huijie Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xiaoxiao Qi
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Jinjun Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
27
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in research on the anti-tumor mechanism of Astragalus polysaccharides. Front Oncol 2024; 14:1334915. [PMID: 38515577 PMCID: PMC10955345 DOI: 10.3389/fonc.2024.1334915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.
Collapse
Affiliation(s)
| | | | - Qinyuan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Zhang F, Tan Y, Cai Z, An K, Liu Y, Su J. Two plants improve stress response of a subterranean herbivore by downregulating amphetamine addiction pathways. Front Vet Sci 2024; 10:1342630. [PMID: 38283372 PMCID: PMC10811048 DOI: 10.3389/fvets.2023.1342630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Captivity serves as the primary method for enhancing animal survival and productivity. However, the stress induced by confinement can hinder animal growth and reproduction. The administration of drugs to captive animals can effectively regulate their stress response and can also be used inartificial breeding, reproduction, and experimental animalization of wild species. The plateau zokor (Eospalax baileyi), a subterranean herbivore, experiences significant stress during the captive process owing to its unique habitat. Methods In our study, we utilized Radix astragali (RA) and Acanthopanax senticosus (AS) extracts to intervene in the stress response of plateau zokors. Results Our findings demonstrated that RA and AS treatment considerably improved food intake and reduced weight loss, stress-related behavior, and stress hormone levels in plateau zokors. Furthermore, the excitatory pathway of amphetamine addition in the hypothalamus was suppressed by RA and AS treatment, acting through the Grin and Prkc gene families. Notably, after RA treatment, the extracellular matrix-receptor interaction pathway, enriched by the Col1a1/3a1/1a2/6a1 gene, was significantly upregulated, potentially enhancing the immune function of captive plateau zokors. Discussion In conclusion, our research demonstrates that RA and AS treatment can effectively alleviate the stress response of plateau zokors in captive environments. The downregulation of the excitation pathway and upregulation of the immune pathway offer valuable insights into the response and potential mechanisms of plant-based drugs in mitigating animal stress.
Collapse
Affiliation(s)
- Feiyu Zhang
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhiyuan Cai
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yongjie Liu
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
29
|
Shi Y, Shi X, Zhao M, Ma S, Zhang Y. Pharmacological potential of Astragali Radix for the treatment of kidney diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155196. [PMID: 37952410 DOI: 10.1016/j.phymed.2023.155196] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND With the increasing prevalence of hypertension, diabetes, and obesity, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Conventional treatments for kidney diseases have unsatisfactory effects and are associated with adverse reactions. Traditional Chinese medicines have good curative effects and advantages over conventional treatments for preventing and treating kidney diseases. Astragali Radix is a Chinese herbal medicine widely used to treat kidney diseases. PURPOSE To review the potential applications and molecular mechanisms underlying the renal protective effects of Astragali Radix and its components and to provide direction and reference for new therapeutic strategies and future research and development of Astragali Radix. STUDY DESIGN AND METHODS PubMed, Google Scholar, and Web of Science were searched using keywords, including "Astragali Radix," "Astragalus," "Astragaloside IV" (AS-IV), "Astragali Radix polysaccharide" (APS), and "kidney diseases." Reports on the effects of Astragali Radix and its components on kidney diseases were identified and reviewed. RESULTS The main components of Astragali Radix with kidney-protective properties include AS-IV, APS, calycosin, formononetin, and hederagenin. Astragali Radix and its active components have potential pharmacological effects for the treatment of kidney diseases, including acute kidney injury, diabetic nephropathy, hypertensive renal damage, chronic glomerulonephritis, and kidney stones. The pharmacological effects of Astragali Radix are manifested through the inhibition of inflammation, oxidative stress, fibrosis, endoplasmic reticulum stress, apoptosis, and ferroptosis, as well as the regulation of autophagy. CONCLUSION Astragali Radix is a promising drug candidate for treating kidney diseases. However, current research is limited to animal and cell studies, underscoring the need for further verifications using high-quality clinical data.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
30
|
Jiang Y, Xu L, Wei N, Chen R, Wang Y, Wu L, Li W, Yan Z, Chen L, Chen Z. Comparative pharmacokinetics of 11 major bioactive components between two dosage forms of Qixue Shuangbu Prescription in rats by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300677. [PMID: 37994256 DOI: 10.1002/jssc.202300677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Although Qixue Shuangbu Prescription (QSP) is a classic Chinese medicine prescription for treating chronic heart failure. Low bioavailability due to the insolubility and poor biofilm permeability of the main bioactive ingredients of QSP is still a key factor limiting its efficacy. In this study, a novel self-microemulsifying drug delivery system was proposed to effectively improve the bioavailability of QSP. The qualified ultra-high-performance liquid chromatography-tandem mass spectrometry methodology was established to investigate the pharmacokinetics characteristics of the QSP self-microemulsifying drug delivery system. Our results showed that 11 components in the self-microemulsifying drug delivery system group had prolonged T1/2 and MRT0-t values compared with QSP extract. The Cmax of calycosin-7-glucoside (CG), vanillic acid and paeoniflorin increased 2.5 times, 2.4 times and 2.3 times, respectively. The relative bioavailability values of CG, paeoniflorin and ononin were most significantly affected, increasing by 383.2%, 336.5% and 307.1%, respectively. This study promoted the development of new dosage forms of QSP and provided a useful reference for improving dosage forms to solve the problem of low bioavailability of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Liu Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nina Wei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yutong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zheng Yan
- Jiangyin Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin City, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Huang P, Li H, Ren L, Xie H, Chen L, Liang Y, Hu Y, Selistre-de-Araujo HS, Boussios S, Jhawar SR, Cui R, Zuo Q, Chen Q. Astragaloside IV enhances the sensitivity of breast cancer stem cells to paclitaxel by inhibiting stemness. Transl Cancer Res 2023; 12:3703-3717. [PMID: 38193000 PMCID: PMC10774038 DOI: 10.21037/tcr-23-1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Background Chemotherapy is one of the common treatments for breast cancer. The induction of cancer stem cells (CSCs) is an important reason for chemotherapy failure and breast cancer recurrence. Astragaloside IV (ASIV) is one of the effective components of the traditional Chinese medicine (TCM) Astragalus membranaceus, which can improve the sensitivity of various tumors to chemotherapy drugs. Here, we explored the sensitization effect of ASIV to chemotherapy drug paclitaxel (PTX) in breast cancer from the perspective of CSCs. Methods The study included both in vitro and in vivo experiments. CSCs from the breast cancer cell line MCF7 with stem cell characteristics were successfully induced in vitro. Cell viability and proliferation were detected using the Cell Counting Kit-8 (CCK-8) and colony formation assays, and flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) methods were performed to detect cell apoptosis. Stemness-related protein expression was determined by western blotting (WB) and immunohistochemistry (IHC). Body weight, histopathology, and visceral organ damage of mice were used to monitor drug toxicity. Results The expression of stemness markers including Sox2, Nanog, and ALDHA1 was stronger in MCF7-CSCs than in MCF7. PTX treatment inhibited the proliferation of tumor cells by promoting cell apoptosis, whereas the stemness of breast cancer stem cells (BCSCs) resisted the effects of PTX. ASIV decreased the stemness of BCSCs, increased the sensitivity of BCSCs to PTX, and synergistically promoted PTX-induced apoptosis of breast cancer cells. Our results showed that the total cell apoptosis rate increased by about 25% after adding ASIV compared with BCSCs treated with PTX alone. The in vivo experiments demonstrated that ASIV enhanced the ability of PTX to inhibit the growth of breast cancer. WB and IHC showed that ASIV reduced the stemness of CSCs. Conclusions In this study, the resistance of breast cancer to PTX was attributed to the existence of CSCs; ASIV weakened the resistance of MCF7-CSCs to PTX by significantly attenuating the hallmarks of breast cancer stemness and improved the efficacy of PTX.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liping Ren
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Haimei Xie
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| | - Yuqi Liang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuyu Hu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| | - Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- Kent Medway Medical School, University of Kent, Kent, UK
- AELIA Organization, Thessaloniki, Greece
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rutao Cui
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zuo
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Liu S, Xiao G, Wang Q, Tian J, Feng X, Zhang Q, Gong L. Effects of dietary Astragalus membranaceus and Codonopsis pilosula extracts on growth performance, antioxidant capacity, immune status, and intestinal health in broilers. Front Vet Sci 2023; 10:1302801. [PMID: 38144468 PMCID: PMC10748503 DOI: 10.3389/fvets.2023.1302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
33
|
Tian Z, Li Y, Wang X, Cui K, Guo J, Wang M, Hao Y, Zhang F. Exploring the mechanism of Astragali radix for promoting osteogenic differentiation based on network pharmacology, molecular docking, and experimental validation. Chem Biol Drug Des 2023; 102:1489-1505. [PMID: 37690812 DOI: 10.1111/cbdd.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
The present study used network pharmacology and molecular docking to predict the active ingredients and mechanisms of action of Astragalus radix (AR) to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs), and cell experiments were conducted for verification. First, network pharmacology was used to predict the effective components, targets, and mechanisms of action of AR to promote osteogenic differentiation. The effective components and corresponding target proteins of AR, and the target proteins of osteogenic differentiation were collected through the database. The intersection targets of the two were used for the construction and analysis of a protein-protein interaction (PPI) network. Gene Oncology (GO) and Kyoto Encyclopedia of Genes, and Genomes (KEGG) enrichment analyses were conducted. Next, molecular docking technology was carried out to verify the interaction between the active ingredient and the target protein, and to select the appropriate effective active ingredient. Finally, the results of network pharmacology analysis were verified by in vitro experiments. A total of 95 potential targets were retrieved by searching the intersection of AR and osteogenic differentiation targets. PPI network analysis indicated that RAC-α-serine-threonine-protein kinase (Akt1) was considered to be the most reliable target for AR to regulate osteogenic differentiation. GO enrichment analysis included 21 biological processes, 21 cellular components and 100 molecular functions. KEGG enrichment analysis indicated that the class I phosphatidylinositol-3 kinase (PI3K)-serine-threonine kinase (Akt) signaling pathway may play an important role in promoting osteogenic differentiation. The results of molecular docking showed that quercetin's performance was improved compared with that of kaempferol. In vitro experiments showed that quercetin promoted the expression of osteogenic marker proteins (including collagen I, Runt-related transcription factor 2 and osteopontin) in BMSCs and activated the PI3K/Akt signaling pathway. AR acted on Akt1 targets through its main active component quercetin, and promoted the osteogenic differentiation of BM-MSCs by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zenghui Tian
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingying Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoying Wang
- Teaching and Research Department of Internal Medicine, Jinan Vocational College of Nursing, Jinan, China
| | - Kaiying Cui
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxing Guo
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingliang Wang
- Department of Orthopedics, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Yanke Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Farong Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
35
|
Qin H, Xie L, Zang Y, Han J, Yu J, Luo Z, Ma X. Residue of Chlormequat and Regulatory Effects on the Specialized Metabolites of Astragali Radix. Molecules 2023; 28:6754. [PMID: 37836597 PMCID: PMC10574182 DOI: 10.3390/molecules28196754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Presently, the utilization of chlormequat in Astragalus mongholicus Bunge (Leguminosae) cultivation is prevalent for augmenting rhizome (Astragali Radix) yield. However, indiscriminate and excessive chlormequat employment can detrimentally influence Astragali Radix quality and safety. This research aimed to comprehensively comprehend chlormequat risks and its influence on Astragali Radix metabolites. Diverse chlormequat concentrations were employed in Astragalus mongholicus cultivation, with subsequent analysis of residual chlormequat levels in Astragali Radix across treatment groups. Astragali Radix metabolic profiling was conducted through UPLC-QTOF-MS, and thirteen principal active components were quantified via UFLC-MS/MS. Findings revealed a direct correlation between chlormequat residue levels in Astragali Radix and application concentration, with high-dose residue surpassing 5.0 mg/kg. Metabolomics analysis identified twenty-six distinct saponin and flavonoid metabolites. Notably, the application of chlormequat led to the upregulation of seven saponins (e.g., astragaloside I and II) and downregulation of six flavonoids (e.g., methylnissolin-3-O-glucoside and astraisoflavan-7-O-β-d-glucoside). Quantitative analysis demonstrated variable contents of active ingredients due to differing chlormequat concentrations, leading to astragaloside I increase (14.59-62.55%) and isoastragaloside II increase (4.8-55.63%), while methylnissolin-3-O-glucoside decreased (22.18-41.69%), as did astraisoflavan-7-O-β-d-glucoside (21.09-47.78%). In conclusion, chlormequat application influenced multiple active components in Astragali Radix, causing constituent proportion variations. Elevated chlormequat concentrations led to increased active components alongside heightened chlormequat residues in Astragali Radix. Consequently, prudent chlormequat application during Astragali Radix production is imperative to avert potential detriments to its quality and safety.
Collapse
Affiliation(s)
- Honghan Qin
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Biomedicine College, Beijing City University, Beijing 100094, China
| | - Jia Han
- Biomedicine College, Beijing City University, Beijing 100094, China
| | - Jing Yu
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
36
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
37
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
38
|
Cui W, Li A, Zhang L, Wei J, Zhao Y, Liu Y, Li K, Qin X. Comparison of two different integrated method of pharmacokinetics by the integrated pharmacokinetic research of fangji huangqi decoction. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123831. [PMID: 37515912 DOI: 10.1016/j.jchromb.2023.123831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Traditional Chinese medicine (TCM) is characterized by its multiple components. The utilization of mathematical statistical methods to integrate the pharmacokinetics of monomer components can provide a comprehensive understanding of the holistic pharmacokinetic process of TCM. Two distinct integrated methods, namely the correlation coefficient method and the AUC-based weight coefficient method, were employed in this study to elucidate and compare their differences in the integrated pharmacokinetic research of Fangji Huangqi decoction (FHD). FHD is commonly used in clinical practice to treat the nephrotic syndrome. Firstly, one-dose FHD was given to doxorubicin-induced nephropathy (DN) rats, and the prototype compounds of FHD and their metabolites in plasma were qualitatively and semi-quantitatively analyzed by UHPLC-MS/MS. Secondly, the efficacy of FHD was quantitatively characterized by the relative distance method based on metabolomics. The correlation coefficients were obtained by analyzing the correlation between efficacy (relative distance values) and the content of compound, and they were subsequently used for the model integration (correlation coefficient method). Thirdly, the effective compounds of FHD treating DN were screened by integrating network pharmacology and molecular docking, and they were used for another integrated pharmacokinetic model by AUD-based weight coefficient method. Finally, the 2 integrated methods and the 2 integrated pharmacokinetic models were compared. In this study, 30 prototype compounds and 41 metabolites of FHD in plasma were identified, and the pharmacokinetic curve of 18 prototype compounds were built. The efficacy of FHD in the treatment of DN has been relatively quantitation. The 2 established integrated pharmacokinetic models of FHD indicated that the correlation coefficient method was the optimal approach for conducting the integrated pharmacokinetic research on the TCM with unknown effective compounds, whereas the AUC-based coefficient method was suitable for the TCM with the clear effective compounds. The integrated pharmacokinetic models indicated that FHD had high bioavailability and an absorption peak at about 6 h after administration, indicating that the 6 h after administration was the critical period of FHD treating DN. This research would be helpful for the pharmacological and pharmacokinetic research of FHD, and provide a method reference for the integrated pharmacokinetic research of TCM.
Collapse
Affiliation(s)
- Wenbo Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China; Shanxi Health Vocational College, Taiyuan 030006, People's Republic of China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Lichao Zhang
- Institutes of Biomedical sciences of Shanxi University, Taiyuan 030006, People's Republic of China.
| | - Jie Wei
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Yirui Zhao
- Shanxi Provincial Integrated Traditional Chinese and Western Medicine Hospital, No. 13, Fudong Street, Xinghualing District, Taiyuan 030013, Shanxi, People's Republic of China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
39
|
D'Avino D, Cerqua I, Ullah H, Spinelli M, Di Matteo R, Granato E, Capasso R, Maruccio L, Ialenti A, Daglia M, Roviezzo F, Rossi A. Beneficial Effects of Astragalus membranaceus (Fisch.) Bunge Extract in Controlling Inflammatory Response and Preventing Asthma Features. Int J Mol Sci 2023; 24:10954. [PMID: 37446131 DOI: 10.3390/ijms241310954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (Fisch.) Bunge root is used as herbal medicine for its immunomodulating activities in Chinese medicine. Recently, beneficial properties of A. membranaceus on allergic diseases have been proposed. Here we investigated the role of a commercial extract of A. membranaceus, standardized to 16% polysaccharides, in regulating the immune-inflammatory response in vitro and in vivo and its therapeutic application in asthma. A. membranaceus extract inhibited prostaglandin E2 and leukotriene C4 production in stimulated J774 and peritoneal macrophages, respectively. The extract also reduced interlukin-1β, tumor necrosis factor-α, and nitrite production, affecting inducible nitric oxide synthase expression. In vivo experiments confirmed the anti-inflammatory properties of A. membranaceus, as evident by a reduction in zymosan-induced peritoneal cellular infiltration and pro-inflammatory mediator production. The efficacy of A. membranaceus extract in modulating the immune response was confirmed in a model of allergic airway inflammation. Extracts improve lung function by inhibiting airway hyperresponsiveness, airway remodeling, and fibrosis. Its anti-asthmatic effects were further sustained by inhibition of the sensitization process, as indicated by a reduction of ovalbumin-induced IgE levels and the mounting of a Th2 immune response. In conclusion, our data demonstrate the anti-inflammatory properties of the commercial extract of A. membranaceus and its beneficial effects on asthma feature development.
Collapse
Affiliation(s)
- Danilo D'Avino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Hammad Ullah
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 80100 Naples, Italy
| | - Rita Di Matteo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
40
|
Song Z, Chen D, Sui S, Wang Y, Cen S, Dai J. Characterization of a Malabaricane-Type Triterpene Synthase from Astragalus membranaceus and Enzymatic Synthesis of Astramalabaricosides. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37336771 DOI: 10.1021/acs.jnatprod.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Triterpenoids are a large and medicinally important group of natural products with a wide range of biological and pharmacological effects. Among them, malabaricane-type triterpenoids are a rare group of terpenoids with a 6,6,5-tricyclic ring system, and a few malabaricane triterpene synthases have been characterized to date. Here, an arabidiol synthase AmAS for the formation of the malabaricane-type 6,6,5-tricyclic triterpenoid skeleton in astramalabaricosides biosynthesis was characterized from Astragalus membranaceus. Multiple sequence alignment, site-directed mutagenesis, and molecular docking of AmAS reveal that residues Q256 and Y258 are essential for AmAS activity, and the triad motif IIH725-727 was the critical residue necessary for its product specificity. Mutation of IIH725-727 with VFN led to the formation of seven tricyclic, tetracyclic, and pentacyclic triterpenoids (1-7). Glycosylation of malabaricane-type triterpenoids in the biosynthesis of astramalabaricosides was also explored. Three triterpenoids (1, 5, and 6) displayed potent inhibitory effects against influenza A virus in vitro. These findings provide insights into malabaricane-type triterpenoids biosynthesis in A. membranaceus and access to diverse bioactive triterpenoids for drug discovery.
Collapse
Affiliation(s)
- Zhijun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Xun T, Rong Y, Lv B, Tian J, Zhang Q, Yang X. Interaction and potential mechanisms between atorvastatin and voriconazole, agents used to treat dyslipidemia and fungal infections. Front Pharmacol 2023; 14:1165950. [PMID: 37251310 PMCID: PMC10213937 DOI: 10.3389/fphar.2023.1165950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose: Voriconazole (VOR) is combined with atorvastatin (ATO) to treat fungal infections in patients with dyslipidemia in clinical practice. However, the pharmacokinetic interactions and potential mechanisms between them are unknown. Therefore, this study aimed to investigate the pharmacokinetic interactions and potential mechanisms between ATO and VOR. Patients and methods: We collected plasma samples from three patients using ATO and VOR. Rats were administered either VOR or normal saline for 6 days, followed by a single dose of 2 mg/kg ATO, and then plasma samples were collected at different time points. The incubation models of human liver microsomes or HepG2 cells were constructed in vitro. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system was developed to determine the concentration of ATO, 2-hydroxy-ATO, 4-hydroxy-ATO, and VOR. Results: In patients, VOR significantly reduced the metabolism of ATO and slowed the formation of 2-hydroxy- and 4-hydroxy-ATO. In rats pretreated with orally administered VOR for 6 days or normal saline given a single dose of 2 mg/kg ATO administered orally on Day 6, the t1/2 of ATO was significantly prolonged from 3.61 to 6.43 h, and the area under the concentration-time curve (AUC0-24h) values of ATO increased from 53.86 to 176.84 h μg.L-1. However, the pharmacokinetic parameters of VOR (20 mg/kg) with or without pretreatment with ATO (2 mg/kg) only slightly changed. In vitro studies indicated that VOR inhibited the metabolism of ATO and testosterone, and the IC50 values were 45.94 and 49.81 μM. However, no significant change in transporter behaviors of ATO was observed when VOR or transporter inhibitors were co-administered. Conclusion: Our study demonstrated that VOR has significant interactions with ATO, probably due to VOR's inhibition of the CYP3A4-mediated metabolism of ATO. Based on the clinical cases and potential interactions, the basic data obtained in our study are expected to help adjust the dose of ATO and promote the design of rational dosage regimens for pharmacotherapy for fungal infections in patients with dyslipidemia.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Rong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Bin Lv
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jinfei Tian
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
44
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
45
|
Yang X, Peng Y, Wang YE, Zheng Y, He Y, Pan J, Liu N, Xu Y, Ma R, Zhai J, Ma Y, Guan S. Curcumae Rhizoma Exosomes-like nanoparticles loaded Astragalus components improve the absorption and enhance anti-tumor effect. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
46
|
Hu Y, Zhai W, Tan D, Chen H, Zhang G, Tan X, Zheng Y, Gao W, Wei Y, Wu J, Yang X. Uncovering the effects and molecular mechanism of Astragalus membranaceus (Fisch.) Bunge and its bioactive ingredients formononetin and calycosin against colon cancer: An integrated approach based on network pharmacology analysis coupled with experimental validation and molecular docking. Front Pharmacol 2023; 14:1111912. [PMID: 36755950 PMCID: PMC9899812 DOI: 10.3389/fphar.2023.1111912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Colon cancer is a highly malignant cancer with poor prognosis. Astragalus membranaceus (Fisch.) Bunge (Huang Qi in Chinese, HQ), a well-known Chinese herbal medicine and a popular food additive, possesses various biological functions and has been frequently used for clinical treatment of colon cancer. However, the underlying mechanism is not fully understood. Isoflavonoids, including formononetin (FMNT) and calycosin (CS), are the main bioactive ingredients isolated from HQ. Thus, this study aimed to explore the inhibitory effects and mechanism of HQ, FMNT and CS against colon cancer by using network pharmacology coupled with experimental validation and molecular docking. The network pharmacology analysis revealed that FMNT and CS exerted their anticarcinogenic actions against colon cancer by regulating multiple signaling molecules and pathways, including MAPK and PI3K-Akt signaling pathways. The experimental validation data showed that HQ, FMNT and CS significantly suppressed the viability and proliferation, and promoted the apoptosis in colon cancer Caco2 and HT-29 cells. HQ, FMNT and CS also markedly inhibited the migration of Caco2 and HT-29 cells, accompanied by a marked increase in E-cadherin expression, and a notable decrease in N-cadherin and Vimentin expression. In addition, HQ, FMNT and CS strikingly decreased the expression of ERK1/2 phosphorylation (p-ERK1/2) without marked change in total ERK1/2 expression. They also slightly downregulated the p-Akt expression without significant alteration in total Akt expression. Pearson correlation analysis showed a significant positive correlation between the inactivation of ERK1/2 signaling pathway and the HQ, FMNT and CS-induced suppression of colon cancer. The molecular docking results indicated that FMNT and CS had a strong binding affinity for the key molecules of ERK1/2 signaling pathway. Conclusively, HQ, FMNT and CS exerted good therapeutic effects against colon cancer by mainly inhibiting the ERK1/2 signaling pathway, suggesting that HQ, FMNT and CS could be useful supplements that may enhance chemotherapeutic outcomes and benefit colon cancer patients.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenjuan Zhai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Duanling Tan
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haipeng Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guiyu Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuanjing Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuting Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenhui Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yijie Wei
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjun Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,*Correspondence: Jinjun Wu, ; Xin Yang,
| | - Xin Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,*Correspondence: Jinjun Wu, ; Xin Yang,
| |
Collapse
|
47
|
Szabo K, Ranga F, Elemer S, Varvara RA, Diaconeasa Z, Dulf FV, Vodnar DC. Evaluation of the Astragalus exscapus L. subsp. transsilvanicus Roots' Chemical Profile, Phenolic Composition and Biological Activities. Int J Mol Sci 2022; 23:ijms232315161. [PMID: 36499484 PMCID: PMC9739471 DOI: 10.3390/ijms232315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.
Collapse
Affiliation(s)
- Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological Transfer Center COMPAC, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
48
|
Zheng L, Wan H, Lu Y, Ding Z, Li C, Wan H. Rapid identification and quantitative determination of chemical compositions in Buyang Huanwu decoction based on HPLC-Q-Exactive mass spectrometry. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:534-543. [PMID: 36581570 PMCID: PMC10494249 DOI: 10.3724/zdxbyxb-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To establish an analytical method for rapid identification of chemical compositions and quantitative determination of major compositions in Buyang Huanwu decoction (BYHWD) based on high performance liquid chromatography-quadrupole orbitrap mass spectrometry (HPLC-Q-Exactive MS) and high performance liquid chromatography-ultraviolet detection (HPLC-UV). METHODS The mass spectrometry information was collected in Full MS/dd-MS 2 negative ion mode with HPLC-Q-Exactive MS system; the chemical compositions of BYHWD were subsequently annotated with Compound Discoverer 3.0 software and a self-built in-house compound library. Eight major compositions (paeoniflorin, gallic acid, hydroxysafflor yellow A, ferulic acid, calycosin-7-glucoside, ononin, calycosin, formononetin) were picked out and their contents were quantitatively determined with HPLC-UV analysis. RESULTS A total of 178 compounds in BYHWD were tentatively identified. The results of HPLC-UV quantitative analysis showed that 8 compositions had a good linear relationship in their respective concentration range ( R 2≥0.9990), the relative standard deviations (RSD) of precision and stability were all less than 15%, and the recovery rate RSD was between 1.6% and 2.4%. CONCLUSIONS The method established in this study can realize the rapid identification and accurate quantification of the major compositions in BYHWD. Paeoniflorin, hydroxysafflor yellow A and gallic acid may be used as quality control markers.
Collapse
Affiliation(s)
- Liuyan Zheng
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haofang Wan
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yihang Lu
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhishan Ding
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chang Li
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
49
|
da Silva AF, Farias JR, Franco DCG, Galiza AA, Motta EP, Oliveira ADS, Vasconcelos CC, Cartágenes MDSDS, da Rocha CQ, da Silva MCP, Lopes AJO, do Nascimento FRF, Monteiro CA, Guerra RNM. Anti- Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites 2022; 12:1014. [PMID: 36355097 PMCID: PMC9696916 DOI: 10.3390/metabo12111014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
Candida albicans is a human pathogen that is part of the healthy microbiome. However, it is often associated with opportunistic fungal infections. The treatment of these infections is challenging because prolonged exposure to antifungal drugs can culminate in fungal resistance during therapy, and there is a limited number of available drugs. Therefore, this study investigated the antifungal activity of ononin by in silico and in vitro assays, and in Tenebrio molitor as an alternative in vivo model of infection caused by C. albicans. Ononin is an isoflavone glycoside derived from formononetin that has various biological activities. According in silico evaluation, ononin showed the best electron affinity in molecular docking with CaCYP51, with a binding free energy of -10.89 kcal/mol, superior to that of the antifungal drugs fluconazole and posaconazole. The ononin + CaCYP51 complex formed hydrogen bonds with Tyr132, Ser378, Phe380, and Met508, as well as hydrophobic connections with Tyr118, Leu121, Phe126, Leu131, Ile304, and Leu309, and interactions with the heme group. Ononin exerted anti-Candida albicans activity, with MIC between 3.9 and 7.8 µg/mL, and inhibited young and mature biofilms, with a reduction in cell density and metabolic activity of 50 to 80%. The compound was not cytotoxic to sheep red blood cells at concentrations up to 1000 µg/mL. Larvae of the mealworm T. molitor were used as an alternative in vivo model of C. albicans infection. Ononin was able to prolong larval survival at concentrations of 0.5, 1, and 5 mg/kg, and was not toxic up to a concentration of 20 mg/kg. Moreover, ononin reduced the fungal charge in treated animals. In conclusion, our results suggest that ononin has anti-Candida albicans activity and is a potential candidate for the development of new therapeutic alternatives.
Collapse
Affiliation(s)
- Anderson França da Silva
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Josivan Regis Farias
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Danielle Cristine Gomes Franco
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Andrea Araruna Galiza
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Elizangela Pestana Motta
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Aluísio da Silva Oliveira
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Maria do Socorro de Sousa Cartágenes
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
- Laboratory of Experimental Study of Pain, Department of Physiological Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Mayara Cristina Pinto da Silva
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Alberto Jorge Oliveira Lopes
- Federal Institute of Science Education and Technology of Maranhão-Campus Santa Inês, Santa Inês 65300-000, Brazil
| | - Flavia Raquel Fernandes do Nascimento
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Cristina Andrade Monteiro
- Department of Biology, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| | - Rosane Nassar Meireles Guerra
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
50
|
Zhang L, Hu Y, Qi S, Zhang C, Zhou Q, Zhang D, Mu Y, Zhang H, Chen G, Liu P, Chen J, Liu W. Astragalus saponins and its main constituents ameliorate ductular reaction and liver fibrosis in a mouse model of DDC-induced cholestatic liver disease. Front Pharmacol 2022; 13:965914. [PMID: 36339578 PMCID: PMC9632275 DOI: 10.3389/fphar.2022.965914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cholestatic liver disease (CLD) is a chronic liver disease characterized by ductular reaction, inflammation and fibrosis. As there are no effective chemical or biological drugs now, majority of CLD patients eventually require liver transplantation. Astragali radix (AR) is commonly used in the clinical treatment of cholestatic liver disease and its related liver fibrosis in traditional Chinese medicine, however its specific active constituents are not clear. Total astragalus saponins (ASTs) were considered to be the main active components of AR. The aim of this study is to investigate the improvement effects of the total astragalus saponins (ASTs) and its main constituents in cholestatic liver disease. The ASTs from AR was prepared by macroporous resin, the content of saponins was measured at 60.19 ± 1.68%. The ameliorative effects of ASTs (14, 28, 56 mg/kg) were evaluated by 3, 5-Diethoxycarbonyl-1, 4-dihydrocollidine (DDC)-induced CLD mouse model. The contents of hydroxyproline (Hyp), the mRNA and protein expression of cytokeratin 19 (CK19) and α-smooth muscle actin (α-SMA) in liver tissue were dose-dependently improved after treatment for ASTs. 45 astragalus saponins were identified in ASTs by UHPLC-Q-Exactive Orbitrap HRMS, including astragaloside I, astragaloside II, astragaloside III, astragaloside IV, isoastragaloside I, isoastragaloside II, cycloastragenol, etc. And, it was found that ductular reaction in sodium butyrate-induced WB-F344 cell model were obviously inhibited by these main constituents. Finally, the improvement effects of astragaloside I, astragaloside II, astragaloside IV and cycloastragenol (50 mg/kg) were evaluated in DDC-induced CLD mice model. The results showed that astragaloside I and cycloastragenol significantly improved mRNA and protein expression of CK19 and α-SMA in liver tissue. It suggested that astragaloside I and cycloastragenol could alleviate ductular reaction and liver fibrosis. In summary, this study revealed that ASTs could significantly inhibit ductular reaction and liver fibrosis, and astragaloside I and cycloastragenol were the key substances of ASTs for treating cholestatic liver disease.
Collapse
Affiliation(s)
- Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglan Qi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congcong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Zhou
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dingqi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Ping Liu, ; Jiamei Chen, ; Wei Liu,
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Ping Liu, ; Jiamei Chen, ; Wei Liu,
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Ping Liu, ; Jiamei Chen, ; Wei Liu,
| |
Collapse
|