1
|
Xu L, Zhang X, Wang W, Shen J, Ma K, Wang H, Xue T. The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus. Int J Food Microbiol 2025; 428:110997. [PMID: 39616895 DOI: 10.1016/j.ijfoodmicro.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Staphylococcus aureus (S. aureus) is a primary culprit of food poisoning. As a highly adaptable pathogen, S. aureus demonstrates formidable biofilm-forming and stress tolerance capabilities, inducing significant challenges to eradicate food contamination caused by this organism. SpoVG, a regulatory protein in S. aureus, controls the expression of numerous genes. However, its role in biofilm formation and stress response in foodborne S. aureus remains to be elucidated. In this study, we investigated the functions of SpoVG involved in food-related stress responses and biofilm formation in S. aureus RMSA50. The results demonstrated that SpoVG deletion enhanced biofilm formation and resistance to heat and desiccation, while decreased tolerance to oxidative stress. Further analysis revealed that cell aggregation and the accumulation of extracellular DNA (eDNA) may contribute to the enhanced biofilm formation. Real-time quantitative reverse transcription-PCR (RT-qPCR) revealed that the expression levels of nuc and sasC, which are related to cell aggregation and eDNA concentration, were significantly altered in the spoVG mutant. Electrophoretic mobility shift assays (EMSA) confirmed that SpoVG directly binds to the promoter region of nuc and sasC to regulate their expression. These findings suggest that SpoVG may serve as a target to decrease biofilm formation and control S. aureus contamination in the food industry.
Collapse
Affiliation(s)
- Li Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institude, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Li S, Ma X, Mei H, Chang X, He P, Sun L, Xiao H, Wang S, Li R. Association between gut microbiota and short-chain fatty acids in children with obesity. Sci Rep 2025; 15:483. [PMID: 39748068 PMCID: PMC11695941 DOI: 10.1038/s41598-024-84207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
The gut microbiome and its metabolites may be important role in regulating the pathogenesis of obesity. This study aimed to characterize the gut microbiome and short-chain fatty acid (SCFA) metabolome in obese children. This case-control study recruited children aged 7‒14 years and divided them into a normal group (NG) and an obese group (OG) based on their body mass index. Whole-genome shotgun metagenomic analysis was performed on fecal samples from the OG and NG groups to characterize the signatures and functional potential of the gut microbiota. Serum metabolite profiles were analyzed using high-performance liquid chromatography/mass spectrometry (LC/MS). The Statistical Package for the Social Sciences (SPSS, version 26) and R software were used for data analysis. A total of 99 children were recruited, with 49 in the OG and 50 in the NG. At the phylum level, Proteobacteria were significantly more abundant in children in the OG than those in the NG. At the genus level, Oscillibacter and Alistipes were significantly lower in children in the OG than those in the NG. Caproate levels significantly increased, whereas butyrate and isobutyrate levels decreased in children in the OG than those in the NG. Kyoto encyclopedia of genes and genomes (KEGG) functional analysis revealed 28 enriched KEGG pathways, of which/with the phosphotransferase system (PTS) and enhanced biofilm formation by Escherichia coli were particularly significant in the OG. Spearman's correlation analysis indicated that the genus Oscillibacter and species Clostridium_sp._CAG:302 connect serum metabolites and the gut microbiota in childhood obesity. Childhood obesity is correlated with the symbiotic status of the gut microbiota. The microbiota influences human metabolism via specific pathways, particularly butyrate, caproate, and the genus Oscillibacter, all closely associated with obesity.
Collapse
Affiliation(s)
- Shihan Li
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China
| | - Xinyu Ma
- Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuening Chang
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China
| | - Peiling He
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China
| | - Lingli Sun
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China
| | - Han Xiao
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.
| | - Shiqiong Wang
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.
| | - Ruizhen Li
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.
| |
Collapse
|
3
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Giaouris E. Comparing Gene Expression Between Planktonic and Biofilm Cells of Foodborne Bacterial Pathogens Through RT-qPCR. Methods Mol Biol 2025; 2852:143-158. [PMID: 39235742 DOI: 10.1007/978-1-0716-4100-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Like most microorganisms, important foodborne pathogenic bacteria, such as Salmonella enterica, Listeria monocytogenes, and several others as well, can attach to surfaces, of either abiotic or biotic nature, and create biofilms on them, provided the existence of supportive environmental conditions (e.g., permissive growth temperature, adequate humidity, and nutrient presence). Inside those sessile communities, the enclosed bacteria typically present a gene expression profile that differs from the one that would be displayed by the same cells growing planktonically in liquid media (free-swimming cells). This altered gene expression has important consequences on cellular physiology and behavior, including stress tolerance and induction of virulence. In this chapter, the methodology to use reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to monitor and comparatively quantify expression changes in preselected genes of bacteria between planktonic and biofilm growth modes is presented.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece.
| |
Collapse
|
5
|
Yan H, Liu Y, Zhang H, Jin S, Han Z, Woo J, Tucker ME, Meng L, Chi X, Han C, Zhao Y, Zhao Y, Zhao H. Interaction of Ca 2+ and Fe 3+ in co-precipitation process induced by Virgibacillus dokdonensis and its application. J Environ Sci (China) 2025; 147:131-152. [PMID: 39003035 DOI: 10.1016/j.jes.2023.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 07/15/2024]
Abstract
Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and β-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuping Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haojuan Zhang
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
6
|
Rawstern AH, Hernandez DJ, Afkhami ME. Central Taxa Are Keystone Microbes During Early Succession. Ecol Lett 2025; 28:e70031. [PMID: 39737770 DOI: 10.1111/ele.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025]
Abstract
Microorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature. Combining culturing, sequencing, networks and field experiments, we isolated 'central' (highly connected, hub taxa), 'intermediate' (moderately connected), and 'peripheral' (weakly/unconnected) microbes and experimentally evaluated their effects on soil microbiome assembly during early succession in nature. Central early colonisers significantly (1) enhanced biodiversity (35%-40% richer communities), (2) reshaped trajectories of microbiome assembly and (3) increased recruitment of additional influential microbes by > 60%. In contrast, peripheral microbes did not increase diversity and were transient taxa, minimally affected by the presence of other microbes. This work elucidates fundamental principles of network theory in microbial ecology and demonstrates for the first time in nature that central microbes act as keystone taxa.
Collapse
Affiliation(s)
- Amanda H Rawstern
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Damian J Hernandez
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Foster AR, Stark ER, Ikner LA, Pepper IL. Effects of magnetically treated water on the survival of bacteria in biofilms. BIOFOULING 2024:1-13. [PMID: 39725380 DOI: 10.1080/08927014.2024.2444379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
The goal of this study was to evaluate if a magnetic water treatment device could be used to mitigate biofilms in water systems. Magnetic treatment was applied to water upstream of a modified Robbins device in which Pseudomonas fluorescence biofilms were formed. Duration of magnetic treatment, system flow rate, and field strength were varied to assess the impacts on the biofilm. A control system was concurrently established in which no magnetic treatment was applied. After treatment, the number of viable cells in the biofilm was reduced by up to 2.46 log10 CFU cm-2 depending on the operational conditions. Increased cell stress, and ultimately death, was observed during treatment as indicated by an elevated AMPi stress index. These results indicate that magnetic water treatment may be an effective technology to decrease the extent of biofilms in water systems and a reduced need for chemical treatment. A mechanism is proposed in which metabolic processes are hindered due to the magnetic field effects on ions in the water. However, a mechanistic investigation remains outside the scope of this study. Future studies should aim to characterize both the impacts of treatment on the matrix and cellular processes to determine a mechanism for the observed effects.
Collapse
Affiliation(s)
- Aidan R Foster
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Erika R Stark
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Luisa A Ikner
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2024; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
9
|
Jimenez EM, Nguyen C, Shakeel A, Tesoriero R, Charrier M, Stull A, Ajo-Franklin CM. Genetically Modifying the Protein Matrix of Macroscopic Living Materials to Control Their Structure and Rheological Properties. ACS Synth Biol 2024; 13:3936-3947. [PMID: 39601053 DOI: 10.1021/acssynbio.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The field of engineering living materials (ELMs) seeks to engineer cells to form macroscopic materials with tailorable structures and properties. While the rheological properties of ELMs have been altered using synthetic biology methodology, the relationships connecting their sequence, structural, and rheological properties remain to be elucidated. Recently, our lab created centimeter-scale ELMs from Caulobacter crescentus that offer a platform to investigate this paradigm. Here, we explore how changing the elastin-like polypeptide (ELP) length within the protein matrix of this ELM impacts its microstructure and viscoelastic behavior. We demonstrate that shortening ELP produces fibers almost 2× thicker than other variants, resulting in a stiffer material at rest. Interestingly, the midlength ELP forms a complex structure with globules and multidirectional fibers with increased yield stress under flow conditions. Lengthening ELP creates thinner strands between cells with similar storage and loss moduli to those of the midlength ELP. This study begins to elucidate sequence-structure-property relationships in these ELMs and shows that they are complex with few parallels to other biocomposite models. Furthermore, it highlights that fine-tuning genetic sequences can create significant differences in rheological properties, uncovering new design principles of ELMs.
Collapse
Affiliation(s)
- Esther M Jimenez
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Carlson Nguyen
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Ahmad Shakeel
- Department of Aerospace Structures and Materials, Delft University of Technology, Delft 2629 HS, Netherlands
| | - Robert Tesoriero
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Marimikel Charrier
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Alanna Stull
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Rice Synthetic Biology Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
11
|
Bhowmick A, Recalde A, Bhattacharyya C, Banerjee A, Das J, Rodriguez-Cruz UE, Albers SV, Ghosh A. Role of VapBC4 toxin-antitoxin system of Sulfolobus acidocaldarius in heat stress adaptation. mBio 2024; 15:e0275324. [PMID: 39535218 PMCID: PMC11633383 DOI: 10.1128/mbio.02753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are important for stress adaptation in prokaryotes, including persistence, antibiotic resistance, pathogenicity, and biofilm formation. Toxins can cause cell death, reversible growth stasis, and direct inhibition of crucial cellular processes through various mechanisms, while antitoxins neutralize the effects of toxins. In bacteria, these systems have been studied in detail, whereas their function in archaea remains elusive. During heat stress, the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibited an increase in the expression of several bicistronic type II vapBC TA systems, with the highest expression observed in the vapBC4 system. In the current study, we performed a comprehensive biochemical characterization of the VapBC4 TA system, establishing it as a bonafide type II toxin-antitoxin system. The VapC4 toxin is shown to have high-temperature catalyzed RNase activity specific for mRNA and rRNA, while the VapB4 antitoxin inhibits the toxic activity of VapC4 by interacting with it. VapC4 toxin expression led to heat-induced persister-like cell formation, allowing the cell to cope with the stress. Furthermore, this study explored the impact of vapBC4 deletion on biofilm formation, whereby deletion of vapC4 led to increased biofilm formation, suggesting its role in regulating biofilm formation. Thus, during heat stress, the liberated VapC4 toxin in cells could potentially signal a preference for persister cell formation over biofilm growth. Thus, our findings shed light on the diverse roles of the VapC4 toxin in inhibiting translation, inducing persister cell formation, and regulating biofilm formation in S. acidocaldarius, enhancing our understanding of TA systems in archaea. IMPORTANCE This research enhances our knowledge of toxin-antitoxin (TA) systems in archaea, specifically in the thermoacidophilic archaeon Sulfolobus acidocaldarius. TA systems are widespread in both bacterial and archaeal genomes, indicating their evolutionary importance. However, their exact functions in archaeal cellular physiology are still not well understood. This study sheds light on the complex roles of TA systems and their critical involvement in archaeal stress adaptation, including persistence and biofilm formation. By focusing on S. acidocaldarius, which lives in habitats with fluctuating temperatures that can reach up to 90°C, the study reveals the unique challenges and survival mechanisms of this organism. The detailed biochemical analysis of the VapBC4 TA system, and its crucial role during heat stress, provides insights into how extremophiles can survive in harsh conditions. The findings of this study show the various functions of the VapC4 toxin, including inhibiting translation, inducing persister-like cell formation, and regulating biofilm formation. This knowledge improves our understanding of TA systems in thermoacidophiles and has broader implications for understanding how microorganisms adapt to extreme environments.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Alejandra Recalde
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ankita Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ulises E. Rodriguez-Cruz
- Department of Evolutionary Ecology, Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
12
|
Li Y, Zhang H, Huo S, Zhang J, Ma C, Weng N, Zhang P, Shi Z. Distinct strategies of microeukaryotic generalists and specialists in Qinghai-Tibet plateau sediment driven by salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177900. [PMID: 39667162 DOI: 10.1016/j.scitotenv.2024.177900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/29/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Unraveling how microeukaryotic generalists and specialists assemble and coexist under environmental stress is central to our understanding of the mechanisms maintaining diversity. Here, we explored the biogeographical distributions of microeukaryotic generalists and specialists in lake surface sediments along a salinity gradient on the Qinghai-Tibet Plateau. We found that relative abundances of Chlorophyta (28.6 %) and Dinophyceae (9.5 %) were higher as habitat generalists than as specialists. Conversely, relative abundances of habitat specialists were higher in the Ciliophora (22.2 %) and Cercozoa (11.6 %) than those of generalists. Environmental adaptation analysis showed a broader niche threshold for generalists than for specialists, whereas a stronger phylogenetic signal for environmental factors was observed for specialists. Thus, increases in salinity had stronger effects on specialists than on generalists through environmental selection and diversification processes. However, null model analysis indicated stochastic processes were the primary drivers of both generalists and specialists. Network analysis revealed that with increasing salinity, specialists were more important than generalists in stabilizing networks. In addition, phylogenetic relatedness indicated that microeukaryotic generalists coexisted because of niche differences, whereas specialists coexisted because of average fitness similarity. Our study will help to predict microeukaryotic responses to environmental changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxiao Zhang
- School of Environment, Beijing Normal University, Beijing 100080, China.
| | - Shouliang Huo
- School of Environment, Beijing Normal University, Beijing 100080, China.
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peilian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Beijing Normal University, Beijing 100080, China
| | - Zhanyao Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Beijing Normal University, Beijing 100080, China
| |
Collapse
|
13
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2024; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
14
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
15
|
Zhao S, Su X, Xu C, Gao X, Lu S. Microbial adaptation and genetic modifications for enhanced remediation in low-permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177916. [PMID: 39647202 DOI: 10.1016/j.scitotenv.2024.177916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Low-permeability soils, characterized by fine texture and high clay content, pose significant challenges to traditional soil remediation techniques due to limited hydraulic conductivity, restricted nutrient flow, and reduced oxygen availability. These unique properties enable low-permeability soils to function as natural barriers in environmental protection; however, they also trap contaminants, making traditional remediation efforts challenging. This review synthesizes current knowledge on microbial adaptation and genetic engineering approaches that enhance the effectiveness of bioremediation in such environments. Key microbial adaptations, including anaerobic metabolism, extracellular enzyme production, and stress response mechanisms, allow individual microbes to adapt in low-permeability soils. Additionally, community-level strategies like microhabitat creation, biofilm formation, and functional redundancy further support microbial resilience. Advancements in genetic engineering now enable the modification of microbial traits-such as soil adhesion, nutrient utilization, and stress tolerance-to enhance bioremediation efficacy. Synthetic biology techniques further allow for the design of tailored microbial consortia that work cooperatively to degrade contaminants in complex soil matrices. This review highlights the integration of microbial and genetic engineering strategies, offering a comprehensive overview that informs current practices and guides future research in low-permeability soil remediation.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xinjia Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chen Xu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xu Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Songyan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
16
|
Cai XL, Yao X, Zhang L, Chai YH, Liu X, Liu WW, Zhang RX, Fan YY, Xiao X. Dual-directional regulation of extracellular respiration in Shewanella oneidensis for intelligently treating multi-nuclide contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136371. [PMID: 39488975 DOI: 10.1016/j.jhazmat.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Radionuclide contamination has become a global environmental concern due to the high mobility and toxicity of certain isotopes. Bioreduction mediated by electrochemically active bacteria (EAB) with unique extracellular electron transfer (EET) capability is recognized as a promising approach for nuclear waste treatment. However, it is difficult to achieve bidirectional regulation of EET pathway through traditional genetic manipulation, limiting the bioremediation application of EAB. Here, we designed and optimized a novel Esa quorum sensing (EQS) system for highly efficient gene expression and interleaved cellular functional output. By promoting dimethyl sulfoxide reductase at low cell density and increasing the synthesis of electron conductive complex and flavins at high cell density, the EQS system dynamically switched the extracellular respiratory pathway of Shewanella oneidensis MR-1 according to cell density. The engineered strain exhibited precise switching and substantial improvement in the extracellular remediation of multiple nuclides, sequentially increasing the reduction of iodine IO3- and uranium U(VI) by 2.51- and 2.05-fold compared with the control, respectively. Furthermore, a mobile bacterial biofilm material was fabricated for collecting uranium precipitates coupled with U(VI) reduction. This work clearly demonstrates that EQS system contributes to the bidirectional regulation of EET pathway in EAB, providing an effective and refined strategy for bioremediation of multi-nuclide contamination.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Han Chai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wen-Wen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruo-Xi Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
17
|
Yang C, Huang B, Lin J, Yang Q, Guo Y, Liu D, Sun B. Isolation and screening of high biofilm producing lactic acid bacteria, and exploration of its effects on the microbial hazard in corn straw silage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136009. [PMID: 39393325 DOI: 10.1016/j.jhazmat.2024.136009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Silage is a well-established method for preserving feed. However, the preparation process still poses several potential microbial hazards. Lactic acid bacteria exhibiting a biofilm phenotype are considered the most advanced 'fourth-generation probiotics' due to their significant potential in enhancing fermentation quality. In this study, a strain of high-biofilm-producing lactic acid bacteria (HBP-LAB) was successfully isolated from silage samples using the crystal violet method and designated as Lactiplantibacillus plantarum S23Y. This strain was subsequently used as an inoculant in corn straw for experimental purposes. The results indicated that it effectively reduced dry matter loss caused by microorganisms, thereby enhancing the retention of dry matter in silage. Following aerobic exposure, this strain was able to maintain the population of Lactobacillus and the concentration of lactic acid, which significantly decreased the likelihood of yeast-induced aerobic spoilage and improved the aerobic stability of the silage. However, it is important to note that this HBP-LAB did not have a significant impact on antibiotic resistance genes (ARGs) or mobile genetic elements (MGEs) in the silage. In conclusion, using S23Y as a representative strain, we have demonstrated that HBP-LAB can enhance the fermentation quality of silage to a certain extent and mitigate the detrimental effects of microorganisms. The findings of this study provide valuable insights for the application of lactic acid bacteria with a biofilm phenotype in silage fermentation.
Collapse
Affiliation(s)
- Chuang Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Binhong Huang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinhong Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qijing Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Squyres GR, Newman DK. Biofilms as more than the sum of their parts: lessons from developmental biology. Curr Opin Microbiol 2024; 82:102537. [PMID: 39241276 DOI: 10.1016/j.mib.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Although our understanding of both bacterial cell physiology and the complex behaviors exhibited by bacterial biofilms is expanding rapidly, we cannot yet sum the behaviors of individual cells to understand or predict biofilm behavior. This is both because cell physiology in biofilms is different from planktonic growth and because cell behavior in biofilms is spatiotemporally patterned. We use developmental biology as a guide to examine this phenotypic patterning, discussing candidate cues that may encode spatiotemporal information and possible roles for phenotypic patterning in biofilms. We consider other questions that arise from the comparison between biofilm and eukaryotic development, including what defines normal biofilm development and the nature of biofilm cell types and fates. We conclude by discussing what biofilm development can tell us about developmental processes, emphasizing the additional challenges faced by bacteria in biofilm development compared with their eukaryotic counterparts.
Collapse
Affiliation(s)
- Georgia R Squyres
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
20
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
21
|
Zanditenas E, Ankri S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024; 15:2289775. [PMID: 38058008 PMCID: PMC10761080 DOI: 10.1080/21505594.2023.2289775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
22
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
23
|
Xia L, Wang J, Chen M, Li G, Wang W, An T. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136554. [PMID: 39566460 DOI: 10.1016/j.jhazmat.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaping Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
24
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
25
|
Köksaldı İÇ, Avcı E, Köse S, Özkul G, Kehribar EŞ, Şafak Şeker UÖ. Genetically engineered bacterial biofilm materials enhances portable whole cell sensing. Biosens Bioelectron 2024; 264:116644. [PMID: 39137519 DOI: 10.1016/j.bios.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In recent years, whole-cell biosensors (WCBs) have emerged as a potent approach for environmental monitoring and on-site analyte detection. These biosensors harness the biological apparatus of microorganisms to identify specific analytes, offering advantages in sensitivity, specificity, and real-time monitoring capabilities. A critical hurdle in biosensor development lies in ensuring the robust attachment of cells to surfaces, a crucial step for practical utility. In this study, we present a comprehensive approach to tackle this challenge via engineering Escherichia coli cells for immobilization on paper through the Curli biofilm pathway. Furthermore, incorporating a cellulose-binding peptide domain to the CsgA biofilm protein enhances cell adhesion to paper surfaces, consequently boosting biosensor efficacy. To demonstrate the versatility of this platform, we developed a WCB for copper, optimized to exhibit a discernible response, even with the naked eye. To confirm its suitability for practical field use, we characterized our copper sensor under various environmental conditions-temperature, salinity, and pH-to mimic real-world scenarios. The biosensor-equipped paper discs can be freeze-dried for deployment in on-site applications, providing a practical method for long-term storage without loss of sensitivity paper discs demonstrate sustained functionality and viability even after months of storage with 5 μM limit of detection for copper with visible-to-naked-eye signal levels. Biofilm-mediated surface attachment and analyte sensing can be independently engineered, allowing for flexible utilization of this platform as required. With the implementation of copper sensing as a proof-of-concept study, we underscore the potential of WCBs as a promising avenue for the on-site detection of a multitude of analytes.
Collapse
Affiliation(s)
- İlkay Çisil Köksaldı
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Ece Avcı
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Sıla Köse
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Gökçe Özkul
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Ebru Şahin Kehribar
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
26
|
Wang N, Ning C, Zhao Z, Yang C, Ren H, Chen L, Yu Q, Zhang G. Antibacterial mechanism analysis of resveratrol against Salmonella typhimurium via metabolomics. Appl Microbiol Biotechnol 2024; 108:512. [PMID: 39531061 PMCID: PMC11557638 DOI: 10.1007/s00253-024-13341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Salmonella, a common pathogenic bacterium in food, can have a severe impact on food safety and consumer health. At present, Salmonella infection is controlled primarily by the use of antibiotics, which creates unsafe factors for food safety. Thus, finding a natural antibacterial agent is highly practical. In this study, resveratrol was screened from 17 kinds of polyphenols, and its inhibitory mechanism and effects on metabolites of Salmonella typhimurium were investigated to occur through cell wall and membrane damage and metabolomics analysis. The results revealed that the minimum inhibitory concentration of resveratrol against S. typhimurium was 250 μg/mL. After treatment with resveratrol, the lag period of the strain was prolonged, and the cell wall and membrane structure were destroyed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) further confirmed that resveratrol induced damage to the cell walls and cell membrane. The metabolic profile of S. typhimurium following resveratrol treatment was analysed by gas chromatography‒mass spectrometry. In the metabolome evaluation, we screened 23 differentially abundant metabolites, including 11 upregulated and 12 downregulated metabolites. Eight metabolic pathways of S. typhimurium, including pathways important for amino acid metabolism and the tricarboxylic acid (TCA) cycle, exhibited significant changes after resveratrol treatment. The verification results of the citric acid content, cis-aconitase activity, and ATP content further revealed that the tricarboxylic acid cycle and other related metabolic pathways of S. typhimurium were affected. These results could provide a theoretical possibility for the use of resveratrol as a plant-derived bacteriostatic for food safety problems caused by S. typhimurium. KEY POINTS: • The mechanism of bacteriostasis was studied via metabolomics • Resveratrol causes the death of Salmonella by disrupting the cell wall and membrane.
Collapse
Affiliation(s)
- Na Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Cancan Ning
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
| | - Zheng Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
| | - Congyan Yang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Linlin Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Qiuying Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China.
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China.
| | - Gaiping Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Rooney LM, Bottura B, Baxter K, Amos WB, Hoskisson PA, McConnell G. Addressing multiscale microbial challenges using the Mesolens. J Microsc 2024; 296:139-144. [PMID: 36692253 DOI: 10.1111/jmi.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
We provide a brief review of the development and application of the Mesolens and its impact on microbiology. Microbial specimens such as infected tissue samples, colonies surfaces, and biofilms are routinely collected at the mesoscale. This means that they are relatively large multimillimetre-sized samples which contain microscopic detail that must be observed to answer important questions across various sectors. The Mesolens presents the ideal imaging method to study these specimens as no other optical microscope can thanks to its unique combination of low magnification and high numerical aperture providing large field-of-view, high-resolution imaging. We demonstrate the current applications of the Mesolens to microbial imaging and go on to outline the huge potential of the Mesolens to impact other key areas of microbiology.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Beatrice Bottura
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Katherine Baxter
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - William B Amos
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul A Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
28
|
Almeida Junior HLD, Assis TMD, Faria EC, Costa LRK, Ibaldo BM. Piedraia hortae: biofilm formation and its importance in the pathogenesis of Piedra nigra (black piedra). An Bras Dermatol 2024; 99:863-868. [PMID: 39033083 PMCID: PMC11551259 DOI: 10.1016/j.abd.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Little is known about the ultrastructure of Piedraia hortae. OBJECTIVE To examine a P. hortae colony with scanning electron microscopy and investigate possible contributions to its the pathogenesis of black piedra. RESULTS On low magnifications, two distinct aspects of the colony are identified, a compact area and a filamentous area. Analysis of the filamentous area demonstrates hyphae adhered by a thin reticular substance. A recurring finding is the adhesion between the fungal filaments in parallel. On high magnifications, the microfibrillar substance adhering the hyphae to each other becomes very evident. Examination of the compact area shows the hyphae embedded in the reticular matrix forming a biofilm and the colony well adhered. On high magnification, it can be observed that the hyphae are within this fibrillar matrix, which has the same appearance as the filamentous substance that adheres the hyphae to each other. STUDY LIMITATIONS Only one strain was examined. CONCLUSIONS The formation of biofilm with fungal structures and reticulated extracellular substance is important in the pathogenesis of black piedra.
Collapse
Affiliation(s)
- Hiram Larangeira de Almeida Junior
- Postgraduation in Health and Behavior, Universidade Católica de Pelotas; Department of Dermatology, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
30
|
Gawande PS, Manigandan V, Ganesh R S, Kannan VR, Ramu K, Murthy MVR. Metagenomic analysis of pathogenic bacteria and virulence factor genes in coastal sediments from highly urbanized cities of India. Microb Pathog 2024; 196:106984. [PMID: 39341578 DOI: 10.1016/j.micpath.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
A metagenomic approach was employed to investigate the diversity and distribution of Virulence Factors Genes (VFGs) and Pathogenic Bacteria (PB) in sediment samples collected from highly urbanized cities along the Indian coastline. Among the study locations, Mumbai, Veraval and Paradeep showed a higher abundance of PB, with Vibrio and Pseudomonas as dominant at the genus level, and Escherichia coli and Pseudomonas aeruginosa at the species level. In total, 295 VFGs were detected across all sediment samples, of which 40 VFGs showed a similarity of ≥90 % with the Virulence Database (VFDB) and were focused in this study. Among the virulent proteins, twitching motility protein and flagellar P-ring were found to be prevalent and significantly associated with Vibrio spp., and Pseudomonas spp., indicating potential bacterial pathogenicity. This investigation serves as the basis for future studies and provides insights into the comprehensive taxonomic profiles of PB, VFGs and their associated PB in the coastal sediments of India.
Collapse
Affiliation(s)
- Pradip Sahebrao Gawande
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India; Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Vajravelu Manigandan
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - Sankar Ganesh R
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - V Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India.
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
31
|
Wang T, Chen Q, Liang Q, Zhao Q, Lu X, Tian J, Guan Z, Liu C, Li J, Zhou M, Tian J, Liang C. Bacillus suppresses nitrogen efficiency of soybean-rhizobium symbiosis through regulation of nitrogen-related transcriptional and microbial patterns. PLANT, CELL & ENVIRONMENT 2024; 47:4305-4322. [PMID: 38963088 DOI: 10.1111/pce.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.
Collapse
Affiliation(s)
- Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Quan Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jihui Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zidi Guan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chang Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jifu Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024; 9:e0043024. [PMID: 39360839 PMCID: PMC11520294 DOI: 10.1128/msphere.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Abdo VL, Dini C, Borges MHR, Domingues DVAP, Sanchez KACC, Martins R, Retamal-Valdes B, Barão VAR, Souza JGS. Navigating the Landscape of Periodontitis Nonsurgical Treatment: A Metatrend Study of The Scientific Production and Trends From 2001-2020. Braz Dent J 2024; 35:e246110. [PMID: 39476110 PMCID: PMC11506131 DOI: 10.1590/0103-6440202406110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 11/03/2024] Open
Abstract
Nonsurgical therapies have been recommended and employed as a less invasive and cost-effective modality in managing periodontitis. In this context, different therapeutic protocols have been tested in the last decades. Therefore, mapping the scientific trends and patterns provides critical insights into the state of research in the field, which has not been explored for overall nonsurgical periodontitis treatment studies. Articles from 2001 to 2020 were retrieved from the Web of Science database using appropriate terms and keywords. Article selection and data extraction were performed by calibrated examiners. All articles focusing on nonsurgical periodontitis treatment were included. Descriptive, bivariate, and multivariate logistic regression analyses were conducted. 1,519 articles were included. Randomized clinical trials (RCTs) were the most used design (44.1%), and professional biofilm control was the topic most studied (35.6%). Europe published the most significant number of articles (41.1%). The USA was the country that collaborated more with other countries. Asia (p<0.001), South America (p=0.004), and Oceania/Africa (p=0.016) showed a lower chance to have international collaboration. Studies from North America were more likely to be RCTs than studies from Europe (p=0.050); studies focusing on professional biofilm control (p<0.001) and other topics (p<0.001) were less likely to be evaluated by RCTs. The nonsurgical periodontitis treatment field mainly conducted RCTs, and the topic most explored by all studies was professional biofilm control. International collaboration and conduct of RCTs in this field occurred mainly among high-income countries. Decentralizing scientific resources, making integrative connections globally, and evaluating new topics may improve evidence-based periodontology.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental SchoolUniversidade Estadual de Campinas (UNICAMP). Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental SchoolUniversidade Estadual de Campinas (UNICAMP). Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Danilo V A P Domingues
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Kamily A C C Sanchez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Rodrigo Martins
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental SchoolUniversidade Estadual de Campinas (UNICAMP). Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Joāo Gabriel S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| |
Collapse
|
34
|
Kostoglou D, Apostolopoulou M, Lagou A, Didos S, Argiriou A, Giaouris E. Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces. Microorganisms 2024; 12:2124. [PMID: 39597514 PMCID: PMC11596057 DOI: 10.3390/microorganisms12112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Campylobacter spp. are prevalent foodborne bacterial enteric pathogens. Their inclusion in biofilms on abiotic surfaces is considered a strategy that facilitates their extraintestinal survival. Organic acid (OA) treatments could be used in a green approach to decontaminate various surfaces. This work aimed to evaluate the inhibitory and eradicative effects of L(+)-lactic acid (LA), a naturally occurring OA, on a dual-species biofilm formed on two food processing model surfaces (polystyrene and stainless steel) by three selected foodborne Campylobacter spp. isolates (two C. jejuni and one C. coli). The influence of aerobiosis conditions (microaerophilic, aerobic and CO2 enriched) on the resistance of the established biofilms to the acid was also tested. In parallel, the predominant metabolites contained in the planktonic media of biofilm monocultures and mixed-culture biofilm were comparatively analyzed by an untargeted metabolomics approach. Results revealed that LA inhibited mixed-culture biofilm formation by more than 2 logs (>99%) on both surfaces when this was applied at its highest tested concentration (4096 μg/mL; 0.34% v/v). However, all the preformed mixed-culture biofilms (ca. 106-7 CFU/cm2) could not be eradicated even when the acid was used at concentrations exceeding 5% v/v, denoting their extremely high recalcitrance which was still influenced by the abiotic substratum, and the biofilm-forming aerobiosis conditions. The metabolic analysis revealed a strain-specific metabolite production which might also be related to the strain-specific biofilm-forming and resistance behaviors and resulted in the distinct clustering of the different samples. Overall, the current findings provide important information on the effectiveness of LA against biofilm campylobacteria and may assist in mitigating their risk in the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
35
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
36
|
Gustafson AM, Larrain CM, Friedman LR, Repkorwich R, Anidi IU, Forrest KM, Fennelly KP, Carr SR. Novel management of pseudomonas biofilm-like structure in a post-pneumonectomy empyema. Front Cell Infect Microbiol 2024; 14:1458652. [PMID: 39483118 PMCID: PMC11525003 DOI: 10.3389/fcimb.2024.1458652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
We present a patient with a post-pneumonectomy empyema refractory to surgical debridement and systemic antibiotics. The patient initially presented with a bronchopleural fistula and pneumothorax secondary to tuberculosis (TB) destroyed lung, which required a pneumonectomy with Eloesser flap. Ongoing pleural infection delayed the closure of the Eloesser flap, and thoracoscopic inspection of his chest cavity revealed a green, mucous biofilm-like structure lining the postpneumonectomy pleural cavity. Cultures identified pan-susceptible Pseudomonas aeruginosa. Despite debriding this biofilm-like structure and administering systemic antibiotics, the patient continued to show persistent signs of infection and regrowth of the film. We employed a novel approach to dissolve the biofilm-like structure using intrapleural dornase alfa followed by intrapleural antibiotic washes. After 3 weeks of daily washes, repeat inspection demonstrated the biofilm-like structure had completely resolved. Resolving the pseudomonas biofilm-like structure allowed permanent closure of his chest without further need for systemic antibiotics. At follow up 3 months later, he showed no sequalae. This treatment option can be an important adjunct to improve likelihood of chest closure in patients with post-pneumonectomy empyema that resists standard treatment options due to biofilm formation.
Collapse
Affiliation(s)
- Alexandra M. Gustafson
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD, United States
| | - Carolina M. Larrain
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD, United States
| | - Lindsay R. Friedman
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD, United States
| | - Rachel Repkorwich
- National Institutes of Health, National Cancer Institute, Thoracic Surgery Branch, Bethesda, MD, United States
| | - Ifeanyichukwu U. Anidi
- National Institutes of Health, National Heart, Lung and Blood Institute, Critical Care Medicine and Pulmonary Branch, Bethesda, MD, United States
| | - Karen M. Forrest
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Kevin P. Fennelly
- National Institutes of Health, National Heart, Lung and Blood Institute, Critical Care Medicine and Pulmonary Branch, Bethesda, MD, United States
| | - Shamus R. Carr
- National Institutes of Health, National Cancer Institute, Thoracic Surgery Branch, Bethesda, MD, United States
| |
Collapse
|
37
|
Dias-Souza MV, Alves AL, Pagnin S, Veiga AA, Haq IU, Alonazi WB, Dos Santos VL. The activity of hydrolytic enzymes and antibiotics against biofilms of bacteria isolated from industrial-scale cooling towers. Microb Cell Fact 2024; 23:282. [PMID: 39415191 PMCID: PMC11484388 DOI: 10.1186/s12934-024-02502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems. RESULTS All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate. CONCLUSION The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.
Collapse
Affiliation(s)
- Marcus Vinícius Dias-Souza
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Andrea Lima Alves
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sérgio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Vera Lúcia Dos Santos
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
38
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
39
|
Liao F, He J, Li R, Hu Y. Endophytic Fungus UJ3-2 from Urtica fissa: Antibacterial Activity and Mechanism of Action against Staphylococcus aureus. Molecules 2024; 29:4850. [PMID: 39459217 PMCID: PMC11510654 DOI: 10.3390/molecules29204850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Taking the endophytic fungus UJ3-2, isolated from Urtica fissa, as the experimental material, this study aimed to explore the composition of its metabolites and the underlying mechanisms by which it inhibits Staphylococcus aureus. Initially, the MIC, MBC, inhibitory curves, biofilm growth, and extracellular nucleic acids and proteins of S. aureus in response to the metabolites were measured. Secondly, PI staining and SEM were used to evaluate the impact of the metabolites on the integrity of the cell wall and overall morphology of S. aureus. Additionally, UPLC-MS was employed to analyze the composition of the secondary metabolites. The UJ3-2 strain was identified as Xylaria grammica based on ITS sequencing and designated as Xylaria grammica UJ3-2. Our results revealed that the metabolites of UJ3-2 exhibited excellent in vitro antibacterial activity against S. aureus, with both MIC and MBC values of 3.125 mg/mL. The inhibitory curve confirmed that 1 MIC of UJ3-2 metabolites could completely inhibit the growth of S. aureus within 24 h. With increasing concentrations of UJ3-2 metabolites, the growth of S. aureus biofilms was significantly suppressed, and obvious leakage of nucleic acids and proteins was observed. PI fluorescence staining indicated that various concentrations of UJ3-2 metabolites disrupted the integrity of the S. aureus cell membrane. SEM observation revealed that the treated S. aureus surfaces became rough, and the bacteria shrank and adhered to each other, showing a dose-dependent effect. UPLC-MS analysis suggested that the main components of the fermented metabolites were 6-oxocineole (17.92%), (S)-2-acetolactate (9.91%), 3-methyl-cis,cis-muconate (4.36%), and 8-oxogeranial (3.17%). This study demonstrates that the endophytic fungus UJ3-2 exhibits remarkable in vitro antibacterial effects against S. aureus, primarily by enhancing the permeability of the S. aureus cell membrane, causing the leakage of its intracellular contents, and altering the bacterial surface morphology to inhibit the pathogen. The endophytic fungus UJ3-2 has a good antibacterial effect on S. aureus, which gives it certain application prospects in the screening and industrial production of new and efficient natural antibacterial active substances.
Collapse
Affiliation(s)
- Fei Liao
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie He
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Renjun Li
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
40
|
Attea SA, Ghareeb MA, Kelany AK, Elhakim HKA, Allemailem KS, Bukhari SI, Rashidi FB, Hamed AA. Biosynthesis of Iron Oxide Nanoparticles by Marine Streptomyces sp. SMGL39 with Antibiofilm Activity: In Vitro and In Silico Study. Molecules 2024; 29:4784. [PMID: 39407712 PMCID: PMC11478020 DOI: 10.3390/molecules29194784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
One of the major global health threats in the present era is antibiotic resistance. Biosynthesized iron oxide nanoparticles (FeNPs) can combat microbial infections and can be synthesized without harmful chemicals. In the present investigation, 16S rRNA gene sequencing was used to discover Streptomyces sp. SMGL39, an actinomycete isolate utilized to reduce ferrous sulfate heptahydrate (FeSO4.7H2O) to biosynthesize FeNPs, which were then characterized using UV-Vis, XRD, FTIR, and TEM analyses. Furthermore, in our current study, the biosynthesized FeNPs were tested for antimicrobial and antibiofilm characteristics against different Gram-negative, Gram-positive, and fungal strains. Additionally, our work examines the biosynthesized FeNPs' molecular docking and binding affinity to key enzymes, which contributed to bacterial infection cooperation via quorum sensing (QS) processes. A bright yellow to dark brown color shift indicated the production of FeNPs, which have polydispersed forms with particle sizes ranging from 80 to 180 nm and UV absorbance ranging from 220 to 280 nm. Biosynthesized FeNPs from actinobacteria significantly reduced the microbial growth of Fusarium oxysporum and L. monocytogenes, while they showed weak antimicrobial activity against P. aeruginosa and no activity against E. coli, MRSA, or Aspergillus niger. On the other hand, biosynthesized FeNPs showed strong antibiofilm activity against P. aeruginosa while showing mild and weak activity against B. subtilis and E. coli, respectively. The collaboration of biosynthesized FeNPs and key enzymes for bacterial infection exhibits hydrophobic and/or hydrogen bonding, according to this research. These results show that actinobacteria-biosynthesized FeNPs prevent biofilm development in bacteria.
Collapse
Affiliation(s)
- Sara A. Attea
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Ayda K. Kelany
- Department of Genomic Medicine, Cairo University Hospitals, Cairo University, Cairo 11566, Egypt;
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Heba K. A. Elhakim
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fatma B. Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| |
Collapse
|
41
|
Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. Bacteriophage-mediated approaches for biofilm control. Front Cell Infect Microbiol 2024; 14:1428637. [PMID: 39435185 PMCID: PMC11491440 DOI: 10.3389/fcimb.2024.1428637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/23/2024] Open
Abstract
Biofilms are complex microbial communities in which planktonic and dormant bacteria are enveloped in extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, lipids, and DNA. These multicellular structures present resistance to conventional antimicrobial treatments, including antibiotics. The formation of biofilms raises considerable concern in healthcare settings, biofilms can exacerbate infections in patients and compromise the integrity of medical devices employed during treatment. Similarly, certain bacterial species contribute to bulking, foaming, and biofilm development in water environments such as wastewater treatment plants, water reservoirs, and aquaculture facilities. Additionally, food production facilities provide ideal conditions for establishing bacterial biofilms, which can serve as reservoirs for foodborne pathogens. Efforts to combat antibiotic resistance involve exploring various strategies, including bacteriophage therapy. Research has been conducted on the effects of phages and their individual proteins to assess their potential for biofilm removal. However, challenges persist, prompting the examination of refined approaches such as drug-phage combination therapies, phage cocktails, and genetically modified phages for clinical applications. This review aims to highlight the progress regarding bacteriophage-based approaches for biofilm eradication in different settings.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Saskya E. Carrera-Pacheco
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Linda P. Guamán
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| |
Collapse
|
42
|
Chen KZM, Vu LM, Vollmer AC. Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0021124. [PMID: 39162544 PMCID: PMC11448113 DOI: 10.1128/spectrum.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa forms aggregates known as biofilms. Previous studies have shown that when P. aeruginosa is cultivated in space, thicker and structurally different biofilms are formed than from those grown on Earth. We investigated how microgravity, simulated in a laboratory setting, influenced the growth, colonization, and virulence potentials of a P. aeruginosa PA14 wild-type strain, as well as two surface attachment-defective (sad) mutants altered at crucial biofilm-forming steps: flgK and pelA. Using high-aspect ratio rotating-wall vessel (HARV) bioreactors, P. aeruginosa bacteria were grown to stationary phase under prolonged (6 days) exposure to simulated microgravity or normal gravity conditions. After the exposure, the capacity of the culture to form biofilms was measured. Additionally, pigment (pyocyanin) formed by each culture during the incubation was extracted and quantified. We demonstrate that the first prolonged exposure to low-shear modeled microgravity (LSMMG) and without nutrient replenishment significantly diminishes wild-type P. aeruginosa PA14 biofilm formation abilities after exposure and pyocyanin production during exposure, while the mutant strains exhibit differing outcomes for both properties. IMPORTANCE Given plans for humans to engage in prolonged space travel, we investigated biofilm and pigment/virulence factor formation in Pseudomonas aeruginosa when cultivated in microgravity. These bacteria are opportunistic pathogens in immunocompromised individuals. Previous studies of space travelers have shown some immune system diminutions. Hence, our studies shed some light on how prolonged cultivation of bacteria in simulated microgravity conditions affect their growth characteristics.
Collapse
Affiliation(s)
| | - Linda My Vu
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
43
|
Eghtesadi N, Olaifa K, Pham TT, Capriati V, Ajunwa OM, Marsili E. Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms. Enzyme Microb Technol 2024; 180:110485. [PMID: 39059288 DOI: 10.1016/j.enzmictec.2024.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Gram-positive Bacillus subtilis is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in B. subtilis biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in B. subtilis. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose B. subtilis to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol-1) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH2PO4 and KH2PO4 salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the B. subtilis biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.
Collapse
Affiliation(s)
- Neda Eghtesadi
- Department of Chemical and Materials Engineering, School of Engineering and Digital, Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Kayode Olaifa
- Department of Chemical and Materials Engineering, School of Engineering and Digital, Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Tri T Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Vito Capriati
- Dipartimento di Farmacia - Scienze del Farmaco, Consorzio CINMPIS, Università degli Studi di Bari Aldo Moro, Bari 70125, Italy
| | - Obinna M Ajunwa
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark.
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
44
|
Ormsby MJ, Woodford L, White HL, Fellows R, Quilliam RS. The plastisphere can protect Salmonella Typhimurium from UV stress under simulated environmental conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124464. [PMID: 38964649 DOI: 10.1016/j.envpol.2024.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Plastic waste is found with increasing frequency in the environment, in low- and middle-income countries. Plastic pollution has increased concurrently with both economic development and rapid urbanisation, amplifying the effects of inadequate waste management. Distinct microbial communities can quickly colonise plastic surfaces in what is collectively known as the 'plastisphere'. The plastisphere can act as a reservoir for human pathogenic bacteria, including Salmonella enterica sp. (such as S. Typhimurium), which can persist for long periods, retain pathogenicity, and pose an increased public health risk. Through employing a novel mesocosm setup, we have shown here that the plastisphere provides enhanced protection against environmental pressures such as ultraviolet (UV) radiation and allows S. Typhimurium to persist at concentrations (>1 × 103 CFU/ml) capable of causing human infection, for up to 28 days. Additionally, using a Galleria Mellonella model of infection, S. Typhimurium exhibits greater pathogenicity following recovery from the UV-exposed plastisphere, suggesting that the plastisphere may select for more virulent variants. This study demonstrates the protection afforded by the plastisphere and provides further evidence of environmental plastic waste acting as a reservoir for dangerous clinical pathogens. Quantifying the role of plastic pollution in facilitating the survival, persistence, and dissemination of human pathogens is critical for a more holistic understanding of the potential public health risks associated with plastic waste.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
45
|
Rogers ME, de Pablos LM, Sunter JD. Gels and cells: the Leishmania biofilm as a space and place for parasite transmission. Trends Parasitol 2024; 40:876-885. [PMID: 39218719 DOI: 10.1016/j.pt.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Leishmania make an abundant glycoprotein and proteophosphoglycan-rich gel, called the promastigote secretory gel, in the anterior midgut of their sand fly vector. This gel is a multi-faceted virulence factor which promotes the survival and transmission of the parasites between hosts. Here, we present the case that Leishmania parasites embedded in the promastigote secretory gel should be redefined as a biofilm as it shares striking similarities in biogenesis, form, and function with biofilms of other unicellular organisms. We believe that this reinterpretation will stimulate new hypotheses and avenues of research to improve our understanding of the developmental programme of Leishmania and the interaction these parasites and other kinetoplastids have with their insect hosts.
Collapse
Affiliation(s)
- Matthew E Rogers
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Luis Miguel de Pablos
- Department of Parasitology, University of Granada, Granada, Spain; Institute of Biotechnology, University of Granada, Granada, Spain
| | | |
Collapse
|
46
|
Jardak M, Lami R, Saadaoui O, Jlidi H, Stien D, Aifa S, Mnif S. Control of Staphylococcus epidermidis biofilm by surfactins of an endophytic bacterium Bacillus sp. 15 F. Enzyme Microb Technol 2024; 180:110477. [PMID: 39003969 DOI: 10.1016/j.enzmictec.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The present paper deals with the preparation and annotation of a surfactin(s) derived from a culture of the endophytic bacterium Bacillus 15 F. The LC-MS analysis of the acetonitrile fraction confirmed the presence of surfactins Leu/Ile7 C15, Leu/Ile7 C14 and Leu/Ile7 C13 with [M+H]+ at m/z 1036.6895, 1022.6741 and 1008.6581, respectively. Various concentrations of the surfactin(s) (hereafter referred to as surfactin-15 F) were used to reduce the adhesion of Staphylococcus epidermidis S61, which served as a model for studying antibiofilm activity on polystyrene surfaces. Incubation of Staphylococcus epidermidis S61 with 62.5 µg/ml of surfactin-15 F resulted in almost complete inhibition of biofilm formation (90.3 ± 3.33 %), and a significant reduction of cell viability (resazurin-based fluorescence was more than 200 times lower). The antiadhesive effect of surfactin-15 F was confirmed by scanning electron microscopy. Surfactin-15 F demonstrated an eradication effect against preformed biofilm, causing severe disruption of Staphylococcus epidermidis S61 biofilm structure and reducing viability. The results suggest that surfactins produced by endophytic bacteria could be an alternative to synthetic products. Surfactin-15 F, used in wound dressings, demonstrated an efficient treatment of the preformed Staphylococcus epidermidis S61 biofilm, and thus having a great potential in medical applications.
Collapse
Affiliation(s)
- Marwa Jardak
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia.
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Oumaima Saadaoui
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Hajer Jlidi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| |
Collapse
|
47
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
48
|
Abouhagger A, Celiešiūtė-Germanienė R, Bakute N, Stirke A, Melo WCMA. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front Cell Infect Microbiol 2024; 14:1419570. [PMID: 39386171 PMCID: PMC11462992 DOI: 10.3389/fcimb.2024.1419570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
Collapse
Affiliation(s)
| | | | | | | | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| |
Collapse
|
49
|
Lin L, Huang Y, Jia W, Zhou S, Gan C, Wu WM, Xu M. Microbiomes on microplastics versus natural microcarriers: Stability and transformation during aquatic travel from aquaculture ponds to adjacent stream. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135241. [PMID: 39032183 DOI: 10.1016/j.jhazmat.2024.135241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Microplastics (MPs) with different physical-chemical properties are considered as vectors for the propagation of microbes in aquatic environments. It remains unclear how plastic types impact on the plastisphere and whether different MPs spread microbes more rapidly than natural materials in microbes across distinct water bodies as proposed previously. We used in-situ incubation to investigate the microbes attached on MPs of polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), versus that on two natural microcarriers (quartz sands and bamboo) during the travel from aquaculture ponds with impacted by fish farming to adjacent freshwater stream. The results showed that the microbial communities on the carriers were shaped not only by environmental conditions, which were primary determinants but also by carrier types. All the tested plastics did not carry more microbes than the natural carriers during the journey. The biofilm community composition on PVC is distinct from that on PE and PP MPs and natural carriers. The plastisphere of PE and PP kept microbial proportions as natural materials did but PVC retained less than nature materials. Bamboo carried more potential pathogens than plastic polymers and quartz. The results indicated that the communities of plastisphere is polymer-type dependent, and, compared with the natural materials, MPs did not show enhanced propagation of microbes, including pathogens, cross distinct environments.
Collapse
Affiliation(s)
- Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China
| | - Weibin Jia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China
| | - Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Environmental Protection Key Laboratory of Microbiology and Regional Eco-Safety, Guangzhou 510070, China.
| |
Collapse
|
50
|
Sadeghi E, Taghavi R, Hasanzadeh A, Rostamnia S. Bactericidal behavior of silver nanoparticle decorated nano-sized magnetic hydroxyapatite. NANOSCALE ADVANCES 2024:d4na00183d. [PMID: 39386118 PMCID: PMC11459644 DOI: 10.1039/d4na00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common cause of acute bacterial arthritis. Due to the increase in antibiotic resistance in these bacteria, the discovery of new antibacterial agents has become one of the hot topics in the scientific community. Here, we prepared a nano-sized porous biocompatible magnetic hydroxyapatite through a solvothermal method. Then, we adopted a post-synthesis modification strategy to modify its surface for the stabilization of Ag NPs through a green reduction by the euphorbia plant extract. Moreover, the results show that the prepared composite perfectly prevents the aggregation of Ag NPs. This composite was used as a bactericidal and antibiofilm agent against MRSA bacteria in an in vitro environment, which showed excellent results. Also, the cell viability assay indicates that the prepared composite has low cytotoxicity, making it a perfect antibacterial agent for in vivo experiments.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|